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Abstract A hydrodynamical limit of a coupled kinetic-fluid model describing the
interaction between particles and fluid is considered with emphasis on the existence
of smooth propagating fronts. We focus on two different types of models based,
respectively, on a Burgers’ and an Euler description of the dynamics of the fluid
equation exhibiting similarities and differences.

1 Fluid-kinetic models for particle-laden flow

A particle-laden flow can be conceived as a class of two-phase fluid flow composed
by: a carrier/continuous phase, and a disperse/particle phase made of small, immis-
cible, dilute particles. A starting significant example is fine aerosol particles in air,
where aerosols are the dispersed phase and air is the carrier phase. There are also
more applications of such type of phenomena in reality: pollution dispersion in the
atmosphere, fluidization in combustion processes, aerosol deposition in spray med-
ication, gravity and turbidity currents, turbulent shallow-waters flows, gas-particle
jet, fluidized beds...

Focusing on the case of a 1D spatial domain, 𝑥 ∈ R, the disperse phase is identified
by the kinetic variable 𝑓𝜖 = 𝑓𝜖 (𝑡, 𝑥, 𝑣), which describes the particles distribution at
time 𝑡, position 𝑥 and moving with speed 𝑣. The unknown 𝑓𝜖 satisfies the kinetic
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CentraleSupélec, Fédération de Mathématiques FR CNRS 3487 & Labo. MICS, F-91192 Gif-sur-
Yvette, France, e-mail: pauline.lafitte@centralesupelec.fr

Corrado Mascia
Dipartimento di Matematica Guido Castelnuovo, Sapienza, University of Rome, P.le A. Moro 5 –
00185 Rome, Italy, e-mail: corrado.mascia@uniroma1.it

1



2 Thierry Goudon, Pauline Lafitte and Corrado Mascia

equation

𝜕𝑡 𝑓𝜖 + 𝑣 𝜕𝑥 𝑓𝜖 =
1
𝜖
L𝑢𝜖

𝑓𝜖

where L𝑢 is the Fokker–Planck operator L𝑢 𝑓 := 𝜕𝑣
{
(𝑣 − 𝑢) 𝑓 + \ 𝜕𝑣 𝑓

}
with 𝑢

describing the velocity of the carrier phase (to be detailed) and \ > 0 measures
random fluctuations, which can be realistically regarded as the temperature of the
mixture. The coupling due to carrier phase emerges in the friction-type term 𝜕𝑣

{
(𝑣−

𝑢) 𝑓
}

expressing the tendency of particles with speed 𝑣 to coalesce to the carrier
speed 𝑢.

Somewhat complementary, the carrier phase is described by the fluid variable
pair (𝑛𝜖 , 𝑢𝜖 ) for the carrier density and velocity for the fluid, i.e. the momentum
𝑛𝜖 𝑢𝜖 solves the dynamic relation

𝜕𝑡 (𝑛𝜖 𝑢𝜖 ) + 𝜕𝑥
(
𝑛𝜖 𝑢

2
𝜖 + 𝑝

)
=

1
𝜖
(𝐽𝜖 − 𝜌𝜖 𝑢𝜖 ) ,

where 𝑝 = 𝑝(𝑛𝜖 ) is the value of the pressure of the fluid-phase, while the terms 𝜌𝜖

and 𝐽𝜖 are given by

𝜌𝜖 (𝑡, 𝑥) :=
∫

𝑓𝜖 (𝑡, 𝑥, 𝑣) d𝑣 and 𝐽𝜖 (𝑡, 𝑥) :=
∫

𝑣 𝑓𝜖 (𝑡, 𝑥, 𝑣) d𝑣 ,

where the integration with respect to 𝑣 is considered in R. Clearly, an additional
equation describing the dynamics of 𝑛𝜖 is needed to close the system.

As a first option, we consider the case later on called Burgers–Fokker–Planck
system (in short, BFP), where the carrier is a sort of incompressible fluid, i.e. we
assume that 𝑛𝜖 (𝑡, 𝑥) = �̄� for any (𝑡, 𝑥). In particular, being null, the term 𝜕𝑥 𝑝 does not
affect the dynamics. The incompressibility here is a different concept with respect
to the standard incompressibility arising in the case of Navier–Stokes equations.

A more complete and coherent alternative is referred to as Euler–Fokker–Planck
system (in short, EFP): here, the carrier is an effectively compressible fluid, i.e. the
function 𝑛𝜖 satisfies the dynamical identity

𝜕𝑡𝑛𝜖 + 𝜕𝑥 (𝑛𝜖 𝑢𝜖 ) = 0

In such a case, additional hypotheses on the pressure 𝑝 are required. Here, following
the standard approach, we assume that the function 𝑝 is such that

𝑝′ (𝑛), 𝑝′′ (𝑛) > 0 ∀ 𝑛 ≥ 0 and lim
𝑛→+∞

𝑝(𝑛)
𝑛

= +∞

A classical example is given by the 𝛾-law, i.e. 𝑝(𝑛) = 𝐶 𝑛𝛾 where 𝐶 > 0 and 𝛾 > 1.
Precisely, for diatomic gases (the most familiar case is air) 𝛾 equals 7/5 and for
monoatomic ones (such as Helium and Argon) 𝛾 equals 5/3.
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2 Behavior as 𝝐 → 0+ and flowing regime

As it is well-known, the Maxwell distributions 𝑀𝑢 = 𝑀𝑢 (𝑣), parametrized by 𝑢 and
defined by

𝑀𝑢 (𝑣) :=
1

√
2𝜋\

exp
(
− |𝑣 − 𝑢 |2

2\

)
,

span the kernel of the Fokker–Planck operator L𝑢. Therefore, since

lim
𝜖→0+

L𝑢𝜖
𝑓𝜖 = lim

𝜖→0+
𝜖 {𝜕𝑡 𝑓𝜖 + 𝑣𝜕𝑥 𝑓𝜖 } = 0 ,

the kinetic term 𝑓𝜖 is such that 𝑓𝜖 ≃ 𝜌𝑀𝑢 as 𝜖 → 0+. Moreover, there formally holds

𝐽𝜖 ≃ 𝜌𝑢 and
∫

𝑣2 𝑓𝜖 d𝑣 ≃ 𝜌𝑢2 + \𝜌 ,

leading to a conservation law for the hybrid density 𝑟 := 𝜌 + 𝑛,

𝜕𝑡 (𝑟𝑢) + 𝜕𝑥
{
𝑟𝑢2 + 𝑝(𝑛) + \𝜌

}
= 0 ,

We end up with two possible descriptions fitting in the general form of a system of
conservation laws 𝜕𝑡W + 𝜕𝑥𝐹 (W) = 0 for some vector-valued function W.

The choice BFP leads to W = (𝜌, 𝑟𝑢) =
(
𝜌, (𝜌 + �̄�)𝑢

)
∈ R2 satisfying{

𝜕𝑡 𝜌 + 𝜕𝑥 (𝜌𝑢) = 0 ,
𝜕𝑡 (𝑟𝑢) + 𝜕𝑥 (𝑟𝑢2 + \𝜌) = 0 . (1)

Differently, for the case EFP, the unknown W = (𝑟, 𝜌, 𝑟𝑢) =
(
𝑟, 𝜌, (𝜌 + 𝑛)𝑢

)
is a

three-dimensional solution of the evolutionary system
𝜕𝑡𝑟 + 𝜕𝑥 (𝑟𝑢) = 0 ,
𝜕𝑡 𝜌 + 𝜕𝑥 (𝜌𝑢) = 0 ,

𝜕𝑡 (𝑟𝑢) + 𝜕𝑥
{
𝑟𝑢2 + 𝑝(𝑛) + \𝜌

}
= 0 .

(2)

Both systems can be proved to be (strictly) hyperbolic, see [1, 4].
Higher order diffusive terms appear by means of the standard Chapman–Enskog

expansion used as a tool to pass from the formal limit 𝜖 = 0 to the regime of small
𝜖 . Shallowly entering the details, let us set

𝑓𝜖 (𝑡, 𝑥, 𝑣) = 𝜌𝜖 (𝑡, 𝑥)𝑀𝑢𝜖 (𝑡 ,𝑥 ) (𝑣) + 𝜖𝑔𝜖 (𝑡, 𝑥, 𝑣) ,

where ∫
𝑔𝜖 (𝑡, 𝑥, 𝑣) d𝑣 = 0

Looking for terms of order 𝜖 , we end up with a viscous system of conservation laws
of the form
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𝜕𝑡W + 𝜕𝑥𝐹 (W) = 𝜖 𝜕𝑥 {D(W)𝜕𝑥W} (3)

for some appropriate matrices D = D(W). To provide the explicit form of the
diffusion correction D in the two cases BFP and EFP – the detailed derivation can be
found in [4] – let us set

𝛼 :=
𝑛2

𝑟2 , 𝛽 :=
𝜌 · 𝑛𝑝′
𝑟2 and 𝛾 :=

𝜌

𝑟
. (4)

Note that, in the case 𝑛 ≡ �̄�, there holds 𝛼 = �̄�/𝑟2, 𝛽 = 0, 𝛾 = 𝜌/𝑟 . Then, the flowing
regime for BFP is described by

D(W) = 𝛼𝛾𝑢

(
𝑢 −1
0 0

)
+ \

(
1/𝑟2 0
−𝛾𝑢 𝛾

)
(5)

Differently, the flowing regime for EFP corresponds to the choice

D(W) = 𝛽
©«

0 0 0
−1 1 0
0 0 0

ª®¬ + \
©«

0 0 0
0 𝛼 0

−𝛾𝑢 0 𝛾

ª®¬ (6)

Definition 1 Let A := d𝐹 (W∗) and D := D(W∗). The constant coefficient system

𝜕𝑡W + A𝜕𝑥W = 𝜖D 𝜕2
𝑥W ,

obtained by linearization of (3) at some constant state W∗, is

i. parabolic at W∗ if the eigenvalues of the symmetric matrix SD := 1
2 (D + D⊺)

have positive real parts;
ii. uniformly stable at W∗ if for any 𝑇 > 0 there exists 𝐶 = 𝐶 (𝑇) > 0 such that

sup
{
∥W(𝑡, ·)∥𝐿2 : 0 < 𝜖 < 1, 𝑡 ∈ [0, 𝑇]

}
≤ 𝐶 (𝑇)∥W0∥𝐿2

where W is the solution of the Cauchy problem (1) with initial condition
W(0, ·) = W0 ∈ 𝐿2 (R).

Note that uniform stability can be stated equivalently as

sup{∥ exp{−𝑡
(
𝑖bA + 𝜖b2D

)
}∥ : 𝑡 ∈ [0, 𝑇], b ∈ R} ≤ 𝐶 (𝑇).

where ∥ · ∥ denotes the operator norm from 𝐿2 to 𝐿2.

Incidentally, we observe a major difference between the two models.

Proposition 1 Both hyperbolic BFP and parabolic BFP are not invariant under
Galilean transformation. Differently, hyperbolic EFP and hyperbolic-parabolic EFP
are invariant under such family of coordinates’ changes.

Proof To check for the absence/presence of this property, let us consider the change
of variables (𝑡, 𝑥) ↦→ (𝑠, 𝑦) = (𝑡, 𝑥 − 𝑢0𝑡) for some 𝑢0 ∈ R. It can be easily verified
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that conservation of mass is invariant under this transformation: indeed, there holds

𝜕𝑡𝑟 + 𝜕𝑥 (𝑟𝑢) = 𝜕𝑠𝑟 − 𝑢0𝜕𝑦𝑟 + 𝜕𝑦
{
𝑟 (𝑣 + 𝑢0)

}
= 𝜕𝑠𝑟 + 𝜕𝑦 (𝑟𝑣),

Then, hyperbolic BFP is not invariant, since

0 = 𝜕𝑡 (𝑟𝑢) + 𝜕𝑥 (𝑟𝑢2 + \𝜌) = 𝜕𝑠 (𝑟𝑣) + 𝜕𝑦 (𝑟𝑣2 + \𝜌) + 𝑢0𝜕𝑦𝑣 ,

with the same fate holding for the parabolic version of BFP. Differently, both hy-
perbolic and hyperbolic-parabolic EFP are invariant under Galilean transformations,
as follows from similar computations. Indeed, focusing on the third equation and
introducing the total pressure 𝑃(𝑛, 𝜌) := 𝑝(𝑛) + \𝜌, there holds

𝜕𝑡 (𝑟𝑢) + 𝜕𝑥 (𝑟𝑢2 + 𝑃) = 𝜕𝑠
{
𝑟 (𝑣 + 𝑢0)

}
− 𝑢0𝜕𝑦

{
𝑟 (𝑣 + 𝑢0)

}
+ 𝜕𝑦

{
𝑟 (𝑣 + 𝑢0)2 + 𝑃

}
= 𝜕𝑠 (𝑟𝑣) + 𝑢0𝜕𝑠𝑟 − 𝑢0𝜕𝑦 (𝑟𝑣) − 𝑢2

0𝜕𝑦𝑟 + 𝜕𝑦
{
𝑟 (𝑣2 + 2𝑢0𝑣 + 𝑢2

0) + 𝑃
}

= 𝜕𝑠 (𝑟𝑣) + 𝜕𝑦 (𝑟𝑣2 + 𝑃) − 2𝑢0𝜕𝑦 (𝑟𝑣) − 𝑢2
0𝜕𝑦𝑟 + 2𝑢0𝜕𝑦 (𝑟𝑣) + 𝑢2

0𝜕𝑦𝑟

= 𝜕𝑠 (𝑟𝑣) + 𝜕𝑦 (𝑟𝑣2 + 𝑃),

showing that the hyperbolic system (2) is invariant with respect to Galilean trans-
formations. To check that the same invariance holds for the enriched system includ-
ing the diffusion term given in (6), we reformulate it with respect to the variable
U = (𝑟, 𝜌, 𝑢). Thus, we end up with

𝜕𝑡𝐺 (U) + 𝜕𝑥𝐻 (U) = 𝜖𝜕𝑥 {E(U)𝜕𝑥U}

for some appropriate 𝐺, 𝐻 and E explicitly given by

E(U) :=
√
𝛼
©«

0 0 0
−1 1 0
0 0 0

ª®¬ + \
©«
0 0 0
0 1 − 𝛼 0
0 0 𝜌

ª®¬ .

Therefore, EFP is invariant under Galilean transformations, because E does not
depend explicitly on the velocity field 𝑢. □

3 Convex entropies for both BFP and EFP

Both models are endowed with a convex entropy. To begin with, let us focus on
BFP system. Without loss of generality, we may assume �̄� ≡ 1. The correspondent
kinetic-fluid model possesses an entropy 𝐻BFP𝜖 defined by

𝐻BFP𝜖 (𝑢, 𝑓𝜖 ) := 𝐻BFPfl (𝑢) + 𝐻BFPp ( 𝑓𝜖 ) ,

where
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𝐻BFPfl (𝑢) := 1
2𝑢

2 and 𝐻BFPp ( 𝑓𝜖 ) :=
∫

𝑓𝜖
{ 1

2 𝑣
2 + \ ln 𝑓𝜖

}
d𝑣

correspond to the entropy of the fluid and of the particles phase, respectively. Since

𝑓𝜖 ≃ 𝜌𝑀𝑢 and
∫

𝑣2 𝑓𝜖 d𝑣 ≃ 𝜌𝑢2 + \𝜌

in the limiting regime 𝜖 → 0+, the function 𝐻BFP𝜖 converges –up to linear terms in
𝜌– to the following entropy [BFP for the corresponding limiting system

[BFP (W) := 1
2 𝑟𝑢

2 + \𝜌 ln 𝜌 = 1
2𝑢

2 + 1
2 𝜌𝑢

2 + \𝜌 ln 𝜌 ,

witth some appropriate associated entropy flux 𝑞BFP. Indeed, upon direct computa-
tion, the positive definite hessian of the entropy 𝐷2[BFP is a symmetrizer of both d𝐹
and D. In addition, there holds

Tr
(
𝐷2[BFPD

)
> 0 and det

(
𝐷2[BFPD

)
= det 𝐷2[BFP det D > 0 .

for any W with strictly positive components. Hence, 𝐷2[BFPD is positive definite
and BFP, in such new coordinates, is parabolic.

Similarly, setting

Π(𝑛) :=
∫ 𝑛

0

∫ 𝑦

0

𝑝′ (𝑥)
𝑥

d𝑥 d𝑦 ,

the kinetic-fluid model corresponding to EFP has an entropy 𝐻EFP𝜖 given by

𝐻EFP𝜖 (𝑛, 𝑢, 𝑓𝜖 ) := 𝐻EFPfl (𝑛, 𝑢) + 𝐻EFPp ( 𝑓𝜖 ) ,

where

𝐻EFPfl (𝑛, 𝑢) := 1
2𝑛𝑢

2 + Π(𝑛) and 𝐻EFPp ( 𝑓𝜖 ) :=
∫

𝑓𝜖
{ 1

2 𝑣
2 + \ ln 𝑓𝜖

}
d𝑣 .

Following the same path of BFP, we infer the entropy [EFP which is given by

[EFP (W) := 1
2𝑟𝑢

2 + Π(𝑛) + \𝜌 ln 𝜌 = 1
2𝑛𝑢

2 + Π(𝑛) + 1
2 𝜌𝑢

2 + \𝜌 ln 𝜌 .

As before, the convex function [EFP is a symmetrizer of both d𝐹 and D. Since the
first row of D is composed by zeros, the system cannot be parabolic. Nevertheless,
EFP has a parabolic-hyperbolic decomposition in the sense that D can be written as(

0 02×1
a1×2 b2×2

)
where b2×2 is a 2 × 2 diagonal matrix with positive entries. Moreover, the Shizuta–
Kawashima condition –which can be regarded as a stability condition– is satisfied
for \ > 0, i.e. no element of the kernel of D are eigenvalues of d𝐹, see [10].
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4 Weak shock profiles for BFP and EFP

Let us consider special solutions to (3) in the form of traveling waves, i.e. W(𝑡, 𝑥) =
W(𝑥 − 𝑐𝑡), satisfying the asymptotic conditions

lim
𝑦→−∞

W(𝑦) = W∗, and lim
𝑦→+∞

W(𝑦) = W+

for given states W∗ and W+. Such solutions are called shock waves, or, simply,
shocks. The function 𝑦 ↦→ W(𝑦) is named profile and the parameter 𝑐 is the speed.

Rescaling indepedent variable by setting 𝑦 ↦→ 𝑧 := 𝑦/𝜖 and plugging into (3), we
end up with the system of ordinary differential equations

D(W) dW
d 𝑦

= 𝐹 (W) − 𝐹 (W∗) − 𝑐(W −W∗).

As a consequence of the Galilean invariance, we are allowed to change to a reference
frame co-moving with the shock. In such a case –which is possible for EFP and not
for BFP– we can limit the analysis to the case 𝑐 = 0 without loss of generality.

A basic role is played by the classical Rankine–Hugoniot identity, which reads as

𝑐 [[W]] = [[𝐹 (W)]] , (7)

where 𝑐 is the jump speed and [[W]] := W+ −W∗. Equality (7) can be regarded as
a constraint on 𝑐 given the asymptotic states W∗ and W+.

Poorly speaking, we may consider two major possible regimes depending on the
strength of the jump [[W]]: small amplitude vs. moderate/large amplitude. For weak
shocks, a fundamental tool for proving existence of shock profiles is the Liu’s entropy
criterion, see [3, 5].

Theorem 1 (Existence of weak shock profiles) System (3) with 𝐹 (W) = (𝜌 𝑢, 𝑟𝑢2+
\𝜌), D given by (5) (corresponding to BFP) and with 𝐹 (W) = (𝑟𝑢, 𝜌𝑢, 𝑟𝑢2+ 𝑝+\𝜌),
D given by (6) (corresponding to EFP) support smooth weak shock profiles.

The complete proofs, contained in [4], essentially consists in the verifications that
the assumptions in [9] (for BFP) and [6] (for EFP) hold. Once existence is established,
asymptotic stability is also guaranteed (see [7, 8] for 𝐿 𝑝-perturbations with sharp
decay rates).

5 Moderate/large shocks for EFP at zero temperature

In this final part, we focus on EFP hyperbolic-parabolic model for the case of mod-
erate/large strength. In such a case, as previously stated, we can reduce to 𝑐 = 0
without loss of generality. Hence, we look for a heteroclinic orbit 𝑦 ↦→ W = (𝑟, 𝜌, 𝑤)
with 𝑤 = 𝑟𝑢 for the system
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D(W) dW
d𝑦

= 𝐹 (W) − 𝐹 (W∗)

connecting the asymptotic states W(−∞) = W∗ = (𝑟∗, 𝜌∗, 𝑤∗) and W(+∞) = W+ =

(𝑟+, 𝜌+, 𝑤+), the former being fixed and the latter variable.
Upon integration, we reduce to the two dimensional ODE

𝛽
d𝑟
d𝑦

− (𝛽 + \𝛼) d𝜌
d𝑦

= 𝑤∗

(
𝑛

𝑟
− 𝑛∗

𝑟∗

)
,

− \𝛾𝑤∗
𝑟

d𝑟
d𝑦

=
𝑤2
∗
𝑟

+ 𝑝(𝑛) + \𝜌 − 𝑤2
∗

𝑟∗
− 𝑝(𝑛∗) − \𝜌∗

(8)

with 𝛼, 𝛽 and 𝛾 defined in (4). In the singular limit \ → 0+, corresponding to the
temperature-less regime, system (8) reduces to a differential-algebraic system

𝛽
d𝑛
d𝑦

= 𝑤∗

(
𝑛

𝑟
− 𝑛∗

𝑟∗

)
𝑤2
∗
𝑟

+ 𝑝(𝑛) = 𝑤2
∗

𝑟∗
+ 𝑝(𝑛∗)

(9)

to be considered with the constraint 𝜌 = 𝑟 − 𝑛 ≥ 0.

Theorem 2 (Existence of shock profiles for \ = 0) Given 𝑢∗ > 0, let us set

^∗ :=
𝑛∗𝑝′ (𝑛∗)
𝑝(𝑛∗)

and ^ :=
𝑟∗𝑢2

∗
𝑝(𝑛∗)

.

For any ^ > 0 with ^ ≠ ^∗, there exists 𝜏# = 𝜏# (^) ∈ (0, 1) such that there exist
heteroclinic solutions 𝑛 = 𝑛(𝑦) to (9) satisfying the constraint 𝑟 (𝑛) > 𝑛 if and only
if 𝜏 < 𝜏# (^) < 1 where 𝜏 := 𝑛∗/𝑟∗. Moreover, if ^ < ^∗, lim

𝑦→−∞
𝑛(𝑦) = 𝑛× and

lim
𝑦→+∞

𝑛(𝑦) = 𝑛∗; moreover, if ^ > ^∗, lim
𝑦→−∞

𝑛(𝑦) = 𝑛∗ and lim
𝑦→+∞

𝑛(𝑦) = 𝑛× .

The complete proof, contained in [4], is based on a detailed analysis of the
differential-algebraic system with special care for the constraint 𝜌 = 𝑟 − 𝑛 > 0 for a
rescaled version of (9). This is performed by introducing the unknowns 𝑎 := 𝑛/𝑛∗
and 𝑏 := 𝑟/𝑟∗ together with the adimensionalized pressure 𝑞(𝑎) := 𝑝(𝑛∗𝑎)/𝑝(𝑛∗),
which leads to the constrained equation

d𝑎
d𝑧

=
1
𝑏
− 1
𝑎

with 𝑏 = 𝑏(𝑎) :=
^

1 + ^ − 𝑞(𝑎) ,

defined for 𝑎 ∈
(
0, 𝑞−1 (1 + ^)

)
, where 𝑧 is a strictly monotone function of 𝑦.

In some special cases, explicit forms for the threshold can be determined. As an
illustrative example, let us consider the case of the 𝛾-law with 𝛾 = 2. Then, there
holds ^∗ = 𝛾 = 2 and 𝑞(𝑎) = 𝑎𝛾 , so that
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𝜏# = 𝜏# (^) =
3
√

3
2

· ^

(1 + ^)3/2

In the special case 𝛾 = 2, the function 𝑔 is a rational function whose factorization is

𝑔(𝑎) :=
1

𝑏(𝑎) −
1
𝑎
= −𝑎3 − (1 + ^)𝑎 + ^

^𝑎
= − (𝑎 + 𝑎−) (𝑎 − 1) (𝑎 − 𝑎×)

^𝑎

where 𝑎− and 𝑎× are given by

𝑎− := 1
2

{
(1 + 4^)1/2 + 1

}
, 𝑎× := 1

2

{
(1 + 4^)1/2 − 1

}
Fig. 1 The function 𝜏# for
the case 𝑝 (𝑛) = 𝐶𝑛2. Weak
shocks are concentrated in a
neighborhood of ^ = ^∗ = 𝛾 =

2 (an example is enhanced in
the grey region).

A natural question would be to extend such existence results of moderate/large
amplitude (smooth) shock profiles valid for null temperature to the case of small
temperature by some singular perturbation argument. Moreover, stability analysis of
such profiles is an additional natural issue worthwhile to be investigated analytically
and numerically.
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