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Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire
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ABSTRACT2

When it comes to improving cancer therapies, one challenge is to identify key biological3
parameters that prevent immune escape and maintain an equilibrium state characterized4
by a stable subclinical tumor mass, controlled by the immune cells. Based on a space5
and size structured partial differential equation model, we developed numerical methods6
that allow us to predict the shape of the equilibrium at low cost, without running7
simulations of the initial-boundary value problem. In turn, the computation of the8
equilibrium state allowed us to apply global sensitivity analysis methods that assess9
which and how parameters influence the residual tumor mass. This analysis reveals10
that the elimination rate of tumor cells by immune cells far exceeds the influence of the11
other parameters on the equilibrium size of the tumor. Moreover, combining parameters12
that sustain and strengthen the antitumor immune response also proves more efficient13
at maintaining the tumor in a long-lasting equilibrium state. Applied to the biological14
parameters that define each type of cancer, such numerical investigations can provide15
hints for the design and optimization of cancer treatments.16
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GRAPHICAL ABSTRACT
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1 INTRODUCTION

The immune system plays a major role in the control of tumor growth. This has led to the19
concept of immune surveillance and cancer immunoediting composed of three phases (1, 2, 3):20
the elimination, when tumors are rapidly eradicated by the immune system, the equilibrium, a21
latency period when tumors can survive but remain on a controlled state, and the escape, the22
final outgrowth of tumors that have outstripped immunological restraints. In this later phase,23
immune suppression is prevailing and immune cells are also subverted to promote tumor growth.24
Numerous cancer immunotherapy strategies have been designed and assessed to counteract25
immune suppression and restore effective and durable elimination of tumors (4, 5, 6, 7, 8).26
They show improved efficacy over conventional anticancer treatments but only a minority of27
patients respond. The challenge to face now is to identify key biological parameters which will28
convert a fatal outcome into a chronic, manageable state, the durable maintenance of cancer in29
a viable equilibrium phase controlled by immunity. Reaching such immune-mediated tumor30
mass dormancy is indeed the first key step for successful control of tumor growth and a goal31
for immunotherapy (9). The equilibrium state is however difficult to apprehend experimentally32
because the tumor mass at equilibrium is below detectable limits (3). Mathematical modeling33
of the tumor-immune system interactions offers useful information about the features of the34
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equilibrium phase during primary tumor development, and such tools could be used to guide the35
design of optimal anticancer therapies (10, 11, 12, 13).36

We previously (10) introduced a specific multiscale mathematical model based on partial37
differential equations (PDE), intended to describe the earliest stages of tumor-immune system38
interactions. We conjecture that the space heterogeneities of the distribution of active and resting39
immune cells, which are subjected to several interaction mechanisms with the tumor cells,40
plays a critical role in the efficiency of the immune response, and the ability in reaching the41
equilibrium phase. This, in turn, motivates the appeal to PDEs descriptions and can complete42
the already established modeling based on ordinary differential systems, on which there exists a43
wide literature, see for instance (14, 15, 11, 16, 17, 18, 19) Extension to the PDE framework has44
permitted to bring out the role of space organisation (20, 21, 22, 23). The reader can find further45
details and references about the mathematical modeling of tumor-immune system interactions,46
based on different viewpoints and addressing several issues of the efficacy of the immune47
response, in the reviews (24, 25, 26, 27, 28, 29). The original model developed in (10) thus48
accounts for both the growth of the tumor, by natural cell growth and cell divisions, and the49
displacement of the immune cells towards the tumor, by means of activation processes and50
chemotaxis effects. The most notable finding from (10) was that an equilibrium state, with51
residual tumor and active immune cells, can be observed. Moreover, mathematical analysis52
provides a basis for the explanation of the formation of the equilibrium. How the biological53
parameters shape this equilibrium is the main question investigated in the present article. Indeed,54
the equilibrium can be mathematically interpreted by means of an eigenproblem coupled to a55
stationary diffusion equation with constraint. This observation permits us to develop an efficient56
numerical strategy to determine a priori the shape of the equilibrium — namely, the size57
distribution of the tumor cells and the residual tumor mass — for a given set of biological58
tumor and immune cell parameters. Consequently, the equilibrium state can be computed at low59
numerical cost since we can avoid the resolution of the evolution problem on a long time range.60
The use of this simple and fast algorithm allows us to address the question of the sensitivity of61
the residual mass to the parameters and to discuss the impact of treatments. This information62
can be decisive to design clinical studies and choose therapeutic strategies that will revert to an63
equilibrium phase. Our work therefore provides hints for cancer treatment management.64

Quick guide to equations: A coupled PDE model for tumor-immune system65
interactions66

The modeling approach imposes to select a few phenomena, considered as the leading effects67
for the situation under consideration; other effects are just roughly described by tuning some68
parameters or are simply disregarded. Choices for designing the mathematical model are also69
dictated by the difficulty in attributing numerical values to the parameters of the equations,70
due to a lack of experimental measurements: the poor knowledge of driving quantities leads to71
keep a description as simple as possible, with a reduced number of unknown parameters. The72
principles of the modeling adopted in (10), summarized by Fig. 1, led to couple an evolution73
equation for the size-distribution of the tumor cells, and a convection-diffusion equation for the74
activated immune cells. The two-way coupling arises from the death term induced by the action75
of the immune cells on the tumor cells, and by the activation and the attraction of immune cells76
towards the tumor, which are determined by the total mass of the tumor. The model is intended77
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to describe the earliest stages of the tumor formation, when the size of the tumor is relatively78
small. The tumor is located at the center of a domain Ω (there is no displacement of the tumor).79
The model distinguishes two distinct and independent length scales: the size of the tumor cells,80
described by the variable z ≥ 0, is considered as “infinitely small” compared to the scale of81
displacement of the immune cells, described by the space variable x ∈ Ω.82

•
Tumor cells

(growth and division)

Source of immune cells

chemotactic motion
directed towards the tumor

Source of immune cells

diffusion
in any direction

diffusion
in any direction

Figure 1. Schematic view of the geometry of the mathematical model. The tumor cells are
located at the center of the domain where they are subjected to growth and division mechanisms.
Immune cells are activated from baths of resting cells; their motion is driven by diffusion
combined to a convection field, due to chemotactic mechanisms and directed towards the tumor.

The unknowns are83

•the size density of tumor cells (t, z) 7→ n(t, z) so that the integral
∫ b
a zn(t, z) dz gives the84

volume of the tumor occupied at time t by cells having their size z in the interval (a, b);85

•the concentration of activated immune cells which are fighting against the tumor (t, x) 7→86
c(t, x);87

•the concentration of chemical signal that attracts the immune cells towards the tumor88
microenvironment (t, x) 7→ φ(t, x).89

The specific biological assumptions made to construct the model are fully described in (10).90
Fig. 2 offers an overview of the interaction mechanisms embodied in the equations and of the91
role of the parameters of the model.92

Immune cells, once activated from a bath of resting cells, are subjected to natural diffusion and93
to a chemotactic drift, induced by the presence of the tumor. The strength of this drift, as well as94
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Tumor cells
Cell-size distribution n(t, z)
Growth (V ) / Cell division (a)

Destruction
of tumor cells
(A)

Effector immune cells
Cell concentration c(t, x)
Natural death rate (γ) / Diffusion (D)

Activation
from a bath
of resting cells (R)

Directed
motion (χ)

Chemotactic potential
Potential φ(t, x)
Diffusion (K) / Activation (Aσ)

Figure 2. Schematic view of the interaction mechanisms described by the system (1a)-(1e)

the activation of immune cells, directly depends on the total mass of the tumor, proportional to95
the quantity96

µ1(t) =

∫ ∞
0

zn(t, z) dz.

The immune system-tumor competition is described by the following system of PDEs

∂tn+ ∂z(V n) = Q(n)−m(n, c), (1a)

∂tc+∇x · (cχ∇xφ−D∇xc) = µ1R− γc, (1b)

−K∆xφ = µ1

(
σ(x)− 1

|Ω|

∫
Ω
σ(y) dy

)
, (1c)

n(t, 0) = 0, c
∣∣
∂Ω

= 0, K∇xφ · ν
∣∣
∂Ω

= 0, (1d)

n(t = 0, z) = n0(z), c(t = 0, x) = c0(x). (1e)

The features of the growth-division dynamics for the tumor cells (1a) are embodied into the97
(possibly size-dependent) growth rate z 7→ V (z) ≥ 0 and the cell division operator Q(n). We98
refer the reader to (30, 31, 32, 33, 34, 35, 36, 37) for further details on this evolution equation99
(with m(n, c) = 0) for cell growth and division, and its application to cancer modeling. What is100
crucial for modeling purposes is the principle that cell-division does not change the total mass:101
the operator Q satisfies

∫∞
0 zQ(n) dz = 0. However, the total number of cells in the tumor102

increases since
∫∞

0 Q(n) dz ≥ 0 (we refer the reader to (10) and Appendix 1 for further details).103
In what follows, we restrict to the mere symmetric binary division operator104

Q(n)(t, z) = a(z)
(
4n(t, 2z)− n(t, z)

)
, (2)

with z 7→ a(z) ≥ 0 the division rate. It simply describes the situation where cells are cut into105
two cells having half the size of the original cell. Further relevant examples of division operators106
can be found in (32) (see Appendix 1). The specific case where the division rate a in (2) is a107
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positive constant makes the model simpler, and is often used. It is however likely relevant to108
incorporate more complex behaviors through the size-dependence; for instance divisions can109
be prohibited below a certain size threshold. Similarly, it can be convenient to assume that110
the growth rate V is a positive constant, but more intricate laws can take into account some111
important phenomena. For instance, logistic or Gompertz law can incorporate size limitation112
effects, and roughly describe difficulties in accessing nutrients or necrotic effects (38, 39, 40); a113
detailed study of growth laws can be found in (41). As mentioned above, though, using such114
complex laws, also raises the issue of determining more parameters. The boundary condition for115
n in (1d) means that no tumor cells are created with size 0.116

Despite the fact that there exists several types of immune cells – at least T-cells and NK cells –117
fighting against the tumor, they are all described here through the single concentration c. It also118
means that coefficients of the equation – the death rate γ > 0, the chemotactic strength χ > 0,119
and the diffusion coefficient D – correspond to an averaged behavior of all these cells. By the120
way, working with a constant diffusion coefficient D > 0 is again a simplification, neglecting121
the architecture of the tumor environment, which might induce directional effects. The effector122
immune cells that effectively fight against the tumor, are activated from a “reservoir” of resting123
cells, described in the right hand side of (1b) by (t, x) 7→ R(t, x). This given function, possibly124
time and space dependent, stands for the space distribution of the influx rate of activated effector125
immune cells. It takes into account the sources of resting immune cells that can be activated in126
the tumor microenvironment or in the draining lymph nodes into cells fighting the tumor. At early127
stages of tumor growth, the rate of the activation process is supposed to be directly proportional to128
the tumor mass µ1. Again, more complex activation law, for instance based on Michaelis-Menten129
kinetics can incorporate relevant limitation mechanisms. The Dirichlet boundary condition for130
c in (1d) means that the immune cells far from the tumor are non-activated. Immune cells are131
directed towards the tumor by a chemo-attractive potential φ, induced by the presence of the132
tumor cells. Through (1c), the strength of the signal is proportional to the total mass of the tumor,133
and it is shaped by a form function x 7→ σ(x) which will be a function peaked at the tumor134
location. The potential is thus defined by the diffusion equation (1c), that involves a positive135
coefficient K > 0 (that could be matrix valued), and the Neumann boundary condition in (1d),136
where ν stands for the unit outward normal vector on ∂Ω. Finally, the activated immune cells137
are able to destroy tumor cells, as described by the death term in (1a)138

m(c, n)(t, z) =

∫
Ω
δ(y)c(t, y) dy︸ ︷︷ ︸

:=µc(t)

×n(t, z), (3)

where δ ≥ 0 is another form function, also peaked in the vicinity of the tumor. For the numerical139
experiments, we shall work with the Gaussian profiles140

δ(x) =
A

θ
√

2π
exp

(
−|x|

2

2θ2

)
, σ(x) =

Aσ

θσ
√

2π
exp

(
−|x|

2

2θ2
σ

)
, (4)

where the positive parameters A,Aσ and θ, θσ can be used to tune the amplitude and spreading141
of these functions, and thus the strength and radius of influence of the related phenomena.142
We refer the reader to (10) for further details and comments about the model. Note that this143
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model neglects the possible additional protumoral effects that can take place and are crucial to144
swing to the escape phase. Such protumor effects can have different forms: they can directly145
enhance the tumor growth, and make antitumor immune cells exhausted, a state where they146
are hyporesponsive and cannot kill the tumor, see (42) on these issues. Remarkably, the model147
(1a)-(1e) is able to reproduce equilibrium phases where the tumor growth is controlled by the148
immune response.149

2 MATERIALS AND METHODS

2.1 Development of numerical methods predicting parameters of the150
equilibrium in immune-controlled tumors151

According to (2, 3, 9), the equilibrium phase corresponds to a long-lasting period of immune-152
mediated latency, also known as tumor mass dormancy, prior to the emergence of clinically153
detectable malignant disease, with a residual tumor which has not be fully destroyed by the154
immune system, maintained under the control of immunity. The simulations of the initial-155
boundary value problem (1a)-(1e) performed in (10) revealed that such a behavior can be156
reproduced by the model. Here, we wish to study the features of the equilibrium phase in157
immune-controlled tumors and, in particular, we want to predict, for given biological parameters158
(see Section 2.2 below), the total mass of the residual tumor and its size distribution. To this159
end, we developed specific numerical procedures based on the mathematical interpretation of160
the equilibrium.161

2.1.1 Equilibrium states162

The definition of the equilibrium relies on the following arguments. When disregarding the163
immune response, the cell-division equation164

∂tn+ ∂z(V n) = Q(n). (5)

admits a positive eigenstate, which drives the large time behavior of the solution. To be more165
specific, there exists λ > 0 and a non negative function z ≥ 0 7→ N(z) satisfying166 

∂z(V N)−Q(N) + λN = 0 for z ≥ 0

N(0) = 0, N(z) > 0 for z > 0,

∫ +∞

0
N(z) dz = 1.

(6)

The existence-uniqueness of the eigenpair (λ,N) can be found in (32, 34). Furthermore, when
the tumor does not interact with the immune system, the large time behavior is precisely driven
by the eigenpair: the solution of (5) behaves like

n(t, z) ∼
t→∞

µ0e
λtN(z)

where µ0 > 0 is a constant determined by the initial condition, see (34, 33). Consequently, in167
the immune-free case, the tumor population grows exponentially fast, with a rate λ > 0, and, as168
time becomes large, its size repartition obeys a certain profile N . In the specific case where V is169
constant and Q is the binary division operator (2), with a constant division rate a, we simply170
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have λ = a and the profile N is explicitly known, (43, 44). However, for general growth rates171
and division kernels the solution should be determined by numerical approximations; we are172
going to detail a numerical procedure to effectively compute the pair (λ,N).173

174

Coming back to the coupled model (1a)-(1e), we infer that the equilibrium phase corresponds175
to the situation where the death rate – the integral of the immune cells concentration with weight176
δ, denoted as µ̄c in (3) – precisely counterbalances the natural exponential growth of the tumor177
cell population. In other words, at equilibrium we expect that178

•the size distribution of tumor cells is proportional to the eigenstate µ0N(z). The179
proportionnality factor is related to the total mass by the relation µ1 = µ0

∫∞
0 zN(z) dz.180

•the concentration of immune cells is defined by the stationary equation181

γC −∇x · (D∇xC) + µ1∇x · (χC∇xΦ) = µ1R, C
∣∣
∂Ω=0

= 0, (7)

where Φ is the solution of

−K∆xΦ = σ − 1

|Ω|

∫
Ω
σ(y) dy,

endowed with the homogeneous Neumann boundary condition, together with the constraint182 ∫
Ω
δ(x)C(x) dx = λ. (8)

This can be interpreted as an implicit definition of the total mass µ1 to be the value such that the183
solution of the boundary value problem (7) satisfies (8): in other words, it defines implicitly the184
mass of the residual tumor µ1 to be the value such that the solution of the stationary boundary185
value problem for C defines a death rate that exactly compensates the exponential growth rate186
of the growth division equation. The existence of an equilibrium state defined in this way is187
rigorously justified in (10, Theorem 2).188

THEOREM 2.1. Let x 7→ R(x) ∈ L2(Ω) be a non negative function. If λ > 0 is small enough,189
there exists a unique µ1(λ) > 0 such that the solution Cµ1(λ) of the stationary equation (7)190
satisfies (8).191

Theorem 2.1 requires a smallness assumption; for (2) with constant growth rate V and division192
rate a, this is a smallness assumption on a. Numerical experiments have shown different large193
time behaviors for the initial-boundary value problem (1a)-(1e) (an example will be presented194
later on):195

•when the source term R is space-homogeneous, the expected behavior seems to be very robust.196
The immune cell concentration tends to fulfill the constraint µ̄c(t) ∼ λ as time becomes large,197
and the size repartition of tumor cells tends to the eigenfunction N . The total mass µ1 tends to198
a constant; however the asymptotic value cannot be predicted easily.199
•When R has space variations, the asymptotic behavior seems to be much more sensitive to the200
parameters of the model, in particular to the aggressiveness of the tumor (characterized by the201
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cell division rate a). On short time scale of simulations, we observe alternance of growth and202
remission phases, and the damping to the equilibrium could be very slow.203

These observations bring out the complementary roles of different type of cytotoxic cells (45).204
The NK cells could be seen as a space-homogenous source of immune cells, immediately205
available to fight against the tumor, at the early stage of tumor growth. In contrast, T-cells need206
an efficient priming which occurs in the draining lymph nodes, and their sources is therefore207
non-homogeneously distributed. Eventually, NK and CD8+ T-cells cooperate to the anti-tumor208
immune response.209

210

Numerical experiments thus show that the model (1a)–(1e) is able to reproduce, in the long-211
time range, cancer-persistent equilibrium, but the features of the equilibrium, and its ability to212
establish, are highly sensitive to the parameters. To discuss this issue further, we focus here213
on the mass at equilibrium considered as a critical quantity that evaluates the efficacy of the214
immune response. Indeed, it is known that a tumor gains in malignancy when its mass reaches215
certain thresholds (45, 46). The smaller the tumor mass at equilibrium, the better the vital216
prognosis of the patient. In doing so, we do not consider transient states and time necessary for217
the equilibrium to establish. The interest of the interpretation of the equilibrium by means of218
an eigenproblem relies on the fact that the equilibrium state can be determined a priori, at least219
through numerical simulations, without running the initial boundary value problem over long220
time ranges: given a set of biological parameters it can be obtained by solving the eigenvalue221
problem for (λ,N) and the constrained stationary drift-diffusion equation for C, see Fig. 3.222
In turn, since the equilibrium state can be computed at low numerical cost, a wide range of223
parameters can be considered and the role of the parameters can be investigated in details. The224
determination, on numerical grounds, of the equilibrium state relies on a two-step process, as225
schematised in Fig. 3. First, we compute the normalized eigenstate of the tumor cell equation,226
second, we find the tumor mass which makes the coupled death rate fit with the eigenvalue. To227
this end, we have developed a specific numerical approach.228

2.1.2 The eigen-elements of the growth-division equation229

The numerical procedure is fully detailed and analyzed in Appendix 1; it is inspired from the230
spectral analysis of the equation: λ is found as the leading eigenvalue of a conveniently shifted231
version of the growth-division operator. In practice, we work with a problem where the size232
variable is both truncated and discretized. Hence, the problem recasts as finding the leading233
eigenvalue of a shifted version of the underlying matrix, which can be addressed by using the234
inverse power method (47, Section 1.2.5). We refer the reader to (48, 49) for a thorough analysis235
of the approximation of eigenproblems for differential and integral operators, which provides236
a rigorous basis to this approach. It is also important to check a priori, based on the analysis237
of the equation (32), how large the shift should be, and that it remains independent on the238
numerical parameters. As already mentioned, for some specific division and growth rates, the239
eigenpair (λ,N) is explicitly known, see (32). We used these formula to validate the ability of240
the algorithm to find the expected values and profiles.241
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Tumor cells
Cell-size distribution n(t, z)
Growth (V ) / Cell division (a)

Free of immune response Interaction
with the immune response

Exponential growth of the mass
n(t, z) ∼

t→∞
eλtµ0N(z)

growth rate λ and profile N
determined by a, V
µ0 determined by a, V and
the initial data

Equilibrium with residual tumor
mass
n(t, z) ∼

t→∞
µ1

N(z)∫∞
0 z′N(z′) dz′

µ1 implicitly determined by λ
and the coupling
with the immune cells, (7)-(8)

Large time behavior

Asymptotic state
accessible to computation
(eigenvalue problem for λ,N ,
(6)) Numerical determination

of the residual mass µ1
depending on the biological
parameters

Figure 3. Connection of the equilibrium state with the eigenstate of the growth-division
equation, and interpretation of the residual tumor mass.

2.1.3 Computation of the equilibrium mass242

Having at hand the eigenvalue λ, we go back to the convection-diffusion equation (7) and the243
constraint (8) that determine implicitly the total mass µ1 of the residual tumor. For a given value244
of µ1, we numerically solve (7) by using a finite volume scheme, see (10, Appendix C). Then,245
we use the dichotomy algorithm to fit the constraint:246

•The chemo-attractive potential Φ is computed once for all.247

•Pick two reference values 0 < µa < µb; the mass we are searching for is expected to belong to248
the interval (µa, µb).249

•Set µ1 = µa+µb
2 and compute the associated solution Cµ1 of (7) (the subscript emphasizes the250

dependence with respect to µ1). Evaluate the discrete version of the quantity I =
∫
δCµ1 dx−251

λ.252

•If I < 0, then replace µa by µ1, otherwise replace µb by µ1.253

•We stop the algorithm when the relative error µb−µaµa
< ε is small enough.254

It is also possible to design an algorithm based on the Newton method. However, this approach255
is much more numerically demanding (it requires to solve more convection-diffusion equations)256
and does not provide better results.257
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2.2 Identification of biological parameters258

In order to go beyond the qualitative discussion of (10), the model should be challenged with259
biological data. The PDE system (1a)-(1e) is governed by the set of parameters collected in260
Table 1. Most parameter values were retrieved from previously published experimental results261
and we propose an estimation of the remaining parameters R, a, V based on the experimental262
study performed in (50) where the development of chemically-induced cutaneous squamous cell263
carcinoma (cSCC) is investigated.264

Symbol Description Value and unit References

χ chemotactic coefficient 8.64× 101 − 8.64× 106 mm2 ·mmol−1 · day−1 (Macrophages) (51)

D natural space diffusion coef. of the
cytotoxic effector cells population

8.64× 10−5 − 10−3 mm2 · day−1 (CD8+ T-cells) (52),
(23)

R the normal rate of influx of effector
immune cells

log (R) ∼ N (log(2.2× 10−6), 0.84)

(
celln ·mm−3

celln · µm3
· day−1

)
estimated

γ natural death rate of the tumor antigen-
specific cytotoxic effector cells

2× 10−2 − 1 day−1 (53), (20), (14), (22)

A strength of the immune response 2− 57.6 cell−1
n · day−1 (54), (55), (56), (57)

K diffusion coefficient for the attractive
potential φ

10−2 − 1 mm2 · day−1 (58), (23)

Aσ strength of the chemical signal induced
by each tumor cell

5 · 10−17 − 0.625× 10−16 mmol ·−1 µm3 · day−1 (59)

a division rate of the tumor cells log (a) ∼ N (log(0.12), 0.2) (a in day−1) estimated

V growth rate of the tumor cells log (V ) ∼ N (log(816.33), 0.51) (V in µm3 · day−1) estimated

Table 1. Key model parameters and their biophysical meaning

Calibrating the parameters of the equations is an issue due to the lack of direct measurements,265
and the fact that experimental data are obtained at the price of the sacrifice of mice. Consequently,266
beyond the cost of the experiments, it also means that a time evolution of the quantities of interest267
is usually not affordable. Therefore, a specific procedure should be developed in order to estimate268
the parameters from the experimental data points. Since the informations on the parameters are269
quite poor, we restrict to the case where the coefficients a, V,R are constant, which is also a270
reasonable assumption when dealing with the earliest stages of the tumor development. In order271
to identify the parameters, we shall use a degraded version of the equations.272

Neglecting the immune response, the tumor growth is driven by (5). As explained above,273
this leads to an exponential growth of the tumor mass, see (32, 34, 33, 44). Let t 7→ µ0(t) =274 ∫∞

0 n(t, z) dz, the total number of tumor cells, and t 7→ µ1(t) =
∫∞

0 zn(t, z) dz. Integrating (5)275
with respect to size variable, with integration by parts, and bearing in mind that the cell division276
operator is mass preserving, we thus get277

d

dt
µ0 = aµ0,

d

dt
µ1 = V µ0. (9)
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Next, assuming space homogeneity of the immune cells concentration and neglecting the278
displacement and the natural death rate of the immune cells, the immune cells concentration is279
driven by280

d

dt
c = Rµ1. (10)

Based on this simplified dynamics, reduced to (9)-(10), we used the Nonlinear Mixed Effects281
Modeling (NMEM) in order to estimate the parameters a, V,R from the experimental data. Let282

N denote the number of mice within the population and Y (k)
i = {y(k)

i1 , · · · , y
(k)

ini
} the vector of283

longitudinal measurements for the ith mouse: y(k)
ij is a typical observation of the mouse i for a284

given measurement type k ∈ {0, 1, 2} (with (0, 1, 2) referring to (µ0, µ1, c) respectively) at time285
tkij for i ∈ {1, ..., N} and j ∈ {1, ..., nki }. We suppose that the statistics of the measurements286

obeys, for k ∈ {0, 1, 2}, j ∈ {1, ..., nki }, i ∈ {1, ..., N},287

y
(k)
ij = f (k)(tkij ; θ

k
i ) + e

(k)
ij , (11)

where f (k)(tkij ; θ
k
i ) is the evaluation of the model at time tkij , θ

k
i ∈ Rp is the vector of the288

parameters describing the individual i and e(k)
ij the residual error model. The inter-individual289

variability is described by the combination of fixed effects θkpop, which, by definition, are290

constant within the population and along time, and random effects ηki which explain the inter-291
individual variability among the mice. The positivity of the parameters is ensured by assuming292
that the individual parameters follow a log-normal distribution. In other words, the random293
effects are normally distributed with mean zero and a variance-covariance matrix W . For294
instance W = diag(ω0, ω1, ω2) where the ωk’s stand for the variance of the parameters a, V,R.295
Therefore, we have296

log θki = log(θkpop) + ηki , ηki ∼ N (0, ωk) (12)

for k ∈ {0, 1, 2}. The error model is assumed to be proportional to the model evaluation and is297
defined as follows:298

e
(k)
ij =

(
b(k)f (k)(tkij ; θ

k
i )
)
εij (13)

where εij ∼ N (0, 1) represents the statistical model residual errors and b(k) is the proportionality299
factor measuring the relative amplitude of the errors.300

301

Estimation of the model parameters. According to the experimental procedure in (50), 5×105

mSCC38 were injected to each mouse at time t0 = 0. Therefore we fixed the initial number
of tumor cells to µ0(0) = 5× 105 cells. Assuming that each tumor cell is spherically shaped
with a radius 15 µm, we set µ1(0) = 7.1 mm3. The initial concentration of immune cells
is fixed to c0 = 0: we suppose that initially there is no effector immune cells (or at least it
means that the initial concentration of activated immune cells is negligible compared to the
concentration of resting cells). Some data points were censored due to the sacrifice of the
individual for flow cytometry cell counting. The censored data points have been handled by
Limit Of Quantification (LOQ) censoring (60). Let Ikij be the finite or infinite censoring interval
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for mouse i, measurement k and time tkij and

P(y
(k)
ij ∈ I

k
ij |θki ) =

∫
Ikij

p
y
(k)
ij |θ

k
i

(x|θki ) dx,

where p
y
(k)
ij |θ

k
i

is the conditional distribution of y(k)
ij given θki . Let us collect in a vector α =302

(apop, Vpop, Rpop, ωa, ωV , ωR, ba, bV , bR) the parameters of the model; they are estimated by303
maximizing the observed likelihood function304

L(α, y) =
2∏

k=0

N∏
i=1

nki∏
j=1

∫
p(y

(k)
ij |θ

k
i )

1
{y(k)

ij
/∈Ik

ij
}

×P(y
(k)
ij ∈ I

k
ij |θki )

1
{y(k)

ij
∈Ik

ij
}
p(θki ;α) dθki .

(14)

To this end, we used the Stochastic Approximation of the Expectation Maximization algorithm305
(SAEM) implemented in the MONOLIX R API (61). Furthermore, the individual parameter306

estimators θ̂ki are computed in MONOLIX (61) by means of the Empirical Bayes Estimate307
(EBE) of θki which corresponds to the mode of the conditional distribution p(θki |yki ; α̂) (where α̂308
corresponds to estimated parameters).309

310

A preliminary estimation procedure indicates a significant correlation between the parameters a311
andR (t-test p-value 2.6×10−6). Hence, introducing this correlation into the variance covariance312
matrix of the random effects by setting covar(a,R) = ρaRωaωR, where ρaR represents the313
correlation coefficient between a and R, enhances the goodness of fit. The estimated value314
of ρaR is 0.8 with a relative standard error of 13%. The parameters in α were estimated with315
reasonable standard errors (computed using the stochastic approximation) and relative standard316
errors (max(R.S.E.) = 30.6 and min(R.S.E.) = 3) which indicate that the model parameters317
are identifiable. The Shapiro Wilk test reinforces the normality hypotheses on the random effects318

η
(k)
i (the p-values for ηa, ηV and ηR are respectively 0.83, 0.61, 0.2). Pictures indicating the fits319

are provided in Fig. 4, and detailed parameter estimates are given in Table 2.320

parameters value S.E R.S.E (%)
apop 0.12 0.0041 3
Vpop 816.33 92.59 11
Rpop 2.2× 10−6 3.6× 10−7 16
ωa 0.20 0.027 13.5
ωV 0.51 0.075 15
ωR 0.84 0.11 13
ba 0.37 0.041 11
bV 0.17 0.052 31
bR 0.18 0.056 30
ρaR 0.8 0.1 13

Table 2. Estimated value of the parameters with their Standard Error (S.E.) and Relative
Standard Error (R.S.E)
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(a) (b)

(c)

1

Figure 4. Model fitting to the in vivo experimental cSCC tumor growth data. Here, we are
using 34 data points from an in vivo experimental cutaneous squamous cell carcinoma (cSCC)
tumor growth mouse model (50). (a): Number of tumor cells kinetics; (b): Tumor volume
kinetics (µm3); (c): Concentration of immune cells kinetics. The solid lines represent the model
prediction using the mean estimated parameters, the dashed lines represent the model predictions
using the 5th and 95th percentiles of the parameters distribution

2.3 Materials321

Mice. FVB/N wild-type (WT) mice (Charles River Laboratories, St Germain Nuelles, France)322
were bred and housed in specific-pathogen-free conditions. Experiments were performed using323
6-7 week-old female FVB/N, in compliance with institutional guidelines and have been approved324
by the regional committee for animal experimentation (reference MESR 2016112515599520;325
CIEPAL, Nice Côte d’Azur, France).326

327

In vivo tumor growth. mSCC38 tumor cell line was established from DMBA/PMA induced328
sSCCs and maintained in DMEM (Gibco-ThermoFisher Scientific, Courtaboeuf, France)329
supplemented with 10% heat-inactivated fetal bovine serum (FBS) (GE Healthcare, Chicago,330
Illinois, USA) penicillin (100 U/ml) and streptomycin (100 µg/ml) (Gibco-ThermoFisher331
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Scientific, Courtaboeuf, France). 5× 105 mSCC38 were intradermally injected in anesthetized332
mice after dorsal skin shaving. Tumor volume was measured manually using a ruler and333
calculated according to the ellipsoid formula: Volume=Length (mm) ×Width (mm) × Height334
(mm) ×π/6.335

336

Tissue preparation and cell count. mSCC38 were excised and enzymatically treated twice337
with collagenase IV (1 mg/ml) (Sigma-Aldrich, St Quentin Fallavier, France), and DNase I338
(0.2 mg/ml) (Roche Diagnostic, Meylan, France) for 20 minutes at 37◦ C. Total cell count was339
obtained on a Casy cell counter (Ovni Life Science, Bremen, Germany). Immune cell count was340
determined from flow cytometry analysis. Briefly, cell suspensions were incubated with anti-341
CD16/32 (2.4G2) to block Fc receptors and stained with anti-CD45 (30-F11)-BV510 antibody342
and the 7-Aminoactinomycin D (7-AAD) to identify live immune cells (BD Biosciences, Le343
Pont de Claix, France). Samples were acquired on a BD LSR Fortessa and analyzed with DIVA344
V8 and FlowJo V10 software (BD Biosciences, Le Pont de Claix, France).345

346

Mathematical and statistical analysis. Computations were realized in Python and we made347
use of dedicated libraries, in particular the gmsh library for the computational domain mesh348
generation, the packages optimize (for the the optimization methods using the Levenberg-349
Marquard mean square algorithm; similar results have been obtained with the CMA-ES350
algorithm of the library cma) from the library scipy, the MONOLIX R API and application351
for the model calibration to the experimental data (61), the library Pygpc for the generalized352
Polynomial Chaos approximation (62) and the library Salib for the sensitivity analysis (63).353

3 RESULTS

3.1 Validation of the method354

For all the simulations discussed here, we adopt the same framework as in (10): the tumor355
is located at the origin of the computational domain Ω, which is the two-dimensional unit356
disk. Otherwise explicitly stated, we work with the lower bound of the parameters collected in357
Table 1. When necessary, the initial values of the unknowns are respectively µ0(0) = 1 celln,358
µ1(0) = 14137.2 µm3, c(0, x) = 0.359

360

To start with, we perform a simulation of the initial-boundary value problem (1a)-(1e).
Fig. 5 illustrates how the equilibrium establishes in time: as time becomes large, the effective
concentration of active immune cells, that is denoted

µc(t) =

∫
Ω
δ(x)c(t, x) dx

tends to the eigenvalue of the cell-division equation, the total mass µ1(t) tends to a constant361
and the size distribution of tumor cells takes the profile of the corresponding eigenstate. This362
result has been obtained by setting (a, V,R) = (0.072, 713.61, 1.74× 10−7). We observe a non363
symmetric shape of the size distribution of tumor cells, peaked about a diameter of 23 µm,364
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which is consistent with observational data reporting the mean size distribution of cancer cells365
(64, 65).366

(a) (b)

1

Figure 5. (a): Time evolution of the diameter of the tumor (bold black line) and concentration
of active immune cells (dotted gray line). The predicted asymptotic value for the latter is
represented by the horizontal dotted line. (b): Comparison of the tumor cell-size distribution
at t = 1000 days with the positive eigenstate of the cell division equation (x-axis: size of the
tumor cells, y-axis: number of tumor cells at the final time). For this simulation Ω = {‖x‖ ≤ 1},
the data are given by the lower bound of the parameters collected in Table 1 and (a, V,R) =
(0.072, 713.61, 1.74× 10−7)

For the simplest model of growth-division with a and V constant, we know an expression
of the eigenstate (λ,N); however, we do not know an explicit evaluation of the residual mass.
Nevertheless, we can compare the results of the inverse power-dichotomy procedure that predicts
the residual mass, to the large time simulations as performed in (10). Let µf1 be the asymptotic
value of the total mass given by the large time simulation of the initial-boundary value problem
(and checking that the variation of the total mass has become negligible) and let µpd1 be the mass
predicted by the power-dichotomy procedure. We set

Eµ1 =
|µf1 − µ

pd
1 |

µf1
.

The results for several cell division rates a are collected in Table 3: the numerical procedures367
finds the same equilibrium mass as the resolution of the evolution problem, which is a further368
validation of the method.369

Further validation concerning the ability in finding the leading eigenstate are presented in370
Appendix 1. The method has been successfully employed to predict equilibrium state when371
dealing with complex growth rate and division operator in (42).372
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a µf1 (mm3) at final time T = 500 µpd1 (mm3) Eµ1
0.103 7.67271875× 10−5 7.67271872× 10−5 4.10× 10−9

0.15 1.11701535× 10−4 1.11701543× 10−4 7.97× 10−8

0.20 1.48924575× 10−4 1.48924641× 10−4 4.40× 10−7

0.3 2.23420663× 10−4 2.23420562× 10−4 4.53× 10−7

0.351 2.61368442× 10−4 2.61367974× 10−4 1.80× 10−6

Table 3. Comparison of the large time tumor mass and the predicted tumor mass for several
values of a

3.2 Numerical simulations show how parameters influence equilibrium373

The numerical methods were next used to assess how the parameters influence the equilibrium.374
In particular, we wish to assess the evolution of the tumor mass at equilibrium according to375
immune response and tumor growth parameters.376

For the numerical simulations presented here, we thus work on the eigenproblem (6) and on377
the constrained system (7)-(8). Unless precisely stated, the immune response parameters are378
fixed to the lower bounds in Table 1. The tumor growth parameters are set to a = 0.1 day−1,379

V = 713.61 µm3 · day−1 and R = 1.74× 10−7 celln·mm−3
celln·µm3 · day−1.380

The main features of the solutions follow the observations made in (10), which were performed381
with arbitrarily chosen values for the parameters. We observe that µ̄c(t) =

∫
Ω δ(y)c(t, y) dy382

tends to the division rate a, which in this case corresponds to the leading eigenvalue of the cell-383
division equation. It is important to note that the predicted diameter of the tumor at equilibrium384
— see Fig. 5 — is significantly below modern clinical PET scanners resolution limit, which385
could detect tumors with a diameter larger than 7 mm (66). This is consistent with the standard386
expectations about the equilibrium phase (3), but, of course, it makes difficult further comparison387
of the prediction with data.388

The aggressiveness of the tumor is characterized by the division rate, the variations of which389
impact the size of the tumor at equilibrium: the larger a, the larger the residual tumor, see390
Fig. 6-(a). Increasing the immune strength A increases the efficacy of the immune response,391
reducing the size of the residual tumor see Fig. 6-(b). Similarly, increasing the mean rate of392
influx of effector immune cells in the tumor microenvironment R, decreases the tumor size393
at equilibrium, see Fig. 6-(c). On the contrary, increasing the death rate of the immune cells394
γ reduces the efficacy of the immune response and increases the equilibrium tumor size see395
Fig. 6-(d).396

Moreover, as mentioned above, not only the parameters determine the equilibrium mass, but397
they also impact how the equilibrium establishes. Fig. 7-(a-c) shows what happens by making398
the tumor cell division rate a vary. There are more oscillations along time, with larger amplitude,399
as a increases. Similar observations can be made when reducing the strength of the immune400
system A (likely out of its realistic range), see Fig 7-(d-f). The smaller A, the weaker the401
damping of the oscillations and the longer the periods. We notice that the decay of the maximal402
tumor radius holds at a polynomial rate. In extreme situations, either the damping is very403
strong and the equilibrium establishes oscillation-free or the equilibrium does not establish on404
reasonable observation times, and the evolution can be confounded with a periodic alternance of405
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1

Figure 6. Evolution of the tumor diameter at equilibrium, with respect to (a): the division rate
of tumor cells a, (b): the strength of the effector immune cells A, (c): the influx rate of effector
immune cells R, (d): the natural death rate γ of the effector cells

growing and remission phases. Such scenario illustrates that the relevance of the equilibrium406
can be questionable depending on the value of the parameters. In what follows, we focus on the407
details of the equilibrium itself, rather than on the transient states.408

3.3 Global sensitivity analysis on the equilibrium mass identifies the key409
parameters to target in cancer therapy410

Since the equilibrium state can be computed for a reduced numerical cost (it takes about 1/4411
of a second on a standard laptop), we can perform a large number of simulations, sampling412
the range of the parameters. This allows us to discuss in further details the influence of the413
parameters on the residual mass and, by means of a global sensitivity analysis, to make a414
hierarchy appear according to the influence of the parameters on this criterion. Ultimately, this415
study can help in proposing treatments that target the most influential parameters.416

Details on the applied methods for the sensitivity analysis can be found in Appendix 2. Among417
the parameters, we distinguish:418
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1

Figure 7. Large-time simulation of the PDE system: evolution of the tumor diameter (bold
black line, left axis), and of the concentration of immune cells µ̄c (dotted grey line, right
axis), for several values of the division rate a: (a): a = 0.1 day−1, (b): a = 0.3 day−1, (c):
a = 0.4 day−1 and for several values of the immune strength A: (d): A = 1 cell−1

c · day−1,
(e): A = 1 · 10−3 cell−1

c · day−1, (f): A = 1 · 10−5 cell−1
c · day−1. The horizontal dotted line

represents the predicted asymptotic value for µ̄c. The solid line gives the enveloppe of the
oscillations, indicating a polynomial damping rate. The equilibrium needs more time to establish
as the strength of the immune system decreases

•the tumor cell division rate a which drives the tumor aggressiveness,419

•the efficacy of the immune system, governed by the mean influx rate of activated effector420
immune cells R, the strength of the immune response A, the chemotactic sensitivity χ, the421
death rate γ of the immune cells, and the strength of the chemical signal induced by each422
tumor cell Aσ423

•environmental parameters such as the diffusion coefficients D (for the immune cells) and K424
(for the chemokine concentration).425

We assume that the input parameters except a and R are independent random variables. Due426
to the lack of knowledge on the specific distribution of most of the parameters, the most suitable427
probability distribution is the one which maximizes the continuous entropy ((67)), more precisely,428
the uniform distribution over the ranges defined in Table 1. Therefore, the uncertainty in the429
parameter values is represented by uniform distributions for the parameters (A,χ,D,Aσ, γ,K)430
and by log-normal distributions for the parameters a and R. In what follows, the total mass at431
equilibrium, µ1, given by the power-dichotomy algorithm, is seen as a function of the uncertain432
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parameters:433
µ1 = f(a,A,R, χ,D,Aσ, γ,K). (15)

To measure how the total variance of the output µ1 of the algorithm is influenced by some434
subsets i1 · · · ip of the input parameters i1 · · · ik (k ≥ p being the number of uncertain input435
parameters), we compute the so-called Sobol’s sensitivity indices. The total effect of a specific436

input parameter i is evaluated by the total sensitivity index S(i)
T , the sum of the sensitivity437

indices which contain the parameter i. (Details on the computed Sobol indices can be found438
in Appendix 2.) The computation of these indices is usually based on a Monte Carlo (MC)439
method (see (68, 69)) which requires a large number of evaluations of the model due to its slow440
convergence rate (O(1/

√
N) where N is the size of the experimental sample). To reduce the441

number of model evaluations, we use instead the so-called generalized Polynomial Chaos (gPC)442
method (see (70)). The backbone of the method is based on building a surrogate of the original443
model by decomposing the quantity of interest on a basis of orthonormal polynomials depending444
on the distribution of the uncertain input parameters θ(ω) = (a,A,R, χ,D,Aσ, γ,K), where445
ω represents an element of the set of possible outcomes. Further details on the method can be446
found in (71). For uniform distributions, the most suitable orthonomal polynomial basis is the447
Legendre polynomials. The analysis of the distribution of µ1 after a suitable sampling of the448
parameters space indicates that µ1 follows a log-normal distribution. This distribution is not449
uniquely determined by its moments (the Hamburger moment problem) and consequently cannot450
be expanded in a gPC (see (72)). Based on this observation, to obtain a better convergence in451
the mean square sense, we apply the gPC algorithm on the natural logarithm of the output µ1.452
Typically, ln(µ1) is decomposed as follows:453

ln(µ1(ω)) =
∑
α∈Ik,p

qαLα(θ(ω)) + ε, (16)

where ε corresponds to the approximation error, Ik,p = {α ∈ Nk :
∑k

i=1 αi ≤ p} and p454
represents the highest degree of the expansion. Hence, the dimension of the polynomial basis is455

given by (k+p)!
k!p! . We reduce the number of model evaluations to 642 runs by constraining also456

the parameters interaction order to 2. For our purpose, a degree p = 5 gives a better fit (see457
Fig. 8-a-b) to the original model and the goodness of fit of the gPC algorithm is measured by a458
Leave One Out Cross Validation (LOOCV) technique (73). The resulting LOO error indicates459
0.4% prediction error. The Sobol’s sensitivity indices are then computed from the exponential460
of the surrogate model (16) by using Monte Carlo simulations combined with a careful space-461
filling sampling of the parameters space (see (68, 74)). For the computations, a sample with462
N = 1.8× 106 points has been used in order to get stable second order Sobol indices. Indeed,463
the sensitivity indices that are needed to discriminate the impact of the input parameters are464
the first and total Sobol’ sensitivity indices. Here, the analysis revealed a significant difference465
between some first order Sobol’ indices and their corresponding total Sobol indices, which466
indicated the importance of computing also the second order Sobol’ indices.467

It is important to stress that the obtained results, and the associated conclusions, could be468
highly dependent on the range of the parameter values. This observation makes the measurement469
/ estimation of the parameters a crucial issue which can be dependent on the type of cancer470
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analyzed.471
472

(a) (b)

(c) (d)

1

Figure 8. (a): comparison between the pdf of ln(µ1) from the gPC approximation and the pdf
from the original model. (b): Comparison between the value of µ1 generated by the power-
dichotomy algorithm and the gPC approximation. (c): First (empty, left scale) and total (dashed,
right scale) order Sobol indices for µ1. (d) Second order Sobol indices for µ1

Efficacy of the immune response. The first order Sobol indices represented in Fig. 8-c indicate473
that the parameters which impact the most the variability of the immune-controlled tumor mass474
at equilibrium are:475

•the strength of the lethal action of the immune cells on the tumor cells A, by far the most476
influential,477
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and three additional parameters478

•the influx rate of activated effector immune cells into the tumor microenvironment R.479

•the natural death rate γ of the effector immune cells,480

•and the division rate a of the tumor cells.481

This result is consistent with the observations made from the numerical experiments above and482
in (10), showing a prominent role of the immune response which can be enhanced by increasing483
eitherA orR, and decreasing γ. ThatA is the most influential parameter is not that surprising but484
it is remarkable how far its importance exceeds that of the other parameters. It is also puzzling485
to see that the chemotactic sensitivity χ, like the strength of the chemical signal induced by each486
tumor cell Aσ, the space diffusion coefficient of the effector immune cells D and the diffusion487
coefficient of the chemokines K, have a negligible influence on the immune-controlled tumor488
mass, see Fig. 8-c, whether individually or in combination with other parameters. This result is489
consistent with the necessity for immune cells to be able to effectively kill the tumor cells once490
they reach the tumor site. The second order Sobol’ indices indicate that the leading interactions491
are the pairs (A,R), (A, γ), (R, γ), (a,A), (a,R) and (a, γ). Accordingly, in order to enhance492
the immune response, an efficient strategy can be to act simultaneously on the immune strength493
A together with the influx rate of activated immune effector cells R. Increasing such influx into494
the tumor microenvironment by enhancing the activation/recruitment processes leading to the495
conversion of naive immune cells into activated immune cells potentiate anti-tumor immune496
responses. Besides, the natural death rate γ of the effector immune cells combined to A and R497
have an impact, as well as A combined with the division rate of the tumor cells, a.498

499

The tumor aggressiveness. The tumor aggressiveness is mainly described by the cell division500
rate a. The first order Sobol indice indicates that a influences significantly the tumor mass at501
equilibrium, and we observe that the total Sobol index of a is higher than the individual one.502
This indicates that this parameter has strong interactions with the others. By taking a look at503
Fig. 8-d we remark that a interacts significantly with the parameters A,R, γ. However, the504
most significant interaction is the one with A. This suggests that combining therapies targeting505
tumor and immune cells should be more efficient at maintaining immune-mediated tumor mass506
dormancy (75).507

508

Towards optimized treatments. Because equilibrium state can be computed for a reduced509
numerical cost, it allows a large number of simulation to be performed in a minimal time, so510
that an extensive sampling of the range of the parameters can be tested. The flexibility of the511
numerical simulations provides valuable tools to assess the efficiency of a variety of therapeutic512
strategies and select those that sustain a viable equilibrium and prevent cancer relapses after a513
surgery or a treatment. Fig. 9 illustrates how the equilibrium mass is impacted when combining514
variations of two parameters, namely the immune strength A combined to the tumor cell division515
rate a, the mean rate of influx of effector immune cells R or the death rate of effector immune516
cells γ; and the tumor cell division rate a with the death rate γ. Interestingly, a reduction of the517
tumor mass at equilibrium can be obtained significantly more easily by acting on two parameters518
than on a single one. For instance, reducing the tumor cell division rate a from 0.35 to 0.1 cannot519
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reduce the diameter of the tumor below .025 mm, with A = 1; while the final size is always520
smaller when A = 3.95. This observation highlights the interest of combined treatments having521
such complementary actions. The interest is two-fold: either smaller residual tumors can be522
obtained by pairing two actions, or the same final tumor size can be obtained with a combined523
treatment having less toxicity than a mono-therapy.524

(a) (b)

(c) (d)

1

Figure 9. Evolution of the tumor diameter at equilibrium, (a): with respect to the division rate
a for several values of the immune strength A, (b): with respect to the immune strength A for
several values of the death rate γ, (c): with respect to the immune strength A for several values
of the influx rate of effector immune cells R, and (d): with respect to the division rate a for
several values of the death rate γ.

4 DISCUSSION

Controlling parameters that maintain immune-mediated tumor mass dormancy is key to the525
successful development of future cancer therapies. To understand how equilibrium establishes526
and how it is influenced by immune, environmental and tumor-related parameters, we evaluate527
the tumor mass which tends to a constant at equilibrium. In this study, we make use of the528
space and size structured mathematical model developed in (10) to provide innovative, efficient529
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methods to predict, at low numerical cost, the residual tumor mass at equilibrium. By means530
of numerical simulations and global sensitivity analysis, we identify the elimination rate A531
of tumor cells by immune cells as the most influential factor. Therefore, the most efficient532
therapeutic strategy is to act primarily on the immune system rather than on the tumor itself.533
We also demonstrate the need to develop combined cancer treatments, boosting the immune534
capacity to kill tumor cells (increase A), the conversion into efficient immune cells (increase535
R), reducing natural death rate of effector immune cells (decrease γ) and reducing the ability of536
tumor cells to divide (decrease a). The combination of such approaches definitely outperforms537
the performances of a single action; it permits to maintain the tumor in a long-lasting equilibrium538
state, far below measurement capabilities.539

Generally, therapeutic strategies are designed to target preformed, macroscopic cancers.540
Indeed, patients are diagnosed once their tumor is established and measurable, thus at the541
escape phase of the cancer immunoediting process (1). The goal of successful treatments is542
to revert to the equilibrium phase and ultimately to tumor elimination. Experimental evidence543
and clinical observations indicate that such equilibrium exists but it is difficult to study and544
measure, the residual tumor mass being below detection limits (1, 2, 3). It is regarded as “a545
immune-mediated tumor mass dormancy” when the rate of cancer cell proliferation matches546
their rate of elimination by immune cells. In human, cancer recurrence after therapy and long547
periods of remission or detection of low number of tumor cells in remission phases are suggestive548
of such equilibrium phase. Mathematical models can also be used to provide evidence of such549
state. The system of partial differential equations proposed in (10) is precisely intended to550
describe the earliest stages of immune control of tumor growth. Remarkably, while being in551
the most favorable condition, only taking into account the cytotoxic effector immune cells and552
no immunosuppressive mechanisms, the model reproduces the formation of an equilibrium553
phase with maintenance of residual tumor cells rather than their complete elimination. Besides554
suggesting that elimination may be difficult to reach, this finding also brings out the role of555
leading parameters that shape the equilibrium features and opens new perspectives to elaborate556
cancer therapy strategies that reach this state of equilibrium.557

To decipher tumor-immune system dynamics leading to equilibrium state, we have developed558
here computational tools. The total mass of the tumor is a critical criterion of the equilibrium and559
was used to predict parameters that contribute the most to the establishment of the equilibrium.560
By means of global sensitivity analysis, we identified one leading parameter, A, and three561
others, R, γ and a that affect the most the variability of the immune-controlled tumor mass;562
A, R and γ are related to immune cells, and a to tumor cells. Moreover, the influence of the563
leading parameters is significantly increased when they are paired. This observation supports564
the development of combined therapeutic treatments which would be more efficient at reducing565
tumor growth and toxicity. Because the pairs (A,R), (A, γ), (R, γ), (A, a), (a,R) and (a, γ)566
are the most influential, we predict that a combination of drugs enhancing antitumor immune567
responses with drugs diminishing tumor aggressiveness will be the most efficient. This is568
consistent with the clinical benefit obtained when chemotherapies reducing the tumor cell569
division rate a are combined with immunotherapies increasing A and R, (75). The parameter A570
which governs the efficacy of the immune system to eliminate tumor cells, is the most influential.571
This finding is consistent with the observation that “hot” tumors infiltrated with immune cells572
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have better prognostic than “cold” tumors (76) and that the immune cells with the strongest573
positive impact on patient’s survival are the cytotoxic CD8+ T cells (77). It is also in line with the574
success of ICP which revert immune tolerance triggered by chronic activation and upregulation575
of exhaustion markers on effector T and NK cells, thus not only increasing the parameter A576
but also R (78). The leading role of the parameter A is also demonstrated by experimental577
studies and clinical trials, such as adoptive transfer of CAR-T and CAR-NK cells engineered to578
attack cancer cells, immunomodulating antibody therapies or cancer vaccines which boost the579
antitumor immune response (75, 79, 80, 81). Finally, our finding that the parameter γ is highly580
influential is confirmed by the administration of cytokines that stimulate and increase effector581
T and NK cell survival which are efficient at controlling tumor growth (81). Thus, altogether,582
these experimental and clinical data validate the numerical method.583

Interestingly, besides the dominant role of the parameter A, only two additional parameters584
related to immune cells R, γ seem to have an influence on the tumor mass at equilibrium. These585
data predict that to enhance the immune response, it is more efficient to increase the rate of influx586
and conversion of naive immune cells into effector cells (parameter R) or to increase the lifespan587
of immune effectors (parameter γ) than to increase chemotaxis as a whole (parameters χ, Aσ ,588
K). The lack of influence of chemotaxis emphasizes that the localization of immune cells within589
tumors is necessary but not sufficient. Indeed, the leading influence of the parameters A,R, γ590
stresses the importance of having functional immune cells infiltrating tumors. Overcoming591
immune suppression is therefore highly relevant in therapeutic strategies.592

Targeting Immune-mediated tumor mass dormancy is gaining more and more attention, having593
been linked to recurrence and metastasis (9, 82). The persistence of undetectable tumor cells594
after primary tumor resection at the primary site but also their spreading to metastatic niches595
are major causes of treatment failure. Thus, developing strategies to maintain an equilibrium596
between these tumor cells and the immune response is crucial. Interestingly, a recent study597
demonstrated a role of the NK cell reservoir in blocking the reawakening of dormant tumor cells598
(83). The mechanisms involve IL-15 that drives NK cell proliferation and IFN-γ secreted by NK.599
Therapies boosting NK cell activity like IL-15 superagonists, or engineered NK cell engagers600
are therefore promising strategies to sustain NK cell-mediated maintenance of tumor dormancy601
(83, 84).602

It is appropriate to finally comment on the limitations of this work and provide new avenues603
for future research. Firstly, the analysis focuses on the asymptotic state, taking full advantage of604
its mathematical interpretation which makes it easily computable. However, the transient states605
and the rate at which the equilibrium becomes observable are simply disregarded, while they are606
certainly essential for assessing the biological relevance of the equilibrium state. Further analysis607
is therefore needed in order to understand how the parameters of the model influence the trend to608
equilibrium. Secondly, the modeling approach is facing contradictory requests: on the one hand,609
the lack of knowledge on the parameters motivates working with a reduced set of equations,610
at the cost of considering an “averaged” behavior (say for instance between different types611
of immune cells); on the other hand, it might be important to keep under consideration many612
relevant and competing effects of cellular interactions. These issues can be addressed with a613
better access to biological data and through the development of dedicated methods of parameter614
identification. This is of course even more important when describing the effects of treatments.615
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Thirdly, the present analysis is limited to an idealized situation in which many important effects616
have been overlooked. In particular, the immune response can also promote the tumor growth.617
Considering such immune actions leads to a much more complex dynamical behavior and the618
possible establishment of an escape phase, as shown in (42). Finally geometrical aspects and619
heterogeneity are poorly addressed and restrict the relevance of the description to the earliest620
stages of the tumor development. More complex models, with a full space structuration, should621
be elaborated in order to obtain a more accurate description of the tumor microenvironment.622

5 CONCLUSION

In conclusion, clinical trials have been undertaken quite often on assumptions from acquired623
knowledge on tumor development and immune responses to cancer cells, but without tools to624
help the decision-making. The numerical methods developed here provide valuable hints for the625
design and the optimization of antitumor therapies. The approach is in agreement with published626
experimental findings and clinical evidence. By adapting the range of the parameters to the627
biological values, one can more precisely adapt the therapeutic strategies to specific types of628
tumors. We thus conclude that mathematical modelling combined with numerical validation629
provide valuable information that could contribute to better stratify the patients eligible for630
treatments and consequently save time and lives. In addition, it could also help to decrease the631
burden of treatment cost providing hints on optimized therapeutic strategies.632
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1 COMPUTATION OF THE EIGEN-ELEMENTS OF THE
GROWTH-DIVISION EQUATION

The binary division operator (2) is a very specific case, and for applications it is relevant to deal649
with more general expressions. Namely, we have650

Q(n)(t, z) = −a(z)n(t, z) +

∫ ∞
z

a(z′)k(z|z′)n(t, z′) dz′. (17)

In (17), a(z′) is the frequency of division of cells having size z′, and k(z|z′) gives the size-651
distribution that results from the division of a tumor cell with size z′. What is crucial for652
modeling purposes is the requirement653 ∫ z

0
z′k(z′|z) dz′ = z,

which is related to the principle that cell-division does not change the total mass654 ∫ ∞
0

zQ(n) dz = 0.

We refer the reader to (32) for examples of such cell-division operators and the analysis of the655
eigenvalue problem (6) under quite general assumptions of the growth rate V , the frequency a656
and the kernel k. Our numerical method can handle such general coefficients.657

658

It is important to bear in mind the main arguments of the proof of the existence-uniqueness of659
the eigenpair (λ,N) for the growth-division equation. Namely, for Λ large enough we consider660
the shifted operator661

TΛN = ΛN + ∂z(V N) + aN −
∫ ∞
z

a(z′)k(z|z′)N(z′) dz′.

Then, we check that the operator SΛ which associates to a function f the solution n of662
TΛn = f fulfills the requirements of the Krein-Rutman theorem (roughly speaking, positivity663
and compactness), see (85). Accordingly, the quantity of interest λ is related to the leading664
eigenvalue of SΛ. In fact, this reasoning should be applied to a somehow truncated and665
regularized version of the operator, and the conclusion needs further compactness arguments;666
nevertheless this is the essence of the proof. In terms of numerical method, this suggests to667
appeal to the inverse power algorithm, applied to a discretized version of the equation. However,668
we need to define appropriately the shift parameter Λ. As far as the continuous problem is669
considered, Λ can be estimated by the parameters of the model (32), but it is critical for practical670
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issues to check whether or not this condition is impacted by the discretization procedure. This671
information will be used to apply the inverse power method to the discretized and shifted version672
of the problem.673

1.1 Analysis of the discrete problem674

The computational domain for the size variable is the interval [0, R] where R is chosen large675
enough: due to the division processes, we expect that the support of the solution remains676
essentially on a bounded interval, and the cut-off should not perturb too much the solution. In677
what follows, the size step h = zi+1 − zi is assumed to be constant. The discrete unknowns Ni,678
with i ∈ {1, ..., I} and h = R/I , are intended to approximate N(zi) where zi = ih. The integral679
that defines the gain term of the division operator is approximated by a simple quadrature rule.680
For the operator (2) the kernel involves Dirac masses which can be approached by peaked681
Gaussian. We introduce the operator T h

Λ : RI → RI defined by682 
(T h

Λ N)i = Fi − Fi−1 + h(Λ + ai)Ni

−h2
I∑
j=i

a(zj)k(zi|zj)Nj ,

N1 = 0

(18)

where Fi = Vi+1/2Ni represents the convective numerical flux on the grid point zi+1/2 =683
(i+ 1/2)h, i ∈ {1, ..., I}. This definition takes into account that the growth rate is non negative,684
and applies the upwinding principles. Note that the step size h should be small enough to capture685
the division of small cells, if any. The following statement provides the a priori estimate which686
allows us to determine the shift for the discrete problem.687

THEOREM 1.1. We suppose that688

i)z 7→ V (z) is a continuous function which lies in L∞ and it is bounded from below by a positive689
constant,690

ii)h
∑I

j=1 a(zj)k(zi|zj) remains bounded uniformly with respect to h,691

iii)for any i ∈ {1, ..., I − 1}, there exists j ∈ {i+ 1, ..., I} such that a(zj)k(zi|zj) > 0,692

iv)there exists Z0 ∈ (0,∞) such that, setting N̄ (z) = h
∑I

j=2 k(zj |z), we have a(z)(N̄ (z) −693
1) ≥ ν0 > 0 for any z ≥ Z0.694

Let695

Λ >
‖V ‖L∞

minj∈{1,...,I} |Vj+1/2|
maxk∈{1,...,I}

(
h

I∑
j=k

ajk(zk|zj)
)

−minj∈{1,...,I} |aj |,
(19)

and we suppose that R > Z0 is large enough. Then, T h
Λ is invertible and there exists a pair696

µ > 0, N ∈ RI with positive components, such that Ker
(
(T h

Λ )−1− µ
)

= Span{N}. Moreover697
λ = Λ− 1

µ > 0.698
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Note that the sum that defines N̄ (z) is actually reduced over the indices such that jh ≤ z; this699
quantity is interpreted as the expected number of cells produced from the division of a cell with700
size z so that the forth assumption is quite natural.701

PROOF. Let f ∈ RI . We consider the equation702

T h
Λ N = f.

We denote N = S h
Λf the solution. We are going to show that S h

Λ is well defined and satisfies703
the assumptions of the Perron-Frobenius theorem, see e. g. (47, Theorem 1.37 & Corollary 1.39)704
or (86, Chapter 5).705

It is convenient to introduce the change of unknown Ui = NiVi+1/2, ∀i ∈ {1, · · · , I}. The706
problem recasts as707 

(T̃ h
Λ U)i = h

fi
Vi+1/2

, with

(T̃ h
Λ U)i = Ui − Ui−1 + h

Λ + ai
Vi+1/2

Ui

−h2
I∑
j=i

aj
Vj+1/2

k(zi|zj)Uj ,

U1 = 0.

(20)

The solution is interpreted as the fixed point of the mapping

ξ 7−→ U = Ahξ

where U is given by U1 = 0 and

Ui = Ui−1 + h2
I∑
j=i

aj
Vj+1/2

k(zi|zj)ξj + h
fi

Vi+1/2
.

We are going to show that Ah is a contraction: ‖Ahξ‖`∞ ≤ k‖ξ‖`∞ for some k < 1. Multiplying
(20) by sign(Ui), we obtain(

1 + h
Λ + ai
Vi

)
sign(Ui)Ui =

(
1 + h

Λ + ai
Vi

)
|Ui|

= sign(Ui)Ui−1 + h2
I∑
j=i

aj
Vj+1/2

k(zi|zj)sign(Ui)ξj

≤ |Ui−1|+ h2
I∑
j=i

aj
Vj+1/2

k(zi|zj)|ξj |.
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We multiply this by the weight
∏i−1
l=1

[
1 + h Λ+al

Vl+1/2

]
, where all factors are ≥ 1. We get708

|Ui|
i∏
l=1

[
1 + h

Λ + al
Vl+1/2

]

≤ |Ui−1|
i−1∏
l=1

[
1 + h

Λ + al
Vl+1/2

]

+h2
i∏
l=1

[
1 + h

Λ + al
Vl+1/2

]
I∑
j=i

aj
Vj+1/2

k(zi|zj)|ξj |.

Then, summing over i ∈ {2, ...,m} yields709

|Um|
m∏
l=1

[
1 + h

Λ + al
Vl+1/2

]

≤ |U1|

[
1 + h

Λ + a1

V3/2

]

+h2
m∑
i=2

i∏
l=1

[
1 + h

Λ + al
Vl+1/2

]
I∑
j=i

aj
Vj+1/2

k(zi|zj)|ξj |

where actually U1 = 0. It follows that710

|Um| ≤ h2
m∑
i=2

m∏
l=i

[
1 + h

Λ + al
Vl+1/2

]−1 I∑
j=i

aj
Vj+1/2

k(zi|zj)|ξj |

≤ h2‖ξ‖`∞
minj∈{1,...,I} Vj+1/2

m∑
i=2

m∏
l=i

[
1 + h

Λ + al
Vl+1/2

]−1 I∑
j=i

ajk(zi|zj)

≤ h2‖ξ‖`∞
minj∈{1,...,I} Vj+1/2

∥∥∥∥∥∥
I∑
j=i

ajk(zi|zj)

∥∥∥∥∥∥
`∞

m∑
i=2

[
1 + h

Λ + minl∈{1,...,I} al

‖V ‖L∞

]i−m+1

≤ h‖ξ‖`∞
minj∈{1,...,I} Vj+1/2

∥∥∥∥∥∥
I∑
j=i

ajk(zi|zj)

∥∥∥∥∥∥
`∞[

Λ + minl∈{1,...,I} al

‖V ‖L∞

]−1

.

Therefore, Ah is a contraction provided (19) holds. This estimate is similar to the condition711
obtained for the continuous problem, see (32, Proof of Theorem 2, Appendix B); the712
discretization does not introduce further constraints.713
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We are now going to show that T h
Λ is a M -matrix when (19) holds. Let f ∈ RI \ {0} with714

non negative components. Let U ∈ RI satisfy (T̃ h
Λ U)i = h fi

Vi+1/2
. Let i0 be the index such that715

Ui0 = min
{
Ui, i ∈ {2, ..., I}

}
. We have716

Ui0

(
1 + h

Λ + ai0
Vi0+1/2

)

= Ui0−1 + h2
I∑

j=i0

aj
Vj+1/2

k(zi0|zj)Uj + h
fi0

Vi0+1/2

≥ Ui0

1 + h2
I∑

j=i0

aj
Vj+1/2

k(zi0|zj)

+ h
fi0

Vi0+1/2
.

(21)

Since fi0 ≥ 0, we get717

Ui0

Λ + ai0
Vi0+1/2

− h
I∑

j=i0

aj
Vj+1/2

k(zi0|zj)


︸ ︷︷ ︸

>0 by (19)

≥ 0,

which tells us that Ui0 ≥ 0. Suppose Ui0 = 0 for some i0 > 1. Coming back to (21), we deduce718
that Ui0−1 vanishes too, and so on and so forth, we obtain U1 = ... = Ui0 = 0. Finally, we use719
the irreductibility assumption iii): we can find j0 > i0 such that

aj0
Vj0+1/2

k(zi0|zj0) > 0 and (21)720

implies
aj0

Vj0+1/2
k(zi0|zj0)Uj0 = 0, so that Uj0 = 0. We deduce that U = 0, which contradicts721

f 6= 0. Therefore the components of U are positive, but U1.722

We conclude by applying the Perron-Froebenius theorem to (T h
Λ )−1, (86, Chapter 5). It

remains to prove that λ = Λ− 1
µ is positive, with µ the spectral radius of (T h

Λ )−1. To this end,
we make use of assumption iv). We set Z0 = i0h. We argue by contradiction, supposing that
λ = Λ− 1/µ < 0. We consider the eigenvector with positive components and normalized by
the condition h

∑I
i=1 Ui = 1. We have

(T̃ h
0 U)i = Ui − Ui−1 +

ai
Vi+1/2

hUi

−h2
I∑
j=i

aj
Vj+1/2

k(zi|zj)Uj = −λUi ≥ 0.
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It follows that, for m ≥ i0,

Um ≥ −h
m∑
i=2

ai
Vi+1/2

Ui + h2
m∑
i=2

I∑
j=i

aj
Vj+1/2

k(zi|zj)Uj

≥ −h
m∑
i=2

ai
Vi+1/2

Ui + h

m∑
j=2

(
h

j∑
i=2

k(zi|zj)

)
aj

Vj+1/2
Uj

≥ −h
m∑
i=2

ai
Vi+1/2

Ui + h
m∑
j=2

N̄ (zj)
aj

Vj+1/2
Uj

≥ h

m∑
i=2

(N̄ (zi)− 1)
ai

Vi+1/2
Ui

≥ h
m∑
i=i0

(N̄ (zi)− 1)
ai

Vi+1/2
Ui ≥

ν0

‖V ‖L∞
h

m∑
i=i0

Ui.

It implies723

1 = h
I∑

m=1

Um ≥ h
I∑

m=i0

Um ≥ h(I − i0)
ν0

‖V ‖L∞
h

m∑
i=i0

Ui.

We arrive at724
1 ≥ (R− Z0)

ν0

‖V ‖L∞
,

a contradiction when R is chosen large enough (but how large R should be does not depend on725
h). Therefore, we conclude that λ > 0.726

1.2 Numerical approximation of (λ,N)727

We compute (an approximation of) the eigenpair (λ,N) by using the inverse power method728
which finds the eigenvalue of (T h

Λ )−1 with largest modulus:729

•We pick Λ verifying (19).730
•We compute once for all the LU decomposition of the matrix T h

Λ .731
•We choose a threshold 0 < ε� 1.732
•We start from a random vector N (0) and we construct the iterations733
•LUq(k+1) = N (k),734

•N (k+1) = q(k+1)

‖q(k+1)‖735

until the relative error ‖N
(k+1)−N (k)‖
‖N (k)‖ ≤ ε is small enough. Then, given the last iterate N (K),736

we set LUq = N (K), µ̃ = q·N (K)

N (K)·N (K) , and λ̃ = Λ− 1/µ̃.737

This approach relies on the ability to approximate correctly the eigenpair of the growth-738
fragmentation operator. In particular, it is important to preserve the algebraic multiplicity.739
This issue is quite subtle and it is known that the pointwise convergence of the operator is not740
enough to guarantee the convergence of the eigenelements and the consistency of the invariant741
subspaces, see (48) for relevant examples. This question has been thoroughly investigated in742
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(48, 49) which introduced a suitable notion of stability. It turns out that one needs a uniform743
convergence of the operators. Namely, here, we should check that ‖(T I

Λ )−1 − (TΛ)−1‖ −→ 0744
as I −→∞. In the present framework, a difficulty relies on the fact that the size variable lies in745
an unbounded domain, which prevents for using usual compactness arguments. For this reason,746
we introduce a truncated version of the problem, which has also to be suitably regularized.747
Let us denote by T R,ε

Λ the corresponding operator, where ε represents the regularization748
parameter. This truncated and regularized operator appeared already in (32). Indeed, we749
know from (32) that ‖T R,ε

Λ − TΛ‖ −→ 0 as R −→ ∞ and ε −→ 0, hence, this implies750

that ‖(T R,ε
Λ )−1 − (TΛ)−1‖ −→ 0 as R −→ ∞ and ε −→ 0 by continuity of the map751

Π : TΛ 7→ (TΛ)−1. Moreover, (T R,ε
Λ )−1 is well-defined, continuous and compact, see752

(32, Appendix. B). The discrete operators (T I
Λ )−1 converge pointwise to (T R,ε

Λ )−1, and the753

compactness of (T R,ε
Λ )−1 ensures that the discrete operator converges uniformly to (T R,ε

Λ )−1,754
for 0 < R < ε and 0 < ε < 1 fixed (see (49) for more details on this fact). Following (49), we755
deduce that the numerical eigenelements (λI , N I) converges to (λR,ε, NR,ε), the eigenelements756

of (T R,ε
Λ )−1, while preserving their algebraic multiplicity. Finally the uniform convergence757

‖(T R,ε
Λ )−1− (TΛ)−1‖ −→ 0 as R −→∞ and ε −→ 0 ensures the convergence of (λR,ε, NR,ε)758

to (λ,N), (32).759

1.3 Numerical results760

For some specific fragmentation kernels and growth rates, the eigenpair (λ,N) is explicitly
known, see (32). We can use these formula to check that the algorithm is able to find the expected
values and profiles. To this end, we introduce the relative errors

Ehλ =
|λ− λ̃|
λ̃

and EhV = h
I∑
i=1

|N (K)
i −N(ih)|

where N (K) and N are both normalized by h
∑I

i=1N
(K)
i = h

∑I
i=1N(ih) = 1.761

762

Mitosis fragmentation kernel. We start with the binary division kernel:763

k(z|z′) = δz′=2z. (22)

The associated division operator is described by (2). We assume that a and V are constant. In764
this specific case the eigenpair is given by765

λ = a, N(z) = N̄

∞∑
n=0

(−1)nαn exp
(
−2n+1 a

V
z
)
, (23)

with N̄ > 0 an appropriate normalizing constant and
(
αn
)
n∈N is the sequence defined by the

recursion
α0 = 1, αn =

2

2n − 1
αn−1.
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In practice we shall use a truncated version of the series that defines N . For the numerical tests,766
we use the parameters collected in Table 4.767

a V R ε

4 0.6 5 10−6

Table 4. Data for the numerical tests: binary division kernel

Number of cells Eλ EV
1000 3.73× 10−5 3.83× 10−2

2000 5.68× 10−8 1.93× 10−2

4000 6.77× 10−7 9.69× 10−3

8000 6.84× 10−7 4.85× 10−3

Table 5. Binary division kernel: errors for several number of grid points

With this threshold ε, the approached eigenpair is reached in 43 iterations, independently of the768
size step. Fig. 10 represents the evolution of the error EhV as a function of h in a log-log scale:769
N (K) approaches N at order 1. The rate improves when using a quadrature rule with a better770
accuracy. For this test, the approximation of the eigenvalue is already accurate with a coarse771
grid; it is simply driven by the threshold ε and EhL does not significantly change with h.772

773

1

Figure 10. Binary division kernel: convergence rates of (λ(K), N (K)) with respect to h

Uniform fragmentation. The uniform fragmentation kernel is defined by:

k(z|z′) =
1

z′
10≤z≤z′ .

We apply the algorithm for the following two cases:774
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1.V (z) = V0 and a(z) = a0z. We have λ =
√
a0V0 and

N(z) = 2

√
a0

V0

(
Z +

Z2

2

)
exp

(
−Z − Z2

2

)
.

We still use the values in Table 4 (especially, a0 = a and V0 = V ). The approximated775
eigenpair is obtained in 84 iterations and, as in the previous test, it does not change with the776
size step. In this case, both the eigenvalue and the eigenfunction are approached at order 1, see777
Table 6 and Fig. 11.778

Number of cells Eλ EV
1000 1.30× 10−2 8.89× 10−3

2000 6.43× 10−3 4.50× 10−3

4000 3.23× 10−3 2.24× 10−3

8000 1.62× 10−3 1.13× 10−3

Table 6. Uniform fragmentation, ex. 1: errors for several number of grid points

Figure 11. Uniform fragmentation, ex. 1: rate of convergence to the exact eigenpair with respect
to h

2.V (z) = V0z and a(z) = a0z
n with n ∈ N \ {0}. The eigenpair is defined by the following779

formula:780

n = 1 λ = V0 N(z) =
a0
V0

exp

(
−a0
V0
z

)
n = 2 λ = V0 N(z) =

2a0
πV0

exp

(
− a0

2V0
z2
)

n λ = V0 N(z) =

(
a0
nV0

) 1

n n

Γ( 1
n)

exp

(
− a0
nV0

zn
)

781

Note that the growth rate V vanishes and Theorem 1.1 does not apply as such. Nonetheless,782
the algorithm works well and still captures the eigenpair. We perform the test for n = 1 and783
n = 2 and the results are recorded in Table 7, Fig. 12 and Table 8, Fig. 13, respectively.784
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Number of cells Eλ EV
1000 4.70× 10−2 2× 10−2

2000 2.43× 10−2 1.06× 10−2

4000 1.25× 10−2 5.5× 10−3

8000 6.39× 10−3 2.81× 10−3

Table 7. Uniform fragmentation, ex. 2, case n = 1: errors for different number of cells

Figure 12. Uniform fragmentation, ex. 2 case n = 1: rate of convergence to the exact eigenpair
with respect to h

Number of cells Eλ EV
1000 2.39× 10−2 8.81× 10−2

2000 1.23× 10−3 4.53× 10−3

4000 6.41× 10−3 2.35× 10−3

8000 3.41× 10−3 1.24× 10−3

Table 8. Uniform fragmentation, ex. 2, case n = 2: errors for different number of cells
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Figure 13. Uniform fragmentation, ex. 2: rate of convergence to the exact eigenpair with respect
to h

2 SENSITIVITY ANALYSIS ON THE EQUILIBRIUM MASS

Having an efficient procedure to predict the residual mass of the equilibrium phase also opens785
perspectives to discuss the influence of the parameters. This can provide useful hints for the786
design and the optimization of anti-tumor therapies. We address this issue by performing a787
global sensitivity analysis on the immune-controlled tumor mass. Sensitivity analysis also788
provides information on the quantification of uncertainty in the model output with respect to the789
uncertainties in the input parameters. We remind the reader that the equilbrium mass is seen as a790
function of the parameters in Table 1:791

µ1 = f(a,A, p, χ,D, γ). (24)

We consider that the input parameters are independent random variables uniformly distributed792
in an interval [x1, x2] ⊂ (0,∞):793

M = (a,A, p, χ,D, γ) with Mi ∼ U(x1, x2). (25)

The pillar of the Sobol sensitivity analysis is the decomposition of f into 2n − 1 summands of794
increasing dimensions:795

f(M) = f0 +
∑n

i=1 fi(Mi)

+
∑

1≤i<j≤n
fij(Mi,Mj) + · · ·+ f1···n(M1, · · · ,Mn), (26)

where796
1

x2 − x1

∫
[x1,x2]

fi1···ip(Mi1···ip) dMik = 0 for k ∈ {1, ..., p}, (27)

797

f0 =
1

(x2 − x1)n

∫
[x1,x2]n

f(M) dM, (28)

798 ∫
[x1,x2]n

fi1···ip(Mi1···ip)fj1···jp(Mj1···jp) dM = 0, (29)
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and Mi1···ip = (Mi1 , · · ·Mip). The existence and uniqueness of the above decomposition has799
been proven in (69), given f a square integrable function. Owing to the orthogonality condition800
(29), the total variance of f reads:801

V = Var(f(M)) =
1

(x2 − x1)n

∫
[x1,x2]n

f(M)2 dM − f2
0 . (30)

Given (26), V can be decomposed as follows:802

V =
n∑
i=1

Vi +
∑

1≤i<j≤n
Vij + · · ·+ V1···n, (31)

where the terms Vi1···ip , called partial variances read:803

Vi1···ip =
1

(x2 − x1)n

∫
[x1,x2]n

f2
i1···ip dMi1 · · · dMip . (32)

Following the description in (69), the Sobol’ sensitivity indices are defined as follows:804

Si1···ip =
Vi1···ip
V

. (33)

They verify805
n∑
i=1

Si +
∑

1≤i<j≤n
Sij + · · ·+ S1···n = 1. (34)

Each index Si1···ip measures how the total variance of f is affected by uncertainties in the set of806
input parameters i1 · · · ip. An equivalent definition of the above indices is given by (see (68)):807

Vi = Var(E(Y |Mi)), Vij = Var(E(Y |Mi,Mj))− Vi − Vj , ... (35)

The total effect of a specific input parameter i is evaluated by the so-called total sensitivity index808

S
(i)
T , the sum of the sensitivity indices which contain i:809

S
(i)
T =

∑
Ci

Si1···ip (36)

where Ci = {(i1 · · · ip) : ∃m ∈ {1, ..., p}, im = i}. In practice, the sensitivity indices that810
are needed to discriminate the impact of the parameters are the first, second and total Sobol’811
sensitivity indices. The above indices are computed using Monte Carlo simulations combined812
with a careful sampling of the parameters space in order to reduce the computational load and813
the number of model evaluations. For this purpose, the following estimators can be derived814
using two different N samples A and B, see (68, 74),815

f̂0 =
1

N

N∑
l=1

f(Ml), (37)
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V̂ =
1

N

N∑
l=1

f2(Ml)− f̂2
0 , (38)

816

V̂i =
1

N

N∑
l=1

f(M
(A)
(−i)l,M

(A)
il )f(M

(B)
(−i)l,M

(A)
il )− f̂2

0 , (39)

817
V̂ij
=

1

N

∑N
l=1 f(M

(A)
−(i,j)l

,M
(A)
il ,M

(A)
jl )f(M

(B)
−(i,j)l

,M
(A)
il ,M

(A)
jl )

−f̂2
0 − V̂i − V̂j .

(40)

Here the notation M−(i1···ip)l stands for the l-th sample line where we get rid of the points818
corresponding to the indices i1, · · · , ip. The total sensitivity (87) is given by:819

STi = 1− S−i (41)

where S−i is the sum of all the sensitivity indices that do not contain the index i. Hence, the820
total sensitivity index estimator reads:821

ŜTi = 1− V̂−i
V̂

(42)

where

V̂−i =
1

N

N∑
l=1

f(M
(A)
(−i)l,M

(A)
il )f(M

(A)
(−i)l,M

(B)
il )− f̂2

0 .
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