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Abstract
We consider simple models where particles interact with thermal traps: the particles move
freely, except when they hit the traps where there are exchanges of mass, momentum and
energy. We investigate the relaxation properties of the model, and we show that indeed the
solutions relax towards a uniform Maxwellian state, entirely determined by the initial data.

Keywords Dynamical Lorentz gas · Thermal traps · Relaxation to equilibrium
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1 Presentation of theModel

We consider a set of free particles, interacting with an array of traps with which the particles
can exchange mass, momentum and energy. The particles evolve in the N -dimensional torus
T

N . We adopt the description bymeans of the particle distribution function f , which depends
on time, space and velocity variables: given � ⊂ T

N and V ⊂ R
N ,
∫∫

�×V f (t, z, v) dv dx
gives the number of particles occupying, at time t ≥ 0, a position x ∈ �, and moving with a
velocity v ∈ V . On T

N , there are K non-overlapping traps; each trap is characterized by

• a center xk ∈ T
N ,

• a form function σk(x), which is valued in [0, 1], smooth, and compactly supported in
a ball ωk = B(xk, rk). For instance we can set σk(x) = 1

r N
k

σ
( x−xk

rk

)
with a common

function σ ∈ C∞
c (TN ), 0 ≤ σ ≤ 1, supp(σ ) ⊂ B(0, 1), and rk � 1 small enough to

avoid overlaps. The quantity

Vk =
∫

TN
σk(x) dx

is interpreted as the effective volume of the kth trap.
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Moreover, the state of the kth trap is characterized by a number of trapped particles nk , a
total momentum nkuk , and a total energy nk Ek . We define the temperature θk of the trap

by setting Ek = u2k+Nθk
2 . The particles travel freely in straight line, with constant velocity,

except when they hit a trap, which is a location for mass, momentum and energy exchanges:
the particles are trapped with a certain rate μ, while the trap can also release free particles,
with a rate λ. When a particle is re-emitted by the kth trap, its velocity v is chosen randomly
according to a certain probability distribution Mk , parametrized by nk, uk, θk . To be specific,
we assume that

∫
⎛

⎝
1
v

v2

⎞

⎠Mk dv = nk

⎛

⎝
1
uk

2Ek

⎞

⎠ . (1)

In what follows, we consider the typical example of the Maxwellian distribution

Mk(v) = nk

(2πθk)N/2 exp
(

− |v − uk |2
2θk

)
,

but the approach can be adapted to consider more general emission laws. The evolution of
the system is therefore driven by the BGK-like equation [4]

∂t f + v · ∇x f =
K∑

k=1

σk (λMk − μ f ) (2)

coupled to the differential equations

∂t nk = μ

∫∫
σk f

dv dx

Vk
− λnk, (3a)

∂t (nkuk) = μ

∫∫
σkv f

dv dx

Vk
− λnkuk, (3b)

∂t (nk Ek) = μ

∫∫
σk

v2

2
f
dv dx

Vk
− λnk Ek . (3c)

It is worth remarking that (3c) can be recast as an equation for the temperature since

N

2
∂t (nkθk) = ∂t (nk Ek) − 1

2
∂t (nku2

k)

= ∂t (nk Ek) − 1

2

(
uk · ∂t (nkuk) + nkuk · ∂t uk

)

= ∂t (nk Ek) − uk · ∂t (nkuk) + u2
k

2
∂t nk .

Hence, with (3a)–(3c), we get

N

2
∂t (nkθk) = μ

∫∫ |v − uk |2
2

f
dv dx

Vk
− λ

N

2
nkθk (4)

an expression which justifies that θk remains non negative. We wish to investigate some
properties of this model, and in particular the large time behavior of the solution.
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2 Motivation

This works takes its inspiration from many different roots:

• In the seminal paper [12], A. Caldeira and A. Legget suggested to describe dissipation
arising on a physical system as the result of interaction mechanisms with a complex
environment, that ultimately lead to the transfer of energy and its evacuation in the
environment. The case in which the environmental variables are vibrational degrees of
freedom has received a great deal of attention, see for instance [10, 30, 31]. This approach
has been revisited in the framework of kinetic equations [18, 26–28, 38, 39].

• Certain of these models can be interpreted in terms of dynamical Lorentz gases where
particles interact with an array of scatterers: when a particle hits a scatterer, it spends
some time before being re-emitted from some point of the boundary of the scatterer, with
a new velocity, but the re-emission law depends on the state of the scatterer, which itself
is influenced by the presence of particles. Such dynamics also lead to interpretation by
means of random walk. We refer the reader to [1, 15–17, 32] for thorough investigation,
both theoretically and numerically, of this viewpoint. It is known that the repartition of
the scatterers is crucial for the asymptotic behavior of the standard Lorentz gas, see [7, 11,
21, 24, 25, 34] and the references therein. Roughly speaking, Boltzmann-type equation
can be derived asymptotically assuming a random repartition of the scatterers [7, 24]
while a periodic distribution leads to intricate memory effects [11, 25, 34]. This opens
the question to decide whether or not the energy exchanges with dynamical scatterers
induce dissipation mechanisms, independently of the space repartition of the scatterers.

• Recently the analysis of kinetic models of particles interacting with thermal reservoirs,
thatmeans source of heat, has drawn the attention to quite complex relaxation phenomena,
driven by non equilibrium steady states involving the different, but fixed, temperatures
of the reservoirs [13, 14]. Beware that here the temperature of the traps is affected by the
mass and energy exchanges.

• Finally, it has been proven that relaxation phenomena might occur in collisional kinetic
models, even when the collisional term is degenerate: the relaxation then depends on
geometrical conditions, inspired from control theory [3, 33], on the repartition of the
collisional spots [5, 6, 20, 23, 29, 35]. Again, this raises the issue of the role of the space
repartition of the traps.

The model (2), (3a)–(3c) is somehow related to all these situations. The traps act a dynamical
environment which can be expected to drive the particle distribution towards equilibrium.
However, the non homogeneous space repartition of the traps raises the issue of the effec-
tiveness of this relaxation mechanism, and the possibility to obtain an equilibrium state.

The paper is organized as follows. In Sect. 3 we derive the fundamental conservation and
dissipation properties of the model. It turns out that a H-Theorem holds, which allows us to
identify the equilibrium states. Next, these estimates are used to establish the asymptotic trend
to equilibrium as time becomes large in Sect. 4. This argument does not provide information
about the rate of convergence. A more detailed analysis can be performed on the linearized
problem, by adapting the arguments of [29] to this situation with several conserved quantities
and a coupling between the kinetic equation and ODEs for the traps. This is the object of
Sect. 5. The results are further illustrated by numerical simulations in Sect. 6. Finally, Sect. 7
proposes an extension of the model by taking into account the time spent by the particles
within the trap.
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3 Conservation, H-Theorem and Equilibrium

The system (2), (3a)–(3c) conserves the total mass, momentum and energy. Indeed, we
observe that

∫∫
⎛

⎝
1
v

v2/2

⎞

⎠ σk (λMk − μ f ) dv dx = λVk

⎛

⎝
nk

nkuk

nk Ek

⎞

⎠− μ

∫∫
σk

⎛

⎝
1
v

v2/2

⎞

⎠ f dv dx

counterbalances the right hand side of (3a)–(3c). Next, we consider entropy dissipation. We
restrict the discussion to the case where Mk is aMaxwellian, but the approach can be adapted,
just changing the definition of the entropy functionals. Let us compute

d

dt

∫∫
f ln( f ) dv dx =

K∑

k=1

∫∫
σk(λMk − μ f )(1 + ln f ) dv dx

= (1 − ln(μ))

K∑

k=1

∫∫
σk(λMk − μ f ) dv dx

−
K∑

k=1

∫∫
σk(μ f − λMk) ln

( μ f

λMk

)
dv dx

−
K∑

k=1

∫∫
σk(μ f − λMk) ln(λMk) dv dx .

The last term can be recast as

−
K∑

k=1

∫∫
σk(μ f − λMk)

(

ln λ + ln nk − N

2
ln(2πθk) − |v − uk |2

2θk

)

dv dx

=
K∑

k=1

[(

ln λ + ln nk − N

2
ln(2πθk)

)(

λnkVk − μ

∫∫
σk f dv dx

)

− λ
N

2
nkVk

]

−μ

K∑

k=1

∫
σk

2θk

(∫
v2 f dv − 2uk ·

∫
v f dv + u2

k

∫
f dv

)

.

For the traps, we consider the evolution of the following functional

d

dt

∫
Mk ln

(λMk

μ

)
dv

=
∫

Mk(1 + ln
( λ

μ

)
+ ln(Mk))

(
∂t nk

nk
+
( |v − uk |2

2θ2k
− N

2θk

)
∂tθk + v − uk

θk
· ∂t uk

)

dv

=
(

1 + ln
( λ

μ

))

∂t nk +
∫ (

ln(nk) − N

2
ln(2πθk) − |v − uk |2

2θk

)

×Mk

(
( |v − uk |2

2θ2k
− N

2θk

)
∂tθk + v − uk

θk
· ∂t uk

)

dv

=
(

1 + ln
( λ

μ

)
+ ln(nk) − N

2
ln(2πθk)

)

∂t nk

−
(

N

2
∂t nk − nk

θk

((N

2

)2 − N (N + 2)

4

)

∂tθk

)

=
(

1 + ln
( λ

μ

)
+ ln(nk) − N

2
ln(2πθk)

)

∂t nk − N

2θk
∂t (nkθk).
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We make use of (4) and we obtain

d

dt

∫
Mk ln

(λMk

μ

)
dv

=
(

1 + ln
( λ

μ

)
+ ln(nk) − N

2
ln(2πθk)

)(

μ

∫∫
σk f

dv dx

Vk
− λnk

)

− 1

θk

(

μ

∫∫
σk

v2

2
f
dv dx

Vk
− λ

N

2
nkθk − λnk

u2
k

2

−uk ·
(

μ

∫∫
σkv f

dv dx

Vk
− λnkuk

)

+ u2
k

2

(

μ

∫∫
σk f

dv dx

Vk
− λnk

))

.

We conclude with the following H-theorem.

Proposition 3.1 (H-theorem) The solutions of (2), (3a)–(3c) conserve total mass, total
momentum and total energy:

d

dt

⎧
⎨

⎩

∫∫
⎛

⎝
1
v

v2/2

⎞

⎠ f dv dx +
K∑

k=1

Vk

⎛

⎝
nk

nkuk

nk Ek

⎞

⎠

⎫
⎬

⎭
= 0, (5)

and dissipate entropy:

d

dt

{∫∫
f ln f dv dx +

K∑

k=1

Vk

∫
Mk ln

(λMk

μ

)
dv

}

+
K∑

k=1

Dk( f , Mk) = 0, (6)

where we denote

Dk( f , Mk) =
∫∫

μσk

( λ

μ
Mk − f

)
ln

(
λMk

μ f

)

dv dx ≥ 0.

Following [29], we can check that the dissipation term characterizes the distribution function
for which the interaction terms vanish.

Lemma 3.2 (Weak coercivity) The following properties are equivalent:

(i)
∑K

k=1 Dk( f , Mk) = 0 for any 0 ≤ t ≤ T < ∞,
(ii) For all k ∈ {1, ..., K }, we have f (t, x, v) = λ

μ
Mk(v) on (0, T ) × ωk × R

N .

We are led to characterize the equilibrium states as follows.

Proposition 3.3 (Unique continuation property) There exists a unique solution of

∂t f + v · ∇x f = 0,

satisfying f (t, x, v) = λ
μ

Mk(v) on (0, T ) × ωk ×R
N for all k ∈ {1, ..., K }, with prescribed

total mass, momentum and energy

∫∫
⎛

⎝
1
v

v2/2

⎞

⎠ f dv dx +
K∑

k=1

Vk

∫
⎛

⎝
1
v

v2/2

⎞

⎠Mk dv =
⎛

⎝
m0

p0
E0

⎞

⎠ ,

which is

f (t, x, v) = λ

μ
× ne

(2πθe)N/2 exp
(

− |v − ue|2
2θe

)
= λ

μ
Me(v),
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with
⎛

⎝
ne

neue

(neu2
e + Nneθe)/2

⎞

⎠ = 1

(|TN |λ/μ + V )

⎛

⎝
m0

p0
E0

⎞

⎠ ,

where we have denoted V =∑K
k=1 Vk ∈ (0, |TN |).

Proof For almost every (x, v) ∈ T
N ×R

N , the set {x − tv, t ∈ R} is dense inTN : the “almost
everywhere infinite time geometric control condition” is satisfied, see [29, Lemma 6.4 and
Proposition 3.1]. Since f is constant along the lines x−tv, and any trap is connected to another
one by such a line, we have f (t, x, v) = λ

μ
Mk(v) = λ

μ
M	(v), for any k, 	 ∈ {1, ..., K }. 	


The main issue is to determine whether or not the solutions of (2), (3a)–(3c) converge as
time becomes large to the equilibrium identified in Proposition 3.3. (Note that there exists
other measure-valued equilibria, like δx=x∗ ⊗ δv=0 where x∗ does not meet the support of the
σk’s.) This is performed in [5, 6, 29] for linear kinetic equations, with degenerate collision
kernels (in [35] these results are revisited within the viewpoint of semigroup theory and by
using general L1 compactness statements). We shall adapt the approach to deal with the
non linear problem (2), (3a)–(3c). (We point out that more quantitative estimates are derived
in [20].) To this end, we reinterpret the entropy as a relative entropy with respect to the
equilibrium state. We remind the reader that

H(F |G) = F ln(F) − G ln(G) − (1 + ln(G))(F − G) = F ln(F/G) − (F − G) ≥ 0

is non negative and vanishes iff F = G. Therefore, we set

H =
∫∫

H
(

f
∣
∣
∣
λ

μ
Me

)
dv dx +

K∑

k=1

Vk

∫
H(Mk |Me) dv.

Owing to the conservation properties, we actually have

d

dt
H = d

dt

{∫∫
f ln f dv dx +

K∑

k=1

Vk

∫
Mk ln

(λMk

μ

)
dv

}

.

Indeed, H can be cast as

H =
∫∫

f ln( f ) dv dx +
K∑

k=1

Vk

∫
Mk ln

(λMk

μ

)
dv

−
(∫∫

f ln
(λMe

μ

)
dv dx +

K∑

k=1

Vk

∫
Mk ln

(λMe

μ

)
dv

)

−
(∫∫

f dv dx +
K∑

k=1

Vk

∫
Mk dv −

∫∫
λMe

μ
dv dx −

K∑

k=1

Vk

∫
Me dv

)

.

By definition, the last term

∫∫
f dv dx +

K∑

k=1

Vknk − ne

(
|TN | λ

μ
+ V

)
= m0 − ne

(
|TN | λ

μ
+ V

)
= 0
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vanishes, while the second term reads

ln

(
λne

μ(2πθe)N/2 + |ue|2
2θe

)(∫∫
f dv dx +

K∑

k=1

Vknk

)

+ue

θe
·
(∫∫

v f dv dx +
K∑

k=1

Vknkuk

)

+ 1

2θe

(∫∫
v2 f dv dx +

K∑

k=1

Vknk Ek

)

which is a sum of conserved quantities. This quantityH can thus be used to evaluate how far
the solution is from the equilibrium. It is dissipated since d

dt H = −∑k Dk( f , Mk) ≤ 0.
That the solutions of (2), (3a)–(3c) converge to equilibrium follows from a contradiction-
compactness argument, that will be detailed in Sect. 4.

For further purposes, we shall need another estimate, uniform on time t ≥ 0, on higher
moments of the particle distribution function. To this end, we adapt the trick presented in [8]
(see also [36, Lemma 2]).

Lemma 3.4 Let f ∈ C([0,∞); L1(TN × RN )) satisfy

∂t f + v · ∇x f + σ f = σ g

with x 
→ σ(x) ≥ 0 in L∞, g ≥ 0, f
∣
∣
t=0 = f0 ≥ 0 and

∫∫
(1 + v2) f0 dv dx < ∞, sup

t≥0

∫∫
(1 + v2)g dv dx < ∞.

Then, there exists two constants C0, C1 such that for any 0 ≤ t1 ≤ t2 < ∞, we have
∫ t2

t1

∫∫
|v|3 f dv dx dt ≤ C0 + C1(t2 − t1) < ∞.

Proof We multiply the kinetic equation by the function

�(x, v) =
√
1 + v2

v · x√
1 + x2

remarking that

v · ∇x�(x, v) = v2

√
1 + v2

1 + x2

(

1 − (v · x)2

v2(1 + x2)

)

≥ v2

√
1 + v2

(1 + x2)3/2
.

Hence, we get
∫ t2

t1

∫∫
v · ∇x� f d dx dt =

∫∫
�( f (t2) − f (t1)) dv dx −

∫ t2

t1

∫∫
�σ(g − f ) dv dx dt .

It follows that

1

(1 + diam2(TN ))3/2

∫ t2

t1

∫∫
|v|3 f d dx dt ≤

∫ t2

t1

∫∫
v2

√
1 + v2

(1 + x2)3/2
f dv dx dt

≤
∫∫

|�|( f (t2) + f (t1)) dv dx + ‖σ‖∞
∫ t2

t1

∫∫
|�|(g + f ) dv dx dt

≤
∫∫

(1 + v2)( f (t2) + f (t1)) dv dx + ‖σ‖∞
∫ t2

t1

∫∫
(1 + v2)(g + f ) dv dx dt .
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Existence-uniqueness can be addressed by using the analysis of the BGK operator in [36]
and [37]. In particular, we can use the Lipschitz property of the application

(n, u, θ) 
−→ M[n, u, θ ](v) = n

(2πθ)N/2 exp
(

− |v − u|2
2θ

)
.

Given (n j , u j , θ j ), with j ∈ {1, 2} satisfying
0 < c� ≤ n j , θ j ≤ c�, |u j |,≤ c�

we have
∫

(1+v2)|M[n1, u1, θ1](v)−M[n2, u2, θ2](v)| dv ≤ C(|n1−n2|+|u1−u2|+|θ1−θ2|)

where C depends on c�, c�. Then, we consider the iteration scheme

∂t f (	+1) + v · ∇x f (	+1) =
K∑

k=1

σk(λM (	)
k μ − f (	+1)),

∂t

⎛

⎜
⎝

n(	+1)
k

n(	+1)
k u(	+1)

k
N
2 n(	+1)

k θ
(	+1)
k

⎞

⎟
⎠+ λ

⎛

⎜
⎝

n(	+1)
k

n(	+1)
k u(	+1)

k
N
2 n(	+1)

k θ
(	+1)
k

⎞

⎟
⎠ = μ

∫∫
σk

⎛

⎝
1
v

|v − u(	+1)
k |2/2

⎞

⎠ f (	+1) dv dx

Vk

with initial data

f (	+1) = fInit, n(	+1)
k = nInit,k, u(	+1)

k = uInit,k, θ
(	+1)
k = θInit,k .

We assume fInit ≥ 0, n� ≥ nInit,k ≥ n� > 0, |uInit,k | ≤ u�, and θ� ≥ θInit,k ≥ θ� > 0.
Therefore, we have f (	+1) ≥ 0 and for any 0 < T < ∞, we can find c�, c� > 0 (depending
on T ) such that

0 < c� ≤ n(	+1)
k , θ

(	+1)
k ≤ c�, |u(	+1)

k | ≤ c�,

∫∫
(1 + v2) f (	+1) dv dx ≤ c�.

Moreover, |n(	+1)
k − n(	)

k | + |u(	+1)
k − u(	)

k | + |θ(	+1)
k − θ

(	)
k | can be dominated by

‖σk‖∞
∫ t
0

∫∫
(1+v2)| f (	+1) − f (	)| dv dx . Therefore, the scheme is defined by a contraction

on the functional space C0([0, T0]; L1(TN × R
N , (1 + v2) dv dx)), for 0 < T0 < T < ∞

small enough; Picard’s theorem applies and provides the existence-uniqueness of the solu-
tion on [0, T0]. This solution can be extended on the entire interval [0, T ] owing to the
conservation laws.

Proposition 3.5 Let fInit ≥ 0 such that
∫∫

(1 + v2) fInit dv dx < ∞ and for k ∈ {1, ..., K },
positive nInit,k, θInit,k , and uInit,k ∈ R

N . Then there exists a unique solution of the associated
Cauchy problem (2), (3a)–(3c), with f ∈ C0([0, T ]; L1(TN × R

N )), f ≥ 0, nk, uk, θk ∈
C0([0, T ]), with nk, θk > 0.

The solution satisfies themass, momentum and energy conservation, as well as the entropy
dissipation, reproducing the arguments in [36]. Note that the local in time estimates of [37]
equally applies.
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4 Convergence to Equilibrium

We turn to the discussion of the convergence towards equilibrium and we are going to justify
the following statement.

Theorem 4.1 Let the initial data fInit, nk,Init, uk,Init, θk,Init for (2), (3a)–(3c) satisfy

∫∫
(1 + v2 + | ln( fInit)|) fInit dv dx +

K∑

k=1

Vk

∫
(1 + v2 + | ln(Mk,Init)|)Mk,Init dv < ∞.

Then the associated solution of the Cauchy problem satisfies

lim
t→∞

(∫∫
| f − Me|(t, x, v) dv dx

+
K∑

k=1

Vk
(|nk − ne| + |nkuk − neue| + |nk Ek − ne Ee|

)
(t)

)

= 0.

The arguments in [5, 6] rely on semi-group theory, which are well-adapted to handle
linear problems. Instead, we adapt the strategy introduced in [29], based on a contradiction
argument (it is likely that the alternative approach presented in [20] can provide a more
detailed information).

Preparation step. We suppose that we can find initial data ( fInit, nInit,k, uInit,k, θInit,k),
ε > 0 and an increasing sequence

(
tν
)
ν∈N such that the solution associated to this data

satisfies

‖ f (tν) − Me‖L1 +
K∑

k=1

Vk(|nk(tν) − ne| + |nkuk(tν) − neue|

+|nk Ek(tν) − ne Ee|) ≥ ε. (7)

Note that the left hand side can be bounded from above by a constant determined by the
initial data and the conservation laws of the equation. We set gν(t, x, v) = f (t + tν, x, v),
nν(t) = n(t + tν), uν(t) = u(t + tν), θν(t) = θ(t + tν) which still define a solution of
(2), (3a)–(3c), with the data (gν, nν, uν, θν)

∣
∣
t=0 = ( f , n, u, θ)(tν). Since t 
→ H (t) is non

increasing and non negative, it admits a limit as t → ∞
H∞ = inf{H (t), t ≥ 0} ∈ [0,H (0)].

(Note that H∞ = 0 would contradict (7).) Accordingly the functional

Hν(t) =
∫∫

H
(

gν

∣
∣
∣
λ

μ
Me

)
(t, x, v) dv dx +

K∑

k=1

Vk

∫
H(Mν,k, |Me)(t, v) dv

also tends to this limit as ν → ∞, independently of t ≥ 0. We have

Hν(t) − Hν(0) +
K∑

k=1

∫ tν+t

tν
Dk( f , Mk)(s) ds = 0

= Hν(t) − Hν(0) +
K∑

k=1

∫ t

0
Dk(gν, Mν,k)(s) ds,
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for any 0 < t < ∞. It implies that

lim
ν→∞

K∑

k=1

∫ t

0
Dk(gν, Mν,k)(t) dt = 0. (8)

Compactness step. Owing to conservation properties and entropy dissipation, we know
that

∫∫
(1 + v2 + ln(gν))gν dv dx +

K∑

k=1

Vk

∫
Mν,k ln(Mν,k) dv + nν,k + nν,k

2
(u2

ν,k + Nθν,k)

is bounded uniformly with respect to t ≥ 0, and ν ∈ N. By standard arguments based on
Dunford-Pettis’ theorem, we deduce that gν is weakly compact in L1((0, T ) × T

N × R
N ).

A similar conclusion applies to Mν,k for any k ∈ {1, ..., K }. With Lemma 3.4, we also get

∫ T

0

∫∫
|v|3gν dv dx dt =

∫ tν+T

tν

∫∫
|v|3 f dv dx dt ≤ C0 + C1T . (9)

Moreover, going back to the differential equations (3a)–(3c) satisfied by nν,k , nν,kuν,k , and
nν,k Eν,k we see that their time derivative are uniformly bounded too. According to the
Arzela-Ascoli theorem, the sequences

(
nν,k, nν,kuν,k, nν,k Eν,k

)
ν∈N are therefore compact

on C0([0, T ]) for any 0 < T < ∞.
Identification of the limit step. Up to subsequences, we infer that

gν⇀g weakly in L1((0, T ) × T
N × R

N ),

Mν,k⇀Zk weakly in L1((0, T ) × R
N ),

nν,k, nν,kuν,k, nν,k Eν,k → nk, pk = nkuk, Qk = nk(u2
k + Nθk)/2 uniformly on [0, T ].

Owing to (9), we have

∫ T

0

∫∫
ϕgν dv dx dt −−−→

ν→∞

∫ T

0

∫∫
ϕg dv dx dt,

for any locally bounded trial function ϕ : (0, T ) ×T
N ×R

N → R such that ϕ(t,x,v)

|v|3 → 0 as
|v| → ∞. Let Nk = {t ∈ (0, T ), nk(t) = 0}. We have

uν,k, θν,k −−−→
ν→∞ uk, θk a.e. on �Nk

(the complement set to Nk in (0, T )). Moreover, since high order moments of Mν,k are
bounded with respect to ν, we can pass to the limit in

lim
ν→∞

∫ T

0

∫
|v − uν,k |2Mν,kζ(t) dv dt = lim

ν→∞

∫ T

0
Nnν,kθν,kζ(t) dt

=
∫ T

0

∫
|v − uk |2Zkζ(t) dv dt

=
∫ T

0
Nnkθkζ(t) dt,

for any function ζ ∈ L∞((0, T )). It implies that θk > 0 a.e. on �Nk . Accordingly, we get

Mν,k⇀Zk = Mk a. e.�Nk × R
N .
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Since

nν,k =
∫

Mν,k dv −−−→
ν→∞ nk =

∫
Zk dv,

pointwise on [0, T ], Mν,k converges to 0 a. e. on Nk × R
d . Hence, we conclude that

Mν,k⇀Zk = Mk a. e. and strongly inL1((0, T ) × R
N ).

That the convergence holds strongly is a consequence of the combination of the weak-L1

and a. e. convergence. We deal with the entropy dissipation by reproducing the arguments in
[36, Proof of Theorem 1, Forth step], using the convexity of (a, b) 
→ (a − b) ln(a/b); we
obtain

lim inf
ν→∞

K∑

k=1

∫ T

0
Dk(gν, Mν,k)(t) dt ≥

K∑

k=1

∫ T

0
Dk(g, Mk)(t) dt ≥ 0.

Therefore, by using (8), we deduce that

K∑

k=1

∫ T

0
Dk(g, Mk)(t) dt = 0.

Lemma 3.2 tells us that g(t, x, v) = λ
μ

Mk(t, v) on (0, T ) × ωk × R
N . Moreover letting ν

tend to 0 in the evolution equation satisfied by gν , we obtain

∂t g + v · ∇x g = 0,

while the conserved quantities also pass to the limit (using (9) again) so that

∫∫
⎛

⎝
1
v

v2/2

⎞

⎠ gν dv dx +
K∑

k=1

Vk

⎛

⎝
nν,k

nν,kuν,k

nν,k Eν,k

⎞

⎠

=
∫∫

⎛

⎝
1
v

v2

⎞

⎠ fInit dv dx +
K∑

k=1

Vk

⎛

⎝
nInit,k

nInit,kuInit,k

nInit,k(u2
Init,k + NθInit,k)

⎞

⎠

=
∫∫

⎛

⎝
1
v

v2/2

⎞

⎠ g dv dx +
K∑

k=1

Vk

⎛

⎝
nk

nkuk

nk Ek

⎞

⎠ .

Applying Proposition 3.3, we conclude that g = λ
μ

Me, Mk = Me, and nk = ne, uk = ue,
θk = θe.

Now, let mν = |gν − λ
μ

Me|. It is bounded in L∞(0,∞, L1(TN × R
N )). Hence, we can

suppose that

mν

�
⇀ m weaky-�inL∞

w (0, T ;M1(TN × R
N ))

(the set of weakly-� measurable functions on [0, T ], with values in the space of bounded
measures; it identifies with the dual of L1(0, T ; C0

0 (T
N ×R

N )), see [22, Chap. 8, Sect. 18]).
It satisfies

∂t mν + v · ∇x mν =
K∑

k=1

σk(λMν,k − μgν)sgn
(

gν − λ

μ
Me

)

=
K∑

k=1

σk
(
λ(Mν,k − Me)sgn

(
gν − λ

μ
Me

)
− μmν

)
.
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We also infer that
{
t 
→ ∫∫

mνϕ dv dx, ν ∈ N
}
is relatively compact in C0([0, T ]) for any

ϕ ∈ C∞
c (TN × R

N ), and, in fact, mν is compact in C0([0, T ];M1(TN × R
N )-weak-�).

Since Mν,k converges to Me in L1((0, T ) × R
N ), as ν → 0, we get

∂t m + v · ∇x m = −
K∑

k=1

μσkm. (10)

It yields

m(t, x, v) = m(0, x − tv, v) exp

(

−
∫ t

0

K∑

k=1

μσk(x − sv) ds

)

.

Moreover, we have

mν = sgn
(

gν − λ

μ
Me

)((
gν − λ

μ
Mν,k

)
+ λ

μ
(Mν,k − Me)

)
.

On the one hand, we know that ‖Mν,k − Me‖L1 tends to 0 as ν → ∞. On the other hand,
owing to the elementary inequality

|√b − √
a|2 =

∣
∣
∣
∣

∫ b

a

ds

2
√

s

∣
∣
∣
∣

2

≤ 1

4
(b − a) ln(b/a)

we can use the entropy dissipation to obtain

K∑

k=1

∫ T

0

∫∫
σk

∣
∣
∣gν − λ

μ
Mν,k

∣
∣
∣ dv dx dt

≤
(

K∑

k=1

∫ T

0

∫∫
σk

∣
∣
∣

√
λ

μ
Mν,k + √

gν

∣
∣
∣
2
dv dx dt

)1/2

×
(

K∑

k=1

∫ T

0

∫∫
σk

∣
∣
∣

√
λ

μ
Mν,k − √

gν

∣
∣
∣
2
dv dx dt

)1/2

≤
(

K∑

k=1

‖σk‖∞
∫ T

0

∫∫ ( λ

μ
Mν,k + gν

)
dv dx dt

)1/2 ( K∑

k=1

∫ T

0
Dk(gν, Mν,k) dt

)1/2

≤
(

T (1 + λ/μ)m0 sup
k∈{1,...,K }

‖σk‖∞

)1/2 ( K∑

k=1

∫ T

0
Dk(gν, Mν,k) dt

)1/2

,

which tends to 0 by virtue of (8). Therefore, we actually have, for any k ∈ {1, ..., K },
σkm = 0.

Hence m vanishes on (0, T ) × ωk ×R
N , and (10) becomes ∂t m + v · ∇x m = 0. We deduce

that m = 0, by the unique continuation property. The initial data for the transport equation is
determined by the weak-� limit of mν(0) = |gν(0) − Me| in M1(TN × R

N ). However, the
uniform estimate on the energy tells us that the convergence holds tightly and, in particular

∫∫
mν(0) dv dx −−−→

ν→∞

∫∫
m(0) dv dx .

Since m = 0, this limit necessarily vanishes. Since nν,k , nν,kuν,k and nν,k Eν,k converge
uniformly on [0, T ] to the equilibrium values, we are led to a contradiction with (7). 	
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5 Linearized Problem: Rate of Convergence to Equilibrium

It is interesting to consider the linearized problem obtained by considering fluctuations
about the equilibrium state since linearity allows us to obtain more detailed information
on the asymptotic trend to equilibrium. Taking derivatives of the Maxwellian M(v) =

n
(2πθ)N/2 e−|v−u|2/(2θ) with respect to the parameters m = (n, u, θ), we get

∇mM(v) =

⎛

⎜
⎜
⎜
⎜
⎝

1

n
v − u

θ|v − u|2
2θ2

− N

2θ

⎞

⎟
⎟
⎟
⎟
⎠

M(v).

Let us denote

m̃ =
⎛

⎝
ñ
ũ
θ̃

⎞

⎠ 
−→ L̃(v) = ∇mMe(v) · m̃ = ∇mMe(v) ·
⎛

⎝
ñ
ũ
θ̃

⎞

⎠

=
(

ñ

ne
+ v − ue

θe
· ũ + (|v − ue|2 − Nθe)

θ̃

2θ2e

)

Me(v).

We observe that

∫
⎛

⎝
1
v

v2

⎞

⎠ L̃ dv =
⎛

⎝
ñ

neũ + ñue

N ñθe + Nne θ̃ + ñu2
e + 2neueũ

⎞

⎠ .

The linearized problem can be written

∂t f̃ + v · ∇x f̃ =
K∑

k=1

σk(λL̃k − μ f̃ ),

∂t ñk = μ

∫∫
σk f̃

dv dx

Vk
− λñk =

∫∫
σk(μ f̃ − λL̃k)

dv dx

Vk
,

ne∂t ũk =
∫∫

σk(v − ue)(μ f̃ − λL̃k)
dv dx

Vk
,

N

2
ne∂t θ̃k = μ

1

2

∫∫
σk(|v − ue|2 − Nθe) f̃

dv dx

Vk
− λ

N

2
ne θ̃k

= 1

2

∫∫
σk(|v − ue|2 − Nθe)(μ f̃ − λL̃k)

dv dx

Vk
, (11)

with L̃k = ∇mMe ·m̃k associated to m̃k = (ñk, ũk, θ̃k). The system conserves mass, momen-
tum and energy in the sense that

d

dt

⎧
⎨

⎩

∫∫
⎛

⎝
1

v − ue

|v − ue|2 − Nθe

⎞

⎠ f̃ dv dx +
K∑

k=1

Vk

⎛

⎝
ñk

neũk

Nne θ̃k

⎞

⎠

⎫
⎬

⎭
= 0.

The dissipation property follows from the following observation: on the one hand

1

2

d

dt

∫∫
f̃ 2

Me
dv dx = −

K∑

k=1

∫∫
σk(μ f̃ − λL̃k)

f̃

Me
dv dx
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and, on the other hand

1

2

d

dt
Vk

(
ñ2

k

ne
+ ne

θe
ũ2

k + Nne

2θ2e
θ̃2k

)

=
∫∫ ( ñk

ne
+ v − ue

θe
· ũk + (|v − ue|2 − Nθe

) θ̃k

2θ2e

)
σk(μ f̃ − λL̃k) dv dx

=
∫∫

σk
L̃k

Me
(μ f̃ − λL̃k) dv dx .

Therefore, we arrive at the following H-theorem

1

2

d

dt

{∫∫
f̃ 2

Me
dv dx +

K∑

k=1

λ

μ
Vk

(
ñ2

k

ne
+ neũ2

k

θe
+ Nne θ̃

2
k

2θ2e

)}

= −μ

K∑

k=1

∫∫
σk

| f̃ − (λ/μ)L̃k |2
Me

dv dx .

(12)

For any m̄ = (n̄, ū, θ̄ ) ∈ R × R
N × R,

f̃ (v) = λ

μ
m̄ · ∇mMe(v) = λ

μ

⎛

⎝
n̄
ū
θ̄

⎞

⎠ · ∇mMe(v), nk = n̄, uk = ū, θk = θ̄

is an equilibrium solution of the linearized equation. Given the initial data with

∫∫
⎛

⎝
1

v − ue

|v − ue|2 − Nθe

⎞

⎠ f̃Init dv dx +
K∑

k=1

Vk

⎛

⎝
ñInit,k

neũInit,k

Nne θ̃Init,k

⎞

⎠ =
⎛

⎝
n0

neu0

Nneθ0

⎞

⎠ ,

we select the equilibrium that fulfils the conservation law, namely m̄ is defined by the relation

∫∫
⎛

⎝
1

v − ue

|v − ue|2 − Nθe

⎞

⎠ λ

μ
m̄ · ∇mMe dv dx +

K∑

k=1

Vk

⎛

⎝
n̄

neū
Nne θ̄

⎞

⎠

=
( λ

μ
|TN | + V

)
⎛

⎝
n̄

neū
Nne θ̄

⎞

⎠ =
⎛

⎝
n0

neu0

Nneθ0.

⎞

⎠

Let us set

H =
∫∫ ∣

∣
∣ f̃ − λ

μ
m̄ · ∇mMe

∣
∣
∣
2 dv dx

2Me
+ 1

2

K∑

k=1

λ

μ
Vk Ae(m̃k − m̄) · (m̃k − m̄)

where m̃k = (ñk, ũk, θ̃k) and Ae stands for the following diagonal matrix

Ae =
⎛

⎝
1/ne 0 0
0 ne/θe 0
0 0 Nne/(2θ2e )

⎞

⎠ .
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Note that Aem̃k · m̃k = ñ2k
ne

+ neũ2k
θe

+ Nne θ̃
2
k

2θ2e
. By expanding this expression, we obtain

H = 1

2

∫∫
f̃ 2

Me
dv dx +

K∑

k=1

λ

μ
Vk

(
ñ2

k

ne
+ neũ2

k

θe
+ Nne θ̃

2
k

2θ2e

)

+ 1

2

∫∫
λ2

μ2 |m̄ · ∇mMe|2 dv dx

Me
+ 1

2

K∑

k=1

λ

μ
Vk Aem̄ · m̄

︸ ︷︷ ︸
independent of time

+ λ

μ

(∫∫
f̃ m̄

∇mMe

Me
dv dx +

K∑

k=1

Vk Aem̄ · m̃k

)

.

The last two terms combine as

n̄

ne

(∫∫
f̃ dv dx +

K∑

k=1

Vk ñk

)

+ ū

θe
·
(∫∫

(v − ue) f̃ dv dx + ne

K∑

k=1

Vk ũk

)

+ θ̄

2θ2e

(∫∫
(|v − ue|2 − Nθe) f̃ dv dx + Nne

K∑

k=1

Vk θ̃k

)

,

a sum of conserved quantities. Hence, we get

d

dt
H +

K∑

k=1

Dk( f̃ , L̃k) = 0,

where

Dk( f̃ , L̃k) = μ

∫∫
σk | f̃ − (λ/μ)L̃k |2 dv dx

Me

It is thus natural to work with initial data with “finite entropy”, which means here and below
that H (0) is finite. Like for the nonlinear problem, the functional H can be used to assess
how far the solution of the Cauchy problem is from the equilibrium state. Accordingly, the
same arguments can be repeated to justify the convergence towards equilibrium as time
becomes large. It turns out that establishing whether the convergence holds exponentially
fast is equivalent to proving an estimate on the dissipation rate. This viewpoint is inspired
from control theory [33]. Precisely, adapting [29, Lemma 11.1], the exponential decay can
be characterized as follows.

Lemma 5.1 The following assertions are equivalent:

(i) We can find constant C, γ > 0 such that, for any initial data with finite entropy, H (t) ≤
Ce−γ tH (0),

(ii) There exists M, T > 0 such that, for any initial data with finite entropy,

∫ T

0

K∑

k=1

Dk dt ≥ MH (0).

123



   40 Page 16 of 36 T. Goudon

Proof This claim applies for both the nonlinear and the linear problems; it only relies on the
dissipative and time-invariance properties of the problem.

Assume (i) and pick T0 > 0 such that Ce−γ T0 < 1/2. We infer that

∫ T0

0

K∑

k=1

Dk dt = H (0) − H (T0) ≥ (1 − Ce−γ T0)H (0) ≥ H (0)

2
,

which means that (ii) holds with T = T0 and M = 1
2 .

Assuming (ii) yields

H (T ) = H (0) −
∫ T

0

K∑

k=1

Dk dt ≤ (1 − M)H (0).

This relation already implies M ≤ 1 since H takes non negative values. If M = 1, then
H (T ) = 0 ≥ H (t) for t ≥ T and (i) holds for any C, γ > 0. If 0 < M < 1, we observe
that the solution evaluated at (t + τ) satisfies the same equation with the solution evaluated
at τ as Cauchy data. Accordingly, we get H (2T ) ≤ (1 − M)H (T ) ≤ (1 − M)2H (0),
and, by recursion, H (nT ) ≤ (1 − M)nH (0) for any n ∈ N. Set γ = − ln(1−M)

T > 0 and
C = 1

1−M = eγ T > 0. It provides the asserted estimate: for nT ≤ t < (n + 1)T , we have

H (t) ≤ H (nT ) ≤ (1 − 1/M)nH (0) ≤ e−γ nT H (0) ≤ Ce−γ tH (0).

	

The linearity can be further exploited to investigate conditions guaranteeing the exponen-

tial rate of convergence towards equilibrium. To this end, we can indeed adapt the techniques
developed in [5, 6] and [29]. This approach introduces geometrical constraints, inspired from
control theory [33]. Hence, let us introduce the following Lebeau constant

C− = sup
T >0

inf
(x,v)∈TN ×RN

1

T

∫ T

0

K∑

k=1

σk(x + tv) dt

We wish to establish the following analog to [29, Theorem 2.3].

Theorem 5.2 The following assertions are equivalent:

(i) C− > 0,
(ii) There exists c, γ > 0 such that for any f̃Init ∈ L2

M−1
e

and ñInit, ũInit, θ̃Init ∈ (R × R
N ×

R)K , we have H (t) ≤ ce−γ tH (0).

In fact, for our purposes this result has a quite negative interpretation: as pointed out in

[29], as far as supp(
∑K

k=1 σk) �= T
d , which naturally holds, C− = 0 and initial data can be

found such that the convergence to equilibrium holds at a rate which is non exponential.

Proof Let us start by assuming C− = 0. We are going to show that the control inequality of
Lemma 5.1 does not hold. It means that, for any T , ε > 0, we can find initial data verifying
H (0) = 1 and the associated solution of the Cauchy problem satisfies

∫ T
0

∑K
k=1 Dk dt ≤ ε.

That C− = 0 implies that, for any T , ε > 0, we can find (x0, v0) ∈ T
N × R

N such that∫ T
0

∑K
k=1 σk(x0 + tv0) dt ≤ εMe(v0)

3 . Let ζ : [0,∞) → [−1,+1] be in C∞
c ([0,∞)) and

such that

ζ(r) = 1 for 0 ≤ r ≤ 1, ζ(r) = 0 for r ≥ 2, and
∫ ∞

0
ζ(r)r N−1 dr = 0.
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For ν � 1, we set

f̃Init,ν(x, v) = ζ(ν|x − x0|)ζ(ν|v − v0|)
Cν

, m̃Init,ν = 0,

with Cν such that H (0) = 1, that is

C2
ν =

∫∫ ∣
∣ζ(ν|x − x0|)ζ(ν|v − v0|)

∣
∣2 dv dx

Me(v)
.

=
∫∫ ∣

∣ζ(|y|)ζ(|w|)∣∣2 dw dy

ν2N Me(w/ν + v0)

=
∫∫

|w|≤2, |y|≤2

∣
∣ζ(|y|)ζ(|w|)∣∣2 dw dy

ν2N Me(w/ν + v0)
.

On the integration domain, we have |w| ≤ 2 and

(2πθe)
N/2

ne
≤ 1

Me(w/ν + v0)
= (2πθe)

N/2

ne
exp
( |w/ν − (ue − v0)|2

2θe

)

≤ (2πθe)
N/2e8

ne
exp
( |ue − v0|2

θe

)

holds for such w’s. We deduce that we can find constants c∗, c∗ > 0 such that

c∗
ν2N

≤ C2
ν ≤ c∗

ν2N
.

Next, this allows us to make use of the Lebesgue theorem to find

lim
ν→∞ ν2N C2

ν = |Sn−1|2
Me(v0)

(∫ ∞

0
|ζ(r)|2r N−1 dr

)2

︸ ︷︷ ︸
:=α>0

.

We end this preparation step by claiming that f̃Init,ν converges weakly to 0 in L2(TN ×
R

N ; dv dx
Me

). Since f̃Init,ν has its norm equal to 1 in this space, it suffices to justify that

Iν =
∫∫

f̃Init,νϕ
dv dx

Me
−−−→
ν→∞ 0

for any ϕ ∈ C∞
c (TN × R

N ). Still by changing variables, we get

Iν =
∫∫

ζ(|y|)ζ(|w|) ϕ(y/n + x0, w/n + v0)

Me(w/n + v0)

dw dy

ν2N Cν

.

As ν → ∞, the integrand converges pointwise to ζ(|y|)ζ(|w|) ϕ(x0,v0)
αMe(v0)

and it is dominated by

|ζ(|y|)ζ(|w|)|‖ϕ‖L∞ (2πθe)
N/2e8

ne
e|ue−v0|2/θe which is integrable overTN ×R

N . The Lebesgue
theorem yields

lim
ν→∞

Iν
Cν

= ϕ(x0, v0)

αMe(v0)

(

|SN−1|
∫ ∞

0
ζ(r)r N−1 dr

)2

= 0,

by construction of the function ζ . Similar manipulations show that | f̃Init,ν |2 converges to
Me(v0)δ(x = x0) ⊗ δ(v = v0).

Let us denote ( f̃ν, m̃ν) the associated solution of (11). By the H-theorem, the sequence
( f̃ν)ν>0 is bounded in L∞(0,∞; L2(TN × R

N ; dv dx
Me

)), and
(
m̃k,ν

)
ν>0 are bounded in

L∞([0,∞)). Going back to the differential equations in (11), we see that the time derivative
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of
(
m̃k,ν

)
ν>0 are bounded in L∞([0,∞)) too. Therefore, for any 0 < T < ∞,

(
m̃k,ν

)
ν>0 are

compact in C0([0, T ]), and ( f̃ν)ν>0 is compact in C0([0, T ]; L2
1/Me

(TN ×R
N )−weak). We

can thus assume that ( f̃ν, m̃ν) converges to ( f̃ , m̃). Letting ν go to ∞, we infer that ( f̃ , m̃)

satisfies (11), thus associated to the initial data 0. In turn, by uniqueness of the solution of
the Cauchy problem f̃ = 0 and m̃ = 0. We turn to consider gν = f̃ 2ν , which satisfies

(∂t + v · ∇x )gν =
K∑

k=1

2σk(λL̃ν,k f̃ν − μgν). (13)

Integrating along characteristics, we obtain

gν(t, x, v)

= exp

(

−2μ
∫ t

0

K∑

k=1

σk(x − (t − s)v) ds

)

| fInit,ν |2(x − tv, v)

+
∫ t

0

K∑

k=1

exp

(

−2μ
∫ t

s

K∑

	=1

σ	(x − (t − τ)v) dτ

)

2λσk L̃ν,k f̃ν(s, x − (t − s)v, v) ds.

(14)

We wish to show that
∫ T
0

∑K
k=1 Dk( f̃ν, L̃ν,k) dt can be made small as ν → ∞. We are thus

led to consider

∫ T

0

K∑

k=1

Dk( f̃ν, L̃ν,k) dt

= μ

K∑

k=1

∫ T

0

∫∫
σk | f̃ν − (λ/μ)L̃ν,k |2 dv dx

Me
dt

= μ

K∑

k=1

∫ T

0

∫∫
σk gν

dv dx

Me
dt − 2μ

K∑

k=1

∫ T

0

∫∫
(λ/μ) f̃ν L̃ν,k

dv dx

Me
dt

+μ

K∑

k=1

∫ T

0

∫∫
σk(λ/μ)2|L̃ν,k |2 dv dx

Me
dt .

Since m̃k converges uniformly over [0, T ] to 0, L̃ν,k = m̃k · ∇mMe converges strongly in
L2
1/Me

((0, T ) ×T
N ×R

N ) to 0, and the last two terms tend to 0 as ν → ∞. We are only left
to study

Jν :=
K∑

k=1

∫ T

0

∫∫
σk gν

dv dx

Me
dt .
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According to (14), it can be split into two parts Jν = Kν + Lν , the former involving the
initial data, the latter the product L̃ν,k f̃ν . We obtain

0 ≤ Kν ≤
K∑

k=1

∫ T

0

∫∫
σk(x)| fInit,ν |2(x − tv, v)

dv dx

Me
dt

≤
K∑

k=1

∫ T

0

∫∫
σk(y + tv)| fInit,ν |2(y, v)

dv dy

Me
dt

≤
∫∫ (∫ T

0

K∑

k=1

σk(y + tv) dt

)

| fInit,ν |2(y, v)
dv dy

Me
.

As ν → ∞ the right hand side tends to

1

Me(v0)

(∫ T

0

K∑

k=1

σk(x0 + tv0) dt

)

≤ ε

3
.

Hence, we can exhibit N0 > 0 such that for any ν > N0, we have

0 ≤ Kν ≤ 2ε

3
.

We turn to

0 ≤ |Lν | ≤
K∑

k=1

∫ T

0

∫∫
2λσk(x, v)

(∫ t

0

K∑

	=1

σ	

∣
∣L̃ν,	 f̃ν

∣
∣(s, x − (t − s)v, v) ds

)
dv dx

Me
dt

≤ 2λK T
∫ T

0

∫∫ K∑

	=1

σ	

∣
∣L̃ν,	 f̃ν

∣
∣(s, x − (t − s)v, v)

dv dx

Me
ds

≤ 2λK T
K∑

	=1

∫ T

0

∫∫
σ	

∣
∣L̃ν,	 f̃ν

∣
∣(s, y, v)

dv dy

Me
ds

≤ 2λK T
K∑

	=1

∫ T

0

(∫∫
|L̃ν,	|2 dv dy

Me

)1/2 (∫∫
| f̃ν |2(s, y, v)

dv dy

Me

)1/2

ds

≤ 2λK T

(∫∫
| f̃Init,ν |2(y, v)

dv dy

Me

)1/2

×
K∑

	=1

∫ T

0

(∫∫
|m̃ν,	 · ∇mMe|2 dv dy

Me

)1/2

ds,

where we have used the H-theorem. Since
∫∫

|m̃ν,	 · ∇mMe|2 dv dy

Me
≤ |m̃ν,	||TN |

∫
|∇mMe|2 dv

Me

where m̃ν,	 converges uniformly to 0 over [0, T ], we conclude that 0 ≤ |Lν | ≤ ε
3 holds for

ν ≥ N0 provided N0 is large enough. We deduce that 0 ≤ Jν ≤ ε when ν ≥ N0 and the
control condition is denied.

Conversely, let us now assume C− > 0. (As said above, this assumption, which holds
for instance if the σk’s vanish only on a finite number of points, is not very interesting
for the problem we are concerned with. However, we will illustrate in Sect. 6 a slightly
different situation where it becomes relevant.) Taking advantage of the linearity, by using the
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conservation properties, we can replace

f̃ by f̃ − λ

μ
m̄ · ∇Meand

⎛

⎝
ñk

ũk

θ̃k

⎞

⎠ by

⎛

⎝
ñk

ũk

θ̃k

⎞

⎠− m̄

so that the solution of (11) is required to lie in

B0 =
{

( f̃ , (ñk, ũk, θ̃k)k∈{1,...,K }) ∈ L2
M−1

e
× (R × R

N × R)K ,

∫∫
f̃
∇Me

Me
dv dx +

K∑

k=1

Vk

⎛

⎝
ñk/ne

neũk/θe

ne θ̃k/θ
2
e

⎞

⎠ = 0

}

.

We argue by contradiction, assuming that, for any ν ∈ N \ {0}, we can find an initial data in
B0 with

‖ f̃ (ν)
Init‖2L2

1/Me
+

K∑

k=1

Vk Aem̃
(ν)
Init,k · m̃(ν)

Init,k = 1

such that the associated solution to (11) satisfies

∫ ν

0

K∑

k=1

Dk( f̃ (ν), m̃(ν)
k ) dt ≤ 1

ν
.

> From the H-theorem

‖ f̃ (ν)‖2(t)L2
1/Me

+
K∑

k=1

Vk Aem̃
(ν)
k (t) · m̃(ν)

k (t) +
∫ t

0

K∑

k=1

Dk( f̃ (ν), m̃(ν)
k ) ds

= ‖ f̃ (ν)
Init‖2L2

1/Me

+
K∑

k=1

Vk Aem̃
(ν)
Init,k · m̃(ν)

Init,k = 1

we know that f̃ (ν) is bounded in L∞(0,∞; L2
1/Me

(TN ] × R
N )) and the m̃(ν)

k are bounded
in L∞([0,∞)). Let 0 < T < ∞; we infer

1 ≥ ‖ f̃ (ν)‖(T )2
L2
1/Me

+
K∑

k=1

Vk Aem̃
(ν)
k (T ) · m̃(ν)

k (T ) ≥ 1 − 1

ν
(15)

provided ν > T .
Reproducing arguments detailed above, we can assume that f̃ (ν) converges to f̃ in

L∞
w (0,∞; L2

1/Me
(TN × R

N )) and, for any 0 < T < ∞, in C∞([0, T ]; L2
1/Me

(TN ×
R

N ) − weak) while m̃(ν)
k converges to m̃k in C0([0, T ]). Since (x, v) 
→ 1(x)v2 lies in

L2
Me

(TN × R
N ), we deduce that the moments of f̃ (ν) also pass to the limit, uniformly over

[0, T ], and, since at any time ( f̃ (ν), (m̃(ν)
k (t))k∈{1,...,K }) ∈ B0, ( f̃ (t), (m̃k(t))k∈{1,...,K })

belongs to B0. We have limν→∞
∑K

k=1

∫ T
0 Dk( f̃ (ν), m̃(ν)

k ) dt = 0. By convexity, it follows
that

K∑

k=1

∫ T

0
Dk( f̃ , m̃k) dt = 0.
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It implies that σk(μ f̃ − λm̃k · ∇mMe) = 0, for any k ∈ {1, ..., K }. Hence letting ν go to ∞
in the system (11) satisfied by ( f̃ν, (m̃k)k∈{1,...,K }), we obtain that the limit satisfies

(∂t + v · ∇x ) f̃ = 0,

( f̃ (t), (m̃k(t))k∈{1,...,K }) ∈ B0,

f̃ = m̃k · ∇mMe on(0, T ) × ω × R
N for allk ∈ {1, ..., K }.

The unique continuation principle (direct adaptation of Proposition 3.3 to the linearized
problem) then implies that f̃ = 0 and m̃ = 0, the unique equilibrium solution in B0.

Next, we set g(ν) = | f̃ (ν)|2, which satisfies (13). Accordingly, formula (14) applies,
which can be used to further estimate

∫
g(ν) dv dx

Me
= ‖| f̃ (ν)|2‖2

L2
1/Me

. By definition, we can

pick 0 < T0 < ∞ such that

∫ t

0

K∑

k=1

σk(x + sv) ds ≥ t
C−

2
,

holds for any t ≥ T0, and any (x, v) ∈ T
N × R

N . It follows that, for t ≥ T0,

0 ≤
∫∫

exp

(

−2μ
∫ t

0

K∑

k=1

σk(x − (t − s)v) ds

)

| f (ν)
Init |2(x − tv, v)

dv dx

Me(v)

=
∫∫

exp

(

−2μ
∫ t

0

K∑

k=1

σk(y + sv) ds

)

| f (ν)
Init |2(y, v)

dv dy

Me(v)

≤
∫∫

e−μC−t | f (ν)
Init |2(y, v)

dv dy

Me(v)
≤ e−μC−t‖ f (ν)

Init‖L2
1/Me

≤ e−μtC−
.

Next, we estimate

∫∫ ∣
∣
∣

∫ t

0

K∑

k=1

exp

(

−2μ
∫ t

s

K∑

	=1

σ	(x − (t − τ)v) dτ

)

×2λσk L̃(ν)
k f̃ (ν)(s, x − (t − s)v, v) ds

∣
∣
∣
dv dx

Me

≤
∫∫ ∫ t

0

K∑

k=1

2λσk
∣
∣L̃(ν)

k f̃ (ν)
∣
∣(s, x − (t − s)v, v) ds

dv dx

Me

≤ 2
K∑

k=1

∫ t

0

(∫∫
|m̃(ν)

k |2|∇mMe|2 dv dx

Me

)1/2 (∫∫
| f̃ (ν)|2 dv dx

Me

)1/2

ds

≤ 2‖∇mMe‖L2
1/Me

× t sup
0≤s≤t

K∑

k=1

|m̃(ν)
k |(s).

We start by picking T > T0 such that e−μtC− ≤ 1
4 . Next, bearing in mind that m̃(ν)

k
converges to 0 uniformly on [0, T ], there exists N ∈ N such that for any ν ≥ N , we
have 2‖∇mMe‖L2

1/Me
× T sup0≤s≤T

∑K
k=1 |m̃(ν)

k | ≤ 1
4 . We can further choose N such that

∑K
k=1 Vk Aem̃

(ν)
k (T ) · m̃(ν)

k (T ) ≤ 1
8 . It follows that ‖ f (ν)‖(T )2

L2
1/Me

≤ 1
2 for ν ≥ N , which

contradicts (15) (when ν ≥ 8). 	
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6 Numerical Simulations

We check on numerical grounds the properties of the model. It is worthwhile to compare the
behavior of solutions of the system (2), (3a)–(3c) with the standard BGK system

∂t f + v · ∇x f = λ

K∑

k=1

σk × (M f − f ) (16)

where

M f (t, x, v) = n f (t, x)

(2πθ f (t, x))N/2 exp
(

− |v − u f (t, x)|2
2θ f (t, x)

)
,

is the Maxwellian with macroscopic parameters determined by moments of the distribution
f

⎛

⎝
n f

n f u f

Nn f θ f

⎞

⎠ =
∫
⎛

⎝
1
v

|v − u f |2

⎞

⎠ f dv =
∫
⎛

⎝
1
v

|v − u f |2

⎞

⎠M f dv.

As we shall see, despite a formal analogy, the behaviour of (2), (3a)–(3c) and (16) can be
significantly different. We work in the one dimensional framework with periodic boundary
conditions. This situation is certainly specific since for any v �= 0 the trajectory x − tv
joins two scatterers. The domain is the slab (−L,+L), with a trap located in ω = [a, b] ∈
(−L,+L). As form function σ , we simply use the characteristic function of the trap.We use a
very basic numerical scheme;we refer the reader to [19] for a detailed numerical investigation
of relaxation for degenerate linear Boltzmann equations in the two-dimensional framework.
In particular, [19] brings out effects of the existence of free trajectories on the relaxation
rate, which is not exponential when such trajectories do exist. Here, counterexamples to
the exponential decay can be constructed, except in the exceptional configuration where
⋃K

k=1 ωk = T
N , see also [6] and [29, Corollary 8.1, Theorem 8.2]; in the one dimensional

framework, we proceed as follows. We consider a segment I0 = [x0 − h, x0 + h] which does
not intersect the trap:

min(x0 + h − a, x0 − h − b − L) = δ > 0.

We observe that

meas
({(x, v) ∈ I0 × [−VM ,+VM ], τ (x, v) > t}) ≥ C

1 + t
, (17)

where τ(x, v) is the exit time: τ(x, v) = inf{s ≥ 0, x +sv /∈ ω}. (It can be interpreted as the
time necessary to reach a trap when starting from a free region.) Indeed, the trap cannot be
reached for times lesser than δ/VM .When t ≥ δ/VM , the admissible set in the phase plane has
a trapezoidal shape, determined by the slope 1/t , see Fig. 1. Construction of counterexamples
to the exponential decay to equilibrium use this estimate and rely on estimates on the time
of first collision, as pointed out in [25] for standard Lorentz gas problem and in [5, 6].

For the simulations, we set L = 1.5, and a single trap in centred at the position x = 0.
We perform all simulations with μ = 1, and we choose several values for λ. We also make
the size of the trap vary to discuss how it influences the relaxation to equilibrium. The initial
data for the trap is given by

nInit = 0.001, uInit = 0, θ Init = 1.
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Fig. 1 Admissible domain defined by
({(x, v) ∈ I0 × [0, +1], τ (x, v) > t})

For the particles, we work either with

f Init(x, v) =
(
exp
(

− |x − 1/2|2
.2

)
+ exp

(
− |x + 1/5|2

.1

))

×
((

exp
(

− |v − 2|2
)

+ exp
(

− |v + 5/2|2
.1

))
,

which significantly meets the trap, or with

f Init(x, v) =
(
exp
(

− |x − 1/2|2
.2

)
+ exp

(
− |x + 1/5|2

.1

))

×1[L/5+.4,L/5+.6](x) × exp
(

− |v − .01|2
.05

)
,

which is peaked far from the trap, with relatively small velocities. >From the data, the
equilibrium states for the trap or the BGK models are determined based on the conservation
laws of the equations.

The results confirm the computations made above: the total mass, total momentum, and
total energy are conserved, see Fig. 2 for typical results, the entropy decays, see Fig. 3, the
concentration of trapped particles tends to the same constant, the particles distribution tends
to a Maxwellian profile with macroscopic parameters completely determined by the initial
state, see Fig. 4. On the latter figure, we observe that the profile of the solution is indeed
close to the expected equilibrium state, with discrepancies far from the trap and for the small
velocities, corresponding to particles having poor interactions with the trap. This is made
more evident on Fig. 5 which show at several times the profile of the space average of the
particle distribution function: it tends to the expected equilibrium solution, except a sensitive
gap for small velocities (the presence of the gap is not contradictory with convergence in L2

norm towards equilibrium).
The role of the geometry and the parameters is further illustrated in Figs. 6 and 7. In Fig. 6

we make the size of the trap vary. The smaller the trap, the slower the convergence. The
convergence is significantly slower with the peaked data. The exponential decay is restored
when the trap fully fills the domain, whatever the shape of the initial data. In Fig. 7, we make
λ vary. The BGKmodel is directly impacted by changing the value of λ, which has a different
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Fig. 2 Trap = [−L/5, L/5]. Evolution of the mass, momentum and energy

Fig. 3 Evolution of the entropy for the BGK (left) and the trap (right) model with a trap filling the domain
(top) or a trap that occupies a portion of the domain (bottom)

interpretation for the trap model. This set of simulations again shows that the convergence is
significantly slower for the peaked data.

In order to further illustrate the role of the parameters and of the geometry, we consider the
simplest problem where there are only mass exchanges and where particles have velocities
±VM . Namely, this two-velocity trap model reads

∂t f± ± VM∂x f± = σ
(
λ

n

2
− μ f±

)
,

∂t n =
∫ L

−L

σ

V
(λn − μ f+ − μ f−) dx, (18)
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Fig. 4 Trap = [−L/5, L/5]. Solution at the final time evaluated at x0 = −1.4, xmid = 0, and space average
of the solution (Mav)

Fig. 5 Space average of the solution at time T = T f in ∗ k/8, k ∈ {1, ..., 8}, T f in = 25
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Fig. 6 Evolution of the error, for several sizes of the trap: BGK model (top left), trap model (top right).
Evolution of the error for the trap model with a peaked data, for several sizes of the trap (bottom left) and for
a trap filling the domain (bottom right)

Fig. 7 Evolution of the error, for several values of λ. The trap occupies the subdomain (−L/5, L/5). BGK
model (left), trap model (middle), trap model with a peaked data (right)

with V = ∫ L
−L σ(x) dx .We infer that the asymptotic behavior is described by the equilibrium

distribution

f e± = λne

2μ
, ne = M0

2Lλ/μ + V
,

where M0 is the initial mass, conserved by the equation

M0 =
∫ L

−L
f+ dx +

∫ L

−L
f− dx + V n.
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Fig. 8 Two-velocity linear models: evolution of the L2 error to the equilibrium for the BGK model (left) and
the trap model (right), for several λ

Fig. 9 Two-velocity linear models: evolution of the L2 error to the equilibrium for the BGK model (left) and
the trap model (right), for several VM

The BGK counterpart of this model reads

∂t f± ± VM∂x f± = λσ
( f+ + f−

2
− f±

)
. (19)

Due to the fact that the velocities have modulus VM > 0, a particle at distance d from the
obstacle will reach it in a time d

VM
. In turn, there is no obstruction to the exponential rate of

convergence towards equilibrium and indeed we see that now C− > 0. We refer the reader
to [5] for the analysis of this situation for the BGK model, see also [35]. Figures 8, 9 and
10 illustrate the behavior of the error to the equilibrium when we make one of the parameter
vary: with VM = 0.8, a size of trap 2L

5 and λ varies (Fig. 8), with λ = 0.8, a size of trap 2L
5

and VM varies (Fig. 9) and with VM = 0.8, λ = 0.8 and the size of the trap varies (Fig. 10). In
all cases, and for both models, we observe an exponential rate of convergence. As expected,
the larger the speed VM or the size of the trap, the faster the convergence. For the BGKmodel,
increasing λ makes also the convergence faster; this is the opposite for the trap model (but λ
does not have exactly the same meaning).
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Fig. 10 Two-velocity linear models: evolution of the L2 error to the equilibrium for the BGKmodel (left) and
the trap model (right), for several size of the trap

7 AModel with Memory Based onMixture Modeling

We consider the same geometrical setting, but we describe differently the dynamics of the
traps. The model we propose is inspired from the derivation of BGK-type equations, see [4],
for describing gas mixtures [2, 9]. The particles trapped in the kth scatterer are described by
	k(t, a, v) the distribution of particles that entered the kth trap with velocity v and that have
spent an “age” a ≥ 0 in this trap. Particles can be re-emitted by the traps, according to an
emission law characterized by the rate λ(a) of emission of trapped particles with age a. The
function a 
→ λ(a) is non negative; we also suppose that

∫ ∞

0
λ(a) da = +∞.

Let us set

�(a) =
∫ a

0
λ(α) dα and p(a) = λ(a)e−�(a)

which are non negative and satisfy

�(0) = 0,
∫ ∞

0
p(a) da = −

∫ ∞

0

d

da

[
e−�(a)

]
da = 1.

Therefore, p can be interpreted as the probability density of the re-emission time. The def-
inition of the interaction between particles and traps requires to introduce the following
macroscopic quantities associated to f and 	k

⎛

⎝
n

nu
nu2 + Nnθ

⎞

⎠ (t, x) =
∫
⎛

⎝
1
v

v2

⎞

⎠ f (t, x, v) dv,

and, similarly,
⎛

⎝
nk

nkuk

nku2
k + Nnkθk

⎞

⎠ (t) =
∫ ∞

0

∫
⎛

⎝
1
v

v2

⎞

⎠ 	k(t, a, v)λ(a) dv da.

(Beware of the weight λ in the latter definition.) We can interpret n, u (resp. nk, uk) as
the macroscopic density and bulk velocity of free particles (resp. of potentially re-emitted
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particles in the kth trap). We observe that

Nnθ(t, x) =
∫

|v − u(t, x)|2 f (t, x, v) dv,

and

Nnkθk(t, x) =
∫ ∞

0

∫
|v − uk(t)|2	k(t, a, v)λ(a) dv da,

which shows that θ and θk are non negative; they can be interpreted as temperatures. We now
combine these quantities as follows

n̄k = n + nk,

n̄k ūk = nu + nkuk,

n̄k ū2
k + Nn̄k θ̄k = nu2 + nku2

k + N (nθ + nkθk).

It might seem weird to mix up quantities which are space-dependent and defined on the
whole space, with quantities that depend only on t and are attached to a given trap, but, as
we shall see below, these quantities will be considered on the trap k only, where they are
certainly meaningful. The physical meaning of θ̄k as a temperature makes sense, owing to
the following claim.

Lemma 7.1 The quantity θ̄k is non negative.

Proof We expand the following integrals, which are obviously non negative
∫

|v − ūk |2 f dv +
∫ ∞

0

∫
|v − ūk |2	kλ dv da

=
∫

v2 f dv +
∫ ∞

0

∫
v2	kλ dv da

−2ūk ·
(∫

v f dv +
∫ ∞

0

∫
v	kλ dv da

)

+ ū2
k

(∫
f dv +

∫ ∞

0

∫
	kλ dv da

)

= nu2 + Nnθ + nku2
k + Nnkθk − 2ūk · (nu + nkuk) + ū2

k(n + nk)

= n̄ū2
k + Nn̄k θ̄k − n̄ū2

k = Nn̄k θ̄k ≥ 0.

	

Let

M̄k(t, x, v) = (2πθ̄k(t, x))−N/2 exp

(

−|v − ūk(t, x)|2
2θ̄k(t, x)

)

.

The evolution of the particle distribution function is driven by the following BGK-like equa-
tion

∂t f + v · ∇x f =
∑

k

σk(nk M̄k − f ). (20)

Trapped particles are subjected to aging, and emission

∂t	k + ∂a	k = −λ	k, (21)

completed by

	k
∣
∣
a=0 =

∫
σk

Vk
nM̄k dx . (22)
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Equation (21) is a transport equation in age space, with a loss term that corresponds to the
re-emission of trapped particles. The boundary condition (22) defines the trapped particles
with age 0: their are given by the density of free particles that belong to the kth trap, but these
trapped particles are instantaneously thermalized to the average state defined by ūk, θ̄k . Simi-
larly, in (20) particles are re-emitted with the density nk , in a state defined by the Maxwellian
M̄k . As long as particles remain within the trap, their dynamics is simply disregarded : the
model does not pay attention to the evolution of their position and velocity. The system
(20)–(22) is endowed by initial condtions

f
∣
∣
t=0 = fInit, 	k

∣
∣
t=0 = 	k,Init. (23)

7.1 Conservation Properties

We shall see that the model conserves mass, momentum and energy.

Proposition 7.2 We have

d

dt

⎧
⎨

⎩

∫∫
⎛

⎝
1
v

v2

⎞

⎠ f dv dx +
∑

k

Vk

∫ ∞

0

∫
⎛

⎝
1
v

v2

⎞

⎠ 	k dv da

⎫
⎬

⎭
= 0.

Proof We start by considering the equations for the macroscopic densities, integrating (20)
over the variable v,

∂t n + ∇x · (nu) =
∑

k

σk(nk − n).

In the trap, we have

d

dt

(∫ ∞

0

∫
	k dv da

)

=
∫

σk

Vk
(n − nk) dx .

This is obtained by integrating (21) over the variables v and a, and using (22). We conclude
with the mass conservation property

d

dt

{∫∫
f dv dx +

∑

k

Vk

∫ ∞

0

∫
	k dv da

}

= 0.

A similar computation yields the momentum conservation

d

dt

{∫∫
v f dv dx +

∑

k

Vk

∫ ∞

0

∫
v	k dv da

}

=
∑

k

∫
σk(nkūk − nu) dx +

∑

k

∫
σknūk dx −

∑

k

Vknkuk

=
∑

k

∫
σk
(
(nk + n)ūk − (nu + nkuk)

)
dx = 0.
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Finally, we turn to the evolution of the kinetic energy

d

dt

{∫∫
v2 f dv dx +

∑

k

Vk

∫ ∞

0

∫
v2	k dv da

}

=
∑

k

∫
σk
(
nk(ū

2
k + N θ̄k) − n(u2 + Nθ)

)
dx

+
∑

k

∫
σkn(ū2

k + N θ̄k) dx −
∑

k

Vk

∫ ∞

0

∫
v2	kλ dv da

=
∑

k

∫
σk(n + nk)(ū

2
k + N θ̄k) dx −

∑

k

∫
σk
(
n(u2 + Nθ) + nk(u

2
k + Nθk)

)
dx

= 0.

	


7.2 Dissipation Properties

We are going to identify an entropy functional which is dissipated by the equation.

Proposition 7.3 We have

d

dt

{∫∫
f ln( f ) dv dx +

∑

k

Vk

∫ ∞

0

∫
	k(� + ln(	k)) dv da

}

+ D ≤ 0,

where D ≥ 0 vanishes iff f = nk M̄k and 	k = e−�nM̄k on the sets ωk .

Proof Let us start by computing

d

dt

∫∫
f ln f dv dx =

∑

k

∫
σk(nk − n) dx

+
∑

k

∫∫
σk(nk M̄k − f ) ln

( f

nk M̄k

)
dv dx

+
∑

k

∫∫
σk(nk M̄k − f ) ln(nk M̄k) dv dx

︸ ︷︷ ︸
R1

.

By expanding

ln(nk M̄k) = ln(nk) − N

2
ln(2πθ̄k) − |v − ūk |2

2θ̄k
,

we can rewrite the last term as follows

R1 =
∑

k

∫
σk(nk − n)

(
ln(nk) − ln(2πθ̄k)

)
dx

−
∑

k

∫
σk

2θ̄k

(
nk N θ̄k − nu2 − Nnθ + 2ūk · nu − nū2

k

)
dx .
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Next, taking into account (22), we have

d

dt

∑

k

Vk

∫ ∞

0

∫
	k ln 	k dv =

∑

k

∫ (∫
σknM̄k dx ln

( ∫ σk

Vk
nM̄k dx

))

dv

−
∑

k

Vk

∫ ∞

0

∫
	k dv da −

∑

k

Vk

∫ ∞

0

∫
λ	k ln(	k) dv da.

The last term recast as

−
∑

k

∫ ∞

0

∫∫
σkλe−� 	k

e−�

[
ln
( 	k

e−�

)
− �

]
dv da dx

=
∑

k

∫ ∞

0

∫∫
σkλe−�

(

nM̄k ln(nM̄k) − 	k

e−�
ln
( 	k

e−�

))

dv da dx

−
∑

k

∫∫
σknM̄k ln(nM̄k) dv dx +

∑

k

Vk

∫ ∞

0

∫
λ�	k dv da.

Finally, we get

d

dt

∑

k

Vk

∫ ∞

0

∫
�	k dv =

∑

k

∫ ∞

0

∫
σkλ(1 − �)	k dv dx

=
∑

k

Vknk −
∑

k

Vk

∫ ∞

0

∫
λ�	k dv.

Now, we are going to use Jensen’s inequality: since
∫

σk
Vk

dx = 1, we have

∫ (∫
σk

Vk
nM̄k dx ln

( ∫ σk

Vk
nM̄k dx

))

dv ≤
∫∫

σk

Vk
nM̄k ln(nM̄k) dv dx .

Therefore, we are led to

d

dt

∑

k

Vk

∫ ∞

0

∫
	k(� + ln 	k) dv da

≤
∑

k

∫ ∞

0

∫∫
σkλe−�

(
nM̄k ln(nM̄k) − 	k

e−�
ln
( 	k

e−�

))
dv dx .

(24)

We wish to make a relative entropy appear, namely we set

H(F |G) =
∑

k

∫ ∞

0

∫∫
σkλe−�

(
F ln(F) − G ln(G) − (1 + ln(G))(F − G)

)
dv dx .

Clearly, we have H(F |G) ≥ 0, and H(F |G) vanishes iff F = G. The right hand side of
(24) can be recast as

−H
( 	k

e−�
|nM̄k

)
−
∑

k

∫ ∞

0

∫∫
σkλe−�

( 	k

e−�
− nM̄k

)
dv dx

−
∑

k

∫ ∞

0

∫∫
σkλe−� ln(nM̄k)

( 	k

e−�
− nM̄k

)
dv dx

= −H
( 	k

e−�
|nM̄k

)
−
∑

k

∫
σk(nk − n) + R2

123



A Model of Particles Interacting with Thermal Traps Page 33 of 36    40 

where

R2 = −
∑

k

∫ ∞

0

∫∫
σkλe−�

( 	k

e−�
− nM̄k

)(
ln(n) − |v − ūk |2

2θ̄k
− N

2
ln(2πθ̄k)

)
dv dx

= −
∑

k

∫
σk(nk − n)

(
ln(n) − N

2
ln(2πθ̄k)

)
dx

+
∑

k

∫
σk

nk

2θ̄k
(u2

k + ū2
k − 2ūk · uk + N θ̄k) dx −

∑

k

∫
σkn

N θ̄k

2θ̄k
dx .

We observe that R1 + R2 = 0. We conclude that

d

dt

{
∑

k

Vk

∫ ∞

0

∫
	k(� + ln 	k) dv da +

∫∫
f ln( f ) dv dx

}

≤ −H
( 	k

e−�
|nM̄k

)
−
∑

k

∫∫
σk( f − nk M̄k) ln

( f

nk M̄k

)
dv dx

+
∑

k

∫
σk(nk − n) ln(nk − n) dx .

Let us denote by (−D) the right hand side. The two first terms are non positive, the third
term is non negative. However, we can use the Jensen inequality again. Let F, G be given
non negative functions defined on RD . We denote 〈G〉 = ∫ G dy. We write

(〈F〉 − 〈G〉) ln
( 〈F〉

〈G〉
)

= 〈G〉
(∫

F

G

G

〈G〉 dy − 1

)

ln
( ∫ F

G

G

〈G〉 dy
)

= 〈G〉�
(∫

F

G
dμ

)

,

with the strictly convex function �(s) = (s − 1) ln(s) and the probability measure dμ(y) =
G dy
〈G〉 . We get

(〈F〉 − 〈G〉) ln
( 〈F〉

〈G〉
)

≤ 〈G〉
∫

�
( F

G

)
dμ =

∫
(F − G) ln

( F

G

)
dy.

Moreover equality holds iff F is proportional to G. It follows that D ≥ 0. Eventually, we
observe that D vanishes when the following two relations hold for every k and a. e (x, a, v):
	k

e−� = nM̄k and f
nk M̄k

= ck , with ck a fixed constant in R. Combining these conditions, we

get nk = n and ck = 1. Therefore, D vanishes iff a. e. on (0, T ) × (0,∞) × ωk × R
N

	k = e−�nM̄k = e−� f .

It follows that f satisfies the free transport equation ∂t f + v ·∇x f = 0. The unique continu-
ation principle holds: we deduce that the macroscopic quantities in the traps are independent
of k, and the distributions 	k are all equal to the same Maxwellian n̄ M̄e−�. 	

Remark 7.4 Similar computations can be performed by assuming that the re-emission rate λ

depend on k. We find a similar conclusion, the only difference if the fact that in this case the
distributions 	k depend on k through the factor e−�k : 	k = e−�k nM̄k = e−�k f .

Remark 7.5 Some simplification occur in the specific case where λ(a) = λ > 0 is constant.
In other words the re-emission time follows the exponential law with parameter λ. In such a
case, we can simply work with the quantity

	k(t, v) =
∫ ∞

0
	k(t, a, v) da.
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The system indeed becomes

(∂t f + v∂x f )(t, x, v) =
∑

k

σk(x)

(

λM̄k(t, x, v)

∫ ∞

0

∫
	k(t, v�) dv� − f (t, x, v)

)

,

∂t	k(t, v) =
∫

σk

Vk
(x) f (t, x, v) dx − λ	k(t, v). (25)

In this specific case,we can in fact disregard themicroscopic equation for the trappedparticles.
Indeed, we simply have

∂t nk = λ

Vk

∫
σk(n − nk) dx,

∂t (nkuk) = λ

Vk

∫
σk(nu − nkuk) dx,

∂t (nku2
k + Nnkθk) = λ

Vk

∫
σk(nu2 + Nnθ − nku2

k − Nnkθk) dx .

Together with the definition of M̄k and the evolution equation for f , it constitutes a closed
system of equations, which coincides with (3a)–(3c) with μ = λ.

7.3 Stationary Solutions

Let us detail the expression of the stationary solutions. In order to keep a finite total mass,
these manipulations are meaningful when working on a bounded domain, like the torus. On
the one hand, with (20), we get f = nk M̄k (which thus does not depend on k), which implies
n = nk (which thus naturally does not depend on x neither), nu = nkūk , nu2 + Nnθ =
nkū2

k + Nnk θ̄k , and thus u = ūk , θ = θ̄k (which thus do not depend on k). On the other hand,
(21) becomes ∂a	k = −λ	k , and it yields, together with (22), 	k(a, v) = e−�(a)

∫
σknM̄k dx .

Accordingly, by using space homogeneity, we are led to nkuk = nuk = ∫
σknūk dx = nu,

nku2
k + Nnkθk = n(u2

k + Nθk) = ∫ σkn(ū2
k + N θ̄k) dx = n(u2 + Nθ). We thus find a space

homogeneous solution, parametrized by constants macroscopic quantities (n, u, θ):

f (v) = n

(2πθ)N/2 exp
(

− |v − u|2
2θ

)
, 	k(a, v) = e−�(a) f (v).

The value of the parameters is prescribed by the conservation relations. To be more specific,
let us denote by μ ∈ (0,∞) the volume of the domain, which is supposed to contain K traps
with total effective volume V . We set

C = μ + V 〈e−�〉.
Then, with

⎛

⎝
n0

n0u0

n0(u2
0 + Nθ0)

⎞

⎠ =
∫∫

⎛

⎝
1
v

v2

⎞

⎠ f dv dx +
K∑

k=1

Vk

∫ ∞

0

∫
⎛

⎝
1
v

v2

⎞

⎠ 	k dv da

that define initial mass, velocity and temperature, we arrive at

Cn = n0, Cnu = n0u0, Cn(u2 + Nθ) = n0(u
2
0 + Nθ0),

and thus

Cn = n0, u = u0, θ = θ0.
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As seen above, this equilibrium state makes the entropy dissipation vanish, too. Thus it
appears as a natural candidate to attract the solutions for large times.
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