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Abstract

We set up a numerical strategy for the simulation of the Euler equations, in the framework
of finite volume staggered discretizations where numerical densities, energies and velocities are
stored on different locations. The main difficulty relies on the treatment of the total energy,
which mixes quantities stored on different grids. The proposed method is strongly inspired,
on the one hand, from the kinetic framework for the definition of the numerical fluxes, and,
on the other hand, from the Discrete Duality Finite Volume (ddfv) framework, which has
been designed for the simulation of elliptic equations on complex meshes. We exhibit stability
conditions that guaranty the positivity of the discrete densities and internal energies. Moreover,
while the scheme works on the internal energy equation, we can define a discrete total energy
which satisfies a local conservation equation. We provide a set of numerical simulations to
illustrate the behaviour of the scheme.
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1 Introduction
This work is concerned with the simulation of the Euler system of gas dynamics

∂tρ+ ∇ ·
(
ρu
)

= 0,

∂t
(
ρu
)

+ ∇ ·
(
ρu⊗ u

)
+ ∇p = 0,

∂t
(
ρE
)

+ ∇ ·
(
ρEu

)
+ ∇ ·

(
pu
)

= 0.

(1)

The unknowns depend on the time and space variables (t, x) ∈ [0,∞)×Ω with Ω ⊂ R2, a regular
and bounded domain. In (1), ρ, u, E and p stand for the mass density, the velocity field, the
total energy and the pressure respectively. The pressure is related to the independent unknowns
(ρ,u, E) through an equation of state that depends of the adiabatic exponent γ > 1; in what
follows we set

E = ‖u‖
2

2 + e and p = (γ − 1)ρe,

where e is the internal energy.
The originality of our approach is to consider staggered grids, which means that the numerical

unknowns are stored at different locations of the mesh. Consequently, in contrast to the usual
approaches for the Euler equations, (1) is not treated as a system for the conserved quantities
(ρ, ρu, ρE), but instead each equation is considered “independently” on its own grid. Therefore,
the scheme is not based on resolution of local Riemann problems, but it uses only a relevant (and
simple) notion of numerical fluxes, and the upwinding principles. This viewpoint is particularly
motivated by the will to address simulations of complex models for mixtures which include an
additional constraint on the velocity field, or the simulation of flows in low Mach regimes. It is
indeed known that standard colocalized methods might lead to severe stability constraints, or
simply fail in capturing the correct solutions in these regimes, see [9, 10, 17, 18]. These issues
are beyond the scope of the present paper: here, we focus on the preliminary step which consists
in designing an efficient scheme for the Euler system on staggered grids.

This contribution takes place in a series of works, which started in [3] where the method
is introduced for the barotropic Euler equation in one-dimension. In particular, the proposed
scheme introduced numerical fluxes strongly inspired from the framework of kinetic schemes.
The scheme is shown to be stable, under suitable CFL-conditions, it preserves the entropy-
structure and the consistency analysis à la Lax-Wendroff can be performed too [2]. This ap-
proach is further developped to handle complex systems for mixture flows [4]. The method
has been adapted to deal with multi-dimensional equations, when working on Cartesian grids
in [16]. It also includes muscl strategies that make the scheme second order accurate (for
smooth solutions), for both the barotropic and the full Euler system. When considering the
full Euler equations, we face the difficulty that the total energy mixes up quantities, typically
densities/energies vs. velocities, naturally defined on different grids. It leads to work with the
internal energy equation, at the price of taking into account appropriately the kinetic energy
balance, as in [20, 22]. Restricting to the barotropic case, the scheme has been adapted, still on
Cartesian grids, to set up an asymptotic preserving method in the low Mach regimes [15]. In
such a situation, the asymptotic regime leads to an incompressible limit. Accordingly the limit
scheme correctly handles the incompressibility constraint: owing to the staggered strategy, the
scheme has enforced stability/consistency properties, reminiscient of the mac approach, in the
spirit of the pioneering work of F. H. Harlow and J. E. Welch [19]. However, these versions of
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the scheme use strongly the Cartesian geometry of the grid. Here, we address the question of
the design of the method on unstructured meshes, for the full Euler system. The main difficulty
consists in finding consistent transfer procedures between the different grids, and a relevant ap-
proach for the energy equation, which cannot be treated by mere averages, due to the complex
geometry of the mesh.

To this end, and motivated by the treatment of incompressibility constraints and low Mach
regimes, the adaptation we are going to discuss on unstructured grids is strongly inspired by the
Discrete Duality Finite Volume (ddfv) framework. The ddfv framework has been introduced in
the 2000s in [11, 23] to solve the Laplace equation on general 2d meshes, including non-conformal
meshes, and, more generally, to numerically deal with elliptic operators ∇ · (A∇u), x 7→ A(x)
being a matrix valued function. In the Finite Volume approach, one has to define numerical
fluxes A∇u · n on the interfaces of the control volumes, and finding a relevant formula that
uses only unknowns stored at the center of the control volumes is not possible without severe
restrictions on the mesh geometry1. The ddfv approach has been extended to the Stokes
equations in [6, 7, 8, 25] and to the Navier-Stokes equations in [12, 13, 26, 29]. The main idea of
the ddfv method is to introduce additional unknowns so that full gradients can be reconstructed,
and to mimic at the discrete level the duality formula involving differential operators we are
used to for continuous quantities. The Euler systems does not involve any elliptic operator, and
it only involves first order derivatives. Nevertheless, the staggered scheme we propose gets its
inspiration from the ddfv approach designed in [12] to solve the non homogeneous Navier-Stokes
equations. We shall use ideas from [12] that consists in duplicating variables, together with a
suitable treatment of the convection terms in order to restore the consistency for the equations
on the primal and the dual meshes. We do not address this issue here, but we expect this
approach to be well-adapted to handle low Mach regimes on unstructured meshes. Moreover,
the duplication of variables can also open perspectives to reconstruct gradients and to design
a second-order version of the scheme, in the spirit of [5] where a muscl scheme for the Euler
equation is constructed based on ddfv principles.

The paper is organized as follows. In Section 2 we set up a few useful notations and make the
definition of the different mesh related quantities we are going to use precise. Section 3 details
the construction of the scheme. Two ingredients are crucial. First, the definition of the mass
fluxes, inspired from the kinetic framework, is very specific and induces several properties which
play a central role in the stability-consistency analysis. Second, suitable footbridges should be
introduced in order to transfer information from a grid to another. We pay attention to make
such a transfer consistently, which relies on a general statement, as discussed in [14]. We shall
equally discuss the stability analysis: under a suitable constraint on the time step, the scheme
preserves the positivity of the mass density and of the internal energy. In Section 4, we turn to
the balance of total energy. Precisely, we are able to provide a relevant definition of the discrete
total energy and we justify that its time evolution satisfies a local conservation law. Finally,
Section 5 validates the scheme by a series of numerical experiments.

2 Notation: meshes, unknowns
From now on, we suppose that Ω is an open bounded polygonal domain of R2 and its boundary
is denoted ∂Ω.

Meshes. The construction uses three meshes: the primal mesh, the dual mesh and the diamond
mesh; the main steps of the construction are illustrated by Fig. 1.

1if xK and xL stand for centers of adjacent control volumes, we only get an approximation of ∇v in the direction
of [xK , xL], while we need a full gradient.
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Figure 1: Meshes and associated notations.

• The primal meshM consists of disjoints, non-degenerate, convex polygonsK called “primal
cells”. We associate to each cell K its barycenter xK (see the blue cell in Fig. 1).

• The dual mesh M∗ ∪ ∂M∗ is made of cells built around the vertices xK∗ of the primal
mesh. We distinguish the interior dual mesh M∗, the vertices xK∗ of which do not belong
to ∂Ω, and the boundary of the dual mesh ∂M∗ for which xK∗ ∈ ∂Ω. There are two
options to construct the dual mesh, see Fig. 2:
a© with the direct approach the interior dual mesh M∗ consists of cells K∗, built around

the vertex xK∗ /∈ ∂Ω, by joining the centers xK of all cells having K∗ as a vertex (see
the red cell in Fig. 1) The boundary dual mesh ∂M∗ is the set of cells K∗ such that
xK∗ ∈ ∂Ω and in this specific case, a dual cell is made by joining the centers of the
cells that share the vertex xK∗ and the centers of the two boundary edges containing
xK∗ .

b© the barycentric mesh is obtained by joining the centers xK to the midpoints of the
edges of the primal mesh, [7, 8].

Clearly, the barycentric dual mesh can have a much more complicated structure than the
direct dual mesh, but it might have a practical interest in some circumstances.

• The diamond meshD is made of quadrilateral cellsDσ,σ∗ obtained by joining the endpoints
of the edges σ = [xK∗ , xL∗ ] of the primal mesh to the centers of the primal mesh that share
this edge, which defines σ∗ = [xK , xL]. We distinguish the diamonds of the boundary
Dext = {Dσ,σ∗ ∈ D such that σ ∈ ∂Ω} and Dint = D \ Dext. In the specific case where
Dσ,σ∗ ∈ Dext, the diamond cell Dσ,σ∗ degenerates to a triangle.

In what follows, we assume
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(a) Classic dual mesh

Primal mesh

Dual mesh

∂Ω

(b) Barycentric dual mesh

Figure 2: Structured triangular mesh

• either the direct dual mesh, case a©, is such that all associated diamonds are convex. In
such a case the diagonals σ = [xK∗ , xL∗ ], and σ∗ = [xK , xL], which are equally edges of the
primal – resp. dual – mesh, are included in the diamonds. When referring to the direct
mesh a©, we always assume this convexity assumption.

• or we work with the barycentric dual mesh b©. We refer the reader to Fig. 3 for an example
where there are non convex diamond cells. In this situation, considering a diamond cell
Dσ,σ∗ , σ = [xK∗ , xL∗ ] is still included in the diamond, and there are two edges of the
dual mesh, hereafter denoted σ∗K and σ∗L, which belong to this diamond, while possibly
σ∗ = [xK , xL] 6⊂ Dσ,σ∗ .

σ∗

σ

xK

xK∗

xL

xL∗

•

•

•

•

σ∗K

σ∗L

Figure 3: A case of non convex diamond cells: there are two edges of the dual mesh included in
the diamond cell. The shaded area is Dσ,σ∗ ∩ L∗

Of course, the three meshes cover the computational domain:

Ω =
⋃
K∈M

K =
⋃

K∗∈M∗∪∂M∗
K∗ =

⋃
Dσ,σ∗∈D

Dσ,σ∗ .

The discretization is thus defined as a pair (T,D) where T = M ∪M∗ ∪ ∂M∗ combines the
primal mesh M and the dual mesh M∗ ∪ ∂M∗ and D stands for the diamond mesh. Note that
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contrarily to standard ddfv notation, we do not introduce here the notation ∂M for the set of
edges of the primal mesh M included in ∂Ω, considered as degenerate cells.

Boundaries. For boundary conditions, we distinguish
• the zero-flux boundaries with nothing going out or going in at the interface between the

domain and the outside,
• the outflow boundaries with no information coming from the outside of the domain,
• the Dirichlet boundaries where the variables are supposed to be known, equal to (ρD,uD, eD).

Notations. We refer the reader to Fig. 1 for the following notations.
• We denote σ = K|L = [xK∗ , xL∗ ] the edge separating two adjacent cells K and L of the

primal mesh, and σ∗ = [xK , xL] is the segment that joins the centers of the cells K and
L. For the direct mesh, under the convexity assumption, we have σ∗ = K∗|L∗, the edge
separating the adjacent cells K∗ and L∗ of the dual mesh.

• We denote s = Dσ,σ∗ |Dσ′,σ∗′ the face separating two diamond cells Dσ,σ∗ and Dσ′,σ∗′ .
• For K ∈ M, we denote DK = {Dσ,σ∗ ∈ D, σ ∈ ∂K}. For K∗ ∈ M∗ ∪ ∂M∗, we similarly

denoteDK∗ = {Dσ,σ∗ ∈ D, σ∗ ∈ ∂K∗} if we work with the direct mesh. For the barycentric
mesh, the definition becomes DK∗ = {Dσ,σ∗ ∈ D, ∂K∗ ∩Dσ,σ∗ 6= ∅}.

• The area of a cell X of M, M∗ ∪ ∂M∗ or D is denoted |X| and the length of an edge x of
type σ, σ∗ or s is denoted |x|.

• For a cell X of M, M∗∪∂M∗ or D and for x ∈ ∂X, we define a unit vector nX,x normal to
the face x of the cell X and pointing outwards: nK,σ (with σ ∈ ∂K for K ∈M), nK∗,σ∗

K

and nK∗,σ∗
L
(with σ∗K , σ∗L ∈ ∂K∗ for K∗ ∈ M∗), and nDσ,σ∗,s (with s ∈ ∂Dσ,σ∗ ∩Dσ′,σ∗′

for Dσ,σ∗ ∈ D). Note that

nK,σ = −nL,σ, nK∗,σ∗
K

= −nL∗,σ∗
K
, nK∗,σ∗

L
= −nL∗,σ∗

L
, nDσ,σ∗,s = −nDσ′,σ∗′ ,s.

• In order to analyze the preservation of the non negativity of the density and the internal
energy, we need to introduce a positive number reg (T) that measures the regularity of the
mesh M:

reg (T) = sup
({ |Dσ,σ∗ |
|Dσ,σ∗ ∩X|

, X ∈M ∪M∗ ∪ ∂M∗, Dσ,σ∗ ∈ DX ∩Dint

}
∪
{ |X|
|Dσ,σ∗ |

, X ∈M ∪ ∂M∗, Dσ,σ∗ ∈ DX ∩Dext

})
> 1.

Unknowns.
• Density, internal energy and pressure are stored on the edges of the initial mesh: ρσ,σ∗ and
eσ,σ∗ are constant on the diamond cell Dσ,σ∗ ∈ D and we set pσ,σ∗ = (γ − 1)ρσ,σ∗eσ,σ∗ .

• Velocity fields are stored at both the centers and the vertices of the cell of the primal
mesh: uK is constant on the primal cell K ∈ M and uK∗ is constant on the dual cell
K∗ ∈M∗ ∪ ∂M∗.

Observe that, in contrast to the Cartesian framework studied in [16], we store all the compo-
nents of the velocity on the centers and vertices of the primal meshes. The Cartesian case is
less demanding in terms of storage since the geometry allows us to store only the horizontal or
the vertical component at a given location, in the same fashion as the mac discretization for
incompressible flows.

It is finally convenient to introduce two further scalar quantities, related to the internal
energy and the velocity, that are stored at the edges of the diamond mesh.

6



Definition 2.1. For s = Dσ,σ∗ |Dσ′,σ∗′ , we denote

es :=
eσ,σ∗ + eσ′,σ∗′

2 .

For s = [xK , xK∗ ] an edge of Dσ,σ∗ , we denote

uDσ,σ∗,s := uK + uK∗
2 · nDσ,σ∗,s.

For σ = [xK∗ , xL∗ ] an edge of K such that σ ⊂ ∂Ω, we denote

eσ =
{
eσ,σ∗ if σ is a zero-flux or an outflow boundary,
eD if σ is a Dirichlet boundary,

uσ =


0 if σ is a zero-flux boundary,
uK∗ + uL∗

2 if σ is an outflow boundary,
uD if σ is a Dirichlet boundary,

and
uσ := uσ · nK,σ.

Note that
uDσ,σ∗,s = −uDσ′,σ∗′ ,s if s = Dσ,σ∗ |Dσ′,σ∗′ .

Remark 2.2. This discretisation technique differs from the staggered approach developed in [20,
22]: dealing with grids made of quadrilaterals in dimension 2, in [20, 22] densities and pressures
are stored at the center of the control volumes and, using ideas reminiscent to Rannacher-
Turek or Crouzeix-Ravart finite element methods, velocities are stored at the center of the faces
of the mesh. The corresponding scheme can be shown to conserve globally the total energy,
and stability/consistency properties are further discussed in [20, 22]. While the method differs
by many aspects (discretization, definition of the numerical mass and momentum fluxes), the
analysis of our scheme is based on manipulations close to the proofs of [20, 22].

In what follows, we shall repeatedly use the following elementary claim.

Lemma 2.3. Consider a triangle ABC. For a given vertex V , we denote |v| the length of the
edge v that does not contain V and nV stands for the outward unit vector, see Fig. 4. The
following equality holds: |a|nA + |b|nB + |c|nC = 0.

A

B

C

|a|
|b|

|c|

nA

nB

nC

Figure 4: Triangle ABC
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3 Definition of the scheme
For further purposes, we remind the reader that the sound speed of (1) is

c(e) =
√
γ(γ − 1)e,

which only depends on the internal energy e. This quantity naturally enters in the definition of
the numerical fluxes since it is related to the speed of propagation of the information as driven
by (1). Indeed, let us write (1) in the non-conservative form

∂tρ+ u ·∇ρ+ ρ∇ · u = 0,
∂tu + (u ·∇)u + ρ−1∇p = 0,
∂te+ u ·∇e+ ρ−1p∇ · u = 0.

Denoting U = (ρ,u, e), it can be cast in matrix from as ∂tU +A(U,∇)U = 0 with

A(U,∇) =

 u ·∇ ρ∇· 0
ρ−1 ∂p

∂ρ |e∇ u ·∇ ρ−1 ∂p
∂e |ρ∇

0 ρ−1p∇· u ·∇

 .

Let ξ ∈ R2 with ‖ξ‖ = 1. Then, denoting u = u · ξ, λ−(u, c) = u− c, u and λ+(u, c) = u+ c are
the eigenvalues of the matrix A(U, ξ).

3.1 Mass conservation on the diamond cells
We start by defining the mass fluxes on the interfaces of the diamond cell. The construction of
the fluxes proposed in [3] involves the following function, parametrized by ρ > 0, c > 0, u ∈ R,

ξ ∈ R 7−→M[ρ,c,u](ξ) = ρ

2c1|ξ−u|6c,

which has a compact support, precisely limited by the characteristic speeds of the Euler system.
This function arises in the definition of kinetic schemes for solving the Euler system [24], and
the support property plays a crucial role in the stability analysis of such schemes [31, 32]. The
numerical fluxes are defined by using this function, accounting for both a direction of propagation
and the characteristic speeds.

Definition 3.1. Let

F+(ρ, c, u) =
∫
ξ>0

ξM[ρ,c,u](ξ)dξ =


0 if u 6 −c,
ρ

4cλ+(u, c)2 if |u| 6 c,

ρu if u > c,

(2)

and

F−(ρ, c, u) =
∫
ξ<0

ξM[ρ,c,u](ξ)dξ =


ρu if u 6 −c,
− ρ

4cλ−(u, c)2 if |u| 6 c,

0 if u > c.

(3)

It is worth pointing out that, despite its “kinetic” flavor, the definition of the flux function
has a very simple expression and does not need any numerical computation of integrals. The
following properties are fundamental for analysing the scheme [2, 3, 4, 16].

Lemma 3.2. The functions F± satisfy the following properties
• symmetry :

F−(ρ, c, u) = −F+(ρ, c,−u), (4)
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• consistency :
F+(ρ, c, u) + F−(ρ, c, u) = ρu, (5)

• for any u ∈ R, ρ > 0 and c > 0, we have

0 6 F+(ρ, c, u) 6 ρ[λ+(c, u)]+ et − ρ[λ−(c, u)]− 6 F−(ρ, c, u) 6 0. (6)

The scheme is next based on the upwinding principles applied to the expression

F± =
∫
ξ≶0

ξM dξ.

Namely, given an interface, the mass flux associated to the positive (resp. negative) kinetic
velocities ξ uses the backward (frontward) density. This definition significantly differs from the
scheme introduced in [20, 21, 22] which is based instead on the material velocity only (and not
on the characteristic speeds), in the spirit of AUSM schemes [28, 27]. It induces naturally some
numerical diffusion which prevents the formation of oscillations when the material u velocity
becomes small, see [3, Appendix B].

We thus define the mass flux FDσ,σ∗,s from the diamond cell Dσ,σ∗ through the interface
s = Dσ,σ∗ |Dσ′,σ∗′ as follows

FDσ,σ∗,s = F+
Dσ,σ∗,s + F−Dσ,σ∗,s

with

F+
Dσ,σ∗,s = F+(ρσ,σ∗ , c(es), uDσ,σ∗,s) and F−Dσ,σ∗,s = F−(ρσ′,σ∗′ , c(es), uDσ,σ∗,s).

It uses the velocity and sound speed naturally given on the interface by Definition 2.1, and
upwinds the density. The symmetry property (4) implies that

FDσ,σ∗,s = −FDσ′,σ∗′ ,s

and thus FDσ,σ∗,s is a conservative flux. Moreover we have the following two equalities:

F+
Dσ,σ∗,s = −F−

Dσ′,σ∗′ ,s
and F−Dσ,σ∗,s = −F+

Dσ′,σ∗′ ,s
.

The discrete mass equation on a cell Dσ,σ∗ ∈ Dint is given by

ρσ,σ∗ − ρσ,σ∗
δt

+ 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗,s = 0. (7)

The definition needs to be slightly adapted at the boundary. For the diamond cell Dσ,σ∗ ∈
Dext, we have to define the outgoing mass flux Fσ = F+

σ + F−σ through the boundary edge σ.
Denoting K the primal cell whose σ is an edge, we adopt the following definition:
• F+

σ = 0 and F−σ = 0 for Zero-flux conditions,
• F+

σ = F+ (ρσ,σ∗ , c(eσ), uσ) and F−σ = 0 for Outflow conditions,
• F+

σ = F+(ρσ,σ∗ , c(eσ), uσ) and F−σ = F−(ρD, c(eσ), uσ) for Dirichlet conditions.

The discrete mass equation on a cell Dσ,σ∗ ∈ Dext is given by

ρσ,σ∗ − ρσ,σ∗
δt

+ 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗\∂Ω

|s|FDσ,σ∗,s + |σ|
|Dσ,σ∗ |

Fσ = 0. (8)
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3.2 Transfer lemma and mass conservation on primal and dual cells
In order to transfer the information from a grid to another, we shall make use of the following
transfer lemma, extracted from [14].

Lemma 3.3. Consider a cell C and for each edge s of C , with unit outward normal nC ,s, we
consider a given flux-type quantity XC ,s. There exists a function ωC , which is Hdiv such that

∇ · ωC = 1
|C |

∑
s∈∂C

|s|XC ,s (9)

and ∫
s

ωC · nC ,s = |s|XC ,s. (10)

This claim appeared in [12], in the specific case of quadrilateral and convex cells, as a key
ingredient for designing convection fluxes for the incompressible Navier-Stokes equation with
variable density; it has been generalized in [14], which, furthermore, provides practical proce-
dures to compute the transfer formula. This statement will be used in different places. First,
we need it in order to define the momentum fluxes to be used for updating the velocity. To
this end, we apply Lemma 3.3 on the diamond cells C = Dσ,σ∗ ∈ D. This allows us to define
numerical densities on the primal and dual meshes, together with numerical conservative mass
fluxes, so that a discrete mass conservation holds on these meshes too. Second, we will work
the other way around, with C = K or K∗ in Section 4 in order to justify the local conservation
of the total energy.

Let us explain how this works on the diamond cells C = Dσ,σ∗ ∈ D. We remind the
reader that the edges s of the diamond cell Dσ,σ∗ are of the form sXZ∗ = [xX , xZ∗ ] with
(X,Z∗) ∈ {(K,K∗), (L,K∗), (L,L∗), (K,L∗)}, see Fig. 3 and 5, and at each edge is associated
a mass flux FDσ,σ∗,s.

s K
L
∗

sKK∗

s
L
K
∗

sLL∗

xK

xK∗

xLxL∗
σ∗σ

Figure 5: Diamond cell Dσ,σ∗ .

Since the diagonal σ is an edge of the primal mesh, say for the cell K, we get a mass flux by
setting

|σ|FK,σ =
∫
σ

ωDσ,σ∗ · nK,σ. (11)

This quantity has actually a simple expression by means of the original mass fluxes FDσ,σ∗,s.
Indeed, we have

|σ|FK,σ =
∫
Dσ,σ∗∩K

∇ · ωDσ,σ∗ −
∫
sKK∗

ωDσ,σ∗ · nsKK∗ −
∫
sKL∗

ωDσ,σ∗ · nsKL∗

= |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗,s − |sKK∗ |Fσ,sKK∗ − |sKL∗ |Fσ,sKL∗ .
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Using the obvious relation |D| = |D ∩K|+ |D ∩ L|, for the interface σ = K|L we finally arrive
at

FK,σ = |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L

|s|
|σ|
FDσ,σ∗,s −

|Dσ,σ∗ ∩ L|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
|σ|
FDσ,σ∗,s. (12)

These mass fluxes will be used to obtain a mass conservation equation on the primal mesh, but
they will also enter into the definition of the momentum fluxes. For this purpose, we need to
split

FK,σ = F+
K,σ + F−K,σ, ±F±K,σ > 0,

since we wish to apply upwinding principles. A naive attempt would consist in performing the
same construction starting from the original decomposition FDσ,σ∗,s = F+

Dσ,σ∗,s +F−Dσ,σ∗,s; but,
as it will be further detailed later on, there is no reason that the corresponding fluxes (11) on
the interfaces of K and K∗ preserve the sign property. Instead, we simply rearrange terms in
(12)

FK,σ = |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L

|s|
|σ|
F+
Dσ,σ∗,s −

|Dσ,σ∗ ∩ L|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
|σ|
F−Dσ,σ∗,s

︸ ︷︷ ︸
>0

+ |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L

|s|
|σ|
F−Dσ,σ∗,s −

|Dσ,σ∗ ∩ L|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
|σ|
F+
Dσ,σ∗,s

︸ ︷︷ ︸
60

.

This is the definition we are going to use for F+
Dσ,σ∗,s and F−Dσ,σ∗,s, namely

F±K,σ = |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L

|s|
|σ|
F±Dσ,σ∗,s −

|Dσ,σ∗ ∩ L|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
|σ|
F∓Dσ,σ∗,s. (13)

As far as we are dealing with the direct dual mesh a©, by the convexity assumption, the
diagonal σ∗ is an edge of the dual mesh, and we obtain similarly the following expression for
the mass fluxes on the dual cells

FK∗,σ∗ = F+
K∗,σ∗ + F−K∗,σ∗

with

F±K∗,σ∗ = |Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L∗

|s|
|σ∗|
F±Dσ,σ∗,s −

|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|
|σ∗|
F∓Dσ,σ∗,s. (14)

What is crucial is the fact the fluxes satisfy the conservation property: with σ = K|L and
σ∗ = K∗|L∗,

FK,σ = −FL,σ and FK∗,σ∗ = −FL∗,σ∗ .

More specifically we have

F±K,σ = −F∓L,σ and F±K∗,σ∗ = −F∓L∗,σ∗ . (15)

Let us detail how this approach generalizes for the barycentric dual mesh b©, the geometry
of which is much more intricate. There is no restriction at all on the geometry of the cells, in

11



defining a mass flux on an edge s (of X = K or X = K∗) contained in Dσ,σ∗ , with the unit
outward normal ns by the formula

|s|FX,s =
∫
s

ωDσ,σ∗ · ns. (16)

This is still a conservative quantity: if s = X|Y ⊂ Dσ,σ∗ , then FX,s = −FY,s, and we adopt
this definition from now on. In particular, it allows us to deal with the barycentric mesh. We
refer the reader to Fig. 3 again. The domain Dσ,σ∗ ∩ L∗ is delimited by σ∗K , σ∗L (which are not
necessarily on the same direction), sKL∗ , and sL∗L. The mass fluxes are already known on sKL∗ ,
and sL∗L, which are boundaries of the diamond Dσ,σ∗ , and we wish to clarify their expression
on σ∗K , σ∗L, the boundaries of L∗. Therefore, by definition of ωDσ,σ∗ and the divergence theorem,
we obtain ∫

Dσ,σ∗∩L∗
∇ · ωDσ,σ∗ = |Dσ,σ∗ ∩ L∗|

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|FDσ,σ∗,s

= |σ∗K |FL∗,σ∗K + |σ∗L|FL∗,σ∗L
+|sKL∗ |FDσ,σ∗ ,sKL∗ + |sL∗L|FDσ,σ∗ ,sL∗L .

We write
1 = |Dσ,σ∗ ∩ L∗|

|Dσ,σ∗ |
+ |Dσ,σ∗ ∩K∗|

|Dσ,σ∗ |
so that

|σ∗K |FL∗,σ∗K + |σ∗L|FL∗,σ∗L = |Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗,s

−|sKL∗ |FDσ,σ∗ ,sKL∗ − |sL∗L|FDσ,σ∗ ,sL∗L
= |Dσ,σ∗ ∩ L∗|

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗∩K∗
|s|FDσ,σ∗,s

−|Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗∩L∗

|s|FDσ,σ∗,s.

(17)

We recover the same expression as for the direct mesh, and it makes sense to still denote this
sum by FK∗,σ∗ (which thus does not need to determine explicitly |σ∗K |FL∗,σ∗K and |σ∗L|FL∗,σ∗L :
the sum can be evaluated directly form the knowledge of the mass fluxes on the interfaces of
the diamond cells).

Next, we can define the splitting FK∗,σ∗ = F+
K∗,σ∗ + F−K∗,σ∗ as we did for the primal

mesh or the direct mesh, which leads to (14). It it worth detailing further this decomposi-
tion and explaining its consistency. Indeed, the auxilliary function ωDσ,σ∗ depends on the fluxes
FDσ,σ∗ ,r = F+

Dσ,σ∗ ,r
+ F−Dσ,σ∗ ,r, and, it turns out that FX,s, defined by (16) appears as a linear

combination of these fluxes; we get

FX,s =
∑

r∈∂Dσ,σ∗ , Dσ,σ∗∈DX

ηrFDσ,σ∗ ,r.

The expression of the coefficients is fully detailed in [14], but we dot not need this here: we
point out the the ηr are real, without definite sign; this explains why a construction applying
directly Lemma 3.3 to the F±Dσ,σ∗ ,r would fail: it is not guaranteed that the combination of the
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F±Dσ,σ∗ ,r keeps the sign. Nevertheless, we can write

FX,s =
∑
ηr>0

ηrF+
Dσ,σ∗ ,r

+
∑
ηr60

ηrF−Dσ,σ∗ ,r︸ ︷︷ ︸
>0

+
∑
ηr60

ηrF+
Dσ,σ∗ ,r

+
∑
ηr>0

ηrF−Dσ,σ∗ ,r︸ ︷︷ ︸
60

.

This defines the splitting FX,s = F+
X,s + F−X,s. We apply this construction to define FK∗,σ∗

K
=

F+
K∗,σ∗

K
+F−K∗,σ∗

K
and FK∗,σ∗

L
= F+

K∗,σ∗
L

+F−K∗,σ∗
L
. By summing these contribution, we go back

to
|σ∗|FK∗,σ∗ = |σ∗K |FK∗,σ∗K + |σ∗L|FK∗,σ∗L ,

and then we obtain
|σ∗|F±K∗,σ∗ = |σ∗K |F±K∗,σ∗

K
+ |σ∗L|F±K∗,σ∗

L
. (18)

For interfaces σ and σ∗ such that Dσ,σ∗ ∈ Dext, we naturally set

FK,σ = Fσ and FK∗,σ = Fσ.

since Fσ was previously defined as the flux outgoing through σ. Moreover, denoting σ =
[xK∗ , xL∗ ], we set FK∗,σ∗ = F+

K∗,σ∗ + F−K∗,σ∗ with

|σ∗|F±K∗,σ∗ = |Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

|sKL∗ |F±σ,sKL∗ −
|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ |

|sKK∗ |F∓σ,sKK∗

+ |Dσ,σ∗ ∩K∗|
2|Dσ,σ∗ |

|σ|F±σ −
|Dσ,σ∗ ∩ L∗|

2|Dσ,σ∗ |
|σ|F∓σ .

With the motivation of writing a conservative equation for the momentum ρu, we introduce
averaged densities on T.

Definition 3.4. The averaged density on a cell K of the primal mesh is defined by

ρK =
∑

Dσ,σ∗∈DK

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ for K ∈M

and on a cell K∗ of the dual mesh, we set

ρK∗ =
∑

Dσ,σ∗∈DK∗

|Dσ,σ∗ ∩K∗|
|K∗|

ρσ,σ∗ for K∗ ∈M∗ ∪ ∂M∗.

With this definition at hand, considering either the primal or the dual mesh, the averaged
densities ρK and ρK∗ satisfy conservative equations, as observed in [12].

Proposition 3.5. The averaged densities ρK , ρK∗ satisfy the following conservative equations
for any K ∈M and any K∗ ∈M∗ ∪ ∂M∗:

|K|ρK − ρK
δt

+
∑

Dσ,σ∗∈DK

|σ|FK,σ = 0,

|K∗|ρK∗ − ρK
∗

δt
+

∑
Dσ,σ∗∈DK∗

|σ∗|FK∗,σ∗ +
∑

Dσ,σ∗∈DK∗∩Dext

|σ|
2 FK

∗,σ = 0.

13



Proof. This is a consequence of the construction of the fluxes. Indeed, when considering
|K|ρK−ρKδt , we are led to compute

∑
Dσ,σ∗∈DK∩Dint

 |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗,s


+

∑
Dσ,σ∗∈DK∩Dext

 |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

[
|σ|Fσ +

∑
s∈∂Dσ,σ∗\∂Ω

|s|FDσ,σ∗,s
]

By definition and going back to Lemma 3.3, we get

∑
Dσ,σ∗∈DK∩Dint

 |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|FDσ,σ∗,s


=

∑
Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|∇ · ωDσ,σ∗ =
∑

Dσ,σ∗∈DK∩Dint

∫
Dσ,σ∗∩K

∇ · ωDσ,σ∗ .

By virtue of the divergence theorem, this becomes

∑
Dσ,σ∗∈DK∩Dint

 ∑
s∈∂(D∩K)

∫
s

ωDσ,σ∗ · ns


=

∑
Dσ,σ∗∈DK∩Dint

∫
σ

ωDσ,σ∗ · nσ +
∑

s∈∂Dσ,σ∗ , s⊂K

∫
s

ωDσ,σ∗ · ns


=

∑
Dσ,σ∗∈DK∩Dint

|σ|FK,σ +
∑

s∈∂Dσ,σ∗ , s⊂K

|s|FDσ,σ∗,s


=

∑
Dσ,σ∗∈DK∩Dint

|σ|FK,σ + 0.

A similar computation holds for the external cells and the dual cells. Note that the same formula
holds for both the direct and the barycentric meshes, by merging contributions as in (17). For
the primal cells (and the dual cells for the direct dual mesh), the result can be checked by using
the explicit formula (13) and (14), see [30].

3.3 Momentum equation on the primal and dual cells
We now turn to the definition of the momentum fluxes GK,σ for the primal cells and GK∗,σ∗ for
the dual cells. We first consider the case of interfaces σ 6⊂ ∂Ω. In this case, for the primal cells
we set

GK,σ = F+
K,σuK + F−K,σuL. (19)

Namely, for defining the momentum fluxes we use the mass fluxes F±K,σ given by (13). For the
dual cells, a similar formula based on (14)

GK∗,σ∗ = F+
K∗,σ∗uK∗ + F−K∗,σ∗uL∗ . (20)

applies directly when we use the direct mesh a©: the convexity assumption of the diamond cells
implies that σ∗ is an edge for the dual cell and is included in Dσ,σ∗ . For the barycentric dual
mesh b©, there are two viewpoints:
*) either we define the mass fluxes on all interfaces of the dual mesh, by using the general

formula (16). Then, on these interfaces, say σ∗K , we split as described above the flux into
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positive and negative parts FK∗,σ∗
K

= F+
K∗,σ∗

K
+ F−K∗,σ∗

K
, and we apply the upwinding

principles accordingly by setting GK∗,σ∗
K

= F+
K∗,σ∗

K
uK∗ + F−K∗,σ∗

K
uL∗ . As in (17), we can

merge the contributions |σ∗K |GK∗,σ∗K and |σ∗L|GK∗,σ∗L : the sum can be cast into

(|σ∗K |F+
K∗,σ∗

K
+ |σ∗L|F+

K∗,σ∗
L

)uK∗ + (|σ∗K |F−K∗,σ∗
K

+ |σ∗L|F+
K∗,σ∗

L
)uL∗ .

**) or, we use directly the averaged formula (17), which defines F±K∗,σ∗ by (14) too, and then
we make use of (20).

The two viewpoints coincide, owing to (18). Note that the momentum fluxes are conservative
as a consequence of (15). For the boundary conditions, that is for σ ⊂ ∂Ω, we define:

GK,σ = F+
σ uK + F−σ uσ and GK∗,σ = F+

σ uK∗ + F−σ uσ.

Remark 3.6. For the fluxes GK,σ, the formula (19) is valid also for σ ⊂ ∂Ω if we use the
convention uL = uσ in this case.

The momentum equation also requires to introduce a discrete pressure gradient. It is obtained
by mimicking the formula ∫

X

∇p =
∫
∂X

pn.

Definition 3.7. The discrete pressure gradient ∇dp is defined on T by

(∇dp)K = 1
|K|

∑
Dσ,σ∗∈DK

|σ|pσ,σ∗nK,σ, for K ∈M,

(∇dp)K∗ = 1
|K∗|

∑
Dσ,σ∗∈DK∗

|σ|pσ,σ∗nK∗,σ∗ , for K∗ ∈M∗,

(∇dp)K∗ = 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dint

|σ∗|pσ,σ∗nK∗,σ∗ +
∑

Dσ,σ∗∈DK∗∩Dint

|σ|
2 pσ,σ∗nK,σ, for K∗ ∈ ∂M∗.

For the barycentric mesh, the formula for (∇dp)K∗ still makes sense, by setting

|σ∗|nK∗,σ∗ = |σ∗K |nK∗,σ∗K + |σ∗L|nK∗,σ∗L , (21)

remarking that this vector is indeed orthogonal to σ∗, by virtue of Lemma 2.3.

The discrete momentum equation is given for K ∈ T by

ρKuK − ρKuK
δt

+ 1
|K|

∑
Dσ,σ∗∈DK

|σ|GK,σ + (∇dp)K = 0,

ρK∗uK∗ − ρK∗uK∗
δt

+ 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dint

|σ∗|GK∗,σ∗

+ 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dext

[
|σ∗|GK∗,σ∗ + |σ|2 GK

∗,σ

]
+ (∇dp)K∗ = 0,

(22)

with ρK and ρK∗ given by Definition 3.4, fluxes defined in (19), (20) and pressure gradients in
Definition 3.7.
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3.4 Internal energy balance on the diamond mesh
At the continuous level, considering smooth enough functions, the internal energy equation is
deduced from the kinetic energy balance which is itself obtained by multiplying the momentum
equation by u. At the discrete level, multiplying the discrete momentum equation by uK or
uK∗ , whatever the considered mesh, introduces a remainder term that has to be taken into
account to write the discrete internal energy equation [20, 22]. To this end, let us introduce
kinetic fluxes KK,σ from primal cells and KK∗,σ∗ , KK∗,σ from dual cells. For σ 6⊂ ∂Ω, we set

KK,σ = F+
K,σ

‖uK‖2

2 + F−K,σ
‖uL‖2

2 , and KK∗,σ∗ = F+
K∗,σ∗

‖uK∗‖2

2 + F−K∗,σ∗
‖uL∗‖2

2 . (23)

These fluxes are conservative (KK,σ = −KL,σ, and so on...) as a consequence of (15). For the
boundary conditions, that is σ ⊂ ∂Ω, we set

KK,σ = F+
σ

‖uK‖2

2 + F−σ
‖uσ‖2

2 and KK∗,σ = F+
σ

‖uK∗‖2

2 + F−σ
‖uσ‖2

2 .

Note that for the barycentric mesh, we can define the “intermediate” kinetic energy fluxes
FK∗,σ∗

K
, FK∗,σ∗

L
by going back to (18). It yields

KK∗,σ∗
K

=
(
F+
K∗,σ∗

K

‖uK∗‖2

2 + F−K∗,σ∗
K

‖uL∗‖2

2

)
,

KK∗,σ∗
L

=
(
F+
K∗,σ∗

L

‖uK∗‖2

2 + F−K∗,σ∗
L

‖uL∗‖2

2

)
,

|σ∗|KK∗,σ∗
K

= |σ∗K |KK∗,σ∗K + |σ∗L|KK∗,σ∗L .

(24)

Remark 3.8. Note that, as for momentum fluxes (see Remark 3.6), formula (23) for fluxes
KK,σ, is valid also for σ ⊂ ∂Ω if we use the convention uL = uσ in this case.

Definition 3.9. For K ∈M we set

RK = ρK
2δt‖uK − uK‖2 + 1

|K|
∑

Dσ,σ∗∈DK

|σ|F−K,σ
(
‖uK − uK‖2

2 − ‖uK − uL‖2

2

)
,

with the convention that uL = uσ when σ ⊂ ∂Ω.
For K∗ ∈M∗ ∪ ∂M∗ we set

RK∗ = ρK∗

2δt ‖uK
∗ − uK∗‖2 + 1

|K∗|
∑

Dσ,σ∗∈DK∗

|σ∗|F−K∗,σ∗
(
‖uK∗ − uK∗‖2

2 − ‖uK
∗ − uL∗‖2

2

)

+ 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dext

|σ|
2 F

−
σ

(
‖uK∗ − uK∗‖2

2 − ‖uK
∗ − uσ‖2

2

)
.

Lemma 3.10. The discrete balance of kinetic energy is given for K ∈M and K∗ ∈M∗ ∪ ∂M∗
by

ρK
‖uK‖2

2 − ρK
‖uK‖2

2
δt

+ 1
|K|

∑
Dσ,σ∗∈DK

|σ|KK,σ + (∇dp)K · uK = −RK . (25)

ρK∗
‖uK∗‖2

2 − ρK∗
‖uK∗‖2

2
δt

+ 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dint

|σ∗|KK∗,σ∗

+ 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dext

|σ|
2 KK

∗,σ + (∇dp)K∗ · uK∗ = −RK∗ .

(26)

16



Proof. For X ∈ T, we multiply by uX the momentum equation (22) and use the averaged
mass equation in Proposition (3.5).

a) Let K ∈M. In what follows, we use the convention that uL = uσ when the edge σ ⊂ ∂Ω;
so that the expressions (19) and (23) are valid for σ ⊂ ∂Ω too (see Remarks 3.6 and 3.8). We
start by remarking that

ρKuK − ρKuK
δt

· uK = 1
δt

(
ρK
‖uK‖2

2 − ρK
‖uK‖2

2 + ρK
2 ‖uK − uK‖2

)
− ρK − ρK

δt

(
‖uK‖2

2 − uK · uK
)
.

Thus using the average mass balance stated in Proposition (3.5) we get
ρKuK − ρKuK

δt
· uK = 1

δt

(
ρK
‖uK‖2

2 − ρK
‖uK‖2

2 + ρK
2 ‖uK − uK‖2

)
+ 1
|K|

∑
σ∈∂K

|σ|FK,σ
(
‖uK‖2

2 − uK · uK
)
.

Next, using the notation F |.| = F+ −F− and bearing in mind that F = F+ + F−, we get

GK,σ =
F |.|K,σ + FK,σ

2 uK +
FK,σ −F |.|K,σ

2 uL = FK,σ
uK + uL

2 + F |.|K,σ
uK − uL

2 .

Hence, the momentum equation multiplied by uK becomes

ρK
‖uK‖2

2 − ρK
‖uK‖2

2
δt

+ ρK
2δt‖uK − uK‖2 + (∇dp)K · uK + 1

|K|
∑
σ∈∂K

|σ|BK,σ = 0,

where

BK,σ = FK,σ
(
‖uK‖2

2 − uK − uL
2 · uK

)
+ F |.|K,σ

uK − uL
2 · uK

=
(
F+
K,σ

‖uK‖2

2 + F−K,σ
‖uL‖2

2

)
+ F−K,σ

(
‖uK‖2

2 − ‖uL‖
2

2 − (uK − uL) · uK
)
.

With definition (23) we are left with

BK,σ = KK,σ + F−K,σ
(
‖uK − uK‖2

2 − ‖uK − uL‖2

2

)
,

and thus we obtain (25).

b) For K∗ ∈M∗ ∪ ∂M∗, as previously, we first remark that
ρK∗uK∗ − ρK∗uK∗

δt
· uK∗ = 1

δt

(
ρK∗
‖uK∗‖2

2 − ρK∗
‖uK∗‖2

2 + ρK∗

2 ‖uK
∗ − uK∗‖2

)
− ρK∗ − ρK∗

δt

(
‖uK∗‖2

2 − uK∗ · uK∗
)
.
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Thus using the average mass balance stated in Proposition (3.5) we get
ρK∗uK∗ − ρK∗uK∗

δt
· uK∗ = 1

δt

(
ρK∗
‖uK∗‖2

2 − ρK∗
‖uK∗‖2

2 + ρK∗

2 ‖uK
∗ − uK∗‖2

)
+ 1
|K∗|

∑
Dσ,σ∗∈DK∗

|σ∗|FK∗,σ∗
(
‖uK∗‖2

2 − uK∗ · uK∗
)

+ 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dext

|σ|
2 FK

∗,σ

(
‖uK∗‖2

2 − uK∗ · uK∗
)
.

The momentum equation multiplied by uK∗ becomes

ρK∗
‖uK∗‖2

2 − ρK∗
‖uK∗‖2

2
δt

+ ρK∗

2δt ‖uK
∗ − uK∗‖2 + (∇dp)K∗ · uK∗

+ 1
|K∗|

 ∑
Dσ,σ∗∈DK∗

|σ∗|FK∗,σ∗ +
∑

Dσ,σ∗∈DK∗∩Dext

|σ|
2 Fσ

(‖uK∗‖2
2 − uK∗ · uK∗

)

+ 1
|K∗|

 ∑
Dσ,σ∗∈DK∗

|σ∗|GK∗,σ∗ +
∑

Dσ,σ∗∈DK∗∩Dext

|σ|
2 GK

∗,σ

 · uK∗ = 0.

We obtain (26) by remarking that, as in the first part of the proof, we have for all Dσ,σ∗ ∈ DK∗

FK∗,σ∗
(
‖uK∗‖2

2 − uK∗ · uK∗
)

+ GK∗,σ∗ · uK∗

= KK∗,σ∗ + F−K∗,σ∗
(
‖uK∗ − uK∗‖2

2 − ‖uK
∗ − uL∗‖2

2

)
.

and similarly, we also get for all Dσ,σ∗ ∈ DK∗ ∩Dext that

Fσ
(
‖uK∗‖2

2 − uK∗ · uK∗
)

+ GK∗,σ · uK∗

= KK∗,σ + F−σ
(
‖uK∗ − uK∗‖2

2 − ‖uK
∗ − uσ‖2

2

)
.

We remind the reader that the kinetic energy equation does not have to be solved since
we already know the velocity on the primal and dual meshes from the momentum equation.
This computation only aims at defining the remainder terms RK and RK∗ that will be used
in the equation for updating the internal energy. Before this, we need to introduce a discrete
divergence operator, naturally inspired from∫

X

∇ · u =
∫
∂X

u · n.

Definition 3.11. The discrete divergence operator on a cell Dσ,σ∗ ∈ D is defined as

(∇d · u)σ,σ∗ = 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|uDσ,σ∗,s,

when Dσ,σ∗ ∈ Dint, while for Dσ,σ∗ ∈ Dext, we set

(∇d · u)σ,σ∗ = 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗\∂Ω

|s|uDσ,σ∗,s + |σ|
2|Dσ,σ∗ |

(
uσ + uK∗ + uL∗

2

)
· nK,σ.
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The following statement gives an equivalent formulation of the discrete divergence; it will be
useful to study the stability of the scheme.
Lemma 3.12. The discrete divergence operator on a cell Dσ,σ∗ ∈ D recasts as

(∇d · u)σ,σ∗ = 1
2|Dσ,σ∗ |

(|σ| (uL − uK) · nK,σ + |σ∗| (uL∗ − uK∗) · nK∗,σ∗) , ∀Dσ,σ∗ ∈ Dint.

(∇d · u)σ,σ∗ = 1
2|Dσ,σ∗ |

(|σ| (uσ − uK) · nK,σ + |σ∗| (uL∗ − uK∗) · nK∗,σ∗) , ∀Dσ,σ∗ ∈ Dext.

Proof. Let us first assume that Dσ,σ∗ ∈ Dint. Using the definition of uDσ,σ∗,s and of
(∇d · u)σ,σ∗ , we have∑
s∈∂Dσ,σ∗

|s|uDσ,σ∗,s = uK
2 · (|sKK

∗ |nσ,sKK∗ + |sKL∗ |nσ,sKL∗ ) + uK∗
2 · (|sKK∗ |nσ,sKK∗ + |sLK∗ |nσ,sLK∗ )

+ uL
2 · (|sLK

∗ |nσ,sLK∗ + |sLL∗ |nσ,sLL∗ ) + uL∗
2 · (|sKL∗ |nσ,sKL∗ + |sLL∗ |nσ,sLL∗ ) .

By using Lemma 2.3, it follows that∑
s∈∂Dσ,σ∗

|s|uDσ,σ∗,s = −uK
2 · |σ|nK,σ −

uK∗
2 · |σ∗|nK∗,σ∗ −

uL
2 · |σ|nL,σ −

uL∗
2 · |σ∗|nL∗,σ∗ .

We conclude by using −nL,σ = nK,σ and −nL∗,σ∗ = nK∗,σ∗ (with definition (21) for nK∗,σ∗ on
the barycentric mesh).

The proof for Dσ,σ∗ ∈ Dext follows exactly the same lines and is left to the reader.

For the discretization of the internal energy equation, we define the following numerical
fluxes, for all Dσ,σ∗ ∈ Dint and s = Dσ,σ∗ |Dσ′,σ∗′ ∈ ∂Dσ,σ∗ ,

EDσ,σ∗,s = eσ,σ∗F+
Dσ,σ∗,s + eσ′,σ∗′F

−
Dσ,σ∗,s. (27)

We observe that the fluxes EDσ,σ∗,s are conservative by definition. For Dσ,σ∗ ∈ Dext, we have
to define the outgoing flux Eσ through the primal egde σ ⊂ ∂Dσ,σ∗ ∩ ∂Ω. We take

Eσ = eσ,σ∗F+
σ + eσF−σ

Finally, we also give the definition of a remainder term Rσ,σ∗ on the diamond cell, which is
based on the remainder term RK and RK∗ given in Definition 3.9,

Rσ,σ∗ = |Dσ,σ∗ ∩K|RK + |Dσ,σ∗ ∩ L|RL + |Dσ,σ∗ ∩K∗|RK∗ + |Dσ,σ∗ ∩ L∗|RL∗
2|Dσ,σ∗ |

, (28)

with the convention that RL = 0 if Dσ,σ∗ ∈ Dext. This definition comes from the derivation of
the local conservation of the total energy that will be discussed in the forthcoming Section 4.
The remainder Rσ,σ∗ is defined so that it exactly balances the kinetic energy contributions that
will appear when summing the internal energy equation and the kinetic energy equations.

The discrete internal energy equation is given by

ρσ,σ∗eσ,σ∗ − ρσ,σ∗eσ,σ∗
δt

+ 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|EDσ,σ∗,s

+ pσ,σ∗ (∇d · u)σ,σ∗ = Rσ,σ∗ , ∀Dσ,σ∗ ∈ Dint

ρσ,σ∗eσ,σ∗ − ρσ,σ∗eσ,σ∗
δt

+ 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|EDσ,σ∗,s + |σ|
|Dσ,σ∗ |

Eσ

+ pσ,σ∗ (∇d · u)σ,σ∗ = Rσ,σ∗ , ∀Dσ,σ∗ ∈ Dext

(29)

where the flux EDσ,σ∗,s is defined by (27), ∇d · u is given by Definition 3.11, and Rσ,σ∗ by (28).
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3.5 Stability analysis
We now turn to the stability analysis of the scheme. Firstly, we exhibit a CFL-condition
which ensures that the numerical density remains non-negative. Secondly, in order to justify
that the scheme preserves the non-negativity of the internal energy too, we exhibit a condition
guarantying that the remainder terms RK and RK∗ , and thus Rσ,σ∗ , are kept positive. To this
end, we shall use Lemma 3.2 and specifically property (6) of the numerical flux.

Proposition 3.13. Let ρσ,σ∗ > 0. We assume that the following CFL-like conditions are
satisfied

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|[λ+(c(es), uDσ,σ∗,s)]+ 6 1, ∀Dσ,σ∗ ∈ Dint

δt

|Dσ,σ∗ |

[ ∑
s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗,s)]+ + |σ|[λ+(c(eσ), uσ)]+
]
6 1, ∀Dσ,σ∗ ∈ Dext.

(30)
Then, the non negativity of the density ρσ,σ∗ is preserved: ρσ,σ∗ > 0.

Proof. Let Dσ,σ∗ ∈ Dint. We go back to the mass conservation equation (7) and we make use
of Lemma (3.2) and we are thus led to

ρσ,σ∗ = ρσ,σ∗ −
δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|
(
F+(ρσ,σ∗ , uDσ,σ∗,s) + F−(ρσ′,σ∗′ , uDσ,σ∗,s)

)
> ρσ,σ∗ −

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+(ρσ,σ∗ , uDσ,σ∗,s)

> ρσ,σ∗ −
δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|ρσ,σ∗ [λ+(c(es), uDσ,σ∗,s)]+.

With ρσ,σ∗ > 0, the right hand side of this inequality remains non negative under the CFL-like
condition (30). The proof for Dσ,σ∗ ∈ Dext follows exactly the same lines and is left to the
reader.

Remark 3.14. In order to compare the stability condition with the CFL condition obtained
in 1d and on mac grids, see [3, 16], we remind the reader that uDσ,σ∗,s = −uσ′,s so that the
characteristic speeds of the system satisfy:

[λ+(c(es), uDσ,σ∗,s)]+ = [λ+(c(es),−uσ′,s)]+ = [−λ−(c(es), uσ′,s)]+ = [λ−(c(es), uσ′,s)]−.

It allows us to rewrite the conditions (30) in a form similar to what has been obtained on
Cartesian grids. For instance, the first one can be recast as

δt

|Dσ,σ∗ |

 ∑
s∈∂Dσ,σ∗

s⊂K

|s|[λ+(c(es), uDσ,σ∗,s)]+ +
∑

s∈∂Dσ,σ∗
s⊂L

|s|[λ−(c(es), uσ′,s)]−

 6 1.

We now turn to the remainder term RK . The fact that RK remains non-negative depends
on the mesh-regularity coefficient reg (T), and the obtained condition is stronger than (30).

Proposition 3.15. Let us assume that the following CFL-like conditions are satisfied

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|[λ+(c(es), uDσ,σ∗,s)]+ 6

1
1 + reg (T) , ∀Dσ,σ∗ ∈ Dint, (31)
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δt

|Dσ,σ∗ |

( ∑
s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗,s)]++|σ|[λ+(c(eσ), uσ)]+
)
6

1
reg (T) , ∀Dσ,σ∗ ∈ Dext,

(32)
δt

|Dσ,σ∗ |

((
1 + reg (T)

) |σ|
2 [λ+(c(eσ), uσ)]+

+ |σ|
2
(
reg (T)− 1

) ρD
ρσ,σ∗

[λ+(c(eσ), uD)]−

+ reg (T)
∑

s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗,s)]+
)
6 1, ∀Dσ,σ∗ ∈ Dext.

(33)
Then, RK > 0 ∀K ∈M, RK∗ > 0 ∀K∗ ∈M∗ ∪ ∂M∗ and Rσ,σ∗ > 0 ∀Dσ,σ∗ ∈ D.

Proof. Let us split the proof into two parts depending on the type of cell we consider.

a) Let K ∈M. By using the averaged mass equation in Proposition 3.5, the remainder term
RK in Definition 3.9 can be rewritten as

RK = ‖uK − uK‖2

2δt

(
ρK −

δt

|K|
∑
σ∈∂K

|σ|F+
K,σ

)
− 1
|K|

∑
σ∈∂K

|σ|F−K,σ
‖uK − uL‖2

2 ,

where the last contribution is non negative since F−K,σ 6 0. Hence, we get

RK >
‖uK − uK‖2

2δt AK where AK = ρK −
δt

|K|
∑
σ∈∂K

|σ|F+
K,σ. (34)

Having AK > 0 is thus enough to ensure RK > 0. Going back to Definition 3.4 for ρK and to
(13) for F+

K,σ, we modify the expression of AK , and we arrive at

AK =
∑

Dσ,σ∗∈DK∩Dext

(
|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ −
δt

|K|
|σ|F+

σ

)

+
∑

Dσ,σ∗∈DK∩Dint

(
|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ −
δt

|K|
|Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L

|s|F+
Dσ,σ∗,s

+ δt

|K|
|Dσ,σ∗ ∩ L|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|F−Dσ,σ∗,s
)
.

Adding and substracting |Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|F+
Dσ,σ∗,s leads to:

AK =
∑

Dσ,σ∗∈DK∩Dext

(
|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ −
δt

|K|
|σ|F+

σ

)

+
∑

Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ − δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗,s


+ δt

|K|
∑

Dσ,σ∗∈DK∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
(
|Dσ,σ∗ ∩K|F+

Dσ,σ∗,s + |Dσ,σ∗ ∩ L|F−Dσ,σ∗,s
)
.

Let us start by analysing the third sum. By using the equality |Dσ,σ∗∩L| = |Dσ,σ∗ |−|Dσ,σ∗∩K|,
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we have∑
Dσ,σ∗∈DK∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
(
|Dσ,σ∗ ∩K|F+

Dσ,σ∗,s + |Dσ,σ∗ ∩ L|F−Dσ,σ∗,s
)

=
∑

Dσ,σ∗∈DK∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|
(
|Dσ,σ∗ ∩K|F |·|Dσ,σ∗,s + |Dσ,σ∗ |F−Dσ,σ∗,s

)
.

Since the flux FDσ,σ∗,s is conservative, we get∑
Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

s⊂K

|s|FDσ,σ∗,s = −
∑

Dσ,σ∗∈DK∩Dext

∑
s∈∂Dσ,σ∗\∂Ω

|s|FDσ,σ∗,s,

and thus∑
Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

s⊂K

|s|F−Dσ,σ∗,s = −
∑
Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

s⊂K

|s|F+
Dσ,σ∗,s

−
∑
Dσ,σ∗∈DK∩Dext

∑
s∈∂Dσ,σ∗\∂Ω

|s|FDσ,σ∗,s.

Plugging this result in the definition of AK yields

AK =
∑

Dσ,σ∗∈DK∩Dext

(
|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ −
δt

|K|
|σ|F+

σ −
δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗\∂Ω

|s|FDσ,σ∗,s
)

+
∑

Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ − δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗,s



+ δt

|K|

 ∑
Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K

|s|F |·|Dσ,σ∗,s −
∑

Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

s⊂K

|s|F+
Dσ,σ∗,s

 .

We are going to establish a bound from below. To this end, we proceed as follows. Since F |·| > 0
and F 6 F+, we get

AK > BextK + BintK ,

with

BextK =
∑

Dσ,σ∗∈DK∩Dext

(
|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ −
δt

|K|
|σ|F+

σ −
δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗\∂Ω

|s|F+
Dσ,σ∗,s

)
,

and

BintK =
∑

Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ − δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗,s


− δt

|K|
∑

Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

s⊂K

|s|F+
Dσ,σ∗,s.
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Substracting the non negative term
∑

Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

s⊂L

|s|F+
Dσ,σ∗,s to BintK , we get

BintK >
∑

Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗ − δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗,s


− δt

|K|
∑

Dσ,σ∗∈DK∩Dint

∑
s∈∂Dσ,σ∗

|s|F+
Dσ,σ∗,s

>
∑

Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗

1− δt

|Dσ,σ∗ |

(
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K|

) ∑
s∈∂Dσ,σ∗

|s|
F+
Dσ,σ∗,s

ρσ,σ∗

 .

By using Lemma 3.2 we end up with

BintK >
∑

Dσ,σ∗∈DK∩Dint

|Dσ,σ∗ ∩K|
|K|

ρσ,σ∗

1− δt

|Dσ,σ∗ |

(
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K|

) ∑
s∈∂Dσ,σ∗

|s|[λ+(c(es), uDσ,σ∗,s)]+
 .

(35)
Therefore BintK > 0 holds when

1 >
δt

|Dσ,σ∗ |

(
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K|

) ∑
s∈∂Dσ,σ∗

|s|[λ+(c(es), uDσ,σ∗,s)]+.

This inequality holds when (31) is fulfilled since reg (T) > |Dσ,σ∗ |
|Dσ,σ∗ ∩K|

.

b) We now turn to the study of BextK . Since, for all Dσ,σ∗ ∈ DK∩Dext, |Dσ,σ∗∩K| = |Dσ,σ∗ |,
we have

BextK =
∑

Dσ,σ∗∈DK∩Dext

|Dσ,σ∗ |
|K|

ρσ,σ∗

(
1− δt

|Dσ,σ∗ |
|σ| F

+
σ

ρσ,σ∗
− δt

|Dσ,σ∗ |
|K|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗\∂Ω

|s|
F+
Dσ,σ∗,s

ρσ,σ∗

)

>
∑

Dσ,σ∗∈DK∩Dext

|Dσ,σ∗ |
|K|

ρσ,σ∗

(
1− δt

|Dσ,σ∗ |
|σ|[λ+(c(eσ), uσ)]+

− δt

|Dσ,σ∗ |
reg (T)

∑
s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗,s)]+
)
.

Therefore BextK > 0 holds when

1 >
δt

|Dσ,σ∗ |

(
|σ|[λ+(c(eσ), uσ)]+ + reg (T)

∑
s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗,s)]+
)

This inequality holds when (32) is fulfilled since reg (T) > 1. Thus, RK > 0, for any K ∈M.
We now turn to the study of RK∗ for K∗ ∈M∗∪∂M∗. The proof follows the same lines. By

using the averaged mass equation in Proposition 3.5, the remainder term RK∗ in Definition 3.9
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can be rewritten as

RK∗ = ‖uK
∗ − uK∗‖2

2δt

(
ρK∗ −

δt

|K∗|
∑

Dσ,σ∗∈DK∗

|σ∗|F+
K∗,σ∗ −

δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dext

|σ|
2 F

+
σ

)

− 1
|K∗|

∑
Dσ,σ∗∈DK∗

|σ∗|F−K∗,σ∗
‖uK∗ − uL∗‖2

2

− 1
|K∗|

∑
Dσ,σ∗∈DK∗∩Dext

|σ|
2 F

−
σ

‖uK∗ − uσ‖2

2 ,

where the two last contribution are non negative since F−K∗,σ∗ 6 0 and F−σ 6 0. Hence, we get

RK∗ >
‖uK∗ − uK∗‖2

2δt AK∗ , (36)

where
AK∗ = ρK∗ −

δt

|K∗|
∑

Dσ,σ∗∈DK∗

|σ∗|F+
K∗,σ∗ −

δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dext

|σ|
2 F

+
σ .

Having AK∗ > 0 is thus enough to ensure RK∗ > 0. Going back to Definition 3.4 for ρK∗ and
to (14) for F+

K∗,σ∗ , we modify the expression of AK∗ , and we arrive at

AK∗ =
∑

Dσ,σ∗∈DK∗∩Dext

(
|Dσ,σ∗ ∩K∗|
|K∗|

ρσ,σ∗ −
δt

|K∗|
|σ|
2 F

+
σ

− δt

|K∗|
|Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

|sKL∗ |F+
σ,sKL∗

+ δt

|K∗|
|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ |

|sKK∗ |F−σ,sKK∗

− δt

|K∗|
|Dσ,σ∗ ∩K∗|

2|Dσ,σ∗ |
|σ|F+

σ + δt

|K∗|
|Dσ,σ∗ ∩ L∗|

2|Dσ,σ∗ |
|σ|F−σ

)
+

∑
Dσ,σ∗∈DK∗∩Dint

(
|Dσ,σ∗ ∩K∗|
|K∗|

ρσ,σ∗ −
δt

|K∗|
|Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂L∗

|s|F+
Dσ,σ∗,s

+ δt

|K∗|
|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|F−Dσ,σ∗,s
)
.

Adding and substracting |Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|F+
Dσ,σ∗,s leads to:

AK∗ =
∑

Dσ,σ∗∈DK∗∩Dext

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗−

δt

|Dσ,σ∗ |
|σ|
2

((
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

)
F+
σ −
|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ ∩K∗|

F−σ
))

+ δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dext

(
− |Dσ,σ∗ ∩K∗|

|Dσ,σ∗ |
|sKL∗ |F+

σ,sKL∗
+ |Dσ,σ∗ ∩ L∗|

|Dσ,σ∗ |
|sKK∗ |F−σ,sKK∗

)

+
∑

Dσ,σ∗∈DK∗∩Dint

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗ −

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗,s

)

+ δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|
(
|Dσ,σ∗ ∩K∗|F+

Dσ,σ∗,s + |Dσ,σ∗ ∩ L∗|F−Dσ,σ∗,s
)
.

Let us start by analysing the fourth sum. Using equality |Dσ,σ∗ ∩L∗| = |Dσ,σ∗ | − |Dσ,σ∗ ∩K∗|,
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we have∑
Dσ,σ∗∈DK∗∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|
(
|Dσ,σ∗ ∩K∗|F+

Dσ,σ∗,s + |Dσ,σ∗ ∩ L∗|F−Dσ,σ∗,s
)

=
∑

Dσ,σ∗∈DK∗∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|
(
|Dσ,σ∗ ∩K∗|F |·|Dσ,σ∗,s + |Dσ,σ∗ |F−Dσ,σ∗,s

)
.

Since the flux FDσ,σ∗,s is conservative, we get∑
Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|FDσ,σ∗,s = −
∑

Dσ,σ∗∈DK∗∩Dext

∑
s∈∂Dσ,σ∗\∂Ω

s⊂K∗

|s|FDσ,σ∗,s,

and thus ∑
Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|F−Dσ,σ∗,s

= −
∑

Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|F+
Dσ,σ∗,s

−
∑

Dσ,σ∗∈DK∗∩Dext

∑
s∈∂Dσ,σ∗\∂Ω

s⊂K∗

|s|FDσ,σ∗,s.

Plugging this result in the definition of AK∗ yields

AK∗ =
∑

Dσ,σ∗∈DK∗∩Dext

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗−

δt

|Dσ,σ∗ |
|σ|
2

((
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

)
F+
σ −
|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ ∩K∗|

F−σ
))

− δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dext

(
|Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

|sKL∗ |F+
σ,sKL∗

+|Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

|sKK∗ |F−σ,sKK∗+|sKK∗ |F
+
σ,sKK∗

)

+
∑

Dσ,σ∗∈DK∗∩Dint

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗ −

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗,s

)

+ δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dint

1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

s⊂K∗

|s||Dσ,σ∗ ∩K∗|F |·|Dσ,σ∗,s

− δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|F+
Dσ,σ∗,s.

Since F |·| > 0 and F−σ,sKK∗ 6 0, we have

AK∗ > BextK∗ + BintK∗ ,

with

BextK∗ =
∑

Dσ,σ∗∈DK∗∩Dext

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗−

δt

|Dσ,σ∗ |
|σ|
2

((
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

)
F+
σ −
|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ ∩K∗|

F−σ
))

− δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dext

(
|Dσ,σ∗ ∩K∗|
|Dσ,σ∗ |

|sKL∗ |F+
σ,sKL∗

+ |sKK∗ |F+
σ,sKK∗

)
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and

BintK∗ =
∑

Dσ,σ∗∈DK∗∩Dint

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗ −

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗,s

)

− δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

s⊂K∗

|s|F+
Dσ,σ∗,s.

Substracting the non negative term δt
|K∗|

∑
Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

s⊂L∗

|s|F+
Dσ,σ∗,s to BintK∗ , we get

BintK∗ >
∑

Dσ,σ∗∈DK∗∩Dint

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗ −

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|F+

Dσ,σ∗,s

)

− δt

|K∗|
∑

Dσ,σ∗∈DK∗∩Dint

∑
s∈∂Dσ,σ∗

|s|F+
Dσ,σ∗,s

>
∑

Dσ,σ∗∈DK∗∩Dint

|Dσ,σ∗ ∩K∗|
|K∗|

ρσ,σ∗

1− δt

|Dσ,σ∗ |

(
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

) ∑
s∈∂Dσ,σ∗

|s|
F+
Dσ,σ∗,s

ρσ,σ∗

 .

By using Lemma 3.2 we end up with

BintK∗ >
∑

Dσ,σ∗∈DK∗∩Dint

|Dσ,σ∗ ∩K∗|
|K∗|

ρσ,σ∗

1− δt

|Dσ,σ∗ |

(
1+ |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

) ∑
s∈∂Dσ,σ∗

|s|[λ+(c(es), uDσ,σ∗,s)]+
 .

Therefore BintK∗ > 0 holds when

1 >
δt

|Dσ,σ∗ |

(
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

) ∑
s∈∂Dσ,σ∗

|s|[λ+(c(es), uDσ,σ∗,s)]+.

This inequality holds when (31) is fulfilled since reg (T) > |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

.

We now turn to the study of BextK∗ . Since, for all Dσ,σ∗ ∈ DK∗ ∩Dext, |Dσ,σ∗ ∩K∗| = |Dσ,σ∗ |,
we have

BextK∗ =
∑

Dσ,σ∗∈DK∗∩Dext

|Dσ,σ∗ ∩K∗|
|K∗|

(
ρσ,σ∗−

δt

|Dσ,σ∗ |
|σ|
2

((
1 + |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

)
F+
σ −

|Dσ,σ∗ ∩ L∗|
|Dσ,σ∗ ∩K∗|

F−σ
)

− δt

|Dσ,σ∗ |

(
|sKL∗ |F+

σ,sKL∗
+ |Dσ,σ∗ |
|Dσ,σ∗ ∩K∗|

|sKK∗ |F+
σ,sKK∗

))
>

∑
Dσ,σ∗∈DK∗∩Dext

|Dσ,σ∗ ∩K∗|
|K∗|

ρσ,σ∗

(
1− δt

|Dσ,σ∗ |
|σ|
2

((
1 + reg (T)

) F+
σ

ρσ,σ∗
− 1

reg (T)− 1
F−σ
ρσ,σ∗

)
− δt

|Dσ,σ∗ |
reg (T)

(
|sKL∗ |

F+
σ,sKL∗

ρσ,σ∗
+ |sKK∗ |

F+
σ,sKK∗

ρσ,σ∗

))
.

(37)
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Therefore BextK > 0 holds when

1 >
δt

|Dσ,σ∗ |

((
1 + reg (T)

) |σ|
2 [λ+(c(eσ), uσ)]+

+ |σ|
2
(
reg (T)− 1

) ρD
ρσ,σ∗

[λ+(c(eσ), uD)]−

+ reg (T)
∑

s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗,s)]+
)

This inequality holds when (33) is fulfilled. Thus, RK∗ > 0.
That RDσ,σ∗ is non negative follows from the fact that RK , RL, RK∗ and RL∗ are all non

negative.

We are now able to exhibit the CFL-like condition that ensures the non-negativity of the
internal energy eσ,σ∗ .
Proposition 3.16. Let eσ,σ∗ > 0. We assume that (31), (32), (33) are fulfilled, and, moreover,
that the following CFL-like conditions are satisfied on each diamond cell Dσ,σ∗ ∈ D:

1
γ
>

δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|
(
|σ∗|+ |σ|√

2|s|
c(eσ,σ∗) + c(es) + [uDσ,σ∗,s]+

)
, ∀Dσ,σ∗ ∈ Dint (38)

γ

1 + reg (T) >
δt

|Dσ,σ∗ |

(
1 + c(eσ,σ∗)|σ|√

2
reg (T)

)
, ∀Dσ,σ∗ ∈ Dint (39)

1
γ
>

δt

|Dσ,σ∗ |

 ∑
s∈∂Dσ,σ∗

|s|
(
|σ∗|+ |σ|√

2|s|
c(eσ,σ∗)+c(es)+[uDσ,σ∗,s]+

)
+|σ|([uσ]+ + c(eσ))

 , ∀Dσ,σ∗ ∈ Dext

(40)
γ

1+reg (T)>
δt

|Dσ,σ∗ |

(
1+c(eσ,σ

∗)|σ|√
2

reg (T)+ |σ|γ/2
1− reg (T)2

ρD
ρσ,σ∗

[λ+(c(eσ), uD)]−
)
, ∀Dσ,σ∗ ∈ Dext

(41)
Then the non negativity of the internal energy is preserved: we have eσ,σ∗ > 0.
Proof. We start by observing that (31), (32) implies (30), so that ρσ,σ∗ > 0 if ρσ,σ∗ > 0.
Next, we turn to the non negativity of eσ,σ∗ ; we follow the arguments in [16].
Let us write (∇d · u)σ,σ∗ as in Lemma 3.12 and then apply the Young inequality for each four
terms. For X ∈M and i ∈ {0, 1} we write

(−1)ipσ,σ∗uXnK,σ = (−1)i(γ − 1) [ρσ,σ∗eσ,σ∗(uX − uX) · nK,σ + ρσ,σ∗eσ,σ∗uX · nK,σ]

> −ρσ,σ∗
[
c(eσ,σ∗)
2
√

2γ
‖uX − uX‖2 + (γ − 1)eσ,σ∗

(
c(eσ,σ∗)√

2
− (−1)iuXnK,σ

)]
,

so that

− δt|σ|
2|Dσ,σ∗ |

pσ,σ∗(uL − uK)nK,σ > − δt|σ|
2|Dσ,σ∗ |

ρσ,σ∗
c(eσ,σ∗)
2
√

2γ
(
‖uK − uK‖2 + ‖uL − uL‖2

)
− δt|σ|

2|Dσ,σ∗ |
(γ − 1)ρσ,σ∗eσ,σ∗

(
2c(eσ,σ∗)√

2
+ (uL − uK)nK,σ

)
.

For X ∈M∗ ∪ ∂M∗ and i ∈ {0, 1} we write
(−1)ipσ,σ∗uXnK∗,σ∗ = (−1)i(γ − 1) [ρσ,σ∗eσ,σ∗(uX − uX) · nK∗,σ∗ + ρσ,σ∗eσ,σ∗uX · nK∗,σ∗ ]

> −ρσ,σ∗
[
c(eσ,σ∗)
2
√

2γ
‖uX − uX‖2 + (γ − 1)eσ,σ∗

(
c(eσ,σ∗)√

2
− (−1)iuXnK∗,σ∗

)]
,
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so that

− δt|σ∗|
2|Dσ,σ∗ |

pσ,σ∗(uL∗ − uK∗)nK∗,σ∗ > −
δt|σ∗|

2|Dσ,σ∗ |
ρσ,σ∗

c(eσ,σ∗)
2
√

2γ
(
‖uK∗ − uK∗‖2 + ‖uL∗ − uL∗‖2

)
− δt|σ∗|

2|Dσ,σ∗ |
(γ − 1)ρσ,σ∗eσ,σ∗

(
2c(eσ,σ∗)√

2
+ (uL∗ − uK∗)nK∗,σ∗

)
.

Let us split the proof into two steps, depending on the localisation of Dσ,σ∗ in Dint or Dext.

a) Suppose that Dσ,σ∗ ∈ Dint, we get ρσ,σ∗eσ,σ∗ > T0 + TK + TL + TK∗ + TL∗ with

T0 = ρσ,σ∗eσ,σ∗ − ρσ,σ∗eσ,σ∗
δt|σ|

2|Dσ,σ∗ |
(γ − 1)

(
2c(eσ,σ∗)√

2
+ (uL − uK)nK,σ

)
− ρσ,σ∗eσ,σ∗

δt|σ∗|
2|Dσ,σ∗ |

(γ − 1)
(

2c(eσ,σ∗)√
2

+ (uL∗ − uK∗)nK∗,σ∗
)

− δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|EDσ,σ∗,s,

and for X ∈ {K,L,K∗, L∗}

TX = δt

2|Dσ,σ∗ |

(
|Dσ,σ∗ ∩X|RX −

|σ|
2
√

2γ
ρσ,σ∗c(eσ,σ∗)‖uX − uX‖2

)
.

In order to guaranty eσ,σ∗ > 0 it is sufficient to ensure that these five terms are non negative.
Using Lemma 3.12 on (∇d · u)σ,σ∗ , T0 becomes

T0 = ρσ,σ∗eσ,σ∗

1− δt

|Dσ,σ∗ |
(γ − 1)

 |σ∗|+ |σ|√
2

c(eσ,σ∗) +
∑

s∈∂Dσ,σ∗
|s|uDσ,σ∗,s


− δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|EDσ,σ∗,s.

Owing to Lemma 3.2, we have EDσ,σ∗,s = eσ,σ∗F+
Dσ,σ∗,s + eσ′,σ∗′F

−
Dσ′,σ∗′ ,s

6 eσ,σ∗F+
Dσ,σ∗,s 6

ρσ,σ∗eσ,σ∗ [λ+(c(es), uDσ,σ∗,s)]+ and this allows us to bound T0 from below as

T0 > ρσ,σ∗eσ,σ∗

(
1− δt

|Dσ,σ∗ |
(γ − 1)

 |σ∗|+ |σ|√
2

c(eσ,σ∗) +
∑

s∈∂Dσ,σ∗
|s|uDσ,σ∗,s


− δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|[λ+(c(es), uDσ,σ∗,s)]+

)
.

Finally, since uDσ,σ∗,s 6 [uDσ,σ∗,s]+ and [λ+(c(es), uDσ,σ∗,s)]+ 6 [uDσ,σ∗,s]+ + c(es), the fact
that T0 > follows from

1 >
δt

|Dσ,σ∗ |
(γ−1)

 |σ∗|+ |σ|√
2

c(eσ,σ∗) +
∑

s∈∂Dσ,σ∗
|s|[uDσ,σ∗,s]+

+ δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|([uDσ,σ∗,s]++c(es)).

Gathering the [uDσ,σ∗,s]+ terms and using γ > 1 lead to the assumption (38). Next, we turn to
the TX term. Owing to (34), we can write

TX >
‖uX − uX‖2

4|Dσ,σ∗ |

(
|Dσ,σ∗ ∩X|AX − ρσ,σ∗c(eσ,σ∗)

δt|σ|√
2γ

)
.
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Going back to (35), we have AX >
∑

σ′∈∂X

|D
σ′,σ∗′∩X|
|X| ρσ′,σ∗′Qσ′,σ∗′ where

Qσ′,σ∗′ =

1− δt

|Dσ′,σ∗′ |

(
1 +

|Dσ′,σ∗′ |
|Dσ′,σ∗′ ∩X|

) ∑
s∈∂D

σ′,σ∗′

|s|[λ+(c(es), uDσ′,σ∗′ ,s)]
+

 .

With (31), we get Qσ′,σ∗′ > 0 for each σ′ ∈ ∂X so that AX > |Dσ,σ∗∩X|
|X| ρσ,σ∗Qσ,σ∗ and

TX >
|Dσ,σ∗ ∩X|2

4|Dσ,σ∗ ||X|
ρσ,σ∗‖uX − uX‖2Q̃σ,σ∗ ,

where
Q̃σ,σ∗ = Qσ,σ∗ − c(eσ,σ∗)

δt√
2γ

|σ||X|
|Dσ,σ∗ ∩X|2

.

That TX is non negative follows from Q̃σ,σ∗ > 0 and we have

Q̃σ,σ∗ > Qσ,σ∗ −
δt

|Dσ,σ∗ |
c(eσ,σ∗)|σ|reg (T)√

2γ
|X|

|Dσ,σ∗ ∩X|

> 1− δt

|Dσ,σ∗ |

(1 + reg (T))
∑

s∈∂Dσ,σ∗
|s|[λ+(c(es), uDσ,σ∗,s)]+ + c(eσ,σ∗)|σ|reg (T)√

2γ
|X|

|Dσ,σ∗ ∩X|

.
Substracting the non-negative term δt

|Dσ,σ∗ |
(1+reg (T)) |σ

∗|+ |σ|√
2

c(eσ,σ∗) on the right hand side

and using (38) yield

Q̃σ,σ∗ > 1− δt

|Dσ,σ∗ |

(
1 + reg (T)

γ
+ c(eσ,σ∗)|σ|reg (T)√

2γ
|X|

|Dσ,σ∗ ∩X|

)
> 1− δt

|Dσ,σ∗ |
1 + reg (T)

γ

(
1 + c(eσ,σ∗)|σ|√

2
|X|

|Dσ,σ∗ ∩X|

)
,

which is thus non negative when (39) holds.
b) Suppose now that Dσ,σ∗ ∈ Dext, we get ρσ,σ∗eσ,σ∗ > T0 + TK + TL + TK∗ + TL∗ with

T0 = ρσ,σ∗eσ,σ∗ − ρσ,σ∗eσ,σ∗
δt|σ|

2|Dσ,σ∗ |
(γ − 1)

(
2c(eσ,σ∗)√

2
+ (uL − uK)nK,σ

)
− ρσ,σ∗eσ,σ∗

δt|σ∗|
2|Dσ,σ∗ |

(γ − 1)
(

2c(eσ,σ∗)√
2

+ (uL∗ − uK∗)nK∗,σ∗
)

− δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|EDσ,σ∗,s −

δt

|Dσ,σ∗ |
|σ|Eσ,

and for X ∈ {K,L,K∗, L∗}

TX = δt

2|Dσ,σ∗ |

(
|Dσ,σ∗ ∩X|RX −

|σ|
2
√

2γ
ρσ,σ∗c(eσ,σ∗)‖uX − uX‖2

)
.

In order to guaranty eσ,σ∗ > 0 it is sufficient to ensure that these five terms are non negative.
Using Lemma 3.12 on (∇d · u)σ,σ∗ , T0 becomes

T0 = ρσ,σ∗eσ,σ∗

1− δt

|Dσ,σ∗ |
(γ − 1)

 |σ∗|+ |σ|√
2

c(eσ,σ∗) +
∑

s∈∂Dσ,σ∗
|s|uDσ,σ∗,s


− δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|EDσ,σ∗,s −

δt

|Dσ,σ∗ |
|σ|Eσ.
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Equation (6) yields
EDσ,σ∗,s = eσ,σ∗F+

Dσ,σ∗,s + eσ′,σ∗′F
−
Dσ′,σ∗′ ,s

6 eσ,σ∗F+
Dσ,σ∗,s 6 ρσ,σ∗eσ,σ∗ [λ+(c(es), uDσ,σ∗,s)]+

and Eσ = eσ,σ∗F+
σ + eσF−σ 6 eσ,σ∗F+

σ 6 ρσ,σ∗eσ,σ∗ [λ+(c(eσ), uσ)]+ and this allows us to bound
T0 from below as

T0 > ρσ,σ∗eσ,σ∗

(
1− δt

|Dσ,σ∗ |
(γ − 1)

 |σ∗|+ |σ|√
2

c(eσ,σ∗) +
∑

s∈∂Dσ,σ∗
|s|uDσ,σ∗,s


− δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|[λ+(c(es), uDσ,σ∗,s)]+ −

δt

|Dσ,σ∗ |
|σ|[λ+(c(eσ), uσ)]+

))
.

Finally, since uDσ,σ∗,s 6 [uDσ,σ∗,s]+ and [λ+(c(es), uDσ,σ∗,s)]+ 6 [uDσ,σ∗,s]+ + c(es), the fact
that T0 > follows from

1 >
δt

|Dσ,σ∗ |
(γ − 1)

 |σ∗|+ |σ|√
2

c(eσ,σ∗) +
∑

s∈∂Dσ,σ∗
|s|[uDσ,σ∗,s]+


+ δt

|Dσ,σ∗ |
∑

s∈∂Dσ,σ∗
|s|([uDσ,σ∗,s]+ + c(es)) + δt

|Dσ,σ∗ |
|σ|([uσ]+ + c(eσ)).

Gathering the [uDσ,σ∗,s]+ terms and using γ > 1 lead to the assumption (40). Next, we turn
to the TX term: if X ∈M we follow the same sketch as a) and we get TX > 0 under assumption
(39); we are thus left with the case of X∗ ∈M∗. Owing to (36), we can write

TX∗ >
‖uX∗ − uX∗‖2

4|Dσ,σ∗ |

(
|Dσ,σ∗ ∩X∗|AX∗ − ρσ,σ∗c(eσ,σ∗)

δt|σ|√
2γ

)
.

Going back to (37), we have AX∗ >
∑
Dσ,σ∗∈DX∗∩Dext

|D
σ′,σ∗′∩X

∗|
|X∗| ρσ′,σ∗′Qσ′,σ∗′ where

Qσ′,σ∗′ > 1− δt

|Dσ′,σ∗′ |
|σ′|
2

((
1 + reg (T)

) F+
σ

ρσ′,σ∗′
− 1

1− reg (T)
F−σ
ρσ′,σ∗′

)
− δt

|Dσ′,σ∗′ |
reg (T)

(
|sXZ∗ |

F+
σ′,sXZ∗

ρσ′,σ∗′
+ |sXX∗ |

F+
σ′,sXX∗

ρσ′,σ∗′

)
.

With (33), we get Qσ′,σ∗′ > 0 for each σ∗′ ∈ ∂X∗ so that AX∗ >
|Dσ,σ∗∩X∗|
|X∗| ρσ,σ∗Qσ,σ∗ and

TX∗ >
|Dσ,σ∗ ∩X∗|2

4|Dσ,σ∗ ||X∗|
ρσ,σ∗‖uX∗ − uX∗‖2Q̃σ,σ∗ ,

where
Q̃σ,σ∗ = Qσ,σ∗ − c(eσ,σ∗)

δt√
2γ

|σ∗||X∗|
|Dσ,σ∗ ∩X∗|2

.

That TX∗ is non negative follows from Q̃σ,σ∗ > 0 and we have

Q̃σ,σ∗ > Qσ,σ∗ −
δt

|Dσ,σ∗ |
c(eσ,σ∗)|σ∗|reg (T)√

2γ
|X∗|

|Dσ,σ∗ ∩X∗|
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which leads to

Q̃σ,σ∗ > 1− δt

|Dσ,σ∗ |



|σ|
2

((
1 + reg (T)

)
[λ+(c(eσ), uσ)]+ + 1

1− reg (T)
ρD
ρσ,σ∗

[λ+(c(eσ), uD)]−
)

+ reg (T)
∑

s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗,s)]+

+ c(eσ,σ∗)|σ∗|reg (T)√
2γ

|X∗|
|Dσ,σ∗ ∩X∗|


Substracting the non-negative term

δt

|Dσ,σ∗ |

(1 + reg (T))
(
|σ∗|+ |σ|√

2
c(eσ,σ∗) + |σ|2 [λ+(c(eσ), uσ)]+

)
+

∑
s∈∂Dσ,σ∗\∂Ω

|s|[λ+(c(es), uDσ,σ∗,s)]+


on the right hand side and using (40) yield

Q̃σ,σ∗ > 1− δt

|Dσ,σ∗ |


|σ|
2

1
1− reg (T)

ρD
ρσ,σ∗

[λ+(c(eσ), uD)]−

+ 1 + reg (T)
γ

(
1 + c(eσ,σ∗)|σ∗|√

2
|X∗|

|Dσ,σ∗ ∩X∗|

)


which is thus non negative when (41) holds.

4 Conservation of total energy
Definition 4.1. We define a kinetic energy Ekin

σ,σ∗ , stored on the cell Dσ,σ∗ ∈ Dint, by the
formula

Ekin
σ,σ∗=

|Dσ,σ∗∩K|
ρK‖uK‖2

2 +|Dσ,σ∗∩L|
ρL‖uL‖2

2 +|Dσ,σ∗∩K∗|
ρK∗‖uK∗‖2

2 +|Dσ,σ∗∩L∗|
ρL∗‖uL∗‖2

2
2|Dσ,σ∗ |ρσ,σ∗

and a total energy Eσ,σ∗ , stored on the cell Dσ,σ∗ ∈ Dint, by setting

Eσ,σ∗ = eσ,σ∗ + Ekin
σ,σ∗ .

We wish to write a local conservation equation for the total energy ρσ,σ∗Eσ,σ∗ . This property
is in fact related to the duality relations between discrete operators, as discussed in [14], and
based on Lemma 3.3.

Proposition 4.2. The discrete total energy ρσ,σ∗Eσ,σ∗ satisfies the following conservative equa-
tion on Dint:

ρσ,σ∗Eσ,σ∗ − ρσ,σ∗Eσ,σ∗
δt

+ 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|TDσ,σ∗,s + 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|qDσ,σ∗,s = 0,

where
• TDσ,σ∗,s is a conservative total energy flux through the interface s of the diamond cell
Dσ,σ∗ ,

• 1
|Dσ,σ∗ |

∑
s∈∂Dσ,σ∗

|s|qDσ,σ∗,s is a conservative discrete version of ∇ · (pu) on the diamond cell

Dσ,σ∗ .
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Proof. We identify the corresponding fluxes by using Lemma 3.3. It is helpful to bear in
mind the typical shape of a diamond cell with vertices xK , xK∗ , xL, xL∗ as depicted in Fig. 3
and 5. Let X ∈ {K,L,K∗, L∗} and multiply the kinetic energy balance equation on the cell X
by |Dσ,σ∗∩X|2|Dσ,σ∗ |

. Next, add the four relations to the equation for the internal energy (29) on the
cell Dσ,σ∗ .

*) The first task is to identify some conservative fluxes KDσ,σ∗,s such that∑
s∈∂Dσ,σ∗

|s|KDσ,σ∗,s = |Dσ,σ∗ ∩K|
2|K|

∑
σ′∈∂K

|σ′|KK,σ′ + |Dσ,σ∗ ∩ L|
2|L|

∑
σ′∈∂L

|σ′|KL,σ′

+ |Dσ,σ∗ ∩K∗|
2|K∗|

∑
σ′∈∂K∗

|σ′|KK∗,σ′ + |Dσ,σ∗ ∩ L∗|
2|L∗|

∑
σ′∈∂L∗

|σ′|KL∗,σ′ . (42)

Applying Lemma 3.3, on each primal cell C = K with XK,σ = KK,σ provides a function ωK
which satisfies (9) and (10). For the dual mesh, we distinguish the construction for the direct
mesh a© and the barycentric mesh b©:
• for a©, we proceed as for for the primal mesh to define ωK∗ from the fluxes XK∗,σ∗ = KK∗,σ∗

on the interfaces of K∗.
• for b©, we still apply Lemma 3.3, but in order to define ωK∗ , we should use the two quan-

tities XK∗,σ∗
K

= KK∗,σ∗
K

and XK∗,σ∗
L

= KK∗,σ∗
L
, see (24), associated to the two interfaces

σ∗K and σ∗L of K∗ that belong to Dσ,σ∗ .
We next define a conservative flux of kinetic energy for each s = [xK , xK∗ ] ∈ ∂Dσ,σ∗ as follows

KDσ,σ∗,s = 1
2|s|

∫
s

(ωK + ωK∗)nDσ,σ∗,s where s = sKK∗ .

With a convenient reorganization of the terms, we write
∑

s∈∂Dσ,σ∗ |s|KDσ,σ∗,s as

1
2

(∫
sKK∗

ωKnDσ,σ∗ ,sKK∗ +
∫
sKL∗

ωKnDσ,σ∗ ,sKL∗
)

+ 1
2

(∫
sLK∗

ωLnDσ,σ∗ ,sLK∗ +
∫
sLL∗

ωLnDσ,σ∗ ,sLL∗
)

+ 1
2

(∫
sKK∗

ωK∗nDσ,σ∗ ,sKK∗ +
∫
sLK∗

ωK∗nDσ,σ∗ ,sLK∗
)

+ 1
2

(∫
sKL∗

ωL∗nDσ,σ∗ ,sKL∗ +
∫
sLL∗

ωL∗nDσ,σ∗ ,sLL∗
)
.

First, let us explain how we proceed with the mesh a©. Since the kinetic energy fluxes KK,σ and
KK∗,σ∗ are conservative, we have

KK,σ +KL,σ = 0 and KK∗,σ∗ +KL∗,σ∗ = 0. (43)
Applying again (10) in Lemma 3.3, these two equalities recast as

1
2

(∫
σ

ωKnK,σ +
∫
σ

ωLnL,σ
)

= 0

and
1
2

(∫
σ∗
ωK∗nKK∗,σ∗ +

∫
σ∗
ωL∗nL∗,σ∗

)
= 0. (44)
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We add these expressions in the sum
∑

s∈∂Dσ,σ∗ |s|KDσ,σ∗,s and we get∑
s∈∂Dσ,σ∗

|s|KDσ,σ∗,s = 1
2

(∫
σ

ωKnK,σ +
∫
sKK∗

ωKnDσ,σ∗ ,sKK∗ +
∫
sKL∗

ωKnDσ,σ∗ ,sKL∗
)

+ 1
2

(∫
σ

ωLnL,σ +
∫
sLK∗

ωLnDσ,σ∗ ,sLK∗ +
∫
sLL∗

ωLnDσ,σ∗ ,sLL∗
)

+ 1
2

(∫
σ∗
ωK∗nK∗,σ∗ +

∫
sKK∗

ωK∗nDσ,σ∗ ,sKK∗ +
∫
sLK∗

ωK∗nDσ,σ∗ ,sLK∗
)

+ 1
2

(∫
σ∗
ωL∗nL∗,σ∗ +

∫
sKL∗

ωL∗nDσ,σ∗ ,sKL∗ +
∫
sLL∗

ωL∗nDσ,σ∗ ,sLL∗
)
.

Thus, by the divergence theorem, and because ∇ · ωX is constant over the cell X, we get∑
s∈∂Dσ,σ∗

|s|KDσ,σ∗,s = |Dσ,σ∗ ∩K|
2 ∇ · ωK + |Dσ,σ∗ ∩ L|

2 ∇ · ωL

+ |Dσ,σ∗ ∩K∗|
2 ∇ · ωK∗ + |Dσ,σ∗ ∩ L∗|

2 ∇ · ωL∗ .

Applying (9) in Lemma 3.3 shows that (42) is satisfied. Finally, we define a conservative flux of
total energy TDσ,σ∗,s through the interface s of the diamond cell Dσ,σ∗ by

TDσ,σ∗,s = KDσ,σ∗,s + EDσ,σ∗,s.
For the mesh b©, we should modify (43) since we take into account the two interfaces σ∗K

and σ∗L; on the dual cell K∗ we now have
KK∗,σ∗

K
+KL∗,σ∗

K
= 0 = KK∗,σ∗

L
+KL∗,σ∗

L
.

Accordingly, (44) becomes

1
2

(∫
σ∗
K

ωK∗nK∗,σ∗
K

+
∫
σ∗
K

ωL∗
K

nL∗,σ∗
K

)
= 0 = 1

2

(∫
σ∗
L

ωK∗nK∗,σ∗
L

+
∫
σ∗
L

ωL∗nL∗,σ∗
L

)
.

We are thus led to∑
s∈∂Dσ,σ∗

|s|KDσ,σ∗,s = 1
2

(∫
σ

ωKnK,σ +
∫
sKK∗

ωKnDσ,σ∗ ,sKK∗ +
∫
sKL∗

ωKnDσ,σ∗ ,sKL∗
)

+ 1
2

(∫
σ

ωLnL,σ +
∫
sLK∗

ωLnDσ,σ∗ ,sLK∗ +
∫
sLL∗

ωLnDσ,σ∗ ,sLL∗
)

+ 1
2

(∫
σ∗
K

ωK∗nK∗,σ∗
K

+
∫
σ∗
L

ωK∗nK∗,σ∗
L

+
∫
sKK∗

ωK∗nDσ,σ∗ ,sKK∗ +
∫
sLK∗

ωK∗nDσ,σ∗ ,sLK∗
)

+ 1
2

(∫
σ∗
K

ωL∗nL∗,σ∗
K

+
∫
σ∗
L

ωL∗nL∗,σ∗
L

+
∫
sKL∗

ωL∗nDσ,σ∗ ,sKL∗ +
∫
sLL∗

ωL∗nDσ,σ∗ ,sLL∗
)
.

>From this, we can apply the divergence theorem and conclude as for the mesh a©.

**) We now turn to the pressure term. There are four terms coming from the sum of the
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kinetic energy equations and the discrete version of p∇ · u, namely

|Dσ,σ∗ ∩K|
2 uK · (∇dp)K + |Dσ,σ∗ ∩ L|

2 uL · (∇dp)L

+ |Dσ,σ∗ ∩K∗|
2 uK∗ · (∇dp)K∗ + |Dσ,σ∗ ∩ L∗|

2 uL∗ · (∇dp)L∗

+ |Dσ,σ∗ |pσ,σ∗ (∇d · u)σ,σ∗ . (45)
We wish to rewrite this sum as

∑
s∈∂Dσ,σ∗ |s|qDσ,σ∗,s with qDσ,σ∗,s verifying the conservation

property qDσ,σ∗,s = −qDσ′,σ∗′ ,s where s = Dσ,σ∗ |Dσ′,σ∗′ .
To this end, we apply Lemma 3.3 again on each primal (resp. dual) cell C = K (resp.

K∗) with, now, XK,σ = pσ,σ∗uK · nK,σ (resp. XK∗,σ∗ = pσ,σ∗uK∗ · nK∗,σ∗ for mesh a©, or
XK∗,σ∗

K
= pσ,σ∗uK∗ · nK∗,σ∗

K
, XK∗,σ∗

L
= pσ,σ∗uK∗ · nK∗,σ∗

L
for b©). It provides functions ωK

(resp. ωK∗) that satisfy (9) and (10).
We next define, for each s = [xK , xK∗ ] ∈ ∂Dσ,σ∗ ,

qDσ,σ∗,s = 1
2|s|

∫
s

(ωK + ωK∗) · nDσ,σ∗,s where s = sKK∗ .

By construction, this quantity is conservative.

We are now going to check that the sum
∑

s∈∂Dσ,σ∗ |s|qDσ,σ∗,s coincides with (45). With a
convenient reorganization of the terms, we write

∑
s∈∂Dσ,σ∗ |s|qDσ,σ∗,s as

1
2

(∫
sKK∗

ωK · nσ,sKK∗ +
∫
sKL∗

ωK · nσ,sKL∗
)

+ 1
2

(∫
sLK∗

ωL · nσ,sLK∗ +
∫
sLL∗

ωL · nσ,sLL∗
)

+ 1
2

(∫
sKK∗

ωK∗ · nσ,sKK∗ +
∫
sLK∗

ωK∗ · nσ,sLK∗
)

+ 1
2

(∫
sKL∗

ωL∗ · nσ,sKL∗ +
∫
sLL∗

ωL∗ · nσ,sLL∗
)
.

We only detail the computation with the mesh a©. We make use again of Lemma 3.3 to write∫
σ

ωK · nK,σ = |σ|pσ,σ∗uK · nK,σ and
∫
σ∗
ωK∗ · nK∗,σ∗ = |σ∗|pσ,σ∗uK∗ · nK∗,σ∗ .

(For the mesh b©, the latter is replaced by the sum over the interfaces σ∗K and σ∗L.) For
X ∈ {K,L} we add 1

2
∫
σ
ωX · nX,σ + 1

2
∫
σ∗
ωX∗ · nX∗,σ∗ and substract |σ|2 pσ,σ∗uX · nX,σ +

|σ∗|
2 pσ,σ∗uX∗ · nX∗,σ∗ in the above expression and we get∑

s∈∂Dσ,σ∗
|s|qDσ,σ∗,s =1

2

(∫
σ

ωK · nK,σ +
∫
sKK∗

ωK · nσ,sKK∗ +
∫
sKL∗

ωK · nσ,sKL∗
)

+ 1
2

(∫
σ

ωL · nL,σ +
∫
sLK∗

ωL · nσ,sLK∗ +
∫
sLL∗

ωL · nσ,sLL∗
)

+ 1
2

(∫
σ∗
ωK∗·nK∗,σ∗ +

∫
sKK∗

ωK∗ · nσ,sKK∗ +
∫
sLK∗

ωK∗ · nσ,sLK∗
)

+ 1
2

(∫
σ∗
ωL∗ · nL∗,σ∗ +

∫
sKL∗

ωL∗ · nσ,sKL∗ +
∫
sLL∗

ωL∗ · nσ,sLL∗
)

− |σ|2 pσ,σ∗(uK · nK,σ + uL · nL,σ)− |σ
∗|

2 pσ,σ∗(uK∗ · nK∗,σ∗ + uL∗ · nL∗,σ∗).

Thus, using equation (9) of Lemma 3.3 together with Definition 3.11 of the discrete divergence
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operator yields ∑
s∈∂Dσ,σ∗

|s|qDσ,σ∗,s = |Dσ,σ∗ ∩K|
2 ∇ · ωK + |Dσ,σ∗ ∩ L|

2 ∇ · ωL

+ |Dσ,σ∗ ∩K∗|
2 ∇ · ωK∗ + |Dσ,σ∗ ∩ L∗|

2 ∇ · ωL∗

+ |Dσ,σ∗ |pσ,σ∗ (∇d · u)σ,σ∗ .
Applying (10) in Lemma 3.3 shows that∑

s∈∂Dσ,σ∗
|s|qDσ,σ∗,s = |Dσ,σ∗ ∩K|

2|K|
∑
σ′∈∂K

|σ′|qK,σ′ + |Dσ,σ∗ ∩ L|
2|L|

∑
σ′∈∂L

|σ′|qL,σ′

= |Dσ,σ∗ ∩K∗|
2|K∗|

∑
σ∗′∈∂K∗

|σ∗
′
|qK∗,σ∗′ + |Dσ,σ∗ ∩ L∗|

2|L∗|
∑

σ∗′∈∂L∗
|σ∗
′
|qL∗,σ∗′

+ |Dσ,σ∗ |pσ,σ∗ (∇d · u)σ,σ∗ .
Finally, coming back to the definition of qK,σ and next, to Definition 3.7 of the discrete pressure
gradient, we remark that for X ∈ {K,L,K∗, L∗}

1
|X|

∑
σ′∈∂X

|σ′|qX,σ′ = 1
|X|

∑
σ′∈∂X

|σ′|pσ′,σ∗′uX · nX,σ′ = uX · (∇dp)X .

We can conclude that∑
s∈∂Dσ,σ∗

|s|qDσ,σ∗,s = |Dσ,σ∗ ∩K|
2 uK · (∇dp)K + |Dσ,σ∗ ∩ L|

2 uL · (∇dp)L

+ |Dσ,σ∗ ∩K∗|
2 uK∗ · (∇dp)K∗ + |Dσ,σ∗ ∩ L∗|

2 uL∗ · (∇dp)L∗

+ |Dσ,σ∗ |pσ,σ∗ (∇d · u)σ,σ∗ .

5 Numerical simulations
In this Section we present some numerical test cases on unstructured grids. We compare the
performance of the scheme to the mac discretization [16]. The unstructured primal mesh is a
tessellation made of triangles, provided by GMSH, which leads to a dual mesh which cells are
polygons of any type.

5.1 Consistency analysis with a 2D manufactured solution
In order to numerically validate the scheme, we compute the solution of the 2d problem

∂tρ+ ∇ ·
(
ρu
)

= 0,

∂t
(
ρu
)

+ ∇ ·
(
ρu⊗ u

)
+ ∇p = f(t,x),

∂t(ρe) + ∇ · (ρeu) + p∇ · u = 0,
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where the force field (t,x) 7→ f(t,x) is tailored so that the smooth solution reads

ρex(t,x) = exp
(
− 2
√

(x cos(t) + y sin(t) + 1)2 + (−x sin(t) + y cos(t)− 0.1)2
)
,

uex(t,x) = −y,

vex(t,x) = x,

eex(t,x) =
exp

(
− 3
√

(x cos(t) + y sin(t) + 1)2 + (−x sin(t) + y cos(t) + 0.1)2
)

ρ(t,x) ,

where x = (x, y). We perform the simulations for t ∈ [0, 0.2] with γ = 1.4 on the circle of center
(0, 0) and radius 2. We use a series of tessellations made of triangles, provided by GMSH: the
characteristic length used in GMSH (the quantity that determines the mesh size) is divided by 2
between each mesh.

The discrete L2 norms of the errors between the discrete and the exact solutions, for the
density, the internal energy and the first component of the velocity, on the different meshes, are
reported in Table 1 and Table 2:

e2,ρ =
( ∑

Dσ,σ∗∈D
σ∗=[xK∗ ,xL∗ ]

∣∣Dσ,σ∗
∣∣∣∣∣ρDσ,σ∗ − ρex

(xK∗ + xL∗
2

)∣∣∣2) 1
2

,

e2,e =
( ∑

Dσ,σ∗∈D
σ∗=[xK∗ ,xL∗ ]

∣∣Dσ,σ∗
∣∣∣∣∣eDσ,σ∗ − eex

(xK∗ + xL∗
2

)∣∣∣2) 1
2

,

e2,u =
( ∑
K∈M

|K|
∣∣∣uK − uex(xK)∣∣∣2) 1

2

, e2,v =
( ∑
K∈M

|K|
∣∣∣vK − vex(xK)∣∣∣2) 1

2

,

e2,u∗ =
( ∑
K∈M∗∪∂M∗

|K∗|
∣∣∣u∗K−uex(xK∗)∣∣∣2) 1

2

, e2,v∗ =
( ∑
K∈M∗∪∂M∗

|K∗|
∣∣∣v∗K−vex(xK∗)∣∣∣2) 1

2

.

We also report the characteristic length h of the different meshes computed as follows

h = max(|σ|, |σ∗|)

The results are almost the same for the second component. For this test case, we have set
δt = 10−4: the small value of the time step ensures that the stability condition is satisfied for all
the considered grids. We observe as expected a first order convergence. In Fig. 6 we show the
resolution of the density and the internal energy and their exact solutions, on the finest mesh.

36



i h(i) e
(i)
2,ρ

log(e(i)2,ρ/e
(i−1)
2,ρ )

log(h(i)/h(i−1))
e
(i)
2,e

log(e(i)2,e/e
(i−1)
2,e )

log(h(i)/h(i−1))
1 2.62× 10−1 4.10× 10−2 −− 1.78× 10−1 −−
2 1.43× 10−1 2.50× 10−2 0.82 9.70× 10−2 1.00
3 7.10× 10−2 1.41× 10−2 0.82 4.91× 10−2 0.97
4 3.74× 10−2 8.08× 10−3 0.87 2.59× 10−2 1.00
5 1.96× 10−2 4.47× 10−3 0.91 1.36× 10−2 1.00
6 1.01× 10−2 2.38× 10−3 0.96 6.96× 10−3 1.01

Table 1: Error in L2-norm between approximate and exact solutions for the density and the internal
energy on several meshes.

i h(i) e
(i)
2,u

log(e(i)2,u/e
(i−1)
2,u )

log(h(i)/h(i−1))
e
(i)
2,u∗

log(e(i)2,u∗/e
(i−1)
2,u∗ )

log(h(i)/h(i−1))
1 2.62× 10−1 1.16× 10−1 −− 3.07× 10−1 −−
2 1.43× 10−1 6.54× 10−2 0.95 1.74× 10−1 0.94
3 7.10× 10−2 3.66× 10−2 0.83 9.95× 10−2 0.79
4 3.74× 10−2 2.05× 10−2 0.90 5.75× 10−2 0.86
5 1.96× 10−2 1.17× 10−2 0.88 3.29× 10−2 0.86
6 1.01× 10−2 6.55× 10−3 0.87 1.90× 10−2 0.83

Table 2: Error in L2-norm between approximate and exact solutions for the first component of the
velocity on several meshes.
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(a) Density, t = 0 (b) Density, t = 0.2

(c) Internal energy, t = 0 (d) Internal energy, t = 0.2

Figure 6: Density and internal energy, numerical solution on a mesh with 923868 primal cells.

5.2 Numerical simulations in 2D
1) We use the scheme for the simulation of the 2d Mach 3 wind tunnel with a step. The

computational domain Ω is the L-shaped domain

Ω = Ω0 \ Ωstep, Ω0 = [0, 3]× [0, 1], Ωstep = [0.6, 3]× [0, 0.2].

We perform the simulation for t ∈ [0, 4] with γ = 1.4 and δt = 10−4. The initial data reads
ρ = 1.4, u = (3, 0) and p = 1. On the top and bottom walls, we use reflection boundary
conditions which means zero flux boundary conditions. To make the flow enter through
the left boundary we use a Dirichlet boundary condition, ρ = 1.4, p = 1 and u = (3, 0),
whereas a free boundary condition is used for the right section.
In Fig. 7 (at the top), we present the result obtained at T = 4 with an unstructured primal
mesh made of 204 254 triangles and 307 081 edges. We compare this result to the one
obtained in [16] on a 960× 320 cartesian grid which is reported in Fig. 7 (at the bottom).
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Figure 7: Test 1, simulation of the 2d Mach 3 wind tunnel with a step, density with 50 contour
lines on a mac mesh (bottom) and on an unstructured triangular grid (top)

2) The next test case is inspired from [1]: we consider the 2d simulation of three falling
columns into a rectangular basin. The computational domain is the two-dimensional square
[−1, 1] × [−1, 1]. We deal with the full Euler system with γ = 2. Initially we suppose a
constant initial temperature (or internal energy e) in the basin. The PDE system is
endowed with zero flux boundary conditions and the following initial data

ρ(0,x) = 3 + 1(x−0.5)2+(y−0.5)2<(0.15)2 + 1(x+0.5)2+(y+0.5)2<(0.15)2 + 2 · 1x2+y2<(0.2)2 ,
e(0,x) = 1,
u(0,x) = 0,
v(0,x) = 0,

with x = (x, y). In Fig. 8 and 9, we show the density and the internal energy at time
T = 1.035 with δt = 10−4. The mesh has 43400 primal cells made of triangles and 65356
edges. The result is compared with the same simulation made on a 255 × 255 Cartesian
grid with the mac scheme presented in [16].
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Figure 8: Test 2): Simulation of the 2d three falling columns into a rectangular basin: Density
with 50 contour lines on an unstructured grid (left) and a 255× 255 Cartesian mesh (right).

Figure 9: Test 2): Simulation of the 2d three falling columns into a rectangular basin: Internal
energy with 50 contour lines on an unstructured grid (left) and on a 255 × 255 Cartesian mesh
(right).

3) The last test case is a 2d supersonic flow in a channel with a circular arc bump. The fluid
flows from left to right. Due to the geometry of the obstacle, the mac grid proposed in
[16] is not appropriate. The computational domain Ω is the rectangle [0, 3] × [0, 1] with
a circular arc bump of length 1 and thickness 0.04 located at the bottom, at a distance
1 from the inlet. We perform the simulation up to the final time T = 5. We have set
γ = 1.4 and the time step is δt = 10−4. The initial data are given by ρ = 1, u = (1.65, 0)
and p = 1, so that the initial Mach number is 1.65. On the top and bottom walls, we
use zero flux boundary conditions and on the left we use Dirichlet boundary condition
ρ = 1, u = (1.65, 0) and p = 1 whereas on the right boundary a free boundary condition
is used. In Fig. 10, we show the Mach Number with 50 contour lines. The simulation
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is performed on a triangular mesh with 516192 primal cells and 775313 edges. Oblique
shocks are formed at the two extremities of the bump. All the shocks are well resolved.
The simulation can be compared with the result presented in [33].

Figure 10: Test 3): Simulation of the 2d subsonic flow in a channel with a circular arc bump flows
from left to right: Mach number at time T = 5 on an unstructured mesh.
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