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Abstract We consider DDFV discretization of the Navier-Stokes equations where5

the convection fluxes are computed by means of B-schemes, generalizing the clas-
sical centered and upwind discretizations. This study is motivated by the analysis of
domain decomposition approaches. We investigate on numerical grounds the con-
vergence of the method.
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1 Introduction
We consider the incompressible Navier-Stokes problem

∂tu+(u ·∇)u−div(σ(u,p)) = f in Ω × [0,T ],
div(u) = 0 in Ω × [0,T ],

u = 0 on ∂Ω × [0,T ],
u(0) = uinit in Ω ,

(1)

where Ω is an open connected bounded polygonal domain of R2, f ∈ (L2(Ω))2 and
uinit ∈ (L∞(Ω))2 given. The unknowns u : Ω × [0,T ]→ R2 and p : Ω × [0,T ]→ R
are respectively the velocity and the pressure; σ(u,p) = 2

Re Du−pId stands for the15

stress tensor, and Re > 0 is the Reynolds number. Here and below, the strain rate
tensor is defined by the symmetric part of the velocity gradient Du = 1

2 (∇u+ t∇u).
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The Discrete Duality Finite Volume (DDFV) approach is quite appealing because
it applies to very general meshes and it mimics at the discrete level the dual proper-20

ties of the continuous differential operators. The introduction of the DDFV formal-
ism dates back to [3, 5, 9], in order to approximate anisotropic diffusion problems
on general meshes, including non-conformal and distorted meshes. DDFV schemes
require unknowns on both the vertices and centers of primal control volumes; in
particular, for the Stokes and Navier-Stokes problems it leads naturally to staggered25

discretizations of velocity and pressure; see [1, 4, 6, 10]. This work is motivated by
the analysis of DDFV domain decomposition methods for (1). In contrast to direct
methods, domain decomposition methods, in which the computational domain is
decomposed into smaller subdomains, are naturally parallel; this makes those meth-
ods interesting for high performance computing perspectives. The classical Schwarz30

algorithm was proposed in 1870 by H. A. Schwarz for the Laplace problem and fur-
ther studied in 1990 by P.-L. Lions, see [12, 13]. This approach has been adapted to
many problems and motivates a huge literature.

In [7], we investigated non overlapping Schwarz algorithms in the DDFV frame-35

work for the Navier-Stokes system. The convergence analysis of the Schwarz itera-
tions reveals a complex interplay between the design of the transmission conditions
and the definition of the numerical fluxes. It turns out that the discrete limit problem
does not coincide with the “standard” DDFV scheme on the entire domain; instead
fluxes near the interface need to be modified. We are going to show, based on nu-40

merical experiments, that the modified scheme still provides a good approximation
of the solution of (1) on Ω . Note that it is also possible to modify the fluxes of
the domain decomposition method in order to restore a given DDFV scheme on Ω .
These considerations rely on the formalism on B-schemes [2, 8] which allows us to
consider general convection fluxes.45

2 The DDFV framework
We consider a domain Ω that can be seen as the union of two subdomains that share
a common interface denoted by Γ .

Meshes: The complete description of the DDFV scheme for the 2D Navier-
Stokes problem can be found in [6, 11]. A DDFV mesh is a pair (T,D); T combines50

the primal mesh M∪∂M (whose cells are denoted by K), and the dual mesh M∗∪
∂M∗, (whose cells K∗ are built around the vertices xK∗ of the primal mesh).

The primal mesh M consists of disjoint polygons K called “primal cells”, whose
union covers Ω . The symbol ∂M denotes the set of edges of primal mesh included
in ∂Ω , that are considered as degenerated primal cells. We associate to each K a55

point xK, called “center”. For the cells of the boundary, the point xK is situated at the
middle point of the edge. For all the neighbors volumes K and L, we suppose that
∂ K∩∂ L is a segment that we call σ = K|L, edge of the primal mesh M.

From this primal mesh, we build the associated dual mesh. A dual cell K∗ is
associated to a vertex xK∗ of the primal mesh. The dual cells are obtained by joining60

the centers of the primal cells that have xK∗ as vertex. Then, the point xK∗ is called
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center of K∗. We will distinguish interior dual mesh, for which xK∗ does not belong
to ∂Ω , denoted by M∗ and the boundary dual mesh, for which xK∗ belongs to ∂Ω ,
denoted by ∂M∗. We denote with σ∗ = K∗|L∗ the edges of the dual mesh.

Next, D stands for the diamond mesh, whose cells D = Dσ ,σ∗ are built such that65

their principal diagonals are a primal edge σ and a dual edge σ∗. Thus a diamond is
a quadrilateral with vertices xK,xL,xK∗ and xL∗ . Note that we have Ω =

⋃
D∈DD.

We distinguish the diamonds that intersect the interface Γ as DΓ = {Dσ ,σ∗ ∈
D, such that σ ⊂ Γ }.

For a diamond cell D we note by mD its measure, mσ the length of the primal edge70

σ , mσ∗ the length of the dual edge σ∗, nσK the unit vector normal to σ oriented from
xK to xL, nσ∗K∗ the unit vector normal to σ∗ oriented from xK∗ to xL∗ . We denote also
its sides by s and their measure by ms; see Fig. 1 for an illustration.

Finally, we denote by fK (resp. fK∗ ) the mean-value of the source term f on K ∈M
(resp. on K∗ ∈M∗∪∂M∗).75

Unknowns: The DDFV method for Navier-Stokes problem uses staggered
unknowns. We associate to every K ∈ M ∪ ∂M an unknown uK ∈ R2, to every
K∗ ∈M∗ ∪ ∂M∗ an unknown uK∗ ∈ R2 for the velocity and to every D ∈ D an un-
known pD ∈ R for the pressure. Those unknowns are collected in the families:

uT =
(
(uK)K∈(M∪∂M),(uK∗)K∗∈(M∗∪∂M∗)

)
∈
(
R2)T and pD = ((pD)D∈D)∈RD.

We define the subspace of
(
R2
)T that takes into account Dirichlet boundary condi-

tions:

E0 = {uT ∈
(
R2)T ,s. t. ∀K ∈ ∂M, uK = 0 and ∀K∗ ∈ ∂M∗, uK∗ = 0}.

For v ∈ (H2(Ω))2, we set PT
c (v) =

(
(v(xK))K∈M∪∂M ,(v(xK∗))K∗∈M∗∪∂M∗

)
.

Discrete operators: We define a piecewise constant approximation of the gra-
dient operator denoted by ∇D :

(
R2
)T→ (M2(R))D,

∇
DuT :=

1
2mD

[
mσ(uL−uK)⊗nσK+mσ∗(uL∗ −uK∗)⊗nσ∗K∗

]
, ∀D ∈D.

To work with the Navier-Stokes problem, we also need to define the discrete strain
rate tensor DD : uT ∈ (R2)T 7→ (DDuT)D∈D ∈ (M2(R))D, such that:

DDuT =
∇DuT+ t(∇DuT)

2
, for D ∈D,

the discrete stress tensor σD : (uT,pD) ∈
(
R2
)T ×RD 7→ (σD(uT,pD))D∈D ∈

(M2(R))D

σ
D(uT,pD) =−

(
2

Re
DDuT−pDId

)
, for D ∈D,

and the discrete divergence of a vector field of (R2)T as divD : uT ∈ (R2)T 7→
(divDuT)D∈D ∈ RD with divDuT = Tr(∇DuT) for any D ∈D.
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To treat convection terms, it is convenient to define the scalar velocity fluxes
FσK and Fσ∗K∗ ; their definition comes from [11], up to the boundary terms. They are

approximations of the fluxes:
∫

σ

(u ·nσK) FσK(uT) and
∫

σ∗
(u ·nσ∗K∗) Fσ∗K∗(uT).

By defining msGs,D = ms
uK+uK∗

2
·nsD, for the primal edges, we impose:

mσ FσK =−∑
s∈∂D∩K

msGs,D,

see Fig. 1. The velocity fluxes FσK and Fσ∗K∗ are conservative, that is to say
FσK = −FσL, ∀σ = K|L and Fσ∗K∗ = −Fσ∗L∗ , ∀σ∗ = K∗|L∗. Next, since

∫
K(u ·∇)v =

∑σ⊂∂K

∫
σ
(u ·nσK)v holds for any K ∈M, we approximate the convection terms as

follows ∫
K
(u ·∇)v ∑

σ⊂∂K

mσ FσK

(
vK+vL

2

)
,

with a centered discretization for v. For the dual edges the definition is similar.

⊗

⊗

�

�
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Fig. 1 Left: A diamond D= Dσ ,σ∗ with σ /∈ ∂Ω . Right: A diamond D= Dσ ,σ∗ with σ ∈ ∂Ω .

80

3 DDFV scheme for the Navier-Stokes equations
The DDFV scheme under consideration is obtained by an implicit Euler time dis-
cretization, except for the nonlinear term, which is linearized by using a semi-
implicit approximation. Let N ∈N∗. We note δ t = T

N and tn = nδ t for n∈{0, . . . ,N}.85

We look for u[0,T ]
T = (un)n∈{0,...N} ∈

(
E0
)N+1 and p[0,T ]D = (pn)n∈{1,...N} ∈ (RD)N+1,

and the scheme is initialized with u0 = PT
c u0 in E0.

To simplify the notations, we denote (un+1,pn+1) with (uT,pD) and (un,pn) with
(ūT, p̄D) that at each time step are known. Given (ūT, p̄D), we look for (uT,pD) ∈
E0×RD such that:90
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mK

uK

δ t
+ ∑

σ∈∂K

mσFσK = mKfK+mK

ūK

δ t
∀K ∈M

mK∗
uK∗

δ t
+ ∑

σ∗∈∂K∗
mσ∗Fσ∗K∗ = mK∗ fK∗ +mK∗

ūK∗

δ t
∀K∗ ∈M∗

mDdivD(uT) = 0 ∀D ∈D

∑
D∈D

mDpD = 0,

(P̃)

The total fluxes FσK,Fσ∗K∗ read

mσFσK =−mσ σ
D(uT,pD)nσK+

[
mσ FσK

(
uK+uL

2

)
+

m2
σ

2RemD

BσK(uK−uL)

]
,

mσ∗Fσ∗K∗ =−mσ∗σ
D(uT,pD)nσ∗K∗

+

[
mσ∗Fσ∗K∗

(
uK∗ +uL∗

2

)
+

m2
σ∗

2RemD

Bσ∗K∗(uK∗ −uL∗)

]
.

They are the sum of a “diffusion” term, discretized by means of the DDFV oper-
ators defined in Sec. 2, and a “convection” term, approximated through general B-
schemes, as in [2, 8]. It means that the latter are written as a centered discretization
plus a diffusive perturbation, which depends on a certain function B. The definition
of the velocity fluxes FσK,Fσ∗K∗ comes from the literature and it can be found in95

Sec. 2; they are computed with the velocity of the previous time step.
We now need to define the matrices BσK,Bσ∗K∗ .

Definition of the diffusive perturbations to the convection fluxes.
Our study is motivated by domain decomposition purposes: the domain Ω is seen100

as the union of two subdomains that share a common interface Γ . A specific defini-
tion of the total fluxes is required on the interface, as a trace of the iteration process
[7]. The diamonds of Ω which cross the interface Γ are split into two boundary
diamonds on the subdomains; they share the primal edge σ , which lies on the inter-
face Γ , while the dual edge σ∗ is divided into σ∗ ∩ K and σ∗ ∩ L, see Fig. 1. The105

convergence of the Schwarz algorithm amounts to re-glue the two pieces of such
diamonds. This entails the following properties on the total fluxes

mσFσK =−mσFσL

mσ∗Fσ∗K∗ = mσ∗∩KFσ∗∩K,K∗ +mσ∗∩LFσ∗∩L,K∗
(2)

which are not naturally satisfied. Relations (2) lead to algebraic constraints, which,
in turn, modify the definition of the coefficients BσK,Bσ∗K∗ on the interface. In par-
ticular it leads to work with matrix-valued BσK, Bσ∗K∗ . Therefore, for the primal110

mesh, we have
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BσK :=


B
(

2RemD

mσ

FσK

)
Id ∀Dσ ,σ∗ ∈D\DΓ

2RemD

m2
σ

(
AKAL+

(
1
2

mσ FσK

)2

Id

)
A−1−P ∀Dσ ,σ∗ ∈DΓ

(3)

with P = Id+nσK⊗nσK for σ = K|L and

AK :=
m2

σ

2RemD∩K

(
P+B

(
2RemD∩K

mσ

FσK

)
Id
)
, A := AK+AL.

For the dual mesh, we have

Bσ∗K∗ =


B
(

2RemD

mσ∗
Fσ∗K∗

)
Id, ∀Dσ ,σ∗ ∈D\DΓ

mσ∗∩K

mσ∗
B
(

2RemD∩K

mσ∗∩K
Fσ∗∩K

)
Id+

mσ∗∩L

mσ∗
B
(

2RemD∩L

mσ∗∩L
Fσ∗∩L

)
Id, ∀Dσ ,σ∗ ∈DΓ

(4)

where, for Dσ ,σ∗ ∈DΓ , we set mσ∗∩KFσ∗∩K =−msGs,D−
1
2 ∑

σ⊂K∗∩Γ

mσ∩K∗ ūK∗ ·nσK.

Therefore the details of the fluxes depend on the function B which appears in115

these definitions. On the interior diamonds D\DΓ , for both primal and dual meshes,
standard choices are B(s) = 0 which leads to the centered scheme, or B(s) = 1

2 |s|,
which corresponds to the upwind scheme. We refer the reader to [11] for the analysis
of the DDFV scheme for (1) with the upwind scheme on the entire domain Ω . This
result generalizes as follows.120

Theorem 1. Let T be a mesh that satisfies inf-sup stability condition and let B be an
even Lipschitz continuous function such that B(s) ≥ 0, ∀s ∈ R. Then, the problem
(P̃) is well-posed.
The hypothesis of inf-sup stability ([1]) on the mesh can be dropped by stabilizing
the incompressibility constraint. For the proof, we refer the reader to [7].125

4 Numerical results
In this Section, the scheme (P̃) is validated by some numerical experiments. The
computational domain is Ω = [−1,1]× [0,1] and the interface Γ is placed at x = 0.
For the tests, we give the expression of the exact solution (u,p), from which we de-
duce the source term f. We compare the L2-norm of the error (difference between130

a centered projection of the exact solution and the approximated solution obtained
with DDFV scheme) for the velocity (denoted Ervel), the velocity gradient (Ergrad-
vel) and the pressure (Erpre). The error estimates are discussed by working with a
family of meshes (see Fig. 2), obtained by refining successively and uniformly the
original mesh. The sub-index in the name of the mesh denotes the level of refine-135

ment, i.e. Meshk
1 represents the coarse mesh of a family of refined meshes (Meshk

m)m.
More precisely, Meshk

m is obtained by dividing by two all the edges of Meshk
m−1. The

meshes in those examples are non conformal.
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We consider the following exact solutions to (1):

u(t,x,y) =
(
−2π cos(πx)sin(2πy)exp(−5ηtπ2),

π sin(πx)cos(2πy)exp(−5ηtπ2)

)
,

p(t,x,y) =−π2

4
(4cos(2πx)+ cos(4πy))exp(−10tηπ

2).

(5)

(a) Mesh1
1 (b) Mesh2

1

Fig. 2 Coarse level of refinement of the meshes on Ω

140 The final time is T = 0.3 and we fix δ t = 1.5×10−3, η =Re= 1, and B(s)= 1
2 |s|.

In Tables 1 and 2, we observe convergence of order 1 for the L2 norm of the velocity,
the H1 norm of the velocity and for the L2 norm of the pressure. Those results
are comparable to the ones presented in [11]. This underlines that the presence of145

the interface Γ and the modified fluxes that appear in (3),(4) do not influence the
convergence results. The solution of (P̃) is a good approximation of the solution of
(1).
Table 1 Test (5) on Mesh1

m, m = 1, . . .5.

Mesh NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

Mesh1
1 896 2.414E-002 - 8.568E-002 - 1.178 -

Mesh1
2 3300 6.921E-003 1.80 3.726E-002 1.20 0.507 1.21

Mesh1
3 12644 2.938E-003 1.23 1.861E-002 1.00 0.186 1.44

Mesh1
4 49476 1.493E-003 0.97 9.281E-003 1.00 6.850E-002 1.44

Mesh1
5 195716 6.802E-004 1.13 4.594E-003 1.01 2.772E-002 1.30

Table 2 Test (5) on Mesh2
m, m = 1, . . .5.

Mesh NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

Mesh2
1 924 8.288E-002 - 0.147 - 5.130 -

Mesh2
2 3332 1.923E-002 2.10 5.596E-002 1.39 2.025 1.34

Mesh2
3 12612 4.691E-003 2.03 2.425E-002 1.20 0.674 1.58

Mesh2
4 49028 1.811E-003 1.37 1.135E-002 1.09 0.214 1.65

Mesh2
5 193284 7.725E-004 1.23 5.460E-003 1.05 7.083E-002 1.59
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