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Abstract
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attraction-repulsion —- principles : preys try to escape chasers, chasers are attracted by
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order macroscopic models look like generalized “two-species Keller-Segel equations”.
But, due to cross–interactions, we can show that the system does not exhibit any blow
up phenomena in finite time. We also obtain second–order models, that have the form
of systems of balance laws, derived from kinetic models. We bring out a few remarkable
features of the models based either on mathematical analysis or numerical simulations.
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1 Introduction
The formation of space-time heterogeneous patterns is a universal feature of living or-
ganisms. Many attempts can be found to model the behavioral mechanisms that lead
to the observed self-organization of interacting populations. We refer the reader to [40]
for a detailed introduction to such phenomena, in the specific case of fish schools, and
to the review in [54]. The question can be rephrased as to describe the information
exchanges between self-propelled individuals: the individuals can use the information
contained in a certain subdomain of their environment, so that, according to a set of
basic rules, the motion of the whole population organizes with a remarkable pattern.
This phenomenon is referred to as “flocking” or “swarming”. The mathematical mod-
elling of these natural behaviors has motivated an intense research activity, after the
seminal works of Vicsek et al. [53]. Flocking can be represented by hydrodynamical
models [50] as well as many particles systems, where the interaction between individ-
uals is embodied into some potential [12, 13]. This potential encodes how the motion
of an individual adapts to the others, e. g. by adjusting the relative velocities. The
advantage of hydrodynamical models is to describe the dynamic through a reduced set
of macroscopic quantities, like the concentration and bulk velocity. Individual-based
and continuum models, stochastic or not, have led to original problems for mathemat-
ical analysis and fascinating numerical simulations that reproduce certain features of
natural phenomena [9, 18, 15, 8, 22]. Hierarchies of models, à la BBGKY, have been
derived, which offer a complete picture, ranging from N -particles systems to hydro-
dynamic models, through kinetic equations where individuals are described according
to the principles of statistical physics, see [5, 14, 27, 52]. Roughly speaking, in these
models, the motion of the individuals is driven by the combination of self-propulsion,
friction and an attractive/repulsive potential. The latter has the general shape of the
Morse potential, describing the tendency to pack individuals together, up to a certain
critical distance where a repelling effect dominates. Interestingly, these models lead
to a large variety of possible behaviors, with complex selection mechanisms driven by
certain thresholds on the parameters of the equations.

Here, we are considering a different situation since we deal with two populations
and we address the question of constructing a mathematical model that produces such
self-organized patterns through pursuit-evasion —- or attraction-repulsion —- simple
principles. We shall discuss “toy-models”, certainly (and intentionally) too rough to
capture quantitative features; nevertheless, the interactions of the idealized populations
we are dealing with are sufficient to bring out relevant behaviors. We neglect direct
interactions between individuals of the same species, the motion is only determined by
the potential created by the other population. The dynamic can be seen as the interac-
tion between preys and chasers, described by their respective concentrations: preys are
repelled by the chasers while chasers are attracted by the presence of preys. The model
can equally be interpreted as a simple “cops and robbers game” (we warn the reader
not to confuse with a more complex problem referred to with this name in computer
science and graph theory). We refer the reader to [21, 51] for similar attempts, and
more recently to [38, 15, 49], but with a different definition of the attraction-repulsion
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mechanisms. Our work is rather complementary to [8, 22] where the interested reader
will find further details on the modeling issues and very impressive simulations. The
modelling also echoes to certain applications in robotics. In this work, the potential
is obtained through convolution formulae with the densities. A possible model for de-
signing the interaction potential can be obtained by mimicking the repulsive/attractive
effects used when dealing with charged or gravitational particles respectively. The lat-
ter principle has been adapted from astrophysics, see [7], to population dynamics and
it leads to remarkable aggregation phenomena, typical of the behavior of certain pop-
ulations of bacteria, see [33]. At first sight, (one of) our hydrodynamic models share(s)
the structure of the Keller-Segel system. This system has motivated a huge amount of
mathematical works because it exhibits interesting singularity formations: we refer the
reader for instance to [26, 28, 32] for the analysis of such phenomena. In the classical
Keller-Segel model the individuals (cells, bacteria) move according to the gradient of
the concentration of a substance they emit themselves: the higher the concentration of
individuals, the higher the production of the attracting chemical signal. This principle
is the basis of chemotaxis. This aggregation process is counter-balanced by spacial
diffusion: the two effects compete to determine whether or not the solution blows up
in finite time. Thresholds on the initial mass can be discussed accordingly. At least
in dimension 2, the situation is quite well understood now. The Keller-Segel system
can be obtained through hydrodynamic regimes from a kinetic model for chemotaxis,
based on run and tumbling responses to the chemoattractant: this approach is pro-
posed and analyzed in [3] and [41, Section. 5.7]. Several modifications of the model
have been introduced in order to prevent the overcrowding: concentration-dependent
chemotactic sensitivity and diffusion coefficient, reaction terms, cross-diffusion effects,
etc. [1, 6] We refer the reader to the overviews on chemotaxis models in [29, 30, 31] and
[41, Chap. 5] for further details and results. It is also worth mentioning that similar
ideas are also at the basis of PDEs systems proposed to model criminal behavior [46]:
these models are intended to reproduce the formation of “hotspots” of criminal activity.

The paper is organized as follows. We start by introducing first–order models:
the concentrations of preys and chasers obey transport equations, the velocities of
which are gradients of potentials satisfying Poisson equations. The right hand side of
the Poisson equation is proportional to the concentration of the opposite population,
the sign depending whether the effect is attractive or repulsive. Coming back to a
single species, we obtain a diffusionless Keller-Segel equation, as analyzed in [39, 42],
but we shall see that in the present context the crossed effects between preys and
chasers prevent the formation of blow up. We discuss N−particles versions of the
model. Within this interpretation, it turns out that it might be relevant to replace the
Poisson kernel by convolution kernels that take into account further distance effects.
Next, we turn to second–order models where the presence of preys and chasers is
interpreted as creating attractive and repulsive forces. Hence, we obtain individual-
based models that have the form of non-linear ODEs systems derived from the standard
principles of classical mechanics. We propose a kinetic version of such models. Finally,
based on asymptotic arguments we set up a hierarchy of hydrodynamic-like systems
for the interacting populations, see e. g. [5, 14, 27, 24, 39, 44] for similar arguments in
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different contexts. Section 3 is concerned with numerical simulations. We investigate
the behavior of individual-based and continuum models in 1D and 2D, discussing the
role of the parameters entering into the models. The simulations exhibit an interesting
variety of behaviors, that could be valuable sources for further mathematical analysis.
Eventually, Section 4 is devoted to the analysis of the first–order continuum model.
In contrast with the single species problem analyzed in [39, 25, 42], concentration in
finite time cannot occur as far as initial data are bounded functions. Therefore, we
establish the existence and uniqueness of bounded weak solutions, for a wide variety
of interaction kernels.

2 A hierarchy of models for pursuit-evasion dy-
namics
In what follows we will discuss models based either on ODEs or PDEs. The two
viewpoints are intimately connected, as a consequence of the following basic remark
about the transport equation

∂tρ+∇x · (ρu) = 0. (1)

We start by assuming that u : R×RN → RN is smooth enough, so that characteristics
curves are well defined by the ODE

d
dtX(t; s, x) = u(t,X(t; s, x)), X(s; s, x) = x.

Namely X(t; s, x) is the position at time t of a particle driven by the velocity field u,
knowing that it starts from position x at time s. Our discussion will use the following
claim (for the sake of self-containedness the proof is detailed in Appendix A, see also
[2]).

Proposition 2.1 i) The measure
∑I
i=1 δ(x = X(t; 0, x0,i)) is a solution of (1) as-

sociated to the initial datum
∑I
i=1 δ(x = x0,i).

ii) For ρinit ∈ Lp(RN ), 1 ≤ p ≤ ∞, the unique solution of (1) having ρinit as initial
datum is given by

ρ(t, x) = ρinit(X(0; t, x)) exp
(
−
∫ t

0
(∇x · u)(s,X(s; t, x)) ds

)
.

The solution lies in C0([0,∞);Lp(RN )) when p is finite, or in C0([0,∞);L∞(RN )−
weak–?) otherwise.

We shall deal with non linear models where, roughly speaking, the velocity u de-
pends on the concentration ρ through non-local definitions. It leads to mathematical
difficulties since the regularity necessary to define properly the characteristic curves
is not directly guaranteed in this context (see for instance [25, 39, 42] for the anal-
ysis of a similar problem). Nevertheless it is worth bearing in mind Proposition 2.1
to make connection, at least formally, between individual-based modelling and PDEs
description.
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2.1 First–order models: coupling determines velocities
2.1.1 A model based on transport and Poisson equations

We consider two interacting populations: the preys (robbers) and the chasers (cops),
described by their concentrations ρp(t, x) and ρc(t, x), respectively. We start with
a simple model where the dynamics is driven by the interactions between the two
species, according to the following basic rule: the presence of the other population
directly influences the velocity of the individuals, the chasers being attracted by the
preys, the preys trying to escape to the chasers. The concentrations obey the following
transport equations

∂tρp +∇x · (ρpVp) = 0, ∂tρc +∇x · (ρcVc) = 0, (2)

where we assume that the velocities Vp, Vc derive from the corresponding potentials
Φp,Φc:

Vp = ∇xΦp, Vc = ∇xΦc. (3)

Directly inspired from chemotaxis theory, see e. g. [33], we define them through the
following Poisson equations

∆xΦp = αρc (with α > 0), −∆xΦc = ρp. (4)

Actually, this definition should be thought of as a convolution relation

Φp(t, x) = −αE ? ρc(t, x), Φc(t, x) = E ? ρp(t, x)

where E stands for the elementary solution of (−∆), mind the minus sign, on RN ,
whose definition depends on the space dimension:

E(x) =



−|x|2 if N = 1,

1
2π ln(|x|) if N = 2,

CN
|x|N−2 if N > 2 with CN > 0.

Remark 2.2 (Bounded domains, boundary conditions) The definition (4) should
be adapted when the motion is considered in a bounded domain Ω ⊂ RN . In such a
situation it is natural to assume that the flux vanishes at the boundary: denoting by
ν(x) the unit outward normal vector on x ∈ ∂Ω, we have

Vp · ν = 0, Vc · ν = 0,

which amounts to impose Neumann boundary conditions on the potentials

∂νΦp = 0, ∂νΦc = 0.
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The Poisson equation should be adapted to this case. We assume instead that individ-
uals are sensitive to fluctuations about the mean value of the “opposite” concentration,
namely (4) is replaced by

∆xΦp(t, x) = α
(
ρc(t, x)− 1

|Ω|

∫
Ω
ρc(t, y) dy

)
with α > 0,

−∆xΦc(t, x) =
(
ρp(t, x)− 1

|Ω|

∫
Ω
ρp(t, y) dy

)
.

(5)

Equations (5) have equally to be used dealing with periodic domains.

The coupling between the two species makes the dynamic completely different from
the Keller–Segel system. In particular, we are able to justify the existence–uniqueness
of globally defined weak solutions, as well as the preservation of regularity. This state-
ment will be established in Section 4.

Theorem 2.3 Let ρp,Init, ρc,Init be non negative functions in L1 ∩ L∞(RN ). Let 0 <
T <∞. Then, there exists a unique weak solution (ρp, ρc) ∈ L∞(0, T ;L1∩L∞(RN )) of
(2)–(4) with initial data ρp,Init, ρc,Init. The solution lies in C0([0, T ];Lq(RN )) for any
1 ≤ q <∞. If, moreover, ∇xρp,Init,∇xρc,Init belong to L∞(RN ), then the solution lies
in L∞(0, T ;W 1,∞(RN )).

2.1.2 A few remarks in the one-dimension framework

Of course with velocities defined by (3)–(4), it is far from clear how the result in
Proposition 2.1 can be applied: regularity of the velocity fields can be lacking to define
correctly the characteristics curves. We shall go back to the technical issues later on.
However, the formula can be helpful to guide the intuition and we are going to use it
formally. For instance, it is instructive to study the mere one-dimensional framework
where x ∈ R. We get

∂xΦp(t, x) = α

2

∫
sgn(x− y)ρc(t, y) dy = α

2

∫ x

−∞
ρc(t, y) dy − α

2

∫ +∞

x
ρc(t, y) dy,

∂xΦc(t, x) = −1
2

∫
sgn(x− y)ρp(t, y) dy = −1

2

∫ x

−∞
ρp(t, y) dy + 1

2

∫ +∞

x
ρp(t, y) dy.

It corresponds to the physical intuition in the discrete 1D case: consider a chaser and
a prey. If the chaser is on his left side, the prey tends to escape moving to the right,
and so does the chaser. In this situation, with p0, c0 ∈ R the initial positions of the
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prey and the chaser, their trajectories are defined by

Xp(t) =
(
α

2 sgn(p0 − c0)t+ p0

)
10≤t≤T0 +Q01t>T0 ,

Xc(t) =
(1

2sgn(p0 − c0)t+ c0

)
10≤t≤T0 +Q01t>T0 ,

T0 =


+∞ if α ≥ 1,

2|p0 − c0|
1− α if α < 1,

Q0 = Xp(T0) = Xc(T0) = p0 − c0
1− α + c0 when α < 1.

Figure 1 shows a numerical simulation of this specific case. Up to the regularity issue,
by Proposition 2.1, we can check that the pair (ρp(t, x) = δ(x = Xp(t)), ρc(t, x) =
δ(x = Xc(t)) is a solution of (2)-(4) (see Remark 2.4 below). On Figure 2, we exhibit
the same numerical test in a periodic setting. More precisely, the unknowns Xp and
Xc are constrained to remain in the domain [0, L] (prey and chaser can be thought of
as running on a ring of length L). The kernel which appears in the definition of the
velocity is adapted:

min
k∈Z

{
sgn(Xp − (Xc − kL))

}
replaces sgn(Xp −Xc).

When Vp < Vc (corresponding to α < 1), the behavior is the same as in the free-space
situation: the chaser reaches the prey in finite time. When Vp > Vc, the velocity of the
prey is larger than the one of the chaser, an equilibrium situation establishes where
the two individuals remain at a constant distance.

Remark 2.4 It is clear that Proposition 2.1 does not apply when the concentrations
are (sum of) Dirac masses. This case is not covered by Theorem 2.3 neither. In
this situation the velocity defined by the convolution formula is a bounded measurable
function and the product ρV is not well defined. The difficulty consists in defining
the product when jumps of V coincide with atoms of the measure ρ, see [43] and the
references therein for related issues. This is precisely the case when the two individuals
meet (see on Figure 1, with the encouter time 0.3 ≤ T0 ≤ 0.4). The observed numerical
solution where the velocity of the two individuals vanishes after the encounter might
look “natural” on a physical viewpoint, but the mathematical basis to decide how to
select this specific solution might be quite subtle. In particular, it is interesting to
compare the result with exactly two individuals, one prey and one chaser, in Figure 1,
with the case in Figure 3 where we consider a set of several preys (resp. chasers)
located randomly around a given position according to a peaked normal law. At the
meeting point, we observe that the population of preys splits into two parts, one block
escaping to the chasers, the other being pursued by the whole population of chasers,
which adopts a reduced speed. Therefore, the stability of measure–valued solutions of
(2)–(4) is certainly a complicated issue. We shall go back to these issues elsewhere and
we refer the reader to the discussion in [15] for interpretation of similar problems in
terms of gradient flow theory.
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Figure 1: The chaser running after the prey: numerical simulation with one individual of
each species.

Figure 2: The chaser running after the prey in a periodic domain: numerical simulations
with one individual of each species. Cases Vp < Vc (on the left) and Vp > Vc (on the right).

8



Figure 3: A set of chasers (left) running after a set of preys (right) with Vp < Vc: the
population of preys splits at the meeting point.

2.2 Generalization of the interaction kernel
This simple example gives some hints to extend the modelling, even in the simple
1D framework. In this model, the velocity is only determined by sgn(Xp − Xc): the
direction depends on the relative position of the two individuals, which is natural, but
the modulus is constant and does not depend on the distance between the individuals.
It might be relevant to use instead a velocity profile as in Figure 4. Such a profile
depends on 3 parameters:
• A maximal speed: the largest speed that individuals may reach when imposed by

the circumstances,
• A security radius: when individuals of the other category are at a distance smaller

than this threshold, the motion holds at the maximal speed,
• A vigilance radius: the speed of pursuit/escape decays smoothly as the distance

to other individuals becomes larger and there is no reason to move when they are
far enough.

Of course, the value of the parameters might differ for the two populations and it will be
interesting to investigate how their variations influence the behavior of the populations.
In what follows, we denote by Γ a function with such a profile. For instance we can set

x ∈ R 7→ Γ(x) = V ×
(
1|x|≤R + e−(|x|−R)2/Υ1|x|>R

)
∈ [0, V ]. (6)

Adopting such a modelling (and still reasoning in 1D for the time being) we consider
a set of Np preys and Nc chasers. They are described by their positions Xp,1, ...Xp,Np ,
Xc,1, ...Xc,Nc ∈ R. The dynamics is embodied into the ODE system

d
dtXp,i =

Nc∑
j=1

sgn(Xp,i −Xc,j) Γp(Xp,i −Xc,j),

d
dtXc,i =

Np∑
j=1

sgn(Xp,j −Xc,i) Γc(Xp,j −Xc,i).
(7)
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Figure 4: Typical profile of the velocity function (6).

Let us set
Vp(t, x) =

∫
sgn(x− y)Γp(x− y) ρc(t, y) dy,

Vc(t, x) = −
∫

sgn(x− y)Γc(x− y) ρp(t, y) dy.
(8)

By Proposition 2.1, ρp(t, x) =
∑Np

i=1 δ(x = Xp,i(t)), ρc(t, x) =
∑Nc
i=1 δ(x = Xc,i(t))

satisfies the PDE (2) with velocities defined by this formula instead of (3)–(4) (that
would correspond to Γp = α/2, Γc = 1/2). Of course it makes sense to consider (2),
coupled to (8), for initial data which are not necessarily sums of Dirac masses.

It is straightforward to extend this approach to any dimension. With positions in
RN , we consider scalar functions Gp and Gc : (0,∞)→ R and we define the potentials
through the convolution with the radially symmetric functions x ∈ RN 7→ Gp,c(|x|) ∈ R,
where |·| stands for the usual Euclidean norm on RN . For instance Gp,c can be obtained
from a primitive of a function like (6). In the multidimensional framework, the ODE
system becomes

d
dtXp,i =

Nc∑
j=1

Xp,i −Xc,j

|Xp,i −Xc,j |
G ′p(|Xp,i −Xc,j |),

d
dtXc,i =

Np∑
j=1

Xp,j −Xc,i

|Xp,j −Xc,i|
G ′c(|Xp,j −Xc,i|).

(9)

Likewise, for the PDE, the velocities in (2) are given by

Vp(t, x) =
∫

x− y
|x− y|

G ′p(|x− y|)ρc(t, y) dy,

Vc(t, x) = −
∫

x− y
|x− y|

G ′c(|x− y|)ρp(t, y) dy.
(10)
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It generalizes the case (3)–(4) where velocities are obtained by convolution with the el-
ementary solution of −∆. Note however the following fundamental differences between
(4) and the convolution with x 7→ x

|x|G
′
p,c(|x|):

• On the one hand, the singularity of the convolution kernel is removed, which
likely simplifies the mathematical analysis,

• On the other hand, with the convolution model, the divergence of the velocity
field does not have a definite sign, while (4) imposes ∇x · Vp ≥ 0, ∇x · Vc ≤ 0.
Indeed the jacobian matrix of x

|x|G
′
p,c(|x|) is

x⊗ x
|x|2

G ′′p,c(|x|) +
(
I− x⊗ x

|x|2
)G ′p,c(|x|)
|x|

.

Its trace is G ′′p,c(|x|) + (N − 1)G ′p,c(|x|)
|x| , which, in general, might change sign (see

Appendix B for further details).

2.3 Second–order models: repulsive/attractive dynamics
2.3.1 Discrete and kinetic models

In the next step, we think of the attractive/repulsive effect as the action of forces. Such
a description naturally arises dealing with gravitational/charged particles [7, 39]. Let
us examine this viewpoint, at the discrete level. Now, the preys and chasers dynamics
is described by the evolution of the position/velocity pairs (Xp,j ,Ξp,j), and (Xc,k,Ξc,k),
respectively. These quantities are functions of t ≥ 0, valued in RN . The motion of the
individuals is then obtained through the fundamental principle of dynamics:

d
dtXp,j = Ξp,j ,

d
dtXc,k = Ξc,k,

d
dtΞp,j = −1

τ
(Ξp,j −∇Φp(t,Xp,j)),

d
dtΞc,k = −1

τ
(Ξc,k −∇Φc(t,Xc,k)).

(11)

This ODE system is completed by initial conditions that prescribe the position/velocity
pairs at t = 0. Note that a similar viewpoint is developed in [22, Section 4.3]. In
(11), τ is interpreted as a relaxation time. Individuals are subject to a drag force,
which is proportional with opposite direction to their velocity and an interaction force
embodied into the potentials Φp and Φc. We use the generic definition devised above
with a convolution kernel:

Φp(t, x) =
Nc∑
k=1

Gp(|x−Xc,k|), Φc(t, x) = −
Np∑
j=1

Gc(|x−Xp,j |). (12)

It means that chasers have a repulsive effect on the preys, which conversely attract the
chasers. As said above the definition of the potential by the Poisson equation (4) is
contained in this framework.
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Furthermore, we can take into account possible velocity fluctuations. Then the
ODEs are replaced by stochastic differential equations, involving independent copies
of the Brownian motion

dXp,j = Ξp,j dt, dΞp,j = −1
τ

(Ξp,j −∇Φp(t,Xp,j)) dt+
√

2θ/τ dBj ,

dXc,k = Ξc,k dt, dΞc,k = −1
τ

(Ξc,k −∇Φc(t,Xc,k)) dt+
√

2θ/τ dBk.

(13)

Coming back to PDEs, the description of the population now involves distribution
functions in phase space that we denote p(t, x, ξ) and c(t, x, ξ) respectively. The inte-
gral

∫
Ω×O p(t, x, ξ) dξ dx (resp.

∫
Ω×O c(t, x, ξ) dξ dx) gives the number of preys (resp.

chasers) having at time t ≥ 0 a position x ∈ Ω with a velocity ξ ∈ O. These quantities
are driven by the following Vlasov-type equations

∂tp+ ξ · ∇xp+ 1
τ
∇xΦp · ∇ξp = 1

τ
∇ξ · (ξp+ θ∇ξp) (14)

and
∂tc+ ξ · ∇xc+ 1

τ
∇xΦc · ∇ξc = 1

τ
∇ξ · (ξc+ θ∇ξc) (15)

where the potentials are given by

Φp(t, x) = +
∫∫

Gp(x− y)c(t, y, ξ) dξ dy, Φc(t, x) = −
∫∫

Gc(x− y)p(t, y, ξ) dξ dy.
(16)

Let us explain how we can pass from the individual based description to this kinetic
framework. When we consider the purely deterministic framework (11)–(12), we can
apply directly Proposition 2.1 in phase space: p(t, x, ξ) =

∑Np

i=1 δ(x = Xp,i)⊗δ(ξ = Ξp,i)
and c(t, x, ξ) =

∑Nc
i=1 δ(x = Xc,i)⊗ δ(ξ = Ξc,i) satisfy (14)–(15) with θ = 0. Then (14)–

(15) can be considered with more general initial distribution functions. We can also
think of the kinetic equation as a mean-field approximation of the individual-based
description. We start by rescaling the potential, replacing Φp and Φc by 1

Nc
Φp and

1
Np

Φc respectively. Then, when θ = 0, (14)–(15) is still satisfied by the empirical mea-
sures pNp(t, x, ξ) = 1

Np

∑Np

i=1 δ(x = Xp,i)⊗ δ(ξ = Ξp,i) and cNc(t, x, ξ) = 1
Nc

∑Nc
i=1 δ(x =

Xc,i) ⊗ δ(ξ = Ξc,i) and it remains to justify a stability statement as the number of
individuals goes to infinity: Np, Nc →∞. We refer the reader to [17] and to the review
[23] for the analysis of such regimes. This reasoning (firstly rescaling the potential,
secondly dealing with empirical measures, thirdly considering a large number of in-
dividuals) can be adapted to deal with the stochastic case: when θ > 0, at least for
smooth potentials, it can be justified that the empirical measures converge to solutions
of the Vlasov-Fokker-Planck system (14)–(15). In some sense the system becomes de-
terministic as the number of individuals becomes large, and we refer the reader to[48]
for a rigorous analysis of the mean field regime in this context.
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When θ = 0, (14) and (15) are pure Vlasov equations, for θ > 0 they involve the
Fokker-Planck operator

Lf = ∇ξ · (ξf + θ∇ξf) = ∇ξ ·
(
θM∇ξ

f

M

)
, M(ξ) = e−ξ

2/(2θ)

(2πθ)N/2
,

which induces some relaxation effects towards the Maxwellian state M(ξ). For further
purposes let us rewrite the equations in dimensionless form

∂tp+ βξ · ∇xp+ γ∇xΦp · ∇ξp = 1
ε
∇ξ · (ξp+ θ̄∇ξp), (17)

and
∂tc+ βξ · ∇xc+ γ∇xΦc · ∇ξc = 1

ε
∇ξ · (ξc+ θ̄∇ξc). (18)

Here, given time and length units T,L, as well as a velocity unit V, the dimensionless
parameters are defined by

β = TV
L , γ = TVM

τV , ε = τ

T , θ̄ = θ

V2 . (19)

(We remind that VM is the maximal speed involved in the definition of the kernel
G .) Next, we associate to the distribution functions b, c the following “macroscopic”
quantities

ρp(t, x) =
∫
p(t, x, ξ) dξ, ρc(t, x) =

∫
c(t, x, ξ) dξ,

Jp(t, x) = β

∫
ξ p(t, x, ξ) dξ, Jc(t, x) = β

∫
ξ c(t, x, ξ) dξ,

Pp(t, x) =
∫
ξ ⊗ ξ p(t, x, ξ) dξ, Pc(t, x) =

∫
ξ ⊗ ξ c(t, x, ξ) dξ.

We consider the zeroth and first moments of (14) and (15). We get

∂tρp +∇x · Jp = 0, ∂tρc +∇x · Jc = 0, (20)

and
∂tJp + β2∇x · Pp − βγρp∇xΦp = −1

ε
Jp,

∂tJc + β2∇x · Pc − βγρc∇xΦc = −1
ε
Jc.

(21)

The system is not closed because Pp and Pc cannot be expressed in general by means
of ρp, Jp and ρc, Jc, respectively. Nevertheless, it can be used to discuss asymptotic
regimes, depending on the respective behavior of the dimensionless parameters β, γ, ε, θ̄.

2.3.2 Macroscopic models: Entropy Minimization Closure

Before dealing with asymptotics issues, let us propose a possible closure. We seek a
relevant expression of Pp,c depending on ρp, Jp, respectively ρc, Jc. Bearing in mind the
dissipation property of the Fokker-Planck operator∫

ln(f)L(f) dξ = −4θ̄2
∫
M
∣∣∣∇ξ

√
f

M

∣∣∣2 dξ ≤ 0,

13



where now

M(ξ) = e−ξ
2/(2θ̄)

(2πθ̄)N/2

is the centred Maxwellian with temperature θ̄, we define approximate distribution
functions p̂, ĉ as minimizers of the entropy functional f 7→

∫
f ln(f/M) dξ under the

constraint of fixed zeroth and first order moments, namely
∫

(1, βξ)f dξ = (ρp, Jp) or
(ρc, Jc) respectively. The minimizers have the general form M(ξ) exp(λ + µξ), with
λ(t, x) ∈ R, µ(t, x) ∈ RN the Lagrange multipliers associated to the constraints. We
close the macroscopic system by setting

Pp(t, x) =
∫
ξ ⊗ ξ p̂(t, x, ξ) dξ, Pc(t, x) =

∫
ξ ⊗ ξ ĉ(t, x, ξ) dξ.

We refer the reader to [10] for analysis of such a closure based on entropy minimization
principles [34, 35]. In the present context, the obtained system reads

∂tρp +∇x · Jp = 0,

∂tρc +∇x · Jc = 0,

∂tJp + β2∇x ·
(Jp ⊗ Jp

ρp

)
+ β2∇x(θ̄ρp)− γρp∇xΦp = −1

ε
Jp,

∂tJc + β2∇x ·
(Jc ⊗ Jc

ρc

)
+ β2∇x(θ̄ρc)− γρc∇xΦc = −1

ε
Jc.

(22)

We get nothing but isothermal Euler systems for ρp, Jp and ρc, Jc, coupled through the
force terms with the potentials

Φp(t, x) =
∫

Gp(x− y)ρc(t, y) dy, Φc(t, x) = −
∫

Gc(x− y)ρp(t, y) dy. (23)

We can expect that the solutions of this macroscopic system have a behavior close to
moments of the original microscopic model, at least for small ε’s.

2.3.3 Macroscopic models: low and high field limits

In the same spirit as in plasma physics or for attractive dynamics [39, 44], two asymp-
totic regimes are relevant for (17)–(18) and make the connection with the models pre-
sented in Section 2.1. We are interested in the low field regime, where the coefficients
in (19) scale as follows

β = γ = 1√
ε
, ε� 1, θ̄ > 0 fixed,

and the high field regime where

β = 1, γ = 1
ε
, ε� 1, θ̄ > 0 fixed.

14



In the former situation we guess that b and c relax toward centered Maxwellians
ρp(t, x)M(ξ), ρc(t, x)M(ξ), respectively. Plugging this ansatz into the moment equa-
tions (21), we arrive at

Jp = −θ̄∇xρp + ρp∇xΦp, Jc = −θ̄∇xρc + ρc∇xΦc,

since
∫
ξ⊗ξM(ξ) dξ = θ̄I. Accordingly, we are led to the following system of convection-

diffusion equations
∂tρp +∇x · (ρp∇xΦp − θ̄∇xρp) = 0,
∂tρc +∇x · (ρc∇xΦc − θ̄∇xρc) = 0. (24)

With only one species, we obtain by this way the Keller-Segel system [33], and actually
the derivation of this equation from the Vlasov-Fokker-Planck equation dates back to
[7] in astrophysics. For the analysis of the low field regime, for both the attractive and
repulsive dynamics, we refer the reader to [20, 24, 39]. The high field regime is much
more delicate. Formally the distribution functions are supposed to tend to shifted
Maxwellians, and we directly obtain the convection equations (2), see e. g. [44, 25]. It
is likely that these techniques can be adapted to study the coupled problem with two
species under attraction/repulsion dynamics; this is beyond the scope of the present
paper.

2.4 Overview of the hierarchy
We can recap the hierarchy of models we have derived so far as follows.

2nd–order models −→ 1st–order models
∇Φ is a force field Large ∇Φ is a velocity field

friction
Individual-based ODEs in phase space ODEs for positions
or microscopic Deterministic (11) (9)

models or Stochastic (13)
Standard or modified Standard or modified

depending on the kernel depending on the kernel
Kinetic (14)–(15)–(16)

or mesoscopic Vlasov (θ = 0)
models or Fokker-Planck (θ > 0)

Standard or modified
depending on the kernel

Macroscopic Entropy Minimization Principle Drift Diffusion models
models Euler systems for concentrations

for concentration/momentum (“crossed Keller-Segel system”)
(22)–(23) (24) with (23)

Transport-Poisson model
(2)–(3)

Standard with (4)
or (5) for periodic

and bounded domains
Modified with (10)
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Here and below “standard” refers to the situation where the potential corresponds
to the solution of the Poisson equation, and “modified” refers to the convolution of the
concentration with a more general kernel for instance as in (6). The mesoscopic models
can be thought of as a mean-field approximation from the microscopic models as the
number of individuals becomes large. The macroscopic models are derived from the
kinetic equations in small relaxation time regimes, with or without spacial diffusion
depending on the strength of the coupling field.

3 Numerical experiments
We discuss on numerical grounds a few features of the model hierarchy, pointing out
very different behaviors depending on the model. The numerical schemes use very stan-
dard discretization techniques. They are based on time-splitting strategies: knowing
the state of the population, we determine the potential, which is used to update the
population on a time step by using standard ODE or PDE solvers, etc. Time deriva-
tives are evaluated by the mere explicit Euler method. For ODEs based models, we use
the convolution formula to define the velocity field (first order models) or the force field
(second order models). For PDEs based models, we obtain the discrete potential by
approximating the Poisson equation by the usual second order Finite Difference scheme
(or equivalently P1 Finite Element discretization). Transport operators are discretized
according to UpWind strategies. The time step is therefore constrained by taking into
account stability conditions that involve the maximal speed of the system. We also
discuss the role of the boundary conditions, comparing solutions of the equations set
on unbounded domains, or with periodic or Neumann conditions.

3.1 Standard and modified 1D models
We start with the ODE system (7) in 1D. Initial positions of the individuals are chosen
randomly in [0, 1]. The case where Γ is constant is referred to as the standard model
(it corresponds to the convolution with the kernel of the Poisson equation). For the
simulation, this constant is .6 for the preys, 1.15 for the chasers. Figures 5 on the
top and in the middle present a quite generic organization where the preys split into
two groups, one going up, the other going down, in which the individuals have all the
same velocity; the chasers all go in the same direction, with the same velocity. This
organization appears after a short transient state. When increasing the number of
individuals the self-organization establishes faster, as it can be seen by comparing the
two figures. Dealing with an even number of preys, we can obtain a situation with the
whole population of chasers just stuck between the two groups of preys, see Figure 5 on
the bottom. In the case of a periodic setting, we can observe the formation of different
types of quasi-periodic patterns as shown on Figure 6. It is worth pointing that the
numerical patterns are quite sensitive to the time step: having a fair representation of
the solution requires small time steps.

Patterns are much more complex when dealing with another convolution kernel,
and we can see the effects of finite support. In Figure 7 on top the convolution kernel
is given by (6). Preys maximal velocity is 1, and the chasers are sensibly faster with a
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Evolution with 9 preys, 5 chasers, final time 0.2.

Evolution with 35 preys, 28 chasers, final time 0.1.

Evolution with 12 preys, 7 chasers, final time 0.1.

Figure 5: Standard model : evolution with different numbers of individuals. The chasers are
displayed on the left and the preys on the right
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Evolution with 9 preys, 5 chasers, final time 0.8, Vp = 1.2 and Vc = 0.7.

Evolution with 35 preys, 28 chasers, final time 0.35, Vp = 1.2 and Vc = 0.7.

Evolution with 35 preys, 28 chasers, final time 0.35, Vp = 1.2 and Vc = 0.7.

Figure 6: Standard model in the periodic setting: evolution with different numbers of indi-
viduals. The chasers are displayed on the left and the preys on the right
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maximal velocity 1.5. However the safety radius of the preys, set to 1, is larger than
the safety radius of the chasers, .3. We have Υ = .4 for the preys, Υ = 2 for the
chasers. For Figure 7 on bottom, the kernels are purely Gaussian (which means that
the radius R vanishes in (6)). The other parameters here are as follows: preys’ velocity
.8, chasers’ velocity 1.1, Υ is .6 for the preys, .5 for the chasers. In both cases we observe
bifurcations, with changes either on the amplitude or the direction of the displacement,
and possible transient states without motion. We also remark the formation of a cluster
of chasers who stand at the same place. More precisely, the predators position is
determined by the preys above and below, whose positions balance out and therefore
the predators are unable to choose any direction to follow. Figure 8 is concerned
with the same situation with periodic boundary conditions. Again, we observe the
formation of quasi-periodic patterns. In particular, notice on the figure on the bottom
that a self-organization establishes after a short transient time. Anyway, a wide variety
of patterns is possible with this model, depending on the initial configuration.

Convolution kernel (6). Evolution with 23 preys, 10 chasers, final time 1.335

Purely Gaussian kernel. Evolution with 10 preys, 14 chasers, final time 1.

Figure 7: Modified model. The chasers are displayed on the left and the preys on the right

We end this section with simulations of the second–order model (11). Typical
shapes of the solutions are given in Figure 9 for the standard kernel or the modified
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Convolution kernel (6). Evolution with 10 preys, 5 chasers, final time 0.5

Convolution kernel (6). Evolution with 10 preys, 5 chasers, final time 0.5 and dt = 0.0001

Convolution kernel (6). Evolution with 10 preys, 5 chasers, final time 0.5

Convolution kernel (6). Evolution with 23 preys, 10 chasers, final time 0.5. Case Vp > Vc

Purely Gaussian kernel. Evolution with 10 preys, 14 chasers, final time 1. Case Vp > Vc

Figure 8: Modified model in the periodic setting. The chasers are displayed on the left and
the preys on the right.
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kernel. The trajectories of the chasers can be highly involved in the earlier stages. For
larger time we observe again segregation effects. In the periodic case, the results are
much different from what we observed with the first–order model; they are all of the
same type, as displayed in Figure 10 and do not change significantly with the kernel.

Figure 9: Second–order model with the standard (top) and the modified (bottom) kernel.

3.2 Standard and modified 2D models
For the standard model in 2D, we face the difficulty of the singularity of the convo-
lution kernel: as Xc,i becomes close to Xp,j then Xc,i−Xp,j

|Xc,i−Xp,j |2 blows up. It makes the
problem stiff, a difficulty which is well known for similar problems in chemotaxis and
astrophysics. Numerically, we regularize a little bit the kernel, and we stop the sim-
ulation when the distance between two particles is less than a given (small enough)
threshold. Figure 11 shows two typical situations. The two tests are realized with
the same conditions: Vp = .4, Vc = .6; only the initial conditions differ (they are still
chosen randomly). Initial positions are marked by the diamond symbol. On the left,
one of the preys does not have time to escape; it is rapidly caught by the chaser and
the simulation stops. Conversely, on the right we observe that the spreading of the
preys is the strategy that allows them to escape to the chasers: they are all far away
from the chasers, the motion of the two species becomes very slow. In a periodic box,
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Figure 10: Second–order model with the standard kernel in the periodic case.

we can observe similar situations. We see on the left of Figure 12 the situation of preys
being caught by the chaser when the velocities are such that Vp < Vc. However, on the
right of Figure 12, when Vc < Vp, we can see the preys escaping and being pursued in
a chaotic way by the chasers.

Figure 11: Standard model: Evolution with 18 preys, 7 chasers.

In Figure 13, we find simulations of the 2D modified model. There are initially 34
preys and 20 chasers. In each case the reference velocities are 0.1 for the preys, .5 for
the chasers. The vigilance parameters for the preys are Rp = 1,Υp = .1. For the first
test (left) we set Rc = .2,Υc = .4 for the chasers. These parameters are reduced for
the second run (right): Rc = .1,Υc = .2. Hence chasers are only influenced by preys
in their close neighbourhood. We indeed observe that some of the chasers do not move
after a while, once the preys are too far. In the periodic case, erratic behaviors are
shown at Figures 14.

Increasing the vigilance parameters could be unefficient from the chasers viewpoint,
as shown in Figure 15 (in the classical setting on the left, in the periodic setting on
the right). Here we have set Vp = .02, Rp = .3, Υp = .2, Vc = .5, Rc = 1, Υc = 1. In
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Figure 12: Standard model in the periodic case: Evolution with 18 preys, 7 chasers. On the
left, in the case when Vp < Vc; on the right when Vc < Vp

this case, chasers are not able to choose between all the preys and they all converge to
the 1-median of the set of prey positions (the conjecture can be numerically checked
for simple examples, with 3 or 4 preys).

Figure 13: Modified model: Evolution with 34 preys, 20 chasers, final time 2

3.3 First–order PDE models
This section is concerned with the numerical simulation of the PDE system (2). The
equation is completed by initial conditions

ρp(t = 0, x) = ρp,Init(x), ρc(t = 0, x) = ρc,Init(x).

We shall work in bounded domains, and we also need boundary conditions on the
potential. We use either the Neumann conditions

∇xΦk · ν = ∂νΦk = 0, on ∂Ω.
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Figure 14: Modified model in the periodic case: Evolution with 34 preys, 20 chasers. The
parameters are the same as the ones of Figure 13
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Figure 15: Modified model: Evolution with 34 preys, 11 chasers with a large vigilance radius,
final time 5. On the left, on the unbounded domain and on the right, on the periodic domain
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with k = p and k = c and ν the outward unit normal on ∂Ω, or periodic conditions:

Φk(x+ `) = Φk(x) for any ` ∈ NN , x ∈ [0, 1]N .

As pointed out in Remark 2.2, with such boundary conditions, the Poisson equation
is well posed under suitable compatibility conditions on the data. Note also that the
important quantity is actually the gradient of the potential Φk. Therefore, we enforce
the existence–uniqueness of the solutions of the Poisson equation by the introduction
of a global condition and an augmented variable λk ∈ R:∫

Ω
Φk dx = 0 and

∫
Ω
λk dx =

∫
Ω
bk dx.

Equations for the potentials Φk are then modified as follows ∆Φk − λk = bk∫
Ω

Φk dx = 0

with the appropriate boundary condition (Neumann or periodic) where bp = αρc,
bc = −ρp and λk ∈ R is an augmented variable.

The numerical scheme is designed as follows. We consider numerical approxima-
tions over simple structured meshes (quadrangles in 2D). The computational domain
is denoted Ωh, h > 0 being a measure of the mesh refinement. For given densities at
the nth time step, ρnp and ρnc , the numerical time step can be decomposed as follows:
Computation of the potentials Φn

p and Φn
c by inverting the modified elliptic equa-

tions, understood in the following weak formulation
∫

Ωh

∇hΦn
c · ∇hϕj dx+

∫
Ωh

λcϕj dx =
∫

Ωh

ρnpϕj dx,∫
Ωh

Φn
c dx = 0,

and 
∫

Ωh

∇hΦn
p · ∇hϕj dx+

∫
Ωh

λpϕj dx = −
∫

Ωh

αρncϕj dx,∫
Ωh

Φn
p dx = 0,

where ϕj are piecewise linear test functions, Φn
p =

∑
i Φn

p,iϕi and Φn
c =

∑
i Φn

c,iϕi,
and ∇h is a discrete difference operator. The problem can be cast in matrix form(

A e
eT 0

)(
Φ
λ

)
=
(
b
0

)

with e a certain vector in RPh , and A a Ph×Ph matrix, Ph ∈ N being defined by
the refinement of the grid. It can be checked that the linear system is invertible.

Evaluation of the velocities fields V n
p and V n

c by applying the discrete gradient
on potentials computed at the previous step

V n
p = ∇hΦn

p and V n
c = ∇hΦn

c .
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Updates of the densities ρn+1
p and ρn+1

c by using a mere vertex centered upwind
scheme in explicit form:

ρn+1
p − ρnp
δt

+∇h ·
(
ρnpV

n
p

)
= 0 and ρn+1

c − ρnc
δt

+∇h · (ρnc V n
c ) = 0.

The definition of the numerical flux is embodied into the discrete divergence
operator (∇h·).

At each time step, boundary conditions are applied, consistently with the numerical
test case under consideration.

3.3.1 One–dimensional simulations, Neumann and periodic boundary
conditions

We perform a series of numerical tests on the domain [0, 1], as summarised in the fol-
lowing table:

α ρc,Init(x) ρp,Init(x) Boundary

Case 1D_01 1
√

10 exp
(
−10

(
x− 1

3

)2
) √

5 exp
(
−5
(
x− 2

3

)2
)

Neumann

Case 1D_11 1
√

10 exp
(
−10

(
x− 1

3

)2
) √

5 exp
(
−5
(
x− 2

3

)2
)

Periodic

Case 1D_12 0.5 2 (1.1 + sin (4πx) ) 2 (1.1 + cos (2πx) ) Periodic

Results are reported in Figures 16–20 for the 1D case. We represent the trajectories
of (fictitious) individual particles of the two species. For both species, we pick 6 points
in the time-space plane (represented by the bullets) and we follow, backward and
forward, the trajectories emanating from these recording points: they appear as bold
curves in the picture. (Note that the reconstruction algorithm might fail when the
trajectory reaches the boundary since it is not able to construct trajectories taking into
account the periodic boundary condition.) The first remarkable feature on the picture
is the formation of quasi-periodic structures, This is particularly visible with Neumann
boundary conditions, see Figures 16–17. We do not represent the densities, but we can
infer the evolution as follows. With Neumann boundary conditions, the two populations
start by moving to the right (boundary x = 1). When peaks form at the far right end
of the domain, preys move back to the left (boundary x = 0). Then new bumps of
preys are created on the left part of the domain, which, in turn, attract the chasers.
The populations move back and forth in this way. The concentration profiles are
sensibly different working with periodic boundary conditions, see Figures 18–20 like if
individuals were moving on a ring. In this case, of course, the populations are influenced
from both sides. Secondly, we note that trajectories issued from neighboring locations
can separate rapidly. This observation is in agreement with the ODEs simulations.
We clearly observe the pursuit phenomena, the shape of the streamlines of the preys
being more or less reproduced by the chasers, with some delay (compare Figures 16 and
17, Figures 18 and 19, Figures 20 left and right). The boundary conditions (compare
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Figure 16: Case 1D_01: Neumann boundary condition. Trajectories of the preys for Nh =
400 (left) and Nh = 800 (right).

Figure 17: Case 1D_01: Neumann boundary condition. Trajectories of the chasers for
Nh = 400 (left) and Nh = 800 (right).

Figures 16–17 with Figures 18–19) and the initial data (compare Figures 18–19 with
Figures 20) clearly influence the shape of the solutions: we do not see a universal
profile to establish. Finally, we report the simulations obtained with different grids,
the time step being adapted accordingly to guarantee the CFL stability condition
of the transport equations. In agreement with what has been observed with ODEs
simulation, we point out that time and space scales have to be resolved quite finely:
the effect of numerical diffusion can be sensitive on individual trajectories, especially
for large times of simulation. It is very likely that the numerical investigation of the
asymptotic behavior would require a more involved numerical scheme.

3.3.2 Two–dimensional simulations, periodic boundary conditions

In dimension 2, we work with the following initial data

ρc,Init(x, y) = 1
2

(
1.01 + 0.8 sin

(3
2πx

)
sin
(3

2πy
))

,

ρp,Init(x, y) = 1
2 (1.01 + 0.8 sin (πx) sin (πy) ) .

The domain is the square [0, 1] × [0, 1]. We set α = 0.5. The number of grid points
in each space direction is Nh = 100. Results with periodic boundary conditions are
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Figure 18: Case 1D_11: Periodic boundary condition. Trajectories of the preys for Nh = 400
(left) and Nh = 800 (right).

Figure 19: Case 1D_11: Periodic boundary condition. Trajectories of the chasers for Nh =
400 (left) and Nh = 800 (right).

Figure 20: Case 1D_12: Periodic boundary condition. Trajectories of the preys (left) and
the chasers (right). Nh = 500.
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reported1 in Figures 21–22. We show the streamlines of the preys and the concen-
tration levels of the two species for several times (the warmer the contour, the higher
the concentration). We clearly observe the attraction/repulsion mechanism (compare
the left and right columns of Figure 21) and the formation of periodic structures (see
Figure 22). To be more specific, the dynamic of the system can be decomposed, in
this case, into four main phases of motion: preys move a) toward the point (0.5, 0.5),
see Figure 22-left at time 37; b) toward the point (1, 0.5), see Figure 21-top at time
47; c) toward the point (0.5, 1), see Figure 21-middle at time 55; d) and finally toward
the point (1, 1) Figure 21-bottom at time 64, before returning to the initial position
(0.5, 0.5), see Figure 22-right at time 71. We remind the reader that boundary con-
ditions are periodic such that, for instance, (1, 1) is a translation of the points with
coordinates (0, 0), (1, 0) and (0, 1). The motion of the chasers follow this pattern, up
to some delay, see Figure 21-right column. Again, we point out that fine enough grids
and small enough time steps should be used, otherwise the numerical diffusion may
alter the pattern formation.

4 Analysis of the first–order models: Proof of
Theorem 2.3
In this section, we focus on the system (2)–(4): we shall prove the global existence-
uniqueness of weak solutions associated to bounded and integrable initial data, and
establish that smooth data produce smooth solutions. Derivation of a priori estimate
is the necessary preliminary step for proving the existence of weak solutions. The
difficulty relies on the lack of regularity of the potentials which are actually defined by
convolution formula involving the singular kernel of the Poisson equation. However, in
contrast with the attractive equation for a single species, here the coupling does not
induce the formation of singular solution with apparition of Dirac mass in finite time,
see [26, 32, 28, 30]. Instead, the solutions remain bounded at least on any finite time
interval. It allows us to construct weak solutions in L1∩L∞ defined on any time interval
[0, T ], 0 < T <∞. These weak solutions can be shown to be unique. Furthermore, we
also show that initial data with bounded gradients produce solutions with the same
regularity, in contrast with the situation met with non linear conservation laws of
fluid mechanics. The analysis of the coupling (3)–(4) relies on the following standard
statements from harmonic analysis.

Lemma 4.1 (Hardy-Littlewood-Sobolev inequality) Let 1 < p, r < ∞ and 0 <
λ < N . Assume 1/p + 1/r = 2 − λ/N . There exists a constant C > 0 such that for
any f ∈ Lp(RN ) and g ∈ Lr(RN ). we have∫

f(x)g(y)
|x− y|λ

dy dx ≤ C‖f‖Lp‖g‖Lr .

1Movies can be consulted at the URL http://www-sop.inria.fr/members/Thierry.Goudon/movieBC.
mpeg (periodic boundary conditions) and http://www-sop.inria.fr/members/Thierry.Goudon/movieN.
mpeg (Neumann boundary conditions).
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Figure 21: 2D simulations with periodic boundary conditions. Streamlines of the preys
(left), concentration of the preys (middle), concentration of the chasers (right) at t = 47
(top), t = 55 (middle) and t = 63 (bottom).
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Figure 22: 2D simulations with periodic boundary conditions. Streamlines of the preys at
t = 37 and t = 71.

We refer the reader to [36, Th. 4.3]. We use this claim with λ = N − 1, g = ρ
given in Lr and f spans Lp; it leads to estimate the velocity V = ∇E ? ρ in Lp

′ ,
1/p′ = 1/r − 1/N , as soon as the concentration ρ belongs to Lr with 1 < r < N .
This can be improved in the present situation, since we are dealing with bounded and
integrable densities.

Lemma 4.2 Let g ∈ L1 ∩ L∞(RN ). Then V (x) =
∫ g(y)
|x−y|N−1 dy belongs to L∞(RN )

with
‖V ‖L∞ ≤ N(N − 1)1/N−1|SN−1|1−1/N‖g‖1−1/N

L∞ ‖g‖1/NL1 .

Proof. We estimate by splitting the convolution integral, with some M > 0:

|V (x)| ≤
∫
|x−y|≥M

...dy +
∫
|x−y|<M

...dy

≤ M1−N‖g‖L1 + ‖g‖L∞ |SN−1|
∫ M

0

rN−1 dr
rN−1 = M1−N‖g‖L1 + |SN−1|M‖g‖L∞ .

We conclude by optimizing with respect to M .
Finally, derivatives of the velocity field are estimated with the following statement, see
e. g. [47, Chap. VI], [19, Th. 4.12].

Lemma 4.3 (Calderon-Zygmung inequality) There exists M? > 0 such that for
any 1 < p <∞ and any g ∈ Lp(RN ), the function V (x) =

∫ g(y)
|x−y|N−1 dy satisfies

‖∇V ‖Lp ≤M? p‖g‖Lp .

The keypoint of the analysis relies on the following a priori estimate.
Proposition 4.4 (A priori estimates) Assume that the initial data satisfy:

ρp,Init ≥ 0, ρc,Init ≥ 0, ρp,Init, ρc,Init ∈ L1 ∩ L∞(RN ).

Then smooth solutions of (2)-(4) satisfy

0 ≤ ρp(t, x) ≤ ‖ρp,Init‖L∞ , 0 ≤ ρc(t, x) ≤ ‖ρc,Init‖L∞ et‖ρp,Init‖L∞ .

31



Proof. We write the equations in the non-conservative form

∂tρp +∇xΦp · ∇xρp = −ρp∆xΦp = −αρpρc,
∂tρc +∇xΦc · ∇xρc = −ρc∆xΦc = +ρpρc

Let us denote by Xp (resp. Xc) the characteristic curves associated to ∇xΦp (resp.
∇xΦc). This assumes the regularity of each potential. We obtain

ρp(t, x) = ρp,Init(Xp(0; t, x)) exp
(
−α

∫ t

0
ρc(s,Xp(s; t, x)) ds

)
and

ρc(t, x) = ρc,Init(Xc(0; t, x)) exp
(∫ t

0
ρp(s,Xc(s; t, x)) ds

)
.

Clearly, that implies ρp, ρc ≥ 0. Then we deduce also that ρp is dominated by
‖ρp,Init‖L∞ , and finally we obtain the estimate for ρc.

We turn to the proof of Theorem 2.3. Let 0 < T <∞ be fixed once for all. With the
information in Proposition 4.4, and owing to the conservative nature of the equations,
we seek solutions of (2)-(4) in the following closed and convex set

CT =
{

(ρp, ρc) ∈ L∞(0, T ;L1 ∩ L∞(RN )),
0 ≤ ρp(t, x) ≤ ‖ρp,Init‖L∞ , 0 ≤ ρc(t, x) ≤ ‖ρc,Init‖L∞ eT‖ρp,Init‖L∞ ,∫

ρp(t, x) dx =
∫
ρp,Init(x) dx,

∫
ρc(t, x) dx =

∫
ρc,Init(x) dx

}
.

We are going to use a fixed point argument, based on the Schauder theorem. The proof
relies heavily on the analysis of transport equations, and renormalization techniques
[16]. The proof splits into several steps:
• To obtain the stability and compactness of sequences of solutions, we need to con-

sider first a regularized (non linear) problem, the solutions of which are obtained
as fixed points of an application defined through linear transport equations.

• Then, we let the regularizing parameter go to 0.
• Finally, we establish the uniqueness of the weak solutions of the non linear prob-

lem. We shall also investigate the regularity.
We introduce a sequence of mollifiers, parametrized by η > 0,

ζη(x) = 1
ηN

ζ(x/η), ζ ∈ C∞c , 0 ≤ ζ(x) ≤ 1,
∫
ζ(x) dx = 1.

Given (ρp, ρc) ∈ CT , we define (ρ̃p, ρ̃c) as to be the solution of the following linear PDEs
system

∂tρ̃p + V η
p · ∇xρ̃p = −α(ζη ? ρc)ρ̃p, ∂tρ̃c + V η

c · ∇xρ̃c = (ζη ? ρp)ρ̃c,
ρ̃p(0, x) = ρp,Init(x), ρ̃c(0, x) = ρc,Init(x),

where the velocities are given by

V η
p = ∇xΦη

p, V η
c = ∇xΦη

c , ∆Φη
p = αζη ? ρc, −∆Φη

c = ζη ? ρp.
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Note that

‖ζη?ρp‖L∞ ≤ ‖ρp‖L∞ , ‖ζη?ρp‖L1 ≤ ‖ρp‖L1 , ‖ζη?ρc‖L∞ ≤ ‖ρc‖L∞ , ‖ζη?ρc‖L1 ≤ ‖ρc‖L1 .

According to Lemma 4.2, we infer that V η
p and V η

c are bounded in L∞((0, T ) × RN ),
uniformly with respect to η. Furthermore ∇x ·V η

p = αζη ?ρc and ∇x ·V η
c = −ζη ?ρp are

bounded in L∞(0, T ;L1∩L∞(RN )), and by Lemma 4.3, the components of the jacobian
matrices ∇xV η

p and ∇xV η
c are bounded in L∞(0, T ;Lq(RN )), for any 1 < q < ∞,

uniformly with respect to η. This is not enough to make use of the classical theory
of characteristic curves; nevertheless we can apply the results of [16] which guarantee
that ρ̃p, ρ̃c are well defined. We also refer the reader to the fully detailed analysis
of the conservative transport equation in [4, Chap. VI, Sect. 1]. Let us denote
T : (ρp, ρc) 7→ (ρ̃p, ρ̃c). This mapping satisfies T (CT ) ⊂ CT (the L∞ estimates are
obtained by adapting readily the arguments in Proposition 4.4). Furthermore, still
as a direct application of results in [16], see also [4, Th. VI.1.9], T is continuous,
with CT endowed with the L1((0, T ) × RN ) norm. Let us now check that T is a
compact mapping. Let

(
(ρp,n, ρc,n)

)
n∈N be a sequence in CT . It is thus bounded in

L∞(0, T ;L1 ∩ L∞(RN )). We can extract a subsequence, still labelled ρp,n and ρc,n,
which converges weakly−? in L∞((0, T ) × RN ), and weakly in L1((0, T ) × RN ). We
denote by ρp and ρc the limits. For any fixed η, we have V η

p,n ⇀ V η
p and V η

c,n ⇀ V η
c

weakly in any Lq((0, T )× RN ), for 1 ≤ q <∞, and weakly-? in L∞((0, T )× RN ). By
virtue of Lemma 4.2, and 4.3, V η

p,n and V η
c,n are bounded in L∞((0, T )×RN )), with the

jacobian matrices∇xV η
p,n and∇xV η

c,n bounded in L∞(0, T ;Lq(RN )), for any 1 < q <∞,
uniformly with respect to η. Consequently the following “space-compactness” property
holds

lim
h→0

sup
n,η

{∫ (
|V η
p,n(t, x+ h)− V η

p,n(t, x)|p + |V η
c,n(t, x+ h)− V η

c,n(t, x)|p
)

dx dt
}

= 0.

Besides, ρ̃p,n and ρ̃c,n are also bounded in L∞(0, T ;L1 ∩ L∞(RN )). Therefore, we
can assume that ρ̃p,n and ρ̃c,n converge weakly−? in L∞((0, T ) × RN ), and weakly in
L1((0, T ) × RN ) to ρ̃p and ρ̃c, respectively. Moreover, ∂tρ̃p,n = −∇x · (V η

p,nρ̃p,n), and
∂tρ̃c,n = −∇x · (V η

c,nρ̃c,n) are bounded in L∞(0, T ;W−1,∞(RN )). This allows to pass to
the limit in the products

V η
p,nρ̃p,n ⇀ V η

p ρ̃p, V η
c,nρ̃c,n ⇀ V η

c ρ̃c,

at least in D ′((0, T ) × RN ) as n → ∞. We refer the reader to [16, Th. II.7] or [37,
Lemma 5.1] for details on such compactness arguments. Hence the limits satisfy the
transport equations ∂tρ̃p+∇x ·(V η

p ρ̃p) = 0, and ∂tρ̃c+∇x ·(V η
c ρ̃c) = 0. For applying the

fixed point argument, we need to establish that ρ̃p,n and ρ̃c,n converge strongly. This
property requires further compactness on the divergence of the velocity fields. This is
where the regularization plays a role. Indeed, for any fixed η > 0, ∇x · V η

p,n,∇x · V η
c,n

satisfy

lim
h→0

sup
n

{∫
|∇x · V η

p,n(t, x+ h)−∇x · V η
p,n(t, x)|p dx dt

+
∫
|∇x · V η

c,n(t, x+ h)−∇x · V η
c,n(t, x)|p dx dt

}
= 0,
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and we justify that ρ̃p,n and ρ̃c,n converge strongly in L1((0, T ) × RN ) to ρp and ρc
by applying again the renormalization techniques of [16] and proving that ρ2

p,n, ρ
2
c,n

converge weakly to ρ2
p, ρ

2
c , see the second step of the proofs of [16, Th. II.4], or [4,

Th.VI.1.9]. We have thus proved that T satisfies the hypothesis of the Schauder
theorem on the set CT . Hence, T admits a fixed point (ρηp, ρηc ) = T (ρηp, ρηc ), which is
precisely a solution of the nonlinear system

∂tρ
η
p +∇x · (V η

p ρ
η
p) = 0, ∂tρ

η
c +∇x · (V η

c ρ
η
c ) = 0

with

V η
p = ∇xΦη

p, V η
c = ∇xΦη

c , ∆Φη
p = αζη ? ρηc , −∆Φη

c = ζη ? ρηp.

It remains to let η go to 0. But ρηp and ρηc lie in CT , thus are bounded in L∞(0, T ;L1 ∩
L∞(RN )), and it suffices to repeat the compactness argument used above to remove
the regularization. It proves the existence of weak solutions for data in L1 ∩L∞. Con-
tinuity with respect to time is a consequence of renormalization techniques, see [16,
Th. II.3] or [4, Th. VI.1.3].
Now we turn to uniqueness. We adapt the tricky argument introduced in [45] for the
Vlasov-Poisson equation. Let (ρpi , ρci), i = 1, 2, be two solutions in L∞(0, T ;L1 ∩
L∞(RN )), corresponding to the same initial data. Here we slightly modify the nota-
tions. Let us set R = R1 −R2 := ρp1 − ρp2 , S = C1 − C2 := ρc1 − ρc2 , W = Φp1 − Φp2

and Z = Φc1 − Φc2 We thus have

∂tR+∇x · (Vp1R+R2∇xW ) = 0 = ∂tS +∇x · (Vc1S + C2∇xZ),

with
∆xW = αS, ∆xZ = −R, R(0, ·) = S(0, ·) = 0.

We compute

1
2

d
dt

∫ (
|∇xW |2 + |∇xZ|2

)
dx =

∫ (
− αW∂tS + Z∂tR

)
dx

= −
∫ (

α∇xW · (Vc1S + C2∇xZ)−∇xZ · (Vp1R+R2∇xW )
)

dx

= −I−
∫

(αC2 −R2) ∇xW · ∇xZ dx

where
I =

∫ (
α∇xW · Vc1S −∇xZ · Vp1R

)
dx

=
∫
∇xW · Vc1∆xW dx+

∫
∇xZ · Vp1∆xZ dx.

Observe that∫
∇xW · Vc1∆xW dx = −

∑
i,j

(∫
∂2
xi,xj

W V (i)
c1 ∂xjW dx+

∫
∂xiW ∂xjV

(i)
c1 ∂xjW dx

)
.
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Integrating by part again, we obtain∑
i,j

∫
∂2
xi,xj

W V (i)
c1 ∂xjW dx = −

∑
i,j

∫
∂xjW ∂xiV

(i)
c1 ∂xjW dx

−
∑
i,j

∫
∂xjW V (i)

c1 ∂2
xi,xj

W dx

= −1
2
∑
i,j

∫
∂xjW ∂xiV

(i)
c1 ∂xjW dx

= +1
2

∫
R1 |∇xW |2 dx.

A similar manipulation applies for the last term in the expression of I. Therefore, we
arrive at

I = −1
2

∫
R1 |∇xW |2 dx+ α

2

∫
C1 |∇xZ|2 dx

−
∫
D2Φc1∇xW · ∇xW dx−

∫
D2Φp1∇xZ · ∇xZ dx

where D2Φ stands for the Hessian matrix of the potential function Φ. Let us set

E (t) =
∫ (
|∇xW |2 + |∇xZ|2

)
dx.

Bear in mind that there exists CT > 0 such that 0 ≤ E (t) ≤ CT , by virtue of the
known estimates on the Ri’s and Ci’s, and the Hardy-Littlewood-Sobolev inequality.
We wish to establish that the differential inequality d

dtE ≤ MpE 1−1/p holds for any
p ≥ 2, 0 ≤ t ≤ T , with a constant M which depends on T , α, N , ‖R1,2‖L1 , ‖R1,2‖L∞ ,
‖C1,2‖L1 , ‖C1,2‖L∞ , but that remains uniform with respect to p ≥ 2. We shall use the
shorthand notation A . B when the inequality A ≤ MB holds with such a constant
M , without trying to make the definition of the constant M , which might vary from
a line to another, precise. By using the Cauchy-Schwarz inequality together with
|ab| ≤ 1

2(a2 + b2), we obtain

d
dtE . E +

∫ ∣∣D2Φc1∇xW · ∇xW
∣∣ dx+

∫ ∣∣D2Φp1∇xZ · ∇xZ
∣∣ dx︸ ︷︷ ︸

II

.

By using the Hölder and Calderon-Zygmund inequalities, for any 1 < p < ∞, 1/p′ +
1/p = 1, the last two terms can be dominated by

II ≤ ‖D2Φc1‖Lp

(∫
|∇xW |2p

′ dx
)1/p′

+ ‖D2Φp1‖Lp

(∫
|∇xZ|2p

′ dx
)1/p′

≤ M?p

(
‖R1‖Lp‖∇W‖2/pL∞

(∫
|∇xW |2 dx

)1−1/p

+‖C1‖Lp‖∇Z‖2/pL∞

(∫
|∇xZ|2 dx

)1−1/p
)
.

Note that ‖ρ‖Lp ≤ ‖ρ‖1−1/p
L∞ ‖ρ‖1/pL1 ≤ ‖ρ‖L∞+‖ρ‖L1 can be dominated independently of

the exponent p. Similarly, restricting to p ≥ 2, we have the rough estimate ‖∇W‖2/pL∞ ≤
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(1 + ‖∇xΦp1‖L∞ + ‖∇xΦp2‖L∞) . 1, by virtue of Lemma 4.2. Of course, a similar
estimate holds with ∇Z. Hence, we get

II . p

((∫
|∇xW |2 dx

)1−1/p
+
(∫
|∇xZ|2 dx

)1−1/p
)
.

The elementary inequality ar + br ≤ 21−r(a + b)r ≤ 2(a + b)r which holds for any
a, b ≥ 0, 0 < r < 1 yields

d
dtE . E + pE 1−1/p . pE 1−1/p,

for any p ≥ 2, since we already know that E is bounded. We remind that E (0) = 0. For
given η > 0, we compare E with the solution of the ODE d

dtzη(t) = Mp(η+zη(t))1−1/p,
with zη(0) = η, that is zη(t) = ((2η)1/p + Mt)p − η. We have E (t) ≤ zη(t) for any
η > 0 and letting η go to 0 we deduce that E ≤ (Mt)p holds for any 2 ≤ p < ∞. By
letting p go to ∞ we infer that E (t) = 0 for 0 ≤ t ≤ 1/M . We repeat the argument on
successive time intervals of length 1/M , and we conclude that E vanishes on the whole
interval [0, T ]. It implies ∇W = ∇Z = 0, and thus R = S = 0.

We end with the regularity analysis. Lemma 4.3 does not provide uniform bound on
derivatives of the velocity fields. To this end, we need the following classical statement
[2, Lemma 4.2].

Lemma 4.5 Let ρ ∈ L1 ∩ L∞(RN ) with ∇xρ ∈ L∞(RN ). Let us set Φ = E ? ρ. Then
there exists M > 0, which does not depend on ρ, such that

‖D2Φ‖L∞ ≤M
(
1 + ‖ρ‖L1 + ‖ρ‖L∞(1 + ln(1 + ‖∇xρ‖L∞))

)
Let us denote βi = ∂xiρp, γi = ∂xiρc and β = (β1, ..., βN ), γ = (γ1, ..., γN ). By

differentiating (2) we obtain

(∂t + Vp · ∇x)βi + ∂xiVp · β = −α(ρcβi + ρpγi),
(∂t + Vc · ∇x)γi + ∂xiVc · γ = (ρpγi + ρcβi)

Applying usual estimates for transport equation leads to

‖βi‖L∞(t) . ‖βi‖L∞(0) +
∫ t

0

(
‖β‖L∞(s)(1 + ‖∂xiVp‖L∞(s)) + ‖γi‖L∞(s)

)
ds,

‖γi‖L∞(t) . ‖γi‖L∞(0) +
∫ t

0

(
‖γ‖L∞(s)(1 + ‖∂xiVc‖L∞(s)) + ‖βi‖L∞(s)

)
ds.

Here and below . indicates an estimate involving a constant depending only on T , α
and the L1 and L∞ norms of the initial data. Since

‖∂xiVp‖L∞ . (1 + ln(1 + ‖∇ρc‖L∞)), ‖∂xiVc‖L∞ . (1 + ln(1 + ‖∇ρp‖L∞)) (25)

and using a ln(1+b)+b ln(1+a) ≤ (a+b) ln(1+a+b), we deduce that G = ‖β‖L∞(t)+
‖γ‖L∞(t) satisfies

G (t) . G (0) +
∫ t

0
G (s)(1 + ln(1 + G (s))) ds.
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Let t 7→ z(t) be the solution of the ODE d
dtz = M(1 + z)(1 + ln(1 + z)), z(0) = zInit >

G (0). As a matter of fact, we find z(t) = exp(AeMt− 1)− 1, with A = 1 + ln(1 + zInit).
Then, by comparison principle, G (t) ≤ z(t) holds for any 0 ≤ t ≤ T <∞. Hence ∇xρp
and ∇xρc are bounded in L∞, and so is the jacobian of the velocities, using (25).

The proof can be readily adapted to the case where (2) is coupled to (10).

Theorem 4.6 Let Gp,c : R→ R fulfill the following conditions
• Gp,c, G ′p,c and G ′′p,c belong to L∞(R),
• G ′p,c ≥ 0.

We further assume that r 7→ rN−1G ′′(r) ∈ L1(R). Let ρp,Init, ρc,Init be non nega-
tive functions in L1 ∩ L∞(RN ). Let 0 < T < ∞. Then, there exists a unique
weak solution (ρp, ρc) ∈ L∞(0, T ;L1 ∩ L∞(RN )) of (2), with (10) and initial data
(ρp,Init, ρc,Init). If, moreover, ∇xρp,Init,∇xρc,Init belong to L∞(RN ), then the solution
lies in L∞(0, T ;W 1,∞(RN )).

According to the computation in Appendix B, we have the following estimate for
the velocity field. The proof follows directly from the formulae detailed in Appendix B,
and standard convolution inequalities.

Lemma 4.7 Let ρ ∈ L1(RN ), ρ ≥ 0 and set Φ(x) =
∫

G (|x − y|)ρ(y) dy, where G ∈
C1(RN ) is an non decreasing function with bounded first and second derivatives. Then,
V = ∇Φ belongs to L∞(RN ), with ‖V ‖L∞ ≤ ‖G ′‖L∞‖ρ‖L1. Furthermore, we have
• If N = 1, then ∂xV = d− 2G ′ρ, with ‖d‖L∞ ≤ ‖G ′′‖L∞‖ρ‖L1,
• If N > 1, then ∇x ·V = d1 + d2, with ‖d1‖L∞ ≤ ‖G ′′‖L∞‖ρ‖L1 and d2 ∈ L1(RN ),
d2 ≥ 0.

If we assume moreover ρ ∈ L∞(RN ), then V lies in W 1,∞.

The analog of Proposition 4.4 for (10) casts as follows.

Proposition 4.8 (A priori estimates) Let Gp,Gc satisfy the assumptions of Lemma
4.7. The initial data are required to satisfy

ρp,Init ≥ 0, ρc,Init ≥ 0, ρp,Init, ρc,Init ∈ L1 ∩ L∞(RN ).

Smooth solutions of (2) with (10) satisfy

0 ≤ ρp(t, x) ≤ ‖ρp,Init‖L∞ et‖G
′′
p ‖L∞‖ρc,Init‖L1 ,

0 ≤ ρc(t, x) ≤ ‖ρc,Init‖L∞ e
t(‖G ′′c ‖L∞‖ρp,Init‖L1+Λ‖ρp‖L∞((0,t)×RN ))

,

with Λ the L1 norm of x 7→ G ′c(|x|)
|x| when N > 1, or Λ = 1 when N = 1.

Proof. We consider the case where N > 1. We write the equations in the non-
conservative form

∂tρp + Vp · ∇xρp = −ρp∇x · Vp ≤ −pdp,
∂tρc + Vc · ∇xρc = −ρc∇x · Vc
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where ‖dp‖L∞ ≤ ‖G ′′p ‖L∞‖ρc(t, ·)‖L1 = ‖G ′′p ‖L∞‖ρc,Init‖L1 . It provides the bound on
ρp(t, x). Then, we get |∇x · Vc| ≤ ‖G ′′c ‖L∞‖ρp,Init‖L1 + Λ‖ρp‖L∞((0,t)×RN ), which ends
the proof. The adaptation to the case N = 1 is straightforward.

The existence proof reproduces the argument of the model coupled with the Poisson
equation, up to the modification of the set CT which has to account for the estimates
detailed in Proposition 4.8. Note also that in this context, the velocity field is Lipschitz
with respect to the space variable, which allows to define characteristics. Consequently
solutions associated to data inW 1,∞(RN ) data belong to L∞(0, T ;W 1,∞(RN )) too. Let
us consider the situation N > 1. Note that space-compactness of the velocity fields
and their divergence is guaranteed without requiring any further regularization recipe,
since x 7→ G ′(|x|)

|x| and x 7→ G ′′(|x|) are integrable. This is a consequence of the following
estimate∣∣∣∣∫ U(x+ h− y)ρ(y) dy −

∫
U(x− y)ρ(y) dy

∣∣∣∣ ≤ ‖ρ‖L∞ ∫
|U(z + h)− U(z)| dz

which tends to 0 as |h| → 0, by virtue of the continuity of translation in L1, uniformly
over functions ρ lying in a given ball of L∞(RN ).

When the velocity V is given, the solution mapping ρInit 7→ ρ, the solution of
∂tρ+∇x·(V ρ) = 0 with ρ(t = 0, x) = ρInit(x) is both order preserving —- ρInit,1 ≥ ρInit,2
implies ρ1 ≥ ρ2 —- and integral preserving —-

∫
ρ(t, x) dx =

∫
ρInit(x) dx. Therefore,

the Crandall-Tartar Lemma [11] directly implies the contraction property
∫
|ρ1(t, x)−

ρ2(t, x)|dx ≤
∫
|ρInit,1(x) − ρInit,2(x)|dx. In particular, this inequality applies to the

fixed point of the mapping T , which leads to∫
|ρp1(t, x)− ρp2(t, x)|dx+

∫
|ρc1(t, x)− ρc2(t, x)| dx

≤
∫
|ρp,Init,1(x)− ρp,Init,2(x)|dx+

∫
|ρc,Init,1(x)− ρc,Init,2(x)|dx.

Consequently, uniqueness of the solution of the non linear problem is guaranteed. For
N = 1, the proof of the Poisson case can be readily adapted; details are left to the
reader.

5 Conclusion
We have introduced a hierarchy of models describing the motion of two populations the
interactions of which are driven by pursuit-evasion principles. It leads to define crossed
self-consistent interaction potentials. Namely, we consider the concentration of preys
and chasers, ρp(t, x) and ρc(t, x) respectively. For individual-based models they can be
thought of as sums of Dirac masses. We associate to the concentrations the potentials
Φp(t, ·) = Gp ∗ρc(t, ·) and Φc(t, ·) = −Gc ∗ρp(t, ·), for certain radially symmetric kernels
Gp,c. Roughly speaking the action of a population on the other one is embodied into
the gradients ∇Φp,c. The sign in the definition of the potential determines whether the
effect is repulsive (chasers are repellent for the preys) or attractive (preys are attractive
for the chasers). The definition of the potentials from Poisson equations, as it comes in
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the standard theory of chemotaxis, is a particular case of this situation. We design a
hierarchy of models which is summarized in Section 2.4. As the number of individuals
increases, the computational effort to reproduce the behavior of individual-based mod-
els becomes non affordable. It motivates the use of more macroscopic equations, which
are also able to capture self-organization mechanisms relevant in life sciences. We have
analyzed in detail the first–order model (2) either with the Poisson kernel or a more
general convolution relation. In contrast with similar models for a single species, blow
up does not occur in finite time in the present situation. The numerical simulations
confirm the ability of the models in producing remarkable pattern formation. While it
is likely that the models can be enriched by taking into account further interaction ef-
fects, the analysis of typical patterns, their stability and the influence of the modelling
parameters should motivate further mathematical works.

A Proof of Proposition 2.1.
Let ϕ ∈ C∞c ([0,∞)× RN ). By definition of distributional derivatives, we compute

〈
∂t
( I∑
i=1

δ(x = X(t; 0, x0,i))
)

+ ∂x
(
u

I∑
i=1

δ(x = X(t; 0, x0,i))
)
, ϕ
〉

= −
〈 I∑
i=1

δ(x = X(t; 0, x0,i)), ∂tϕ+ u∂xϕ
〉
−

I∑
i=1

ϕ(0, x0,i)

= −
I∑
i=1

∫ ∞
0

(∂tϕ+ u∂xϕ)(t,X(t; 0, x0,i)) dt−
I∑
i=1

ϕ(0, x0,i).

Owing to the chain rule, this is

−
I∑
i=1

∫ ∞
0

d
dt
[
ϕ(t,X(t; 0, x0,i))

]
dt−

I∑
i=1

ϕ(0, x0,i) = 0.

It proves i). We obtain ii) by integrating between s = 0 and s = t the following identity:

d
ds
[
ρ(s,X(s; t, x))

]
= −ρ(s,X(s; t, x))× (∇x · u)(s,X(s; t, x)).

B Computation of the divergence of the veloc-
ity field
The velocity field is defined by the convolution

V (x) = E ? ρ(x), E (x) = x

|x|
G ′(|x|) = ∇x(G (|x|).

The function G : R→ R is supposed to belong toW 2,∞, with bounded first and second
derivatives. As a matter of fact, E ∈ L∞(RN ). Furthermore its derivation far from the
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origin does not lead to any difficulty and the derivative is given by the matrix valued
function

Ψ(x) = x⊗ x
|x|2

G ′′(|x|) +
(
I− x⊗ x

|x|2
)G ′(|x|)
|x|

.

Observe that Ψ belongs to L∞(RN ) too. Hence ∇E is computed as follows: for any
ϕ ∈ C∞c (RN ),

〈∇E , ϕ〉 = − lim
η→0

∫
|x|>η

E (x) ∇ϕ(x) dx

= lim
η→0

( ∫
|x|>η

∇E (x) ϕ(x) dx+ B(η)
)

with B(η) the boundary term, given by an integral over {|x| = η}, the expression of
which depends on the space dimension. The dominated convergence theorem yields

lim
η→0

∫
|x|>η

∇E (x) ϕ(x) dx =
∫

Ψ(x) ϕ(x) dx.

Consider the boundary term in dimension N > 1; it reads (with ν(x) the outward unit
vector on the sphere {|x| = η}, that is − x

|x|)

B(η) = −
∫
|x|=η

E (x)ϕ(x)ν(x) dσ(x)

=
∫
SN−1

G ′(η)ϕ(ηω) ηN−1 dω −−−→
η→0

0.

In dimension N = 1, the boundary term becomes

B(η) = −G ′(η)(ϕ(η) + ϕ(−η)) −−−→
η→0

−2G ′(0)ϕ(0).

We conclude that

∇E =
{

Ψ if N > 1,
Ψ− 2G ′δ(x = 0) = G ′′ − 2G ′δ(x = 0) if N = 1.

For N > 1, the divergence of the velocity field is therefore given by the convolution
with Tr(Ψ) = G ′′(|x|) + (N − 1)G ′(|x|)

|x| .
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