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We obtain an entropy functional for the Lifshitz–Slyozov system. This can be
used to investigate the time asymptotics of the system. In particular, we describe
situations in which the monomers concentration either tend to 0 or saturate as
time becomes large. The latter situation can be excluded under assumptions on
the support of the initial data.
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1. INTRODUCTION

This paper is devoted to the asymptotic behavior of solution (c, f) of the
following system

˛“tf+“x((a(x) c(t)−b(x)) f)=0 in R+t ×R
+
x ,

c(t)+F
.

0
xf(t, x) dx=r > 0,

f|t=0=f0 in R+x , c|t=0=c0

(1)

as time becomes large. This equation has been introduced by Lifshitz and
Slyozov (1) as a model for phase transition phenomena. Details on (1) can
also be found in the more recent paper of Sagalovich and Slyozov (2) and
in the classical book of Lifshitz and Pitaevski. (3) It is intended to model
the evolution of aggregates interacting in a solution with free particles or
monomers. The aggregates are characterized by their size x \ 0. In this
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modeling the size of the aggregates is infinitely large compared to the size
of the free particles. Therefore, f(t, x) is the density of clusters having size
x at time t. Evolution of the solution is governed by addition to or removal
from clusters of monomers, whose concentration at time t is c(t). The
(given) coefficients a, b are interpreted as rates at which these reactions
occur. For instance, in the original paper, (1) it is proposed

a(x)=3x1/3, b(x)=3 (2)

by assuming the growth process is governed by diffusion from the solution.
The crucial assumption on the coefficients is related to the existence and
uniqueness, at each time t, of a critical point xc(t) where the Lagrangian
growth rate

V(t, x)=a(x) c(t)−b(x) (3)

changes sign. Indeed, evolution of a grain having size x depends on the
ratio between the monomers concentration c(t) arround it and the equilib-
rium concentration Ceq(x) at its surface: as c(t) > Ceq(x), the monomers are
caught by the cluster, whereas for c(t) < Ceq(x), the cluster should loss
monomers. However, Ceq(x) is a decreasing function of the size (given for
instance by the Gibbs–Thomson law Ceq(x)=a exp(b/x1/3) ’ a(1+b/x1/3)
where a, b > 0). As a consequence, subcritical grains shrink (for 0 [ x
< xc(t), the growth rate of particle V(t, x) is negative) while supercritical
ones grow (for x > xc(t), the rate is positive). This phenomenon is known
as the Ostwald ripening.

Therefore, we will consider rates a and b satisfying (at least)

˛a(x) > 0, b(x) > 0 for x > 0,

q(x)=
b(x)
a(x)

is continuous and strictly decreasing from

(0,+.) to (q(.)=0, q(0))

(4)

where [0, r] is strictly contained in [0, q(0)) (we can have q(0)=+. as
in (2)). Then, the following definition of the critical size associated to a
density c makes sense

xc=q−1(c)

Also note that for x=0 the growth rate is naturally non positive

a(0) r−b(0) [ 0 (5)
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On a mathematical viewpoint, it explains why no boundary condition is
required for (1): the characteristics associated to V(t, x) are always out-
going (see (8) later). Let us mention that one often deals with a slightly
different model which assumes that the monomers concentration is yet
very small. In turn, the mass conservation reduces to the constraint
>.0 xf(t, x) dx=r on the first moment. Then, the growth rate is given by
(3) with

c(t)=F
.

0
b(x) f(t, x) dx×1F.

0
a(x) f(t, x) dx2

−1

(6)

For the coefficients (2) this quantity is nothing but the mean radius of the
aggregates.

Results on existence-uniqueness of solutions of the Lifshitz–Slyozov
model have been obtained recently by using different approaches.
Niethammer and Pego (4) deal with the modified model (6) and the original
one (1) with compactly supported probability measure as initial data.
Collet and Goudon (5) study the case of regular kinetic coefficients a, b for
integrable or measure-valued data. Laurençot (6) extends the well-posedness
theory for integrable data to less regular coefficients, including (2). In
refs. 7 and 8 a model which takes into account encounters between particles
is discussed, and refs. 9 and 10 introduce and deal with a Fokker–Planck
version of (1) involving a diffusive term. The connection with the Becker–
Döring discrete model is investigated by Penrose (11) and Collet et al., (12)

through a large-size and large-time asymptotics. A review of these recent
results and more references can be found in ref. 13. Finally, some explicit
formulae for the solutions are given in ref. 5, which show non trivial
asymptotic behavior, even when considering simple coefficients without
critical point.

However, a rigourous and complete study of the asymptotic behavior
of the solution is not yet available, even if a lot of progresses have been
made recently by Niethammer and Pego. (14, 15) Lifshitz–Slyozov argue on
physical grounds that:

– the monomers concentration c(t) tends to 0 monotically as time
increases,

– precisely, for the coefficients (2), c(t) t1/3 tends to a universal con-
stant KLS,

– and the solution f(t, x) is described by a universal asymptotic
profileMLS, independently on the shape of the initial data.
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These conclusions have given rise to a very controversial debate, both on
physical or mathematical viewpoint. We mention among others the argu-
ments of Brown, (16) Meerson and Sasorov, (17) Sagalovich and Slyozov. (2)

Nice examples, on a simplified version of (6), given by Carr and Penrose (18)

and the results of Niethammer and Pego, both for (6), (14) and (1), (15) indi-
cate that the behavior conjectured by Lifshitz–Slyozov cannot hold without
some conditions on the initial state. The conclusion of the debate can be
summarized as follows:

– we can exhibit a familly of possible asymptotic profiles MK,
parametrized by K ¥ [KLS,.),

– the value of K corresponds to the possible limit of c(t) t1/3,

– and it also measures the regularity of the profileMK at the end of its
support.

– The asymptotic state of the solution is highly unstable and depends
heavily on the initial shape. In particular, for compactly supported initial
data, convergence to the profileMLS cannot hold if the initial data vanishes
like (x−x0)a at the end of its support. One conjectures that the solution
tends to the profile which has the same behavior at the tip of the support
(the value of K being explicitely related to the exponent a).

A large part of these statements have been proved in refs. 14 and 15 to
which we refer for details. We also mention the recent numerical study of
ref. 19 which may shed some light on these questions.

Then, the discussion of ref. 1 contains certain mathematical difficul-
ties, in particular concerning the behavior with time of the monomer con-
centration. This note is a first attempt at dealing with this problem. We
shall describe some relevant situations in which c tends either to 0 or r, the
limit depending on the initial data. The interest of the proof is that it is
based on the construction of an entropy functional suitabily adapted for
the system (1): the equation dissipates some combination of c and pseudo-
moment of f. For the physical case (2), a version of this functional is given
by the following nice formula

H(t)=F
.

0
x2/3f(t, x) dx+

c2(t)
3

Since x represents the volume of the grains, the first term is the total
surface of the grains.

Section 2 is devoted to some preliminaries and notations. In Section 3,
we obtain the entropy functional, and we discuss time asymptotics in
Section 4.
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2. PRELIMINARIES

In this section, we recall some of the material from ref. 5 which will be
used in the sequel. First, let us set up some notations. When the coefficients
a, b are regular enough, namely

a, b are C1([0,+.)) with bounded derivative (7)

we are allowed to define the characteristic curves X(t; s, x) associated to V
as follows

“

“t
X(t; s, x)=V(t, X(t; s, x)), X(s; s, x)=x (8)

We also recall the well-known formulae

˛ ““x X(t; s, x)=J(t; s, x)=exp 1F t
s
“xV(s, X(s; s, x)) ds2 ,

“

“s
X(t; s, x)=−V(s, x) J(t; s, x)

(9)

We will use the fact that J(t; s, x) is the jacobian of the change of variable
y=X(t; s, x). Forgetting the coupling between c and f, we define a solu-
tion to the transport equation of (1) via the following mild formulation

f(t, x)=f0(X(0; t, x)) J(0; t, x) (10)

where X is the characteristic curve associated to a continuous function c by
(8). Of course, the definition implies that

d
dt

F
.

0
j(x) f(t, x) dx=F

.

0
jŒ(x) V(t, x) f(t, x) dx

holds for any j ¥ C.c ((0,.)), at least in the DŒ((0, T)) sense. Then, exis-
tence-uniqueness of solution of (1) can be obtained through a fixed point
strategy on c, see ref. 5. Results of ref. 5 can be extended for integrable
initial data to less regular coefficients, allowing blow up of the derivative at
x=0 as for (2). We refer for precise assumptions on a, b to ref. 6, keeping
in mind (4) together with the following property

0 [ a(x), b(x) [ A(1+x) (11)
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(which is clearly satisfied for (7), or (2)). We summarize the existence-
uniqueness result as follows.

Theorem 1 (refs. 5 and 6). Let the initial data f0 be nonnegative
and satisfy

F
.

0
f0(x) dx <., F

.

0
xf0(x) dx [ r

Then the system (1) has a unique solution (c, f) ¥ C0(R+)×C0(R+,
w−L1(R+)). The concentration c(t) is strictly positive for all time t. The
first moment M1(t) of f and c(t) are C1 functions of time, and their time
derivative satisfy

dc
dt
(t)=−

dM1(t)
dt
=−F

.

0
V(t, x) f(t, x) dx (12)

Furthermore, the zeroth order moment

M0(t)=F
.

0
f(t, x) dx

is a decreasing function of time.

Remark 1. The notation f ¥ C0(R+, w−L1(R+)) means that, for
any j ¥ L.(R+), the function tW >.0 f(t, x) j(x) dx is continuous on R+.

Remark 2. Let R \ 0. Then, considering regular coefficients, the
following relation holds for all t \ 0

F
.

R
f(t, x) dx=F

.

X(0; t, R)
f0(y) dy (13)

Therefore, for R=0, monotonicity of M0 appears as a consequence of (5).
Indeed, by (9), tWX(0; t, 0) is a non decreasing function of time.

Our analysis requires crucially some bounds on the solution, uniform
with respect to time. Hence, let us discuss some immediate consequences of
Theorem 1. The mass conservation yields immediately estimates on M1(t)
and c(t), since M1(t)+c(t)=r, with c and f non negative. Furthermore,
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M0(t) is dominated by its initial value. Next, (11) and (12) give a Lipshitz
estimate on c

:dc
dt
(t) : [ A F

.

0
(1+x) f(t, x) dx

Let us summarize these facts as follows.

Corollary 1. Let (c, f) be the solution obtained in Theorem 1.
Then, there exists a constant C, depending on f0 and r, such that the
following estimates hold for any time

˛F
.

0
f(t, x) dx [ F

.

0
f0(x) dx [ C, F

.

0
xf(t, x) dx [ r [ C,

0 [ c(t) [ r, :dc
dt
(t) : [ C

(14)

3. ENTROPY FUNCTIONAL

Our analysis relies on the existence of an ‘‘entropy-like’’ functional for
the Lifshitz–Slyozov equation.

Proposition 1. Let k: R+0 R+ be a C1 strictly increasing and
concave function satisfying k(0)=0. Set

˛K(c)=F
c

0
kŒ(q−1(s)) ds for c ¥ [0, r],

H(t)=F
.

0
k(x) f(t, x) dx+K(c(t)).

Then, t-H(t) is non increasing. Precisely, the entropy dissipation is
given by (in DŒ(0, T))

d
dt
H(t)=F

.

0
[kŒ(x)−kŒ(xc(t))] V(t, x) f(t, x) dx [ 0

Notice that, by definition (4), q−1 is decreasing and q−1(s) \ q−1(r) > 0
for 0 [ s [ r. Since kŒ is non-increasing, kŒ(q−1(s)) [ kŒ(q−1(r)) <+. so
K(c) is well-defined. Since k(0)=0 and k is concave, we have

lim
xQ+.

sup
k(x)
x
=C <+.
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Thus, by (14), H(t) is well-defined. If we choose k(x)=x, then we recover
that

d
dt
1F.
0
xf(t, x) dx+c(t)2 [ 0

(but this is actually=0 by the mass conservation relation !).

Proof. In view of our assumptions, k is C1 with bounded derivative
(0 [ kŒ(x) [ kŒ(0) <.). Let f ¥ C.c (R

+) satisfying 0 [ f(x) [ 1, f(x)=1
for x ¥ [0, 1], f(x)=0 for x \ 2 and |fŒ(x)| [ C. Let us introduce an
approximation ke(x)=k(x) f(ex), smooth with compact support and such
that 0 [ ke(x) [ k(x) [ Cx, ke Q k pointwise. We also check that k −e con-
verges pointwise to kŒ(x) with the domination |k −e(x)| [ kŒ(x)+C. Since
ke(0)=0, integration by parts yields

d
dt

F
.

0
ke(x) f(t, x) dx=F

.

0
k −e(x) V(t, x) f(t, x) dx

=F
.

0
[k −e(x)−k

−

e(xc(t))] V(t, x) f(t, x) dx

+k −e(xc(t)) F
.

0
V(t, x) f(t, x) dx

By (14), c is Lipschitz and the last term can be rewritten as

k −e(xc(t))1 −
d
dt
c(t)2=− d

dt
Ke(c(t))

with

Ke(c)=F
c

0
k −e(q

−1(s)) ds

By using the estimates on ke pointed out above combined to (14), we can
apply the Lebesgue theorem to obtain

lim
eQ 0

1F.
0
ke(x) f(t, x) dx+Ke(c(t))2=F

.

0
k(x) f(t, x) dx+K(c(t))
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Next, since kŒ is bounded, we have |kŒ(x) V(t, x)| [ C |V(t, x)| [ CA(1+x),
by (11). Hence, letting e tend to 0 and using the Lebesgue theorem again,
we are led to

d
dt
H(t)=F

.

0
[kŒ(x)−kŒ(xc(t))] V(t, x) f(t, x) dx

in DŒ((0, T)). Since kŒ is non-increasing, this quantity is non-positive. L

Finally, we can also treat cases with functions k having unbounded
derivative (i.e., kŒ(x) can blow up as xQ 0). To this end, we consider an
approximation kn satisfying |k −n(x)| [ Cn, kn(x)Q k(x), k

−

n(x)Q kŒ(x) and
the other requirements of the statement. We have, for any test function
z ¥ C.c ((0, T)),

7 d
dt
Hn, z8

DŒ, D((0, T))
+F

.

0
F
.

0
[k −n(xc(t))−k

−

n(x)] V(t, x) f(t, x) z(t) dx dt=0

By the Lebesgue theorem, we check that Hn(t)QH(t). Hence, in the dis-
sipation term we use Fatou’s lemma in order to conclude that, for any non
negative test function z

7 d
dt
H, z8

DŒ, D((0, T))
+F

.

0
F
.

0
[kŒ(xc(t))−kŒ(x)] V(t, x) f(t, x) z(t) dx dt [ 0

In particular, the derivative of H is non-positive (as a distribution in time).
We can apply the reasoning to the coefficients (2); taking k(x)=x2/3

leads to

H(t)=F
.

0
x2/3f(t, x) dx+

c2

3

which involves the surface of the agglomerates.

4. ASYMPTOTIC BEHAVIOR

Let tn be a sequence of time increasing to . and consider the sequen-
ces obtained by shifting the solution

fn(t, x)=f(t+tn, x), cn(t)=c(t+tn)
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Note that (cn, fn) satisfy

˛“tfn(t, x)+“x(Vn(t, x) fn(t, x))=0,Vn(t, x)=a(x) cn(t)−b(x),

cn(t)+F
.

0
xfn(t, x) dx=r

(15)

We shall exploit the bounds of Proposition 1 to deduce compactness prop-
erties for (cn, fn).

Let C0(R+) be the space of continuous functions on R+ vanishing at
infinity (i.e., j ¥ C0(R+) is continuous and such that for any e > 0, there
exists a compact set Ke … R+ with |j(x)| [ e when x ¥ R+0Ke). We equip
C0(R+) with the norm

||j||.= sup
x ¥ R

+
|j(x)|

Let M1(R+) be the space of bounded measures on R+, endowed with the
norm

||m||M1=F
R
+

d|m|

It identifies with the dual of C0(R+) through the relation

j- F
R
+
j m(dx)

According to Proposition 1, cn is bounded in C0(R+) with dcn
dt bounded.

Therefore, by Arzela–Ascoli’s theorem, we can suppose that, for a sub-
sequence,

cn(t)Q c.(t) uniformly in C0([0, T])

Next, fn is a nonnegative sequence bounded in L.(R+; L1(R+)) and Vnfn is
also bounded in L.(R+; L1(R+)), by using (11) together with (14). There-
fore, the time derivative “tfn=−“x(Vnfn) is bounded in L.(R+; W−1, 1(R+)).
By combining the Arzela–Ascoli theorem, the separability of C0(R+) and
the diagonal argument, we can find a subsequence and a measure valued
function f.: R+QM1(R+) verifying

lim
nQ.

F
.

0
j(x) fn(t, x) dx=F

.

0
j(x) f.(t, dx)
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in C0([0, T]) for any test function j ¥ C0(R+). This means that fn con-
verges to f. in C0([0, T];M1(R+)-weak-f). Actually, we will use that this
last statement implies

lim
nQ.

F
.

0
F
.

0
z(t) j(x) fn(t, x) dt dx=F

.

0
F
.

0
z(t) j(x) f.(t, dx) dt (16)

for any z ¥ C0c(R
+) and j ¥ C0(R+).

Next, with the estimate on the first moment of the fn’s in (14), we can
check that for almost all t ¥ R+, the non negative function x is integrable
for the measure f.(t, dx) and

sup
t ¥ R

+
F
.

0
xf.(t, dx) [ C

(consider functions j with compact support approaching x pointwise...).
As a consequence, we can enlarge the space of available test functions in
(16); precisely, we shall use (16) with z ¥ C0c(R

+) and continuous functions
j such that

lim
xQ.

j(x)
x
=0

Having disposed of these preliminaries, we aim at describing the possible
limit point of (cn, fn).

From now on, let us strenghten the condition (11) by assuming

lim
xQ.
a(x)/x, b(x)/x=0 (17)

This condition is fulfilled for (7), or (2). For the entropy functional, we
assume that the strictly increasing and concave function k verifies

lim
xQ.

k(x)
x
=0, lim

xQ.
kŒ(x)

a(x)+b(x)
x

=0 (18)

Note that, by (17), the second requirement holds since blow up of kŒ may
occur only at x=0.

Proposition 2. The limit c. does not depend on time and

f.(t, x)=M0,. dx=xc
.
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where xc.=q
−1(c.) and M0,.=inf{M0(t), t \ 0}. In particular, if c.=0

thenM0,.=0.

The drawback of this result is the fact that the limit c. depends on the
sequence tn and is not uniquely defined. However, if the initial data has an
infinite support, a little bit more can be said on the behavior of c(t).

Corollary 2. If the support of the initial data f0 is infinite, then, we
have

lim
tQ.
c(t)=0 lim

tQ+.
||f(t, · )||L1=0

Next, in restricted but physically relevant situations we are able to
provide information on the asymptotic behavior of the solution. In partic-
ular, the monomers concentration c(t) is proven to go to 0 for a wide class
of initial data. A part of this result will use the characteristics framework
which supposes, to be absolutely rigorous, the regularity (7). Maybe the
assumptions on a and b can be slightly weakened, but we prefer to do not
insist on these purely technical difficulties which do not belong to the scope
of the paper.

Theorem 2. Assume that b(x)=b > 0 and a is non decreasing.
We assume that F(f0) ¥ L1(R+) for some convex function F: R+0 R+

satisfying

F(0)=0, lim
sQ+.

F(s)
s
=+.

Then, as t goes to., one has ||f(t, · )||L1 Q 0 (i.e., the total number of clusters
M0(t) goes to 0) while the monomers concentration either tends to 0 or r.
In particular, if there exists d > 0 such that supp(f0) 5 [xc0+d,.[ ]”,
then c(t)Q 0.

Remark 3. Assumptions in this theorem are not as restrictive as
they seem. Indeed, the assumptions on the coefficients are satisfied by (2).
On the other hand, sp, p > 1 or s[ln(s)]+ are examples of suitable functions
F (sometimes referred to as Nagumo’s functions). Actually, in view of the
De La Vallée criterion (see ref. 20), there is no restriction at all on the
initial data: for any f0 ¥ L1(R+) we can find a suitable function F, which
fulfills all the conditions of Theorem 2.

Remark 4. If the initial data f0 has an unbounded support, as cer-
tainly considered in ref. 1, then c(t) tends to 0. If supp(f0) belongs to
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[0, xc0], the two behaviors are certainly possible, depending on the initial
repartition of the mass. Note finally that we are not able to prove the
monotonicity of c, neither to obtain a sharp rate of convergence.

Proof of Proposition 2. The proof falls into two steps. The former
uses the dissipation of the entropy, the latter uses the decrease of the zeroth
order moment.

Step 1: Entropy. Since t-H(t) \ 0 is non increasing, it has a limit

H.=inf{H(t), t \ 0} \ 0

ThereforeHn(t)=H(t+tn)QH. as nQ., the limit being independent on t.
On the other hand, by using the uniform convergence of cn, (18) and (16),
we can pass to the limit in each term of Hn, at least in the DŒ((0, T)) sense.
We get

H.=F
.

0
k(x) f.(t, dx)+K(c.(t))

Similarly, the time derivative also passes to the limit (in DŒ((0, T))). Let us
set

wn(t, x)=[kŒ(xcn(t))−kŒ(x)] Vn(t, x) \ 0,

w.(t, x)=[kŒ(xc.(t))−kŒ(x)] V.(t, x) \ 0

Consider first the case with kŒ bounded. Then, one has

d
dt
H.=0=− lim

nQ.
F
.

0
wn(t, x) fn(t, x) dx=−F

.

0
w.(t, x) f.(t, dx)

in DŒ((0, T)). Indeed, wn(t, x) depends on n only through cn. Then, we
check that wn converges to w.(t, x), uniformly on [0, T]×[0, R] for any
0 < R <. while (17) and (18) provide a control on the large x’s. We
deduce that the product with fn passes to the limit. Precisely, we write

: F.
0

F
.

0
z(t) wn(t, x) fn(t, x) dx dt−F

.

0
F
.

0
z(t) w.(t, x) f.(t, dx) dt :

[ F
.

0
F
.

0
|z(t)| |wn(t, x)(x)−w.(t, x)|fn(t, x) dx dt

+: F.
0

F
.

0
z(t) w.(t, x) fn(t, x) dx dt−F

.

0
F
.

0
z(t) w.(t, x) f.(t, dx) dt :
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The first term is made small by using the uniform convergence of wn and
the estimate on the moments offn. The second term is dealt with by using (16).

One deduces that for almost all time t \ 0, the integral > w.(t, x)×
f.(t, dx) vanishes. We can interpret w.(t, x) f.(t, dx) as a measure on R+

(it is a non negative distribution), hence this implies that w.(t, x) f.(t, dx)
vanishes in M1(R+) for almost all time. But w.(t, x) > 0 for x ] xc(t), so
that supp(f.(t, dx)) … {xc.(t)}. Using again that f.(t, · ) is a zeroth order
distribution, we get

f.=d(t) dx=xc
.
(t)

with the convention d(t)=0 if c.(t)=0 (it means that the critical size is
infinite).

A similar conclusion holds when kŒ is unbounded. Indeed, we have
seen that

7dHn
dt
, z8

DŒ, D
+F

.

0
F
.

0
wn(t, x) fn(t, x) z(t) dx dt [ 0

holds for any non negative test function z ¥ C.c (R
+). Then, letting n go to

., we verify that

7dH.
dt
, z8

DŒ, D
+F

.

0
F
.

0
w.(t, x) z(t) f.(t, dx) dt [ 0

However, dH.dt =0, therefore one has for any non negative z ¥ C.c (R
+)

F
.

0
z(t)1F.

0
w.(t, x) f.(t, dx)2 dt [ 0

while w.(t, x) f.(t, dx) is a non negative distribution. It follows that, as in
the bounded case, w.(t, x) f.(t, dx) vanishes for almost all time.

We end this step by letting nQ. in (15); it gives

“tf.+“x(V.(t, x) f.)=0=“tf. (19)

in the sense of distributions on R+×R+ (we treat the product Vnfn as wnfn
before, with (17), (16)). The second equality uses the fact that V.(t, x)
vanishes on the support of f..

354 Collet et al.

File: KAPP/822-joss/108_1-2 373236(19p) - Page : 14/19 - Op: SD - Time: 10:18 - Date: 04:04:2002



Step 2: Zeroth Order Moment. Since t-M0(t) \ 0 is non
increasing, it has a limitM0,. \ 0. We are thus led to

lim
nQ.

F
.

0
fn(t, x) dx=M0,.=F

.

0
f.(t, dx)=d(t)

which proves that d(t) does not depend on time. Hence, (19) becomes

M0,.“t(dx=xc
.
(t)
)=0

This actually means that c. does not depend on time and completes the
proof of Proposition 2. L

Remark 5. We have

lim
nQ.
H(t+tn)=H.=M0,.k(x.)+K(c.)

However, it is not obvious at all that this relation determines uniquely the
limit c. which may depend on the subsequence tn.

Proof of Corollary 2. We split the proof into two steps. In the first
step we show the result up to a subsequence and in the second step we
show the convergence for the entire family.

Step 1: Convergence Up to a Subsequence. Suppose there exists
R > 0 such that for all t > 0, xc(t)=q−1(c(t)) < R. Then V(t, x) \ 0 for
x \ R. Consider a non decreasing function f such that f(x) \ 0, fŒ is
bounded, supp(f) … ] RŒ,+.[ and f(x)=1 for x \ 2RŒ with RŒ > R. Then
for all t > 0 we have

d
dt

F
.

0
f(x) fn(t, x) dx=F

.

0
fŒ(x) V(t, x) fn(t, x) dx \ 0

It follows that

F
.

RŒ
fn(t, x) dx \ F

.

0
f(x) fn(t, x) dx \ F

.

2RŒ
f0(x) dx

holds. Since f0 has a infinite support, the right hand side is larger than
some g > 0. This would contradict the convergence fn EM0,.dx=x. with
x. < RŒ which implies

lim
nQ.

F
.

RŒ
fn(t, x) dx=0
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One deduces the existence of a subsequence tn such that xc(tn) goes to
infinity.

Step 2: Convergence for the Entire Familly. Thanks to Proposi-
tion 2, Step 1 impliesM0,.=0 so

lim
tQ.
||f(t, · )||L1=0

Since for every R > 0:

F
.

0
k(x) f(t, x) dx=F

R

0
k(x) f(t, x) dx+F

.

R

k(x)
x
xf(t, x) dx

[ k(R) F
.

0
f(t, x) dx+

k(R)
R

F
.

R
xf(t, x) dx

we have for every R > 0:

lim sup
tQ.

F
.

0
k(x) f(t, x) dx [

k(R)
R
r

Thus, by using (18), one deduces that >.0 k(x) f(t, x) dx converges to 0
when t tends to infinity. Consequently,

H.=lim
tQ.
K(c(t))= lim

nQ.
K(c(tn))=0

We conclude that the function c(t) converges to 0 when t goes to infinity. L

Proof of Theorem 2. We split the proof into 3 steps.

Step 1: Limit Point of fn. We first show that the assumptions of
Theorem 2 imply that the limit point of fn reduces to 0 (and thus does
not depend on the sequence tn). To this end, we renormalize the equation
in the spirit of ref. 21 (this idea has been used also in ref. 6). Using that
V(t, x) lies in W1,.

loc ((0,.)), we multiply (15) by FŒ(fn) and we find (in
DŒ((0,.)))

“tF(fn)+“x[V(t, x) F(fn)]=[F(fn)−FŒ(fn) fn] “xV(t, x)

But F is convex and F(0)=0 so that

F(fn) [ FŒ(fn) fn
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and

“xV(t, x)=c(t) aŒ(x)−bŒ(x)=c(t) aŒ(x) \ 0

Hence, integrating yields the estimate (up to a classical approximation
argument)

F
.

0
F(fn(t, x)) dx [ F

.

0
F(f0(x)) dx

Therefore

(1+x) fn+F(fn) is bounded in L.(R+; L1(R+))

It is a standard fact, related to the Dunford–Pettis criterion, see ref. 22,
that it implies the relative weak compactness of fn in L1((0, T)×R+). In
turn, fn cannot converge to a Dirac massM0,.dx=x. ... except ifM0,.=0!

Step 2: Convergence of the Monomers Concentration. Since the
limit point of fn is 0, independently on the sequence tn, one deduces that

f(t, · )E 0 in L1(R+)

and, obviously,M0(t)Q 0 as well as

lim
tQ 0

F
.

0
k(x) f(t, x) dx=0

However, H(t)QH., and it follows that

H.=lim
tQ.
K(c(t))

Besides, K is strictly monotonous, so that c(t) has a limit a ¥ [0, r].

Step 3: Support Property. From now on we assume the regularity
of the coefficients (7). This step starts with some interesting remarks on the
support of the solution which can be easily deduced from (10). Let us set

xM=sup{x \ 0, x ¥ supp(f0)}

If xM=+. the support of the solution is also infinite, while if xM is finite,
we have supp(f(t, · )) … [0, X(t; 0, xM)]. Furthermore, the critical point
cannot reach the endpoint of the support in finite time, if it starts from its
left, as shown in the following lemma which will be proved later on.
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Lemma 1. If xc0=q
−1(c0) < xM, then, for all t > 0, one has xc(t) <

X(t; 0, xM).

Assume a > 0. We will show that in this case a=r and the support of
the solution should remain in a compact set independent of time. Indeed,
xc(t)=q−1(c(t)) is bounded, say by R > 0. Therefore, (13) and (9) imply
that M0, R: t- >.R f(t, x) dx is non decreasing. However, it is dominated
byM0(t) which decreases to 0. We conclude that supp(f(t, · )) … [0, R] for
t \ 0. In turn, we are led to

lim
tQ.
M1(t)=lim

tQ.
F
R

0
xf(t, x) dx=0, lim

tQ.
c(t)=r

In particular if supp(f0) is unbounded, supp(f(t, · )) is never bounded,
which thus yields limtQ. c(t)=0.

Now, consider the case supp(f0) 5 [xc0+d,.[ ]”, for some d > 0
with xM=sup{x ¥ supp(f0)} <.. Suppose that X(t; 0, xM) is bounded.
Then by Lemma 1, it increases to a finite limit R, so that the solution
f(t, x) is supported in [0, R]. Then, the previous step shows that a=r.
However, passing to the limit in (8), we obtain

d
dt
X(+.; 0, xM)=a(R)(r−q(R))=0

which contradicts the inequalities R > xM > xc0=q
−1(c0) > q−1(r). We

conclude that the support of f cannot be bounded independently of time;
in turn this gives a=limtQ. c(t)=0. L

Proof of Lemma 1. At t=0 the characteristic curve X(t; 0, xM)
issued from xM is strictly increasing. Assume there exists tg > 0 such that
xc(tg)=X(tg; 0, xM) and xc(t) < X(t; 0, xM) for t < tg. Then (12) says that

dc
dt
(tg)=−F

xc(tg)

0
V(tg, x) f(tg, x) dx > 0

Indeed, V(tg, x) < 0 a.e. in the domain of integration, while f cannot be
identically 0 (otherwise we would have c(tg)=r=q(X(tg; 0, xM)) by the
mass conservation which is incompatible with X(tg; 0, xM) > xM > xc0=
q−1(c0)). Hence

dxc(tg)
dt < 0, which leads to a contradiction. L
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