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KINETIC SCHEMES ON STAGGERED GRIDS FOR

BAROTROPIC EULER MODELS: ENTROPY-STABILITY

ANALYSIS

FLORENT BERTHELIN, THIERRY GOUDON, AND SEBASTIAN MINJEAUD

Abstract. We introduce, in the one-dimensional framework, a new scheme of
finite volume type for barotropic Euler equations. The numerical unknowns,

namely densities and velocities, are defined on staggered grids. The numer-

ical fluxes are defined by using the framework of kinetic schemes. We can
consider general (convex) pressure laws. We justify that the density remains

non negative and the total physical entropy does not increase, under suitable

stability conditions. Performances of the scheme are illustrated through a set
of numerical experiments.

1. Introduction

This work is concerned with the numerical solution of the following system of
conservation laws

∂tρ+ ∂x(ρV ) = 0,(1.1)

∂t(ρV ) + ∂x(ρV 2 + p(ρ)) = 0.(1.2)

This is the Euler model for compressible fluids (in the absence of external forces)
with a barotropic equation of state: the pressure p(ρ) is a function of the density
only. The unknowns are the density ρ and the velocity V of the fluid. We restrict
the discussion to the one-dimension framework, but the ideas can be extended to
higher dimensions. As a relevant specific case we can deal with isentropic flows for
polytropic ideal gases where p(ρ) = kργ , for some constants γ > 1 and k > 0.

We set U = (ρ,J = ρV ) and the system can be recast as

∂tU + ∂xF (U) = 0, with F (U) =
(
J ,

J 2

ρ
+ p(ρ)

)
.

Roughly speaking, given fixed time and (homogeneous) space steps δt, δx respec-
tively, a numerical scheme for this system reads

Uk+1
j − Ukj +

δt

δx
(F kj+1/2 − F kj−1/2) = 0

and the cornerstone of the method relies on a suitable definition of the numerical
flux F kj+1/2 as a function of the numerical unknowns Uk` for certain values of `,

neighbouring the considered index j (say for a three points approximation flux
Ukj−1, U

k
j , U

k
j+1). We wish to discuss numerical schemes based on the framework of
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the so–called Boltzmann schemes [9, 10, 11, 28, 30, 32]. More precisely the system
is seen as the limit ε→ 0 of the following BGK-like system

∂tf + ξ∂xf =
1

ε
(M [f ]− f)

in the spirit of hydrodynamic limits which allow to derive the Euler equations from
the Boltzmann (or BGK) equation, see e. g. [31]. Here, (t, x, ξ) 7→ f(t, x, ξ) is a
vector valued function, and the “Maxwellian” state ξ ∈ R 7→ M [f ](ξ) ∈ R2 is a
function of the auxiliary variable ξ, which is parametrized by the zeroth moments
of f in such a way that, denoting (ρ, ρV ) =

∫
f dξ, we have∫

M [f ] dξ = (ρ, ρV ),

∫
ξM [f ] dξ = (ρV, ρV 2 + p(ρ)).

Basically, the scheme works in two steps for solving the system of conservation laws:
knowing ρk, V k, approximation of density, velocity at the discrete time kδt

• First, solve
1

δt
(f? − fk) + ξ∂xf

k = 0.

This is a mere linear transport equation.
• Second, project the solution to the equilibrium state

fk+1 = M [f?]

the Maxwellian having the same zeroth moments as f?.

In practice, we get rid of the extra velocity variable ξ by integrating the formula with
respect to ξ: it provides a scheme of Finite Volume type for updating ρk+1, V k+1.
Precisely, by using the basic upwind discretization in the convection step, the rea-
soning leads to the following definition of numerical fluxes

F kj+1/2 =

∫
ξ>0

ξMk
j dξ +

∫
ξ60

ξMk
j+1 dξ,

where ξ 7→Mk
j (ξ) stands for the Maxwellian state associated to the moments

Ukj = (ρkj , ρ
k
jV

k
j ) =

∫
Mk
j dξ.

It is convenient to set F kj+1/2 = F+(Ukj ) + F−(Ukj+1) with

F+(U) =

∫
ξ>0

ξM(ξ) dξ, F−(U) =

∫
ξ60

ξM(ξ) dξ.(1.3)

We refer the reader to [9, 10, 11, 28, 30, 32] for the design of such kinetic schemes in
the context of gas dynamics. The analysis of such schemes is thoroughly detailed in
the textbooks [6, 29]. In particular, the schemes can be reinterpreted by means of
approximate Riemann solvers, see [6, Section 2.5]. The consistency of the scheme
is simply embodied into the property F+(U) + F−(U) = F (U). The numerical
analysis aims at exhibiting stability conditions which, at least, preserves the natu-
ral positivity of the density ρ. Another crucial issue is related to the behaviour of
certain nonlinear functionals of the unknowns, the so–called entropies: admissible
solutions should dissipate these quantities. For kinetic schemes, these properties are
intimately connected to the design of the Maxwellian functions M . In particular,
preserving the positivity of the density makes appealing the choice of equilibrium
with compact support (with respect to the ξ variable). Dealing with isentropic
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flows for a polytropic ideal gas (p(ρ) = kργ), it is possible to identify a convenient
Maxwellian in order to dissipate the natural “physical” entropy of the problem. It
leads to solve a minimization problem under constraints, but the effective compu-
tation relies strongly on the homogeneity property of the pressure law [5]; and it is
not clear how to apply the method when dealing with intricate pressure laws, like
the laws described e. g. in [21]. Furthermore, the resulting numerical fluxes do not
have in general an explicit expression by means of the numerical unknowns, which
might lead to practical difficulties (the case γ = 2 being a remarkable exception).

Here, we revisit the design of kinetic schemes for (1.1)–(1.2). Our approach
differs from the standard one in the following three directions.

• Firstly, we propose a non-classical definition of the Maxwellian M . The
motivation is to consider quite general pressure laws, for which it is not
obvious to find dissipative equilibrium states just by solving minimization
problems. However, our computation remains reminiscent of ideas in [23]
considering compactly supported equilibria, with a support driven by the
propagation speeds of (1.1)–(1.2).
• Secondly, our version of the kinetic scheme works on staggered grids where

the discrete density ρ and the material velocity V are not stored on the
same location. While the approaches are completely different in spirit, the
idea dates back to [35] and [37]: it is used in industrial contexts in the
framework of Lagrangian methods, see e.g. [21]. We also refer the reader
to [1] for the conception of such a scheme on staggered grids for the Shallow-
Water system, based on a Finite Difference reasoning and the preservation
of certain physical quantities. More recently, staggered strategies have been
developed for gas dynamics systems in [19, 20].
• Thirdly, by contrast to the most common strategy adopted for hyperbolic

systems, our scheme upwinds with the material velocity as a privileged
speed, instead of using the full wave structure of the system. Although the
derivation of the scheme is based on different principles, this idea appears
in the so–called AUSM schemes [27, 26], see also [15, 16, 18, 19, 20] for
recent analysis of schemes in the same vein.

Our motivation is two fold. On the one hand staggered discretizations can be
expected to fulfil better stability properties in low-Mach regimes, because they
naturally avoid odd-even decoupling of the pressure, and the possible occurrence of
spurious modes. We refer the reader to [16, 18] and the references therein on this
aspect. On the other hand, the method is well adapted to treat coupled models
describing mixtures, which involve an intricate constraint on the material velocity.
The staggered framework allows to design a scheme for such complex flows in order
to conserve exactly the total mass of the mixture. This issue is detailed in [3].

This work is organized as follows. We start by recalling briefly a few basic facts
about (1.1)–(1.2) in Section 2 where we set up the notation. In Section 3, we
introduce the Maxwellian states on which the scheme is based. Then, we detail the
space discretization. We also identify the stability condition which preserves the
positivity of the density ρ. Section 4 is devoted to the analysis of the behaviour of
the discrete (physical) entropy. It turns out that working on staggered grids helps
in proving a dissipation property. We establish both local and global inequalities,
the latter being not direct consequences of the former. Finally, in Section 5 we
discuss a few numerical simulations, dealing either with the simple equation of
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state p(ρ) = kργ , or with more intricate pressure laws. It shows that the method
is efficient and reliable.

2. Basic facts on the system of conservation laws

In all what follows, we assume that the pressure function p satisfies

(2.1) p ∈ C2
(
[0,∞)

)
, p(ρ) > 0, p′(ρ) > 0, p′′(ρ) ≥ 0, ∀ρ > 0.

Consequently, the sound speed

c : ρ 7−→
√
p′(ρ)

is well defined; furthermore c : ρ 7→ c(ρ) is strictly increasing. This property plays a
central role in the analysis of the proposed numerical fluxes (see Lemma 3.3 below).
Assumption (2.1) also implies that the function τ 7→ p( 1

τ ) is strictly convex. This
property enters in the analysis of the invariant regions of the system (1.1)–(1.2),
but it will not appear in the analysis of the scheme. Note that non-convex pressure
laws arise in real-life applications, and it leads to specific difficulties, see [21].

At least formally, the system (1.1)–(1.2) can be rewritten in the non–conservative
form

∂tU +A(U)∂xU = 0, A(U) = ∇UF (U),

where A is the jacobian matrix of the flux function F : (ρ,J = ρV ) = U 7→
(J ,J 2/ρ+ p(ρ)), namely

A(U) =

(
0 1

p′(ρ)−J 2/ρ2 2J /ρ

)
.

The eigenvalues of this matrix define the characteristic speeds of the system (1.1)–
(1.2):

λ−(U) = V − c(ρ), λ+(U) = V + c(ρ).

Therefore for any ρ > 0, V ∈ R, A(U) admits two distinct real eigenvalues, and the
system (1.1)–(1.2) is hyperbolic.

In view of its physical meaning the density ρ is expected to remain non neg-

ative. Next, let us set W±(U) = V ± G(ρ) where G′(ρ) =

√
p′(ρ)

ρ = c(ρ)
ρ . As

far as the solution of (1.1)–(1.2) is smooth, these quantities, the so–called Rie-
mann invariants, are simply advected at the speed λ±(U): we can check that
(∂t + λ±∂x)W± = 0. Owing to (2.1), ρ 7→ ρG(ρ) is convex, which is equiva-

lent to d
dρ (ρ2G′(ρ)) = d

dρ (ρ
√
p′(ρ)) > 0. Then, for any κ ∈ R, the sets {U =

(ρ, ρV ), V +G(ρ) 6 κ} and {U = (ρ, ρV ), V −G(ρ) > κ} are convex and they are
left invariant by the dynamics, see for instance [33, Th. 8.3.8]. This observation
provides uniform estimates on the solutions of (1.1)–(1.2). Accordingly, we can de-
duce L∞ estimates on the density ρ and the velocity V , by means of the initial data.
We refer for instance to [8] for the analysis of such invariant sets through viscous
approximations. However showing that a numerical scheme preserves these natural
estimates is far from obvious: it can be justified for Godunov’s scheme, which is
based on the exact resolution of Riemann problems, or Lax-Friedrichs’ schemes, see
e. g. [25], and these estimates are then the first step towards the analysis of the
existence of solutions to (1.1)–(1.2), see [12, 13].
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We set

Φ : ρ 7−→ Φ(ρ) such that ρΦ′(ρ)− Φ(ρ) = p(ρ).

Note that Φ′′(ρ) = p′(ρ)
ρ , so that Φ is convex. Smooth solutions of (1.1)–(1.2) can

be shown to satisfy the local balance law

∂t

(
ρ
V 2

2
+ Φ(ρ)

)
+ ∂x

((
ρ
V 2

2
+ Φ(ρ) + p(ρ)

)
V
)

= 0.

It motivates an admissibility criterion to select among weak solutions. In turn, they
satisfy the following global entropy inequality (for suitable boundary conditions)

(2.2)
d

dt

∫ (
ρ
V 2

2
+ Φ(ρ)

)
dx 6 0

indicating that entropy is dissipated in the admissible discontinuities of the solutions
of (1.1)–(1.2). It is therefore an issue to determine whether or not a numerical
scheme produces solutions that satisfy the entropy criterion. In order to proceed
with the analysis of the scheme we propose, it is worth having in mind how the
computation works at the continuous level. On the one hand, we check that

(2.3) ∂tΦ(ρ) + ∂x
(
Φ(ρ)V

)
=
(
Φ(ρ)− ρΦ′(ρ)

)
∂xV = −p(ρ)∂xV.

On the other hand, for the kinetic energy we get

(2.4) ∂t

(
ρ
V 2

2

)
+ ∂x

(
ρ
V 2

2
V
)

=
(
∂t(ρV ) + ∂x(ρV 2)

)
V = −∂xp(ρ) V.

Adding the two relations yields the local relation

(2.5) ∂t

(
ρ
V 2

2
+ Φ(ρ)

)
+ ∂x

((
ρ
V 2

2
+ Φ(ρ) + p(ρ)

)
V
)

= 0

and the conclusion follows by integrating and using the boundary conditions. Of
course time and space discretizations break this structure and the challenge consists
in identifying discrete version of the derivatives in (2.3) and (2.4).

3. Definition of the kinetic scheme on staggered grids

3.1. Maxwellian states. The kinetic scheme we shall study is based on the fol-
lowing definition

M0(ρ, V, ξ) =
ρ

2c(ρ)
1I|ξ−V |6c(ρ),(3.1)

M1(ρ, V, ξ) = VM0(ρ, V, ξ) + M̃(ρ, V, ξ)

with

M̃(ρ, V, ξ)j = ξL(ρ, V )1I|ξ|6|V |+c(ρ), L(ρ, V ) =
3

2
(|V |+ c(ρ))

−3
p(ρ).

We remind that c(ρ) stands for the sound speed. In particular the definition of
M0 is reminiscent of Kaniel’s strategy for gas dynamics [23] with a support of the
equilibrium that exactly contains all the velocities in the interval [V −c(ρ), V +c(ρ)]
defined by the fundamental wave speeds of the system (1.1)–(1.2). From now on we
adopt a slight abuse of notation for λ± compared to Section 2, denoting λ±(ρ, V ) =
V ± c(ρ). With U = (ρ, ρV ), we set

F±(U) =

∫
ξ≷0

ξ

(
M0(ρ, V, ξ)
M1(ρ, V, ξ)

)
dξ.
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Consistency of the corresponding flux–splitting method is a consequence of the
following claim.

Proposition 3.1. We have∫
(M0,M1)(ρ, V, ξ) dξ = (ρ, ρV ),∫
ξ(M0,M1)(ρ, V, ξ) dξ = (ρV, ρV 2 + p(ρ)).

The flux decomposition is consistent since F+(U) + F−(U) = F (U) holds.

The definition of the Maxwellian (M0,M1) is very specific. In the momentum
fluxes, the convection terms are dictated by the mass fluxes, while the pressure
term has a very simple expression. This remark, which is crucial in the analysis of
the scheme, is made clear through the following statement.

Lemma 3.2. For any ρ > 0, V ∈ R, we have∫
ξ≷0

ξM̃(ρ, V, ξ) dξ =
p(ρ)

2
and

∫
ξ≷0

ξM1(ρ, V, ξ) dξ = VF±(ρ, V ) +
p(ρ)

2
.

For further purposes, it is convenient to introduce the following mappings

(3.2)
F± : [0,∞)× R −→ R

(ρ, V ) 7−→
∫
ξ≷0

ξM0(ρ, V, ξ) dξ.

Next, we set

(3.3)
F (ρ, V ) = F+(ρ, V ) + F−(ρ, V ) =

∫
ξM0(ρ, V, ξ) dξ = ρV,

F |·|(ρ, V ) = F+(ρ, V )−F−(ρ, V ) =

∫
|ξ|M0(ρ, V, ξ) dξ > 0.

Figure 1 provides the graphs of V 7→ F±(ρ, V ) for a fixed ρ > 0. In particu-
lar, we observe the difference with the simple UpWind definition of the mass flux
FUpW,±(ρ, V ) = ±ρ[V ]±. The analysis of the scheme relies on the properties of
the functions F±, that we collect in the following claim.

Lemma 3.3. Assume (2.1). Then, the functions F+, F−, F |·| satisfy the follow-
ing properties:

(i) 0 6 F+(ρ, V ) 6 ρ
[
λ+(ρ, V )

]+
, ∀V ∈ R, ∀ρ > 0.

(ii) −ρ
[
λ−(ρ, V )

]−
6 F−(ρ, V ) 6 0, ∀V ∈ R, ∀ρ > 0.

(iii) (ρ, V ) ∈ (0,∞) × R 7→ F±(ρ, V ) are C1 functions and F+(ρ,−V ) =
−F−(ρ, V ).

(iv) ρ ∈ [0,∞) 7→ F+(ρ, V ) is increasing for V ∈ R, and strictly increasing for
V > 0.

(v) ρ ∈ [0,∞) 7→ F−(ρ, V ) is decreasing for V ∈ R, and strictly decreasing for
V 6 0.

(vi) ρ ∈ [0,∞) 7→ F |·|(ρ, V ) > 0 is strictly increasing for V ∈ R,
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Vc(ρ)

−c(ρ)

F+(ρ, V )

upwind

F−(ρ, V )

upwind

1

Figure 1. Graphs of V 7→ F+(ρ, V ) and V 7→ F−(ρ, V ) for a
fixed ρ > 0.

Proof. The conclusion follows by direct inspection of the following formula, where
the expression of F+(ρ, V ) changes depending on the Mach number V/c(ρ):

F+(ρ, V ) =


0 if V + c(ρ) 6 0,
ρ

4c(ρ)
(V + c(ρ))2 =

ρ

4c(ρ)
λ+(ρ, V )2 if V − c(ρ) < 0 < V + c(ρ),

ρV =
ρ

4c(ρ)
(λ+(ρ, V )2 − λ−(ρ, V )2) if 0 < V − c(ρ).

The estimates can be obtained by comparing λ+(ρ, V ) and 4c(ρ) when we consider
separately each case. Similarly, we have

F−(ρ, V ) =


ρV =

ρ

4c(ρ)
(λ+(ρ, V )2 − λ−(ρ, V )2) if V + c(ρ) 6 0,

− ρ

4c(ρ)
(V − c(ρ))2 = − ρ

4c(ρ)
λ−(ρ, V )2 if V − c(ρ) < 0 < V + c(ρ),

0 if 0 < V − c(ρ).

Remark 3.4. The explicit expression of the functions F± are no longer used in the
sequel. We only use the properties stated in Lemma 3.3 so that the result could
be directly applied to another flux splitting satifying all these properties. More
precisely, properties (i) and (ii) are used to derive CFL conditions ensuring the
positivity of the discrete density ρ (or more generally, guaranteeing non uniform
bound from above and below for the density ρ). Properties (iii)-(vi) are used in the
analysis of the entropy-stability.

3.2. Staggered grids. From now on, we consider that the problem (1.1)–(1.2)
holds on the bounded domain (0, L). It is completed by the boundary condition

(3.4) V (t, 0) = 0 = V (t, L), ∀t > 0.
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Note that it belongs to the framework designed in [14] for the analysis of initial
boundary value problems for systems of conservation laws. Roughly speaking, only
one field is incoming and we do not need further boundary data. Notice that with
this boundary condition the entropy balance (2.2) holds.

We now wish to discuss the adaptation of the kinetic scheme on staggered grids.
While we present the framework in the one dimension case, the method can be
adapted to higher dimensions. We consider a set of J+1 points of the computational
domain [0, L] such that x1 = 0 < x2 < ... < xJ < xJ+1 = L. These points define
a subdivision of [0, L] which is called the primal mesh. The xj ’s are referred to
as the edges (or vertices) of the primal mesh. We set δxj+1/2 = xj+1 − xj and

xj+1/2 = 1
2 (xj + xj+1) for j ∈ {1, ..., J}. The J points x3/2 < ... < xJ+1/2 are

the centers of the primal cells and realize the dual mesh. We set δx1 = δx3/2/2,

δxJ = δxJ+1/2/2 and δxj = 1
2 (δxj−1/2 + δxj+1/2) for j ∈ {2, ..., J − 1}. For the

numerical unknowns:

• Densities are evaluated at centers of the primal mesh : ρj+1/2, with j ∈
{1, ..., J},
• Velocities are evaluated at edges of the primal mesh : Vj with j ∈ {1, ..., J+

1}.
The density is updated with a Finite Volume approximation on the primal mesh,

which thus requires an approximation of the fluxes ρV at the interfaces x = xj .
Namely, we have

(3.5)
δxj+1/2

δt
(ρk+1
j+1/2 − ρkj+1/2) + F k

j+1 −F k
j = 0, ∀j ∈ {1, .., J}.

We adopt the kinetic scheme. For internal edges, quite naturally, we use the value
of the velocity at the edge x = xj and we upwind the density:

(3.6) F k
j = F+(ρkj−1/2, V

k
j ) + F−(ρkj+1/2, V

k
j ), ∀j ∈ {2, . . . , J}.

For external edges, since we use homogeneous boundary conditions (3.4), the fluxes
are set to zero:

(3.7) F k
1 = 0, F k

J+1 = 0.

We proceed similarly to define a Finite Volume approximation of the momentum
equation on the cells (xj−1/2, xj+1/2) of the dual mesh. We introduce an approxi-
mation of ρ at the edges of the primal mesh

(3.8) ρkj =
δxj+1/2ρ

k
j+1/2 + δxj−1/2ρ

k
j−1/2

2δxj
, ∀j ∈ {2, . . . , J}.

Since at the kth time iteration, the approximate density is seen as the piecewise

constant function
∑J
j=1 ρ

k
j+1/21[xj ,xj+1[, ρ

k
j is nothing but the mean value of the

density on the cell (xj−1/2, xj+1/2). We update the velocity with

(3.9)
δxj
δt

(ρk+1
j V k+1

j − ρkjV kj ) + F̃ k
j+1/2 − F̃ k

j−1/2 = 0, ∀j ∈ {2, . . . , J}.

Since we want to impose boundary conditions (3.4), we set

(3.10) V k+1
1 = V k+1

J+1 = 0.
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The fluxes F̃ k
j+1/2 are also defined by the kinetic scheme. As remarked in Lemma

3.2, M̃ only contributes to the pressure. More precisely, it yields a centered differ-
ence of the pressure term since for any ρ, V, V ′ we have∫

ξ>0

ξM̃(ρ, V ) dξ +

∫
ξ<0

ξM̃(ρ′, V ′) dξ =
1

2
(p(ρ) + p(ρ′)).

This term is evaluated at the center x = xj+1/2, it is thus natural to make use of the
available value of the density at this point: the corresponding contribution to the

flux F̃ k
j+1/2 is therefore p(ρkj+1/2). The convection flux is given by an approximation

of
∫
ξVM0(ρ, V ) dξ at x = xj+1/2. We mimic the formula obtained with the mass

flux: we upwind the quantity ρV , which is advected by the velocity V . The latter
is evaluated at the interface. We are thus led to

F̃ k
j+1/2 =

∫
ξ>0

ξV kj M0(ρ̄kj , V̄
k
j+1/2, ξ) dξ

+

∫
ξ<0

ξV kj+1M0(ρ̄kj+1, V̄
k
j+1/2, ξ) dξ + p(ρkj+1/2)

where we need to make ρ̄kj , ρ̄kj+1 and V̄ kj+1/2 precise. Instead of using the basic

interpolation ρkj , we bear in mind that
∫
ξ>0

ξM0(ρ̄kj , V̄
k
j+1/2, ξ) dξ represents the

mass flux going from left to right through the interface located at x = xj+1/2. We
evaluate it as the average of the (already known) mass fluxes from left to right at
the interfaces x = xj and x = xj+1. Reasoning the same way with the mass flux
going from right to left (ξ < 0) yields for all j ∈ {2, ..., J − 1}

(3.11)
F̃ k
j+1/2 =

V kj
2

(
F+(ρkj−1/2, V

k
j ) + F+(ρkj+1/2, V

k
j+1)

)
+
V kj+1

2

(
F−(ρkj+1/2, V

k
j ) + F−(ρkj+3/2, V

k
j+1)

)
+ p(ρkj+1/2).

For j = 1, (resp. j = J) we remind that V k1 = 0 (resp. V kJ+1 = 0) so that the
contribution associated to the positive (resp. negative) ξ’s vanishes. Hence only
the mass flux from right to left at the interface x3/2 (resp. the mass flux from left
to right at the interface xJ−/2) has to be considered. Since there is no mass flux at
x = 0 (resp. x = L), we arrive at

F̃ k
3/2 =

V k2
2

F−(ρk5/2, V
k
2 )+p(ρk5/2), F̃ k

J+1/2 =
V kJ
2

F+(ρkJ−1/2, V
k
J )+p(ρkJ−1/2).

Due to the very specific form of the Maxwellian M1, the scheme treats differently
inertia and pressure, in the spirit of AUSM schemes [27, 26]. As pointed out in
the Introduction, the definition of the numerical mass and momentum fluxes does
not involve the resolution of Riemann problems, nor the computation of intricate
integrals, that could be quite costly.

Remark 3.5. A simple variant of the scheme is obtained by replacing M0(ρ, V, ξ)
by ρδ(ξ = V ) in the definition of the mass fluxes, in the spirit of [32]. With
such a definition of the equilibrium state, convection terms are UpWinded, and the
pressure is approached by a centered difference. For the sake of simplicity, let us
assume that we are working with a uniform mesh with constant mesh size δx > 0.
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With [V ]± = 1
2 (|V | ± V ) = max(±V, 0), the scheme reads

ρk+1
j+1/2 = ρkj+1/2 −

δt

δx

(
F k,UpW
j+1 −F k,UpW

j

)
,

with F k,UpW
j = ρkj−1/2

[
V kj
]+ − ρkj+1/2

[
V kj
]−
.

ρk+1
j V k+1

j = ρkjV
k
j −

δt

δx

(
G k,UpW
j+1/2 − G k,UpW

j−1/2

)
− δt

δx

(
p(ρj+1/2)− p(ρj−1/2)

)
,

where ρkj = 1
2 (ρkj+1/2 + ρkj−1/2) and

G k,UpW
j+1/2 =

V kj
2

(
ρkj−1/2

[
V kj
]+

+ ρkj+1/2

[
V kj+1

]+)
−
V kj+1

2

(
ρkj+1/2

[
V kj
]−

+ ρkj+3/2

[
V kj+1

]−)
.

This scheme is very close to the ones proposed and analysed in [19, 20] which
are also constructed on staggered grids with UpWinding strategies based on the
material velocity. It produces consistent results but with oscillations, that remain
of controlled amplitude, when the velocity vanishes. It will be further discussed in
Appendix B.

Remark 3.6. Note that the numerical fluxes naturally incorporates the bound-
ary condition (3.4). In particular, since the density is evaluated only on “interior
points”, we do not need any ghost cells to treat the pressure gradient.

We conclude this Section with the following stability statement, which gives
conditions in order to produce non negative densities.

Proposition 3.7. Assume that the initial data satisfies ρ0
j+1/2 > 0 for any j ∈

{1, . . . , J}. We assume the CFL-like condition

(3.12)
δt

δxj+1/2

([
λ+(ρkj+1/2, V

k
j+1)

]+
+
[
λ−(ρkj+1/2, V

k
j )
]−)
6 1, ∀j = 1, . . . , J,

at every time step. Then the scheme preserves the positivity of ρ.

Proof. We rewrite the evolution of the discrete density as follows

ρk+1
j+1/2 = ρkj+1/2 +

δt

δxj+1/2

(
F−(ρkj+1/2, V

k
j )−F+(ρkj+1/2, V

k
j+1)

)
+

δt

δxj+1/2

(
F+(ρkj−1/2, V

k
j )−F−(ρkj+3/2, V

k
j+1)

)
.

By assumption the components ρk`+1/2 are non negative for any `, and the contri-

bution of the last two terms is non negative. Next, Lemma 3.3 tells us that

ρk+1
j+1/2 > ρ

k
j+1/2

(
1− δt

δxj+1/2

([
λ+(ρkj+1/2, V

k
j+1)

]+
+
[
λ−(ρkj+1/2, V

k
j )
]−))

.

Hence ρk+1
j+1/2 > 0 when (3.12) is fulfilled.

Remark 3.8. Remark that the stability condition involves the characteristic speeds
V ± c(ρ), and not the material velocity V only. This is by contrast to the schemes
which use UpWinding strategies based on the material velocity, see Remark 3.5 and
Appendix B for further comments.
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4. Stability analysis: entropy dissipation

In this Section, we wish to establish a discrete analog of (2.2). Let us set up a
few notation. We set (for j ∈ {2, ..., J}):

ρkj,min := min
(
ρkj−1/2, ρ

k
j+1/2

)
, ρkj,Max := max

(
ρkj−1/2, ρ

k
j+1/2

)
,

and

ρkmin := min
j∈{1,...,J}

ρkj+1/2, ρkMax := max
j∈{1,...,J}

ρkj+1/2.

In order to avoid technical difficulties due to the presence of vacuum, we shall
assume that ρkmin > 0. Note however that the scheme performs well in vacuum
formation, see Test 5 in Section 5. In fact, we are going to analyze a slightly
modified version of the scheme (3.5)–(3.11). According to (3.11), we split the
momentum flux as follows:

(4.1) F̃ k
j+1/2 = G k

j+1/2 + π
k+1/2
j+1/2 , j ∈ {1, . . . , J},

with

G k
3/2 =

V k2
2

F−(ρk5/2, V
k
2 ),

G k
j+1/2 =

V kj
2

(
F+(ρkj−1/2, V

k
j ) + F+(ρkj+1/2, V

k
j+1)

)
+
V kj+1

2

(
F−(ρkj+1/2, V

k
j ) + F−(ρkj+3/2, V

k
j+1)

)
, j ∈ {2, . . . , J − 1},

G k
J+1/2 =

V kJ
2

F+(ρkJ−1/2, V
k
J ),

and

(4.2) π
k+1/2
j+1/2 = ρkj+1/2Φ′(ρk+1

j+1/2)− Φ(ρkj+1/2), j ∈ {1, . . . , J}.

The flux G k
j+1/2 represents the contribution of the inertial terms whereas the term

π
k+1/2
j+1/2 discretizes the pressure forces. The expression of the latter relies on the

relation p(ρ) = ρΦ′(ρ)−Φ(ρ). We have thus replaced p(ρkj+1/2) in (3.11) by π
k+1/2
j+1/2 .

It has the flavor of an implicit relation; however, we should bear in mind that the
density is updated by (3.5) before computing the velocity and we thus have ρk+1

j+1/2

at hand without the need of an intricate fixed point method. The motivation of this
modification will appear clearly in Section 4.1. Throughout this section, for some
k ∈ N, the state (ρkj+1/2)j∈{1,...,J} and (V kj )j∈{1,...,J+1} is given and we suppose

that the following set of assumptions is fulfilled:

(h1) The pressure function p satisfy (2.1),
(h2) ρkmin > 0,
(h3) V k1 = V kJ+1 = 0,

(h4) The updated state (ρk+1
j+1/2)j∈{1,...,J} and (V k+1

j )j∈{2,...,J} is defined by

(3.5)–(3.7) and (3.9)-(3.10) with the momentum fluxes modified as in (4.1)–
(4.2).

We shall prove the following discrete global entropy inequality, which can be seen
as a stability statement.
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Theorem 4.1. Assume (h1)-(h4). Then, there exists τ? > 0 such that for any
0 < δt < τ?, the updated state verifies

1

δt

[ J∑
j=2

δxj

(1

2
ρk+1
j

(
V k+1
j

)2)
+

J∑
j=1

δxj+1/2Φ(ρk+1
j+1/2)

]

6
1

δt

[ J∑
j=2

δxj

(1

2
ρkj
(
V kj
)2)

+

J∑
j=1

δxj+1/2Φ(ρkj+1/2)
]
.

The time step τ? depends only on the state ρk, V k, on the parameters of the
space discretization, and on the properties of the pressure law; its identification
relies on the combination of quite intricate but explicit stability conditions (see
Corollary 4.12 for a precise statement).

By contrast to standard proofs in hyperbolic theory, we consider separately, in
the two next sections, the evolution of the internal energy Φ(ρ) (Section 4.1) and
of the kinetic energy ρV 2/2 (Section 4.2). Roughly speaking, the evolution of the
kinetic energy is obtained by multiplying the momentum equation by V . It can
be split into two contributions: the work of the pressure forces (see (2.3)) and the
contribution of the inertial terms (see (2.4)). We shall adopt the same splitting
at the discrete level and the modification of the scheme will be useful in order
to compensate the work of the pressure forces with a similar contribution coming
from the evolution of the internal energy. We proceed into two steps. We start by
establishing local estimates, namely discrete versions of (2.3) and (2.4) in Sections
4.1 and 4.2 respectively. The former holds on the primal mesh, the latter on the
dual cells. Unfortunately, neither a local nor a global entropy inequality (that is the
discrete analog of (2.5) or (2.2) as stated in Theorem 4.1) can be obtained directly
by summing the two local inequalities. It requires a further, quite intricate, analysis
presented in Section 4.3. Note that local estimates are interesting in itself, in view
of a full consistency analysis. Indeed, it is likely that we can adapt arguments from
[19, 20] in order to establish a Lax-Wendroff-like statement for this scheme, which
would prove that the limit of a converging sequence of stepwise constant functions
defined from the scheme is a weak solution of the system of conservation laws that
satisfies the entropy inequality. This question is however beyond the scope of the
present paper, see [4].

4.1. Evolution of the internal energy. This Section is devoted to the proof of
the discrete analog of equality (2.3). The following notation will be useful:

(4.3) d±(ρ1, ρ2, V ) =


F±(ρ1, V )−F±(ρ2, V )

ρ1 − ρ2
if ρ1 6= ρ2,

∂ρF±(ρ1, V ) if ρ1 = ρ2,

and

(4.4) d|·|(ρ1, ρ2, V ) =

 F |·|(ρ1, V )−F |·|(ρ2, V )

ρ1 − ρ2
if ρ1 6= ρ2,

∂ρF |·|(ρ1, V ) if ρ1 = ρ2.

Owing to Lemma 3.3, d+(ρ1, ρ2, V ) is non negative for any V ∈ R, positive when
V > 0, while d−(ρ1, ρ2, V ) is non positive for any V ∈ R, negative when V 6 0.
Consequently d|·| = d+ − d− is always positive.
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Let us also introduce the two following quantities
(4.5)

ρk+1
j+1/2 = ρkj+1/2 −

2δt

δxj+1/2

(
F+(ρkj+1/2, V

k
j )−F+(ρkj−1/2, V

k
j )
)
, ∀j ∈ {2, . . . , J},

ρk+1
j−1/2 = ρkj−1/2 −

2δt

δxj−1/2

(
F−(ρkj+1/2, V

k
j )−F−(ρkj−1/2, V

k
j )
)
, ∀j ∈ {2, . . . , J}.

and, at the boundary, ρk+1
J+1/2 = ρkJ+1/2, ρk+1

3/2 = ρk3/2. By combining the equality

F+(ρ, V ) + F−(ρ, V ) = ρV and the discrete mass balance (3.5), we readily obtain
the following equality

(4.6)
ρk+1
j+1/2 + ρk+1

j+1/2

2
= ρk+1

j+1/2 +
δt

δxj+1/2
ρkj+1/2

(
V kj+1 − V kj

)
, ∀j ∈ {1, . . . , J}.

We can now state the main result of this section.

Proposition 4.2. Assume (h1)-(h4). Then, for any δt > 0 such that

(4.7) δt <

min
( ρkj,min, ρ

k
j,Max )

Φ′′

max
( ρkj,min, ρ

k
j,Max )

Φ′′
min

(
δxj−1/2, δxj+1/2

)
4d|·|(ρkj−1/2, ρ

k
j+1/2, V

k
j )
, ∀j ∈ {2, . . . , J},

the following inequality holds for all j ∈ {1, . . . , J}
δxj+1/2

δt

[
Φ(ρk+1

j+1/2)− Φ(ρkj+1/2)
]

+
[
Gkj+1 −Gkj

]
+ π

k+1/2
j+1/2

[
V kj+1 − V kj

]
6 0,

where Gk1 = 0 and for all j ∈ {2, . . . , J + 1}

Gkj = Φ(ρkj−1/2)V kj −
δxj−1/2

2δt

[
Φ
(
ρk+1
j−1/2

)
− Φ(ρkj−1/2)

]
.

Remark 4.3. The flux Gkj is defined as a function of ρkj−1/2, ρkj−1/2 and V kj

Gkj = G(ρkj−1/2, ρ
k
j−1/2, V

k
j ).

The flux is consistent in the sense that G(ρ, ρ, V ) = Φ(ρ)V . Suprisingly, the func-
tion G depends on the ratio δt

δxj−1/2
. It is harmless if this ratio remains bounded

away from zero but it could become an issue in the semi-discrete limit when the
time step δt tends to zero (independently of the mesh size). Nevertheless, formally,
assuming that the density and the velocity converge, say ρkj±1/2 −→δt→0

ρj±1/2 and

V kj −→
δt→0

Vj , we obtain

Gkj −→
δt→0

Φ(ρj−1/2)Vj +
(
F−(ρj+1/2, Vj)−F−(ρj−1/2, Vj)

)
Φ′
(
ρj−1/2

)
,

which is still a consistent discretization of the internal energy flux.

The proof of Proposition 4.2 makes use of the following technical result.

Lemma 4.4. Let Φ̄ be a strictly convex function of class C2. Let ρ1, ρ2 > 0, V ∈ R.
We denote ρ = min(ρ1, ρ2), ρ = max(ρ1, ρ2). Let λ, µ ∈ R verify

(4.8) λ, µ >

2 max
( ρ, ρ )

Φ̄′′

min
( ρ, ρ )

Φ̄′′
d|·|(ρ1, ρ2, V ).
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Let us set

ρ1 = ρ1 −
1

µ

(
F−(ρ2, V )−F−(ρ1, V )

)
, ρ2 = ρ2 −

1

λ

(
F+(ρ2, V )−F+(ρ1, V )

)
.

Then, there holds

(4.9)

[
Φ̄(ρ2)− Φ̄(ρ1)

]
V + λ

[
Φ̄
(
ρ2

)
− Φ̄(ρ2)

]
+ µ

[
Φ̄
(
ρ1

)
− Φ̄(ρ1)

]
+

1

4

|V |+ d|·|

2

(
min
( ρ, ρ )

Φ̄′′
)
(ρ1 − ρ2)2 6 0.

We postpone to Appendix A the details of the proof; the arguments rely on the
convexity of the function Φ̄ and on the properties of the fluxes F+ and F− stated
in Lemma 3.3.

Remark 4.5. In the case of the variant of the scheme presented in Remark 3.5, we
have d|·|(ρ1, ρ2, V ) = |V | and inequality (4.9) reduces to the following, very simple,
convexity inequality (with α = V/λ if V > 0 and α = −V/µ if V < 0)

Φ̄(ρ2)− Φ̄(ρ1) +
1

α

[
Φ̄
(
ρ2 − α(ρ2 − ρ1)

)
− Φ̄(ρ2)

]
+

1

4

(
min
( ρ, ρ )

Φ̄′′
)
(ρ1 − ρ2)2 6 0.

It holds when 0 < α < min
( ρ, ρ )

Φ̄′′/(2max
( ρ, ρ )

Φ̄′′).

We now go back to the proof of Proposition 4.2.

Proof of Proposition 4.2. For j ∈ {2, . . . , J}, we apply Lemma 4.4 with ρ1 =

ρkj−1/2, ρ2 = ρkj+1/2, V = V kj , λ =
δxj+1/2

2δt , µ =
δxj−1/2

2δt . Note that assumption (4.7)

on the time step ensures that (4.8) is satisfied. Hence, for all j ∈ {2, . . . , J}, we
have,
(4.10)[

Φ(ρkj+1/2)− Φ(ρkj−1/2)
]
V kj

+
δxj+1/2

2δt

[
Φ
(
ρk+1
j+1/2

)
− Φ(ρkj+1/2)

]
+
δxj−1/2

2δt

[
Φ
(
ρk+1
j−1/2

)
− Φ(ρkj−1/2)

]
+ T1,j 6 0,

with

T1,j =
1

4

|V kj |+ d|·|(ρkj−1/2, ρ
k
j+1/2, V

k
j )

2

(
min

( ρkj,min, ρ
k
j,Max )

Φ′′
)
(ρkj+1/2 − ρkj−1/2)2.

The term T1,j is non negative. Inequality (4.10) ensures that, for all j ∈ {2, . . . , J},

(4.11)

Gkj+1 −Gkj − Φ(ρkj+1/2)(V kj+1 − V kj )

+
δxj+1/2

δt

[
Φ
(
ρk+1
j+1/2

)
+ Φ

(
ρk+1
j+1/2

)
2

− Φ(ρkj+1/2)

]
6 0.

Moreover, it is easy to see that the left hand side vanishes when j = 1. We now
end the proof by using the convexity of Φ again and (4.6) which yields, for all
j ∈ {1, . . . , J},
(4.12)

Φ
(
ρj+1/2

)
+ Φ

(
ρj+1/2

)
2

> Φ
(
ρk+1
j+1/2 +

δt

δxj+1/2
ρkj+1/2

(
V kj+1 − V kj

))
> Φ

(
ρk+1
j+1/2

)
+

δt

δxj+1/2
ρkj+1/2Φ′

(
ρk+1
j+1/2

)(
V kj+1 − V kj

)
.
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We conclude by combining (4.11) (which holds for any j ∈ {1, . . . , J}) and (4.12).

4.2. Evolution of the kinetic energy. We turn to the discrete analog of the
evolution equation (2.4) of the kinetic energy. We start by observing that the mean
density ρkj (defined by (3.8)) still satisfies a discrete conservation law.

Lemma 4.6. Let us set

F k
j+1/2 =

F k
j + F k

j+1

2
, ∀j ∈ {1, . . . , J}.

Then, we have

(4.13)
δxj
δt

(ρk+1
j − ρkj ) + F k

j+1/2 −F k
j−1/2 = 0, ∀j ∈ {2, . . . , J − 1}.

Furthermore, the relation

(4.14)
G k
j+1/2 = V kj F k,+

j+1/2 + V kj+1F
k,−
j+1/2

=
1

2
(V kj + V kj+1)F k

j+1/2 +
1

2
(V kj − V kj+1)F

k,|·|
j+1/2

holds for all j ∈ {1, . . . , J} with

F k,+
3/2 =

1

2
F+(ρk3/2, V

k
2 ) > 0, F k,−

3/2 =
1

2
F−(ρk5/2, V

k
2 ) 6 0,

F k,+
j+1/2 =

1

2

(
F+(ρkj+1/2, V

k
j+1) + F+(ρkj−1/2, V

k
j )
)
> 0, ∀j ∈ {2, . . . , J − 1},

F k,−
j+1/2 =

1

2

(
F−(ρkj+3/2, V

k
j+1) + F−(ρkj+1/2, V

k
j )
)
6 0, ∀j ∈ {2, . . . , J − 1},

F k,+
J+1/2 =

1

2
F+(ρkJ−1/2, V

k
J ) > 0, F k,−

J+1/2 =
1

2
F−(ρkJ+1/2, V

k
J ) 6 0,

F
k,|·|
j+1/2 = F k,+

j+1/2 −F k,−
j+1/2 > 0, ∀j ∈ {1, . . . , J}.

Proof. We just use the definitions (3.8) and (3.5) of ρkj and ρk+1
j+1/2 to obtain

δxj
δt

(ρk+1
j − ρkj ) =

1

δt

(δxj+1/2

2
(ρk+1
j+1/2 − ρkj+1/2) +

δxj−1/2

2
(ρk+1
j−1/2 − ρkj−1/2)

)
= −1

2

(
(F k

j+1 −F k
j ) + (F k

j −F k
j−1)

)
= −(F k

j+1/2 −F k
j−1/2).

We split the expression of F k
j+1/2 into positive and negative contributions

F k
j+1/2 = F k,+

j+1/2 + F k,−
j+1/2, ∀j ∈ {1, . . . , J}.

Finally, the right hand side in (4.14) reads

V kj F k,+
j+1/2 + V kj+1F

k,−
j+1/2 =

V kj
2

(
F+(ρkj+1/2, V

k
j+1) + F+(ρkj−1/2, V

k
j )
)

+
V kj+1

2

(
F−(ρkj+3/2, V

k
j+1) + F−(ρkj+1/2, V

k
j )
)

and we recognize the convection terms given by the momentum flux G k
j+1/2, as

defined in (4.1). The statement makes a clear connection appear between the
mass fluxes F k

j+1/2 and the momentum fluxes G k
j+1/2, and it brings out the role of

upwinding.
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With this Lemma at hand, we can establish the evolution equation for the dis-
crete kinetic energy.

Proposition 4.7. Assume (h1)-(h4). Then, for any δt > 0 such that

(4.15)
δxj
δt
ρkj > F

k,|·|
j+1/2 + F

k,|·|
j−1/2,

the following inequality holds, for all j ∈ {2, . . . , J},

δxj
2δt

[
ρk+1
j

(
V k+1
j

)2 − ρkj (V kj )2]+
[
Γkj+1/2 − Γkj−1/2

]
+
[
π
k+1/2
j+1/2 − π

k+1/2
j−1/2

]
V k+1
j

+
δxj
4δt

ρk+1
j

(
V k+1
j − V kj

)2
6 0,

where the quantities F
k,|·|
j−1/2, F k,+

j−1/2 and F k,−
j+1/2 are defined in Lemma 4.6 and

Γkj+1/2 =
1

2
V kj V

k
j+1F

k
j+1/2 +

1

2
(V kj − V kj+1)2F

k,|·|
j+1/2, ∀j ∈ {1, . . . , J}.

Proof. While the upwinding strategy is quite different (see Appendix B), the proof
of Proposition 4.7 is inspired from [15]. Let j ∈ {2, . . . , J}. At the discrete level,
the inertial terms are defined as follows:

Cj =
ρk+1
j V k+1

j − ρkjV kj
δt

+
G k
j+1/2 − G k

j−1/2

δxj
.

Multiplying the discrete momentum equation by V k+1
j we are led to

(4.16)
[
δxjCj + π

k+1/2
j+1/2 − π

k+1/2
j−1/2

]
V k+1
j = 0.

Let us split the convection term to estimate as follows

(4.17) δxjCjV
k+1
j = T1 + T2

with

T1 =
δxj
δt

(
ρk+1
j V k+1

j − ρkjV kj
)
V k+1
j and T2 =

(
G k
j+1/2 − G k

j−1/2

)
V k+1
j .

We begin our study with the flux term T2, rewritten as

T2 =
(
G k
j+1/2 − G k

j−1/2

)
V kj︸ ︷︷ ︸

T2,1

+
(
G k
j+1/2 − G k

j−1/2

)(
V k+1
j − V kj

)︸ ︷︷ ︸
T2,2

.

In T2,1 we make use of (4.14) and we obtain

(4.18) T2,1 =
1

2

(
(V kj + V kj+1)F k

j+1/2 − (V kj−1 + V kj )F k
j−1/2

)
V kj

+
1

2

(
(V kj − V kj+1)F

k,|·|
j+1/2 − (V kj−1 − V kj )F

k,|·|
j−1/2

)
V kj .

The first term of the right hand side of (4.18) is equal to

1

2

(
(V kj + V kj+1)F k

j+1/2 − (V kj−1 + V kj )F k
j−1/2

)
V kj

=
1

2

(
F k
j+1/2 −F k

j−1/2

)(
V kj
)2

+
1

2

(
V kj V

k
j+1F

k
j+1/2 − V kj−1V

k
j F k

j−1/2

)
.
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A similar reasoning allows us to rewrite the second term of the right hand side of
(4.18) as follows

1

2

(
(V kj −V kj+1)F

k,|·|
j+1/2 − (V kj−1 − V kj )F

k,|·|
j−1/2

)
V kj

=
1

2
(V kj − V kj+1)2F

k,|·|
j+1/2

+
1

2

(
(V kj − V kj+1)F

k,|·|
j+1/2V

k
j+1 − (V kj−1 − V kj )F

k,|·|
j−1/2V

k
j

)
.

We conclude that

T2,1 =
1

2

(
F k
j+1/2 −F k

j−1/2

)(
V kj
)2

+
1

2
(V kj − V kj+1)2F

k,|·|
j+1/2 + Γj+1/2 − Γj−1/2.

We turn to T2,2. To this end, we rewrite G k
j−1/2 and G k

j+1/2 as follows

G k
j−1/2 = V kj F k

j−1/2 + (V kj−1 − V kj )F k,+
j−1/2,

G k
j+1/2 = V kj F k

j+1/2 + (V kj+1 − V kj )F k,−
j+1/2.

We obtain the following expression of T2,2

T2,2 = (V k+1
j − V kj )V kj (F k

j+1/2 −F k
j−1/2) + T3

where T3 is defined by T3 = T3,1 + T3,2 with

T3,1 = (V k+1
j − V kj )(V kj+1 − V kj )F k,−

j+1/2,

and
T3,2 = −(V k+1

j − V kj )(V kj−1 − V kj )F k,+
j−1/2.

The Young inequality yields

T3,1 >
1

2
(V k+1
j − V kj )2F k,−

j+1/2 +
1

2
(V kj+1 − V kj )2F k,−

j+1/2,

and

T3,2 > −
1

2
(V k+1
j − V kj )2F k,+

j−1/2 −
1

2
(V kj − V kj+1)2F k,+

j+1/2.

By summing these two inequalities, we find

T3 > −
1

2
(V k+1
j − V kj )2

(
F k,+
j−1/2 −F k,−

j+1/2

)
− 1

2
(V kj+1 − V kj )2F

k,|·|
j+1/2.

The last two terms are non negative. Finally, we obtain the following bound for T2

T2 > (V k+1
j − 1

2
V kj )V kj (F k

j+1/2 −F k
j−1/2)

−1

2
(V k+1
j − V kj )2

(
F k,+
j−1/2 −F k,−

j+1/2

)
+ Γj+1/2 − Γj−1/2.

We can now use the mass balance on edges (4.13) to find

T2 > −δxj
2δt

(2V k+1
j − V kj )V kj (ρk+1

j − ρkj )

−1

2
(V k+1
j − V kj )2

(
F k,+
j−1/2 −F k,−

j+1/2

)
+ Γj+1/2 − Γj−1/2.

It remains to treat the term T1 which recasts as

T1 =
δxj
δt
ρk+1
j (V k+1

j − V kj )V k+1
j +

δxj
δt

(ρk+1
j − ρkj )V kj V

k+1
j

=
δxj
2δt

ρk+1
j

((
V k+1
j

)2 − (V kj )2 +
(
V k+1
j − V kj

)2)
+
δxj
δt

(ρk+1
j − ρkj )V kj V

k+1
j .
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Gathering the last two estimates on T1 and T2, and using (4.16) and (4.17) we
obtain

−
[
π
k+1/2
j+1/2 − π

k+1/2
j−1/2

]
V k+1
j >

δxj
2δt

[
ρk+1
j

(
V k+1
j

)2 − ρkj (V kj )2]+ Γj+1/2 − Γj−1/2

+
(δxj

2δt
ρk+1
j − 1

2

(
F k,+
j−1/2 −F k,−

j+1/2

))(
V k+1
j − V kj

)2
.

To conclude the proof, it remains to prove that under the assumption (4.15) we
have

δxj
4δt

ρk+1
j >

1

2

(
F k,+
j−1/2 −F k,−

j+1/2

)
which holds since, by virtue of Lemma 4.6, we have

δxj
δt
ρk+1
j + 2(F k,−

j+1/2 −F k,+
j−1/2) =

δxj
δt
ρkj −F

k,|·|
j+1/2 −F

k,|·|
j−1/2.

�

4.3. Global entropy inequality. We shall prove the decay of the discrete global
entropy which is defined, at time tk (k > 0), by the following formula

Ek =

J∑
j=2

δxj
2
ρkj
(
V kj
)2

+

J∑
j=1

δxj+1/2Φ(ρkj+1/2).

Roughly speaking, the decay of the discrete global entropy Ek should be proved
by summing the pointwise inequalities for internal and kinetic energy obtained in
Proposition 4.2 and Proposition 4.7 respectively. When summing these inequali-
ties, the flux terms vanish (thanks to boundary conditions) and we obtain the two
following inequalities:

1

δt

J∑
j=2

δxj

[1

2
ρk+1
j

(
V k+1
j

)2 − 1

2
ρkj
(
V kj
)2]

+

J∑
j=2

[
π
k+1/2
j+1/2 − π

k+1/2
j−1/2

]
V k+1
j 6 0,

(4.19)
1

δt

J∑
j=1

δxj+1/2

[
Φ(ρk+1

j+1/2)− Φ(ρkj+1/2)
]

+

J∑
j=1

π
k+1/2
j+1/2

[
V kj+1 − V kj

]
6 0.

Unfortunately, these two global inequalities are not sufficient to conclude to the
global entropy decay since the two terms

J∑
j=2

[
π
k+1/2
j+1/2 − π

k+1/2
j−1/2

]
V k+1
j and

J∑
j=1

π
k+1/2
j+1/2

[
V kj+1 − V kj

]
do not compensate when summing the two relations (even after a discrete inte-
gration by part, as they do in the continuous case). Indeed, the first one involves

the velocities (V k+1
j )j∈{1,...,J+1} at time tk+1 whereas the second one involves the

velocities (V kj )j∈{1,...,J+1} at time tk. In other words, the difficulty relies on the
fact that Proposition 4.2 and Proposition 4.7 do not lead to a discrete version of
(2.5). To cope with this technical difficulty, we shall prove a global internal energy
inequality that differs from (4.19). To this end, we need to introduce some technical
ingredients.
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Two additional auxiliary quantities. We introduce the two following auxiliary
quantities

(4.20)

ρk+1
j−1/2 = ρk+1

j−1/2 +
2δt

δxj−1/2
ρkj−1/2

(
V k+1
j − V kj

)
, ∀j ∈ {2, . . . , J + 1},

ρk+1
j+1/2 = ρk+1

j+1/2 −
2δt

δxj+1/2
ρkj+1/2

(
V k+1
j − V kj

)
, ∀j ∈ {1, . . . , J},

which are defined so that

(4.21)

ρk+1
j+1/2 + ρk+1

j+1/2

2
= ρk+1

j+1/2+
δt

δxj+1/2
ρkj+1/2

(
V k+1
j+1 −V k+1

j

)
, j ∈ {1, . . . , J}.

Note that this last relation is very similar to (4.6) but involves the velocities at
time tk+1 instead of the velocities at time tk. The following estimates will be useful
in the sequel.

Lemma 4.8. Assume (h1)-(h4). Let
(
ρk+1
j+1/2

)
j∈{1,...,J} and

(
ρk+1
j+1/2

)
j∈{1,...,J} be

defined by (4.5), and let
(
ρk+1
j+1/2

)
j∈{1,...,J} and

(
ρk+1
j+1/2

)
j∈{1,...,J} be defined by

(4.20). Assume that the time step δt > 0 satisfies (4.7). Then the following in-
equalities hold for all j ∈ {2, . . . , J}∣∣ρk+1

j−1/2

∣∣ 6 3

2
ρkj,Max,(4.22) ∣∣ρk+1

j+1/2 − ρk+1
j−1/2

∣∣ 6 ∣∣ρkj+1/2 − ρkj−1/2

∣∣,(4.23) ∣∣ρk+1
j+1/2 − ρk+1

j−1/2

∣∣ 6 ∣∣ρkj+1/2 − ρkj−1/2

∣∣(4.24)

+
4δt

min(δxj−1/2, δxj+1/2)
ρkj,Max

∣∣V k+1
j − V kj

∣∣.
Proof. We shall use the shorthand notation dk,±j = d±(ρkj−1/2, ρ

k
j+1/2, V

k
j ). Condi-

tions (4.7) imply

0 6
2δt

δxj+1/2
dk,+j 6

1

2
, and 0 6 − 2δt

δxj−1/2
dk,−j 6

1

2
.

(i) The definition of ρk+1
j−1/2 yields

ρk+1
j−1/2 = ρkj−1/2 −

2δt

δxj−1/2
dk,−j

(
ρkj+1/2 − ρkj−1/2

)
.

We are thus led to∣∣ρk+1
j−1/2

∣∣ 6 ρkj−1/2 +
1

2

∣∣ρkj+1/2 − ρkj−1/2

∣∣ 6 3

2
ρkj,Max.

(ii) Similarly, the definition of ρk+1
j+1/2 and ρk+1

j−1/2 yields

ρk+1
j+1/2 − ρk+1

j−1/2 =
[
1− 2δt

δxj+1/2
dk,+j +

2δt

δxj−1/2
dk,−j

](
ρkj+1/2 − ρkj−1/2

)
,

which lead to (4.23).
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(iii) By definition of ρk+1
j+1/2 and ρk+1

j−1/2, we have:

ρk+1
j+1/2 − ρk+1

j−1/2 = ρk+1
j+1/2 − ρk+1

j−1/2 −
2δt

δ̄xj
ρ̄kj
(
V k+1
j − V kj

)
,

where ρ̄kj stands for the following mean of ρkj−1/2 and ρkj+1/2:

ρ̄kj
δ̄xj

=
ρkj−1/2

δxj−1/2
+

ρkj+1/2

δxj+1/2
, with

1

δ̄xj
=

1

δxj−1/2
+

1

δxj+1/2
.

We have ρ̄kj 6 ρ
k
j,Max and

0 6
2δt

δ̄xj
6

4δt

min(δxj−1/2, δxj+1/2)
,

and consequently, (4.24).

�

Non uniform bound for the density. As mentioned in Section 2, when assuming
(2.1), uniform a priori estimates can be established for the continuous problem from
the properties of the invariant regions, see [8]. In particular the density remains
bounded when the initial density lies in L∞ and is non negative. It is not obvious
that a numerical scheme preserves such a strong property, see [25, 13] for discussions
on Lax-Friedrichs and Godunov schemes or [6, Section 2.2] for general conditions.

For this reason, we provide stepwise estimates on the updated solution. To this
end, we can adapt the proof of Proposition 3.7, which itself relies on Lemma 3.3,
to show that the discrete density at time tk+1 remains bounded from above and
below at the price of a slightly strengthened CFL condition compared to (3.12)
(which ensures only the positivity of the discrete density). Note that the bounds
for the density at time tk+1 are defined from the bounds on the density at time
tk and, hence, they are not uniform in time. In particular, the strengthened CFL
conditions ensure that the discrete density is always positive but do not prevent
from small (near vacuum) or large densities.

Lemma 4.9. Assume (h1)-(h4). Then, we have for all j ∈ {1, . . . , J}

0 <
ρkmin

2
6
ρkj+1/2

2
6 ρk+1

j+1/2 6 2 max(ρkj−1/2, ρ
k
j+1/2, ρ

k
j+3/2) 6 2ρkMax,

provided the following CFL-like conditions are satisfied:
(4.25)

2δt

δxj+1/2

([
λ+(ρkj+1/2, V

k
j+1)

]+
+
[
λ−(ρkj+1/2, V

k
j )
]−)
6 1, ∀j ∈ {1, . . . , J},

δt

δxj+1/2

([
λ+(ρkj−1/2, V

k
j )
]+

+
[
λ−(ρkj+3/2, V

k
j+1)

]−)
6 1, ∀j ∈ {2, . . . , J − 1},

δt

δx3/2

[
λ−(ρk5/2, V

k
2 )
]−
6 1,

δt

δxJ+1/2

[
λ+(ρkJ−1/2, V

k
J )
]+
6 1.
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A bluff extension of the internal energy. We shall work with auxiliary densities

ρk+1
j+1/2, ρk+1

j+1/2 which might be out the interval [ρkmin/2, 2ρ
k
Max]. For this reason,

we introduce a bluff extension of the internal energy, which is a mere quadratic
polynomial function for small and large values of ρ:

Φ̄(ρ) =


LΦ

[ρkmin

2

]
(ρ) if ρ 6

ρkmin

2
,

Φ(ρ) if
ρkmin

2
6 ρ 6 2ρkMax,

LΦ

[
2ρkMax

]
(ρ) if ρ > 2ρkMax,

where LΦ[ρ0](ρ) =
1

2
Φ′′(ρ0)(ρ − ρ0)2 + Φ′(ρ0)(ρ − ρ0) + Φ(ρ0) is the second or-

der Taylor expansion of Φ. In particular, we will use in the sequel the following
properties: ∣∣Φ̄′(ρ)

∣∣ 6 aM + bMρ, ∀ρ > 0,(4.26) ∣∣Φ̄′(ρ1)− Φ̄′(ρ2)
∣∣ 6 bM

∣∣ρ1 − ρ2

∣∣, ∀ρ1, ρ2 > 0,(4.27)

with

(4.28) aM = max
(ρkmin/2, 2ρ

k
Max)
|Φ′|+ 2ρkMaxbM , bM = max

(ρkmin/2, 2ρ
k
Max)

Φ′′.

We point out that dealing with this extended function does not modify the scheme,
neither the definition of the discrete internal energy since by virtue of Lemma 4.9,
both ρkj+1/2 and ρk+1

j+1/2 belong to [ρkmin/2, 2ρ
k
Max].

Global internal energy and entropy inequalities. We can now state the main
result of this section.

Proposition 4.10. Assume (h1)-(h4). Let the time step δt > 0 satisfy (4.7), (4.25)
and, for all j ∈ {2, . . . , J},

(4.29)
(δt)2

δxj min(δxj−1/2, δxj+1/2)

(
ρkj,Max

)2
6

ρkj
192 max

(ρkmin/2, 2ρ
k
Max)

Φ′′
.

and

(4.30)
δt

δxj
18(aM )2 6 ρkj

(
min

( ρkj,min, ρ
k
j,Max )

Φ′′
)(
|V kj |+ d|·|(ρkj−1/2, ρ

k
j+1/2, V

k
j )
)
,

where aM is defined by (4.28). Then, for all j ∈ {1, . . . , J}, the following inequality
holds

(4.31)
δxj+1/2

δt

[
Φ(ρk+1

j+1/2)− Φ(ρkj+1/2)
]

+G
k

j+1 −G
k

j

+ π
k+1/2
j+1/2

(
V k+1
j+1 − V k+1

j

)
6

1

4δt
δxjρ

k+1
j

∣∣V k+1
j − V kj

∣∣2,
with G

k

1 = G
k

J+1 = 0 and

G
k

j = Φ̄(ρkj−1/2)V k+1
j − δxj−1/2

2δt

[
Φ̄
(
ρk+1
j−1/2

)
− Φ̄(ρkj−1/2)

]
, ∀j ∈ {2, . . . , J}.
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Remark 4.11. Both Propositions 4.2 and 4.10 state a discrete version of (2.3),
with the identification of discrete energy fluxes. However, in Proposition 4.10, the
discrete analog of p(ρ)∂xV involves V k+1 whereas V k appears in Proposition 4.2.
The price to be paid is a more stringent CFL-like condition (see (4.29) and (4.30))
and a non negative term that appears in the right hand side of the inequality. It
can be compensated by the dissipation term in the kinetic energy balance stated
in Proposition 4.7. Note also that the stencil of the flux Gj is more extended than
for the flux Gj since it involves ρkj−3/2, ρkj−1/2, ρkj+1/2, ρkj+3/2, V kj−1, V kj and V kj+1.

We state now the local entropy inequality and the decay of the global entropy
which are the equivalents of the continuous inequality (2.5) and (2.2).

Corollary 4.12. Assume (h1)-(h4). The time step δt > 0 is assumed to satisfy
the constraints (4.7), (4.15), (4.25), (4.29) and (4.30) which thus define the time
τ? in Theorem 4.1. Then, the updated state verifies

Ek+1 6 Ek.

Proof. The assumptions allows to apply both Proposition 4.7 and Proposition 4.10.
The result is obtained by summing all the obtained inequalities. �

Note that, by contrast to the scheme studied in [19], we prove here the decay
of the global entropy, under suitable stability constraints: in [19], the pointwise
entropy production does not have a definite sign, but it is shown to be the sum of
non positive contributions and vanishing (as the discretization parameters tend to
0) ones.

Proof of Proposition 4.10. The assumption allow to apply Proposition 4.2.
Hence, we can (re)start from (4.10) applied to Φ̄. Since Φ̄ is convex, we have, for
all j ∈ {2, . . . , J},

Φ̄
(
ρk+1
j−1/2

)
> Φ̄

(
ρk+1
j−1/2

)
− 2δt

δxj−1/2
ρkj−1/2

(
V k+1
j − V kj

)
Φ̄′
(
ρk+1
j−1/2

)
,

Φ̄
(
ρk+1
j+1/2

)
> Φ̄

(
ρk+1
j+1/2

)
+

2δt

δxj+1/2
ρkj+1/2

(
V k+1
j − V kj

)
Φ̄′
(
ρk+1
j+1/2

)
.

Going back to (4.10), we find, for all j ∈ {2, . . . , J},

(4.32)
[
Φ(ρkj+1/2)− Φ(ρkj−1/2)

]
V kj +

δxj+1/2

2δt

[
Φ̄
(
ρk+1
j+1/2

)
− Φ̄(ρkj+1/2)

]
+
δxj−1/2

2δt

[
Φ̄
(
ρk+1
j−1/2

)
− Φ̄(ρkj−1/2)

]
+ T k1,j − T k21,j − T k22,j 6 0,

with

T k1,j =
1

4

|V kj |+ d|·|(ρkj−1/2, ρ
k
j+1/2, V

k
j )

2

(
min

( ρkj,min, ρ
k
j,Max )

Φ̄′′
)
(ρkj+1/2 − ρkj−1/2)2,

T k21,j = −ρkj+1/2

(
Φ̄′(ρk+1

j+1/2)− Φ̄′(ρk+1
j−1/2)

)(
V k+1
j − V kj

)
,

T k22,j = −
(
ρkj+1/2 − ρkj−1/2

)
Φ̄′(ρk+1

j−1/2)
(
V k+1
j − V kj

)
.
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Inequality (4.32) readily leads to

G
k

j+1 −G
k

j − Φ(ρkj+1/2)(V k+1
j+1 − V k+1

j )

+
δxj+1/2

2δt

[
Φ̄
(
ρk+1
j+1/2

)
+ Φ̄

(
ρk+1
j+1/2

)
− 2Φ̄(ρkj+1/2)

]
+T k1,j −T k21,j −T k22,j −T k3,j 6 0

for j ∈ {1, ..., J}, if we set T k1,j = T k2,j = T k3,j = 0 for j = 1 and

T k3,j =
(

Φ(ρkj+1/2)− Φ(ρkj−1/2)
)

(V k+1
j − V kj ), ∀j ∈ {2, . . . , J}.

Using the convexity of Φ̄ again and (4.21) yields, for any j ∈ {1, ..., J},
Φ̄
(
ρk+1
j+1/2

)
+ Φ̄

(
ρk+1
j+1/2

)
2

> Φ̄
(
ρk+1
j+1/2 +

δt

δxj+1/2
ρkj+1/2

(
V k+1
j+1 − V k+1

j

))
> Φ̄

(
ρk+1
j+1/2

)
+

δt

δxj+1/2
ρkj+1/2Φ̄′

(
ρk+1
j+1/2

)(
V k+1
j+1 − V k+1

j

)
.

Finally, we can conclude (using the definition (4.2) of π
k+1/2
j+1/2 ) that, for any j ∈

{1, ..., J},

(4.33) G
k

j+1 −G
k

j +
δxj+1/2

δt

[
Φ(ρk+1

j+1/2)− Φ(ρkj+1/2)
]

+ π
k+1/2
j+1/2

(
V k+1
j+1 − V k+1

j

)
+ T k1,j − T k21,j − T k22,j − T k3,j 6 0.

Note that in some terms, we have moved Φ̄ into Φ. This is legitimate since ρkj±1/2

and ρk+1
j±1/2 lie in the interval [ρmin/2, 2ρMax], see Lemma 4.9, where Φ̄ and Φ coin-

cide. It remains to estimate T k21,j , T
k
22,j and T k3,j .

Estimate for T k21,j . For T k21,j , we use (4.27) to obtain

T k21,j 6 bMρ
k
j,Max

∣∣ρk+1
j+1/2 − ρk+1

j−1/2

∣∣∣∣V k+1
j − V kj

∣∣.
Owing to (4.24), we deduce the following inequality

T k21,j 6 bMρ
k
j,Max

∣∣ρkj+1/2−ρkj−1/2

∣∣∣∣V k+1
j −V kj

∣∣+ 4 δt bM
(
ρkj,Max

)2
min(δxj−1/2, δxj+1/2)

∣∣V k+1
j −V kj

∣∣2.
By using the Young inequality, with condition (4.30), we arrive at

T k21,j 6 12δt(bM )2
(ρkj,Max)2

δxjρkj

∣∣ρkj+1/2 − ρkj−1/2

∣∣2 +
[ 1

48
+

1

48

] 1

δt
δxjρ

k
j

∣∣V k+1
j − V kj

∣∣2.
Estimate for T k22,j . For T k22,j , we use (4.26) and the definition of ρk+1

j−1/2 to find

T k22,j 6
(
aM + bM |ρk+1

j−1/2|
)∣∣ρkj+1/2 − ρkj−1/2

∣∣∣∣V k+1
j − V kj

∣∣
+

2bMδt

δxj−1/2
ρkj−1/2

∣∣ρkj+1/2 − ρkj−1/2

∣∣(V k+1
j − V kj

)2
.

Using (4.22), we find

T k22,j 6
(
aM +

3

2
bMρ

k
j,Max

)∣∣ρkj+1/2 − ρkj−1/2

∣∣∣∣V k+1
j − V kj

∣∣
+

3bMδt

δxj−1/2

(
ρkj,Max

)2(
V k+1
j − V kj

)2
.
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Applying the Young inequality with condition (4.29) then leads to

T k22,j 6
3

2
δt

(
aM +

3

2
bMρ

k
j,Max

)2
δxjρkj

∣∣ρkj+1/2−ρkj−1/2

∣∣2 +
[1

6
+

1

48

] 1

δt
δxjρ

k
j

∣∣V k+1
j −V kj

∣∣2.
Estimate for T k3,j . Using the Young inequality and since Φ′ is a non decreasing
function, we find

T k3,j 6
12δt

δxjρkj

∣∣Φ′(ρkj,Max)
∣∣2(ρkj+1/2 − ρkj−1/2

)2

+
δxj
48δt

ρkj (V k+1
j − V kj )2.

Conclusion. Finally, gathering together all these information, we deduce an esti-
mate from below of T k1,j − T k21,j − T k22,j − T k3,j with two terms containing either the

factor |V k+1
j − V kj |2, or |ρkj+1/2 − ρkj−1/2|2. The former precisely reads

(4.34) − 1

4δt
δxjρ

k
j

∣∣V k+1
j − V kj

∣∣2
and the latter brings a non negative contribution since δt satisfy (4.30). We finally

remark that 1
2ρ
k
j 6 ρ

k+1
j (as a consequence of Lemma 4.9) to obtain the conclusion

from (4.33) and (4.34).

With a slight and obvious modification of the proof, we can strengthen Corollary

4.12 by including an estimate on
∑J
j=1 δxjρ

k
j

∣∣V k+1
j −V kj

∣∣2. This refinement can be
useful for the consistency analysis.

5. Numerical simulation

In this section, we present several numerical simulations to illustrate the be-
haviour of the scheme. We numerically solve Riemann problems: the initial data
is made of two constant states (ρl, Vl) and (ρr, Vr) with a discontinuity located at
x = 0. For such initial data, the structure of the solution is well known: it is made
of three constant states (the two initial states (ρl, Vl) and (ρr, Vr), and an additional
intermediate state (ρm, Vm)); these constant states are linked by two propagating
waves, each being associated with an eigenvalue of the system. Each wave can be
either a rarefaction wave or a shock wave depending on the particular values of the
initial left and right states. For the simulation, the computational domain [a, b] is
fitted to the region of interest, depending on the considered case. In order to keep
the structure described above, we use Neumann like boundary conditions: as far
as the waves do not reach the boundary, the solution coincides with the solution of
the problem set on the whole line. The numerical parameters δt and δx are defined
consistently with the stability assumption (3.12). For each test case, we precise the
value of the following quantity:

cfl =
δt

δx

1

min
(
λ±(ρl, Vl), λ±(ρm, Vm), λ±(ρr, Vr)

) .
We should bear in mind that the entropy-stability analysis of the scheme requires
further restrictions which can be, in some circumstances, significantly more con-
strained than (3.12). This is verified in the numerical experiments.

5.1. Polytropic ideal gases. We first present simulations using the state law of
polytropic ideal gases:

(5.1) p(ρ) = kργ ,
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where k > 0 and γ > 1 are two real constants.
We begin with three test cases coming from [7]. The state law is given by (5.1)

with k = (γ−1)2

4γ and γ = 1.6. The computational domain [a, b] and the initial data

are defined as follows

Test 1 (shock-shock)

a=-0.2 b=0.8

ρl = 1 ρr = 2

Vl = 1 Vr = 0.5

Test 2 (rarefaction-rarefaction)

a=-0.7 b=0.3

ρl = 0.5 ρr = 1

Vl = −0.5 Vr = −0.2

Test 3 (rarefaction-shock)

a=-0.7 b=0.3

ρl = 1 ρr = 0.5

Vl = −0.5 Vr = −0.5

The corresponding Riemann solutions develop two shocks, two rarefaction waves
and a rarefaction wave followed by a shock wave, respectively. For the simulation,
we make the number J of cells within the grid vary; the time step is fixed according
to the relation Jδt = 0.25 (that is cfl = 0.3 for Test 1, cfl = 0.2 for Test 2 and
3). For each test case, we plot the approximate density and velocity obtained for
J = 100, 400, 3200 compared to the exact solution at time T = 0.5. We also plot the
evolution of the discrete L1 norm of the error e between the approximate solution
and the exact solution (ρex, Vex) at the final time T = 0.5 = nδt:

(5.2)

J∑
j=1

δx
∣∣ρnj+1/2 − ρex(T, xj)

∣∣ and

J+1∑
j=1

δx
∣∣V nj − Vex(T, xj)

∣∣,
as a function of the mesh size. It provides an evaluation of the convergence rate.
The results are given in Figures 2, 3 and 4, respectively. The exact solution is well
approximated: the intermediate constant state (ρm, Vm) and the propagation speed
of the waves are correctly computed. For each test case, we obtain a convergence
rate close to 1.

The next examples are more difficult. The state law is given by (5.1) with k = 1
and γ = 1.4. Test 4 is inspired from [17]: the Riemann solution present two strong
shocks. Test 5 is inspired from [34]: the Riemann solution is made of two symmetric
rarefaction waves and the difficulty relies on the formation of near-vacuum in the
intermediate region. The computational domain and the initial data for these test
cases are given by

Test 4 (shock-shock)

a=-0.1 b=0.15

ρl = 10 ρr = 20

Vl = 50 Vr = 0

Test 5 (rarefaction-rarefaction)

a=-0.5 b=0.5

ρl = 1 ρr = 1

Vl = −5 Vr = 5

The results are presented in Figures 5 and 6 respectively. For Test 4, as previously,
we plot the approximate density and velocity obtained for J = 400, 800, 3200 com-
pared to the exact solution at T = 0.005. For these runs, we impose δtJ = 0.0004
(that is cfl = 0.08). We also plot the evolution of the discrete L1 norm of the
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error e between the approximate solution and the exact solution at the final time
T = 0.005 as a function of the mesh size and we provide the associated conver-
gence rates. We obtain a convergence rate close to 1. The exact solution is well
approximated, again. Nevertheless, near the first shock for the velocity, we observe
a small overshoot the amplitude of which decreases with the time step. For Test
5, we plot the approximate density and velocity but also the momentum obtained
for J = 200, 400, 3200 compared to the exact solution at T = 0.07 (here we impose
δtJ = 0.01, that is cfl = 0.06). The velocity is poorly approximated in the near
vacuum region but the evaluation of the momentum, which is the quantity of inter-
est, is fair. As previously, we also plot the evolution of the discrete L1 norm of the
error e between the approximate solution and the exact solution at T = nδt = 0.07
as a function of the mesh size and we provide the associated convergence rates. The
L1 error norm for the momentum is defined as follows

(5.3)

J∑
j=1

δx
∣∣ρnj V nj − ρex(T, xj)Vex(t0, xj)

∣∣.
We observe a convergence rate close to 1 for the density and the momentum.

5.2. Other examples. We complete the numerical illustration with examples that
departs from the standard polytropic ideal gas law. We start with the following
state law:

(5.4) p(ρ) = k

(
ρ

ρ∗ − ρ

)γ
with k =

(γ − 1)2

4γ
, γ = 0.6, ρ∗ = 3.

This constitutive law appears as a particular case of the Van der Waals state law;
it is used in the modeling of dusty gases, see [2, 22] and the references therein. The
interaction forces between gas molecules are ignored here but the constant ρ∗ is
intended to introduce a correction accounting for the finite size of the molecules. In
particular, we note that ρ 7→ p(ρ) is not an homogeneous function. (In particular
it is not clear how to define a co-localized kinetic scheme that makes the physical
entropy decay.) Of course it is important for this problem to preserve the natural
bound ρ < ρ?. Such a discrete maximum principle can be incorporated in the
stability condition, as discussed in [3] for close-packing models in fluid-particles
flows.

The computational domain [a, b] and the initial data used in our simulation are
defined as follows

Test 6 (shock-shock)

a=-0.2 b=0.8

ρl = 1 ρr = 2

Vl = 1 Vr = 0.5

The corresponding Riemann solutions develop two shocks. We perform simulations
for several number J of cells in the grid; the time step being imposed by the
relation Jδt = 0.25 (that is cfl = 0.3). We plot the approximate density and
velocity obtained for J = 100, 200, 1600 compared to the exact solution at T = 0.5.
The results are given in the Figure 7. The exact solution is well approximated:
the intermediate constant state (ρm, Vm) and the propagation speed of shocks are
correctly computed. We also plot the evolution of the discrete L1 norm of the error
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e between the approximate solution and the exact solution at T = 0.5 as a function
of the mesh size. The convergence rate is close to 1.

Finally, we investigate the performances of the scheme with the following com-
plicated state law

(5.5) p(ρ) = −Cv0T0Γ0ρ0 +
K0

2
(χ+ 1)2χ

(
2f0(χ) + χf ′0(χ)

)
+ exp

(
Γ0

(
1− ρ0

ρ

))
,

where

χ =
ρ

ρ0
− 1,

and the function f0 is defined by:

f0(χ) =
1 +

(s
3
− 2
)
χ+ qχ2 + rχ3

1− sχ , with s = 1.5, q = −42080895

14941154
, r =

727668333

149411540
.

The parameters K0, ρ0, T0, Cv0 and Γ0 are the following constants:

K0 = 1011, ρ0 = 104, T0 = 300, Cv0 = 103, Γ0 = 1.5.

This example is an isentropic version of a model introduced in [21], referred to with
the nickname “Bizarrium”. The equation of state is non-convex. This toy-model
has been proposed to serve as a benchmark that reproduces the main features
of “real-life” applications, in order to evaluate how numerical schemes select the
solution when the convexity of the state law might vary. We refer the reader to [21]
for detailed motivations and comparisons of several numerical methods, and to [2]
for further details on the mathematical theory for such general equations of state.

For the simulation, the computational domain [a, b] and the initial data are
defined as follows:

Test 7

a=-0.2 b=0.8

ρl = 11000 ρr = 10000

Vl = 0 Vr = 250

Test 8

a=-0.2 b=0.8

ρl = 14285 ρr = 10000

Vl = 0 Vr = 250

Test 9

a=-0.2 b=0.8

ρl = 13000 ρr = 12000

Vl = 0 Vr = 250

We plot the approximated density and velocity obtained for J = 1600, δt = 10−8

at time T = 10−5. The results for Test 7 are given in Figure 8. For this test, the
density remains bounded between ρr = 10000 and ρl = 11000; on this range the
pressure ρ 7→ p(ρ) is a convex function so that the assumption (2.1) is satisfied.
The scheme behaves very well in this case. However, this is not the case for Test
8 and 9. In the range [10000, 14285] (Test 8), the pressure p(ρ) has two convexity
changes and in the range [12000, 13000] (Test 9) the pressure p(ρ) is concave. In
these cases where assumption (2.1) is not satisfied, the structure of the solutions of
the Riemann problems is more complex than the structure described above (see for
instance [36] and [21]) and the numerical results exhibit oscillations. These results
illustrate the role of (2.1).
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Nevertheless, the scheme can be improved to treat such cases with loss of convex-
ity. Roughly speaking the idea consists in extending the support of the Maxwellian
M0. Designing and analyzing a scheme for a general state law is beyond the scope
of this work but to illustrate the capability of the scheme we perform simulations
with a simple adaptation of M0 directly inspired from [24]. In order to replace M0,
we define the following function
(5.6)

M0(ρ1, ρ2, V, ξ) =
2ρV

µ+(ρ1, ρ2, V )2 − µ−(ρ1, ρ2, V )2
1Iµ−(ρ1,ρ2,V )6ξ6µ+(ρ1,ρ2,V ),

where

µ±(ρ1, ρ2, V ) = ± max
06σ61

[
±H

(
σ; V ± c(ρ1), V ± c(ρ2), τ±(ρ1), τ±(ρ2)

)]
,

with

τ±(ρ) =
1

2ρc(ρ)
(ρp′′(ρ) + 2p′(ρ)),

and H is the unique cubic polynomial function that satisfies the following interpo-
lation conditions:

H(0; a, b, a′, b′) = a, H(1; a, b, a′, b′) = b, H ′(0; a, b, a′, b′) = a′, H ′(1; a, b, a′, b′) = b′.

For internal edges (for j ∈ {2, . . . , J}), the discrete mass fluxes are then defined as
follows:

F k
j =

∫
ξ>0

ξM0(ρkj−1/2, ρ
k
j , V

k
j , ξ) dξ +

∫
ξ<0

ξM0(ρkj , ρ
k
j+1/2, V

k
j , ξ) dξ.

Recall that ρkj is defined by (3.8). The momentum fluxes are then deduced from
these mass fluxes as explained in Section 3.2. Figures 9 and 10 present the results
for Test 8. The modification of the support of the Maxwellian allows to reduce the
amplitude of the oscillations near the discontinuity: it becomes of the order of 2%
(resp. 8%) of the height discontinuity instead of 30% (resp. 20%) for the density
(resp. velocity). Figures 11 and 12 present the results for Test 9. Simulations
with the Maxwellian M0 show very strong oscillations whereas there is only one
oscillation located near each discontinuity when the Maxwellian M0 is used. The
amplitude of this oscillation is less than 25% (resp. 15%) of the height of the
discontinuity for the density (resp. velocity).

Appendix A. Proof of Lemma 4.4

We begin with some notation which are useful in the sequel. Let a, b ∈ R and let
Φ̄ : R→ R be a function of class C1. We denote by PΦ(a, b) the following fraction:

PΦ̄(a, b) =


Φ̄(a)− Φ̄(b)

a− b if a 6= b,

Φ̄′(a) if a = b.

We remind that d± and d|·| are defined by (4.3) and (4.4).

Lemma A.1. Let Φ̄ be a strictly convex function of class C2. Let ρ1 6= ρ2 be
positive reals, let V > 0 and λ, µ ∈ R verifiying:

(A.1) λ, µ >

2 max
( ρ, ρ )

Φ̄′′

min
( ρ, ρ )

Φ̄′′
d|·|(ρ1, ρ2, V ).
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(a) Density at T = 0.5 (b) Velocity at T = 0.5

(c) L1-error norm at T = 0.5 as a func-
tion of δx (with δt = 0.25δx).

` J`

ln(e`+1/e`)

ln(J`/J`+1)
Density Velocity

1 100 0.85 0.9
2 200 0.88 0.92
3 400 0.94 0.94
4 800 1 0.97
5 1600 0.99 1.02
6 3200 - -

(d) Corresponding convergence
rates.

Figure 2. Results for Test 1
(
p(ρ) = k (ρ)

γ )
.

We denote ρ = min(ρ1, ρ2) and ρ = max(ρ1, ρ2) and we set

ρ1 = ρ1 −
1

µ

(
F−(ρ2, V )−F−(ρ1, V )

)
, ρ2 = ρ2 −

1

λ

(
F+(ρ2, V )−F+(ρ1, V )

)
.

Then, there exists ρ1/2 ∈ ( ρ, ρ ) such that:

Φ̄(ρ2)+PΦ̄

(
ρ2, ρ2

)
(ρ1/2−ρ2)+

1

4

(
min
(ρ,ρ)

Φ̄′′
)

(ρ1−ρ2)2 = Φ̄(ρ1)+PΦ̄

(
ρ1, ρ1

)
(ρ1/2−ρ1)

holds.

Proof. Let us introduce the following shorthand notation

p1 = PΦ̄

(
ρ1, ρ1

)
and p2 = PΦ̄

(
ρ2, ρ2

)
.

We observe that

ρ1 = ρ1 −
1

µ
d−(ρ1, ρ2, V )(ρ2 − ρ1), ρ2 = ρ2 −

1

λ
d+(ρ1, ρ2, V )(ρ2 − ρ1).

Owing to Lemma 3.3, since V > 0, we know that

d+(ρ1, ρ2, V ) > 0, d−(ρ1, ρ2, V ) 6 0 and d|·| = d+ − d− > 0.

We assume that ρ1 < ρ2; the case ρ2 < ρ1 can be treated in a similar way.
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(a) Density at T = 0.5 (b) Velocity at T = 0.5

(c) L1-error norm at T = 0.5 as a func-
tion of δx (with δt = 0.25δx).

` J`

ln(e`+1/e`)

ln(J`/J`+1)
Density Velocity

1 800 0.71 0.71
2 1600 0.73 0.74
3 3200 0.76 0.76
4 6400 0.79 0.78
5 12800 0.8 0.8
6 25600 - -

(d) Corresponding convergence
rates.

Figure 3. Results for Test 2
(
p(ρ) = k (ρ)

γ )
.

By (A.1), λ, µ > d|·|(ρ1, ρ2, V ), and we obtain

ρ1 6 ρ1 +
d−(ρ1, ρ2, V )(ρ1 − ρ2)

d|·|(ρ1, ρ2, V )
= ρ2 +

d+(ρ1, ρ2, V )(ρ1 − ρ2)

d|·|(ρ1, ρ2, V )
< ρ2.

Thus, we have

ρ1 6 ρ1 < ρ2 < ρ2.

Since Φ̄ is strictly convex, we deduce from the three chord lemma that

p1 < p2.

We can now define ρ1/2 as the solution of the following linear equation

Φ̄(ρ2) + p2(ρ1/2 − ρ2) +
1

4

(
min
( ρ, ρ )

Φ̄′′
)

(ρ1 − ρ2)2 = Φ̄(ρ1) + p1(ρ1/2 − ρ1).

We are going to prove that ρ1 < ρ1/2 < ρ2. We start with the following equality
(A.2)

(p2 − p1)(ρ1/2 − ρ2) = Φ̄(ρ1)− Φ̄(ρ2) + p1(ρ2 − ρ1)− 1

4

(
min
( ρ, ρ )

Φ̄′′
)

(ρ1 − ρ2)2.
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(a) Density at T = 0.5 (b) Velocity at T = 0.5

(c) L1-error norm at T = 0.5 as a func-
tion of δx (with δt = 0.25δx).

` J`

ln(e`+1/e`)

ln(J`/J`+1)
Density Velocity

1 800 0.74 0.75
2 1600 0.76 0.77
3 3200 0.78 0.79
4 6400 0.8 0.81
5 12800 0.82 0.82
6 25600 - -

(d) Corresponding convergence
rates.

Figure 4. Results for Test 3
(
p(ρ) = k (ρ)

γ )
.

Since Φ̄ is strictly convex and ρ1 < ρ1 < ρ2, we arrive at

(p2 − p1)(ρ1/2 − ρ2) 6 Φ̄(ρ1)− Φ̄(ρ2) + p1(ρ2 − ρ1)

6 (ρ2 − ρ1)

(
− Φ̄(ρ1)− Φ̄(ρ2)

ρ1 − ρ2
+

Φ̄(ρ1)− Φ̄(ρ1)

ρ1 − ρ1

)
< 0.

This proves ρ1/2 < ρ2. Similarly, we have
(A.3)

(p1 − p2)(ρ1/2 − ρ1) = Φ̄(ρ2)− Φ̄(ρ1) + p2(ρ1 − ρ2) +
1

4

(
min
( ρ, ρ )

Φ̄′′
)

(ρ1 − ρ2)2.

Using the Taylor expansion of the function Φ̄, we can prove that the right hand
side is non positive. Indeed, let h = λ−1d+(ρ1, ρ2, V )(ρ2 − ρ1) > 0. We have

p2 =
Φ̄(ρ2 − h)− Φ̄(ρ2)

−h = Φ̄′(ρ2)− 1

h

∫ ρ2

ρ2−h
Φ̄′′(u)(u− (ρ2 − h)) du,

while

Φ̄(ρ2)− Φ̄(ρ1) = Φ̄′(ρ2)(ρ2 − ρ1)−
∫ ρ2

ρ1

Φ̄′′(u)(u− ρ1) du.
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(a) Density at T = 0.005 (b) Velocity at T = 0.005

(c) L1-error norm at T = 0.005 as a
function of δx (with δt = 0.0004δx).

` J`

ln(e`+1/e`)

ln(J`/J`+1)
Density Velocity

1 400 0.78 0.91
2 800 1.04 0.97
3 1600 0.79 1.03
4 3200 1.05 0.91
5 6400 0.92 1.01
6 12800 - -

(d) Corresponding convergence
rates.

Figure 5. Results for Test 4
(
p(ρ) = k (ρ)

γ )
.

It yields

Φ̄(ρ2)−Φ̄(ρ1) + p2(ρ1 − ρ2)

= −
∫ ρ2

ρ1

Φ̄′′(u)(u− ρ1) du+
ρ2 − ρ1

h

∫ ρ2

ρ2−h
Φ̄′′(u)

(
u− (ρ2 − h)

)
du

6 − (ρ1 − ρ2)2

2

[(
min
( ρ, ρ )

Φ̄′′
)
− h

ρ2 − ρ1

(
max
( ρ, ρ )

Φ̄′′
)]
.

Bearing in mind the definition of h, we obtain

Φ̄(ρ2)− Φ̄(ρ1) + p2(ρ1 − ρ2)

6 − (ρ1 − ρ2)2

2

[(
min
( ρ, ρ )

Φ̄′′
)
− d+(ρ1, ρ2, V )

λ

(
max
( ρ, ρ )

Φ̄′′
)]
.

However, owing to (A.1), we have:(
min
( ρ, ρ )

Φ̄′′
)
− d+(ρ1, ρ2, V )

λ

(
max
( ρ, ρ )

Φ̄′′
)
>

1

2

(
min
( ρ, ρ )

Φ̄′′
)
.

Going back to (A.3), it proves that

(p1 − p2)(ρ1/2 − ρ1) < 0,
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(a) Density at T = 0.07 (b) Velocity at T = 0.07

(c) Momentum at T = 0.07 (d) L1-error norm at T = 0.07 as a func-
tion of δx (with δt = 0.01δx).

` J`

ln(e`+1/e`)

ln(J`/J`+1)
Density Velocity Momentum

1 800 0.66 0.79 0.68
2 1600 0.71 0.73 0.71
3 3200 0.72 0.50 0.74
4 6400 0.77 0.57 0.76
5 12800 0.78 0.72 0.78
6 25600 - - -

(e) Corresponding convergence
rates.

Figure 6. Result for Test 5
(
p(ρ) = k (ρ)

γ )
.

and finally that ρ1/2 > ρ1. �

Proof Lemma 4.4. The result is trivial when ρ1 = ρ2. Hence, we assume ρ1 6= ρ2.
We first focus on the case V > 0. We adopt the shorthand notations d± and
d|·| instead of d±(ρ1, ρ2, V ) and d|·|(ρ1, ρ2, V ), respectively. We bear in mind the
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(a) Density at T = 0.5 (b) Velocity at T = 0.5

(c) L1-error norm at T = 0.5 as a func-
tion of δx (with δt = 0.25δx).

` J`

ln(e`+1/e`)

ln(J`/J`+1)
Density Velocity

1 100 0.97 0.98
2 200 0.97 1.01
3 400 0.93 0.98
4 800 1.09 1.01
5 1600 0.99 1.02
6 3200 0.88 0.99
7 6400 - -

(d) Corresponding convergence rates.

Figure 7. Results Test 6
(
p(ρ) = k (ρ)

γ
(ρ∗ − ρ)

−γ )
.

(a) Density at T = 10−5 (b) Velocity at T = 10−5

Figure 8. Results for Test 7 (p defined by (5.5), δt = 10−8, J = 1600).
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(a) Scheme with M0 (cf (3.1)) (b) Scheme with M0 (cf (5.6))

Figure 9. Results for Test 8 (p defined by (5.5), δt = 10−8, J =
1600). Density at T = 10−5.

(a) Scheme with M0 (cf (3.1)) (b) Scheme with M0 (cf (5.6))

Figure 10. Results for Test 8 (p defined by (5.5), δt = 10−8, J =
1600). Velocity at T = 10−5.

equality V = d+ + d−. The equality we wish to prove is equivalent to[
Φ̄(ρ2)− Φ̄(ρ1)

]
V +λp2

[
ρ2−ρ2

]
+µp1

[
ρ1−ρ1

]
+

1

4
d+
(

min
( ρ, ρ )

Φ̄′′
)
(ρ1−ρ2)2 6 0,

where

p1 = PΦ̄

(
ρ1, ρ1

)
, and p2 = PΦ̄

(
ρ2, ρ1,

)
.

With the definition of ρ2, ρ1, we find that this is again equivalent to
(A.4)[

Φ̄(ρ2)− Φ̄(ρ1)
]
(d+ + d−)− p2d

+(ρ2 − ρ1)

−p1d
−(ρ2 − ρ1) +

1

4
d+
(

min
( ρ, ρ )

Φ̄′′
)
(ρ1 − ρ2)2 6 0.
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(a) Scheme with M0 (cf (3.1)) (b) Scheme with M0 (cf (5.6))

Figure 11. Results for Test 9 (p defined by (5.5), δt = 10−8, J =
1600). Density at T = 10−5.

(a) Scheme with M0 (cf (3.1)) (b) Scheme with M0 (cf (5.6))

Figure 12. Results for Test 9 (p defined by (5.5), δt = 10−8, J =
1600). Velocity at T = 10−5.

However, both λ and µ satisfy the condition (A.1). Thus, we can apply Lemma A.1:
there exist ρ1/2 ∈ ( ρ, ρ ) such that[

Φ̄(ρ2)− Φ̄(ρ1)
]

+ p2(ρ1/2 − ρ2) +
1

4

(
min
(ρ,ρ)

Φ̄′′
)

(ρ1 − ρ2)2 = p1(ρ1/2 − ρ1).

We multiply this equality by d+ + d− and substract it to (A.4). It turns out that
the inequality we have to prove is equivalent to
(A.5)
−p2(ρ1/2 − ρ2)(d+ + d−) + p1(ρ1/2 − ρ1)(d+ + d−)

− p2d
+(ρ2 − ρ1)− p1d

−(ρ2 − ρ1)− 1

4
d−
(

min
(ρ,ρ)

Φ̄′′
)

(ρ1 − ρ2)2 6 0.

We can rearrange terms so that we are led to prove

−(p2 − p1)
(
(ρ1/2 − ρ1)d+ − (ρ2 − ρ1/2)d−

)
− 1

4
d−
(

min
(ρ,ρ)

Φ̄′′
)

(ρ1 − ρ2)2 6 0.
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Since ρ1/2 ∈ ( ρ, ρ ) and sgn(p2 − p1) = sgn(ρ2 − ρ1) (see the proof of Lemma A.1),
we know that

−(p2 − p1)(ρ1/2 − ρ1)d+ 6 0.

And since d− 6 0, it is sufficient to prove

−(p2 − p1)(ρ2 − ρ1/2) +
1

4

(
min
(ρ,ρ)

Φ̄′′
)

(ρ1 − ρ2)2 6 0.

However, equality (A.2) shows that the left hand side is exactly equal to

Φ̄(ρ1)− Φ̄(ρ2) + p1(ρ2 − ρ1)

which is non positive since Φ̄ is a convex function.

The result for V 6 0 is obtained by applying the obtained equality with −V ,
inverting the role of ρ1, λ and ρ2, µ, and using Lemma 3.3-(iii).

Appendix B. Comments on numerical diffusion and schemes
comparison

It is worth discussing the expression of the numerical diffusion produced by our
scheme. For the sake of simplicity, we drop the superscript k. The mass flux is
given by
(B.1)

Fj = F+(ρj−1/2, Vj) + F−(ρj+1/2, Vj), F±(ρ, V ) =

∫
±ξ>0

ξM0(ρ, V ) dξ.

We remind that ρV = F+(ρ, V ) + F−(ρ, V ). It allows to rewrite

Fj =
ρj+1/2 + ρj−1/2

2
Vj −

1

2

(
F+(ρj+1/2, Vj)−F−(ρj+1/2, Vj)

+F−(ρj−1/2, Vj)−F+(ρj−1/2, Vj)
)

=
ρj+1/2 + ρj−1/2

2
Vj −

1

2

(
F |·|(ρj+1/2, Vj)−F |·|(ρj−1/2, Vj)

)
.

It makes the numerical mass diffusion appear, since

Fj+1 −Fj =
(ρj+3/2 + ρj+1/2

2
Vj+1 −

ρj+1/2 + ρj−1/2

2
Vj

)
−∆mass

j

with

∆mass
j =

1

2
d|·|(ρj+3/2, ρj+1/2, Vj+1)(ρj+3/2 − ρj+1/2)

−1

2
d|·|(ρj+1/2, ρj−1/2, Vj)(ρj+1/2 − ρj−1/2)

=
1

2
d|·|(ρj+3/2, ρj+1/2, Vj+1) ρj+3/2 +

1

2
d|·|(ρj+1/2, ρj−1/2, Vj) ρj−1/2

−1

2

(
d|·|(ρj+3/2, ρj+1/2, Vj+1) + d|·|(ρj+1/2, ρj−1/2, Vj)

)
ρj+1/2

where we remind that d|·|(ρ, ρ′, V ) = F |·|(ρ,V )−F |·|(ρ′,V )
(ρ−ρ′) for ρ 6= ρ′, see (4.4). Next,

let us evaluate the numerical diffusion for the momentum equation. We remind
that the pressure gradient is already approximated by a centered difference. Then,
we study

(B.2) Gj+1/2 = Vj

(F+
j + F+

j+1

2

)
+ Vj+1

(F−j + F−j+1

2

)
.
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which recasts as

Gj+1/2 =
Fj + Fj+1

2

Vj + Vj+1

2

+
Vj
4

(F+
j −F−j + F+

j+1 −F−j+1)

+
Vj+1

4
(F−j −F+

j + F−j+1 −F+
j+1)

=
Fj + Fj+1

2

Vj + Vj+1

2
+

1

4
(F
|·|
j + F

|·|
j+1)(Vj − Vj+1).

Thus, we identify the numerical diffusion for the momentum as

∆q
j+1/2 =

1

4
(F
|·|
j + F

|·|
j+1)(Vj+1 − Vj)−

1

4
(F
|·|
j−1 + F

|·|
j )(Vj − Vj−1)

=
F
|·|
j + F

|·|
j+1

4
Vj+1 −

2F
|·|
j + F

|·|
j+1 + F

|·|
j−1

4
Vj +

F
|·|
j−1 + F

|·|
j

4
Vj−1.

Indeed, we have

Gj+1/2 − Gj−1/2 =
Fj + Fj+1

2

Vj + Vj+1

2
− Fj−1 + Fj

2

Vj−1 + Vj
2

−∆q
j+1/2.

As noticed above, both coefficients F |·|(ρ, V ) and d|·|(ρ, ρ′, V ) are always strictly
positive for any ρ, ρ′ > 0, V ∈ R with our choice of Maxwellian state M0.

A tempting simplification of the scheme consists in replacing M0(ρ, V )(ξ) by
ρδ(ξ = V ), see Remark 3.5. Then, the transport flux reduces to the UpWind flux:

(B.3) FUpW
j = ρj−1/2

[
Vj
]+ − ρj+1/2

[
Vj
]−
.

Note that the CFL condition guaranteeing the positivity of the density has to be
modified accordingly, and now it involves the material velocity V only instead of
the characteristic speeds V ± c(ρ). The stability analysis (see also Remark 4.5) and
the computation of the numerical diffusion proceeds exactly the same way, with
now FUpW,|·|(ρ, V ) = ρ|V | and dUpW,|·|(ρ, ρ′, V ) = |V |. Therefore, the numerical
mass diffusion and momentum diffusion vanish when the material velocity vanishes.
Note also that the right hand side in the CFL condition (4.30) vanishes when V = 0
for the flux (B.3). It certainly explains the difficulties observed in the simulations.

We illustrate this discussion with two additional numerical tests (coming from
[20]). We use the state law (5.1) with k = 1 and γ = 2, which corresponds to the
case where (1.1)–(1.2) is the so-called shallow water system. The computational
domain [a, b] and the initial data are defined as follows

Test 10 (shock-rarefaction)

a=-0.5 b=0.5

ρl = 1 ρr = 10

Vl = 3 Vr = 5.5

Test 11 (shock-rarefaction)

a=-0.5 b=0.5

ρl = 1 ρr = 10

Vl = 1.89 Vr = 4.39

For both test, we compare the numerical results obtained for our scheme (using mass

fluxes Fj defined by (B.1)) and the variant with the mass fluxes FUpW
j defined by

(B.3). The former is denoted by ’Kinetic’ and the latter by ’UpWind’ in the legend
of the pictures.
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(a) Density. (b) Velocity.

Figure 13. Results for Test 10, T = 0.025, δx = 10−2, δt = 5. 10−4 δx.

The results for Test 10 are plotted in Figure 13 (approximate densities on the left
hand side and approximate velocities on the right hand side). We also plot the sound
speed (cj = max(c(ρj−1/2), c(ρj+1/2))j∈{2,...,J} obtained with our scheme which
allows to easily identify the subsonic regions (defined by |Vj | < cj) where the two

fluxes Fj and FUpW
j differ. We observe that the two schemes perfectly match out

of the subsonic region but are slightly different inside. According to the discussion
above, the UpWind scheme seems to be less diffusive but the discrepancies between
the two schemes are small whereas the mesh size is quite large (δx = 10−2). Results
for Test 11 are plotted in Figure 14 (approximate densities on the left hand side
and approximate velocities on the right hand side, Kinetic scheme at the top and
UpWind scheme at the bottom). The values of initial right and left velocities Vr
and Vl are chosen so that the velocity Vm in the intermediate state nearly vanishes.
We observe spurious oscillations on the solution for the Upwind scheme whereas
the results obtained with the Kinetic scheme are satisfactory.

The scheme proposed and analyzed in [19, 20] has many similarities with the
method devised in this paper. Indeed, [19, 20] works with staggered discretization:

• the mass flux is defined by the simple UpWinding (B.3),
• in the momentum equation, the pressure is still treated with the centered

approximation, as it is quite natural in the staggered framework,
• and the convection term is discretized with the following “UpWind” flux

(B.4) G HLN
j+1/2 = Vj

[
FUpW
j + FUpW

j+1

2

]+

− Vj+1

[
FUpW
j + FUpW

j+1

2

]−
.

The convection flux can be cast as follows

G HLN
j+1/2 =

FUpW
j + FUpW

j+1

2

Vj + Vj+1

2
+

1

2

∣∣∣∣∣F
UpW
j + FUpW

j+1

2

∣∣∣∣∣ (Vj − Vj+1).

Hence the numerical momentum diffusion becomes

∆HLN,q
j+1/2 =

1

2

∣∣∣∣∣F
UpW
j + FUpW

j+1

2

∣∣∣∣∣ (Vj+1 − Vj)−
1

2

∣∣∣∣∣F
UpW
j−1 + FUpW

j

2

∣∣∣∣∣ (Vj − Vj−1).
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(a) Density. Kinetic scheme. (b) Velocity. Kinetic Scheme.

(c) Density. Upwind Scheme. (d) Velocity. Upwind Scheme

Figure 14. Results for Test 11, T = 0.025, δx = 10−3, δt = 0.1δx.

Again, the numerical diffusion might vanish, and spurious oscillations have been
reported in the simulations with this scheme. For this reason, in practice, the au-
thors of [19] introduce an artificial viscosity (proportional to ρ∆x) in the momentum
equation.

The differences between our scheme and the scheme in [19, 20] can be summarized
as follows:

• Definition of the mass flux: the Kinetic flux (B.1) and the UpWind flux
(B.3) differ only in subsonic regions, as it is clear from Figure 1. Ac-
cordingly, stability conditions for our scheme involve the full characteristic
speeds, not only the material velocity. Furthermore, our scheme induces
naturally a numerical mass diffusion which is always positive.
• Definition of the momentum flux: to define the UpWinding of the convec-

tion flux (B.4) at xj+1/2, [19, 20] uses the positive and negative parts of the
average of the mass fluxes at xj and xj+1; instead, to define our convection
flux (B.2), we upwind according to the average of the positive mass fluxes
F+ and the average of the negative mass fluxes F−. at xj and xj+1. Note
that we define the entire mass flux by F = F+ +F− but F± in general do
not coincide with its positive and negative parts [F ]±. Furthermore, the
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two operations, averaging and taking positive/negative parts, do not com-
mute. Again, due to the definition of the mass fluxes, our scheme induces
a non degenerate numerical diffusion in the momentum balance. Hence, we
do not need to introduce an artificial viscosity and the scheme naturally
performs well when the material velocity vanishes.
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