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Abstract

We introduce a mathematical model intended to describe the interactions between
the immune system and tumors. The model is based on partial differential equations,
describing the displacement of immune cells subjected to both diffusion and chemotac-
tic mechanisms, the strength of which is driven by the development of the tumors. The
model takes into account the dual nature of the immune response, with the activation
of both antitumor and protumor mechanisms. The competition between these antago-
nistic effects leads to either equilibrium or escape phases, which reproduces features of
tumor development observed in experimental and clinical settings. Next, we consider
on numerical grounds the efficacy of treatments: the numerical study brings out inter-
esting hints on immunotherapy strategies, concerning the role of the administered dose,
the role of the administration time and the interest in combining treatments acting on
different aspects of the immune response.

Keywords. Tumor growth. Immune system. Equilibrium phase. Escape phase.

Math. Subject Classification. 92C50, 92C17, 35B99.

∗kevin.atsou@inria.fr
†Anjuère@ipmc.cnrs.fr, ORCID: 0000-0003-3144-8652
‡braud@ipmc.cnrs.fr ORCID: 0000-0001-8213-3947
§thierry.goudon@inria.fr ORCID: 0000-0003-3700-9845
¶Corresponding author

1



Author Summary

Tumor-immune system interactions are described by three phases: elimination, equilib-
rium and escape. Switching from the healthy stages to the uncontrolled development of
the tumor relies on complicated mechanisms and the activation of antagonistic immune
responses, that can ultimately favor the tumor growth. We provide a mathematical
description of such mechanisms, and a relatively simple set of equations to capture the
main features of the interactions. Such model can shed light on the conditions where
the tumor can be maintained in a viable state. Based on numerical experiments, we
also provide useful hints for personalized, efficient, therapeutic strategies, boosting the
antitumor immune response, and reducing the protumor actions.

Introduction
The immune system can both constrain and promote tumor development through sev-
eral complex processes, encompassed in the concept of cancer immunoediting [1]. The
antagonistic effects of the immune response on tumor growth shape the different phases
that have been identified to characterize their interaction: elimination, when the im-
mune system is able to detect and eradicate the developing tumors; equilibrium, when
the immune system is able to maintain the tumor expansion in a cancer-persistent
state; and escape, when the tumor develops in an uncontrolled manner [1, 2].

In this context, the identification of the immune components of the tumor microen-
vironment (TME) reveals valuable information about the stage of cancer development
and helps predict patient outcome. This concept called “the immune contexture”
has improved the classification of cancers [3, 4]. The antitumor immune response is
characterized by the activation and the recruitment of innate immune cells such as
natural killer (NK) cells, tumor-associated neutrophils (TAN-N1), tumor-associated
macrophages (TAM-M1) and adaptive immune CD8+ T cells. They migrate to the tu-
mor site where they can eliminate tumor cells. They have been found to be highly active
on early-stage tumors and associated with good clinical outcome [5, 6]. While this an-
titumor immune response can be expected to control tumor growth or maintain their
development in a viable equilibrium, later phases are characterized by an uncontrolled
tumor growth associated with a shift of the immune response towards protumor func-
tions and the establishment of multiple mechanisms of immunosuppression [7]. Among
others, the ratio of effector immune cells/protumor immune cells is considered as a
relevant indicator of patient survival, the higher the ratio, the better the patient vital
prognostic [8]. The ratio evolves dynamically : tumor cells and other components in the
TME can produce inhibitory factors such as anti-inflammatory cytokines, interleukins
10 and 4 (IL-10 and IL-4), Transforming Growth Factor-beta (TGF-β) which favor
the polarization of antitumor immune cells into protumor ones. For instance, antitu-
mor neutrophils and macrophages are converted into protumor TAN-N2 and TAM-M2
[9, 10]. They are part of a pool of myeloid-derived suppressor cells (MDSCs) which can
also be directly recruited from the bone marrow [11]. They promote tumor growth,
tissue remodeling, angiogenesis and suppress adaptive immunity [12]. Moreover, the
antigen-presenting cells such as dendritic cells (DC) become tolerogenic which leads
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to exhausted and tolerant T cells, apoptosis of T cells and to the priming and pro-
liferation of regulatory T cells (Tregs) [12, 13]. Besides, tumors subvert mechanisms
of immune self-tolerance and inhibit antitumor immune responses through the use of
immune checkpoint. The TME is therefore infiltrated with hyporesponsive exhausted
T cells [14]. Blockade of these immune checkpoints as exemplified with anti-CTLA4
and anti-PD-1/PD-L1 restore efficient effector functions and has revolutionized cancer
treatment [15].

Mathematical modeling might shed some light on these complex interactions, and,
based on numerical simulations, provide useful information to elaborate more effi-
cient therapeutic strategies. Quite intricate ordinary differential systems have been
developed so far, see for instance [16, 17, 18, 19, 20, 21, 22]. Further references and
discussion of the various viewpoints can be found in the review [23]. In [24], we pro-
posed a system of partial differential equations, describing the earliest stages of the
tumor/immune system interactions. The system couples an integro-differential equa-
tion for the size-structured population of tumor cells, inspired from [25, 26, 27, 28],
to a convection-diffusion equation for the space-structured immune cells. The latter
accounts for chemotaxis mechanisms that drive the immune cells towards the tumor.
This model, which only considers the antitumor actions of the immune system, is able
to reproduce the equilibrium phase: the large time behavior of this PDEs system is
a state where residual tumor cells and a positive concentration of active immune cells
exist in equilibrium. However, the simple model of [24] does not consider the contri-
bution of immune cells with protumor functions and the establishment of numerous
mechanisms of immunosuppression. This is the issue addressed in this work. To be
more specific, our purpose is two-fold:
• First, we incorporate in the model protumor effects that can both reduce the

antitumor immune response and strengthen the factors of tumor growth. We
shall see that the protumor immune response can break the equilibrium and lead
to an escape phase characterized by the uncontrolled growth of the tumor.

• Second, we complete the model by discussing the effect of different type of targeted
treatments that can act on the immune response, either by restoring the effector
functions of antitumor cells which became exhausted as a result of chronic acti-
vation and protumor factors, or by limiting the recruitment of protumor immune
cells. The investigation demonstrates the interest of combining both approaches.

The paper is organized as follows. We introduce the modeling assumptions and
we set up the equations in the Mathematical Model section. We pay a specific
attention to the description of the activation of protumor mechanisms, based on the
action of cytokines, in response to the growth of the tumor mass. The modeling
assumptions naturally induce some delay mechanisms in the protumor response. We
also bring out some mathematical properties of the model. We start by considering
a simplified situation which reduces the model to a nonlinear system of ODEs. We
identify several stationary solutions, free of tumors, free of protumor cells or with
all populations of immune cells, and we discuss their linear stability. This discussion
provides some hints on the role of the parameters. Next, we establish the existence
of equilibrium states for the full size- and space-dependent problem, extending to the
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model with protumor activities the results of [24]. The Results section is devoted
to the numerical investigation. We show that depending on the parameters of the
model, the solutions either converge to an equilibrium or describe an escape phase
with an unlimited growth of the tumor. These results illustrate the critical role of the
protumor immune responses. Next, we address specifically the question of treatments.
As detailed below, the immune response might have multi-faceted protumor actions.
Among other, effector immune cells can become exhausted, a state where they are
hyporesponsive and cannot kill the tumor. We consider the effect of treatments that
either restore antitumor activity or reduce the recruitment of protumor immune cells.
The investigations demonstrates the interest of combining both approaches and discuss
the role of the dose and time of administration.

Mathematical model
A schematic overview of the geometry and the leading mechanisms that guide the
construction of the mathematical model is provided in Fig. 1 and 2.

•
Tumor cells

growth and division

Source of antitumor cells

chemotactic motion
directed towards the tumor

Source of protumor cells

diffusion
in any direction

diffusion
in any direction

Figure 1: Schematic view of the geometry of the mathematical model

4



Antitumor immune cells Protumor immune cells

Chemotactic potential Cytokines

Tumor cells

PIC suppress AIC

shift of AIC into PIC

AIC destroy TC

activation of AIC

PIC enhance
TC growth rate

directed motion
promote
shift/activation

TC enhance
chemotactic
potential and
release of cy-
tokines

Figure 2: Schematic view of the leading mechanisms that guide the construction of the
mathematical model. AIC: antitumor cells, PIC: protumor cells, TC: tumor cells.

Modeling assumptions
We take into account three populations of interacting cells:
• the cytotoxic effector cells including CD8+ T cells and NK cells as well as myeloid

effector cells, TAN-N1 and TAM-M1 that will be referred to as the “antitumor”
immune cells;

• the “protumor” immune cells, including Treg, MDSCs, TAN-N2 and TAM-M2
favoring tumor growth;

• the tumor cells.
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For the purpose of the mathematical modeling, we are collapsing into single “averaged”
quantities the behavior of several distinct cells, that might have different developmental
properties and interactions mechanism, to focus on the outcome of their action on
tumor growth. The construction of the model uses the same basis as in [24], to which
we incorporate the “protumor” immune cells. The modeling assumptions are as follows.

A.1 the environmental constraints such as nutrient concentrations, temperature, etc.
are assumed to be constant. Nevertheless, in late stages of tumor growth, some
phenomena such as hypoxia or difficulties in accessing the nutrients can limit the
tumor cell expansion;

A.2 the state of the tumor cells is characterized by their size (with a similar setting, it
could be their content of cyclins as well [29, 25]); the dynamics of the tumor cells
is driven by two phenomena: each tumor cell grows with a certain rate, possibly
depending on its size, and it can divide into daughter cells;

A.3 activated antitumor immune cells are able to destroy the targeted tumor cells;
A.4 activated protumor immune cells suppress the antitumor immune cells by direct

contact or by the release of soluble substances (like immunosuppressive cytokines);
A.5 activated protumor immune cells favor the tumor growth by enhancing the growth

rate of the tumor cells and by favoring angiogenesis.

Moreover, the tumor cells produce several signals of chemical nature (cytokines and
chemokines), which drive the immune response as follows:

A.6 a chemotactic signal, proportional to the tumor mass, induces a potential, the
gradient of which drives the anti and protumor cells towards the TME;

A.7 the tumor antigen-specific CD8+ T cells are activated by APCs in draining lymph
nodes and recruited to the tumor site. The NK cells as well as the myeloid cells
(TAN-N1, TAM-M1) are recruited from the circulation and activated from a
bath of non-activated immune cells at the tumor site. The signal that defines the
recruitment/activation rate is directly related to the tumor mass.

A.8 similarly, protumor immune cells can be recruited from a bath of immune cells
(that might differ from the source of antitumor immune cells, though) according
to a signal directly related to the tumor mass;

A.9 the signal triggers the shift of certain antitumor immune cells into protumor
immune cells.

Assumptions A.1–A.3 appeared in [24] where they are discussed in details. The
protumor effects become sensitive in a later stage of the tumor growth, and, as we
shall see, play a central role in the transition to the escape phase. Assuming a con-
stant growth rate of the tumor cells becomes questionable in this regime, and we shall
model it by means of a Gompertz law, which accounts for size-limitation mechanisms,
see (1) below. Assumption A.4 describes immunosuppression mechanisms mediated
by protumor immune cells. In addition to the contact-dependent suppression of antitu-
mor immune cells, the secretion of immunosuppressive cytokines abrogates the effector
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functions of T cells and NK cells and negatively modifies their proliferation. It trig-
gers the reverse conditioning of DCs and can induce the apoptosis of effector T cells
through the depletion of IL-2 from the TME. It is worth bearing in mind that not
all the antitumor immune cells are eliminated: they become exhausted and can no
longer kill tumor cells; however, they can be reactivated by the action of some treat-
ment (i. e. anti-PD-1 therapy). Assumption A.5 corresponds to the overexpression of
VEGF by protumor immune cells favoring the accumulation of microvessels supplying
the tumor in nutrients. Assumption A.6 already appeared in [24]; here the chemotac-
tic mechanisms apply on both type of immune cells. Assumption A.7 corresponds to
a rough description of the complex activation and recruitment mechanisms which are
related to the tumor mass.

Similarly, assumption A.8 corresponds to the recruitment of MDSC coming from
the bone marrow and Tregs from the circulation. Assumption A.9 corresponds to
the possible conversion of some immune cells that eliminate the tumor into protumor
immune cells (i. e. macrophages and neutrophils becoming TAN M2 and TAM N2,
conventional T cells becoming immunosuppressive Treg).

Construction of the model
Following [24], the model uses two distinct length scales:
• the length scale of the displacement of the immune cells,
• the length scale describing the size of the tumor cells.

The modeling assumes that the former is “infinitely large” compared to the latter. This
is motivated by the fact that immune cell displacement (for instance from the lymph
nodes toward the tumor site) occurs on several centimeters while the estimated radius
of the tumor cells is about a few micrometers. The interactions between the tumor
and the immune system are described by the dynamics of the following unknowns:
• Tumor cell density. The population of tumor cells is described by (t, z) 7→ n(t, z),

the volumic density of tumor cells. Given z2 > z1 > 0, the integral
´ z2
z1
n(t, z) dz

gives the number of tumor cells having a size in the interval [z1, z2] at time t.
• Cytotoxic effector cell concentration. The concentration of antitumor immune

cells that are actively fighting against the tumor is (t, x) 7→ c(t, x).
• Protumor immune cell concentration. Similarly, (t, x) 7→ cr(t, x) stands for the

concentration of the protumor immune cells favoring tumor growth.
• Chemoattractant potential. We denote by (t, x) 7→ φ(t, x) the concentration of the

chemical signal (chemokines) that attracts the immune cells towards the TME.
• Cytokine concentration. Finally, let t 7→ I(t) be the concentration of cytokines in

the overall TME.
The dynamics of the population of tumor cells is governed by volume growth and

cellular division, see [25, 26, 27, 28]. We add to these effects a death rate induced by
the activated antitumor immune cells. Let z 7→ V (z) ≥ 0 stand for the tumor cell
growth rate. We can assume it is a positive constant, but in the present context it is
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more appropriate to adopt a size dependent model, that incorporates size-limitation
effects. We work with the Gompertz law

V (z) = rz ln(b/z), (1)

with r > 0 and b > 0, the maximal size. Accordingly the size variable z lies in the
interval [0, b]. We refer the reader to [30, 31, 32, 33, 34] for derivation and use of
this law in tumor growth modeling, in particular when taking into account the limited
access to nutrients or necrotic mechanisms, see A.1, A.2. The cell division mechanism
is described by the operator

Q(n)(t, z) = −a(z)n(t, z) +
ˆ b

z
a(z′)k(z|z′)n(t, z′) dz′, (2)

where a(z′) stands for the frequency of the division of cells having size z′, and k(z|z′)
gives the size-distribution produced from the division of a tumor cell with size z′. What
is crucial for modeling purposes is the requirement

ˆ z

0
z′k(z′|z) dz′ = z,

which is related to the principle of mass conservation. Indeed, it implies that cell-
division does not change the total mass

ˆ b

0
zQ(n) dz = 0.

However, the total number of cells increases since
´ b

0 n(t, z) dz ≥ 0. A relevant example
is provided by the binary division operator

Q(n)(t, z) = 4a(2z)n(t, 2z)− a(z)n(t, z), (3)

which describes the situation where cells with size 2z split into two daughter cells, both
with size z. Further relevant examples of division kernels can be found in [35]. The
equation will be completed by the boundary condition n(t, 0) = 0, which means that
there is no production of cells with size 0. For further purposes, let us introduce the
following quantities

total number of tumor cells: µ0(t) =
ˆ b

0
n(t, z) dz, (4)

total mass of tumor cells: µ1(t) =
ˆ b

0
zn(t, z) dz. (5)

The displacement of the anti- and protumor immune cells is driven by convection
and diffusion, over a domain Ω ⊂ RN . For the sake of simplicity we assume they have
the same diffusion coefficient D and, here, we shall work with a constant coefficient.
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The convection is defined by the chemotactic potential φ, which depends on the total
mass of the tumor. It obeys the diffusion equation

−∇x · (K∇xφ) = f(µ1)σ, K∇xφ · ν
∣∣
∂Ω = 0 (6)

endowed with the homogeneous Neumann boundary condition. In (6), x 7→ σ(x) is a
given form function with zero-mean, K > 0 is a positive coefficient. The coefficient K
could be matrix-valued as well, taking into account further details of the vasculature or
the properties of the tissues neighboring the tumor, that govern the supply of immune
cells. The strength of the potential depends on the total mass of the tumor through the
function µ1 7→ f(µ1) ≥ 0. It is natural to assume that f(0) = 0 and f is non decreasing.
A typical example of f is the following Michealis-Menten functional response:

f(µ1) = µ1
η + µ1

, η > 0. (7)

We suppose that c and cr have the same chemotactic sensitivity χ > 0, and they both
satisfy homogeneous Dirichlet boundary condition on ∂Ω: the immune cells far from
the tumor are non-activated.

Let us now describe the zeroth order terms of the equations, that differ depending
on the considered type of cells. Both type of immune cells is subjected to a death
rate γ, γr > 0. The antitumor immune cells are recruited from a source of naive
immune cells (t, x) 7→ S(t, x). The activation process is described through a rate
µ1 7→ g(µ1) ≥ 0, which depends on the total mass of the tumor. Again, it is natural to
assume g(0) = 0 and g is non decreasing. There are two other mechanisms that lead to
a loss of antitumor immune cells. First, according to assumption A.4, the protumor
immune cells suppress effector cells; this is traduced by a loss term

−kcccr

where kc > 0 is the rate of this reaction. Second, according to assumption A.9, certain
activated effector cells can be converted into protumor immune cells under the action
of cytokines in the TME. This leads to the loss term

−krIθc

where kr > 0 is the rate of this conversion, and x 7→ θ(x) is a given form function, say
a peaked Gaussian, indicating that such processes occur in the vicinity of the tumor.
This loss of antitumor immune cells contributes to the gain term for the population of
protumor immune cells. Cytokines also activate protumor immune cells from a distant
source denoted by Sr according to assumption A.8.

The effector cells release cytotoxic substances in the TME. This effect is described
by the death term

m(c, n)(t, z) = n(t, z)×
ˆ

Ω
δ(y)c(t, y) dy (8)

in the tumor growth equation. It involves a non negative space-dependent weight
x 7→ δ(x), which incorporates both the strength of the immune response and a radius
of interaction. According to assumption A.5, recruited protumor immune cells favor
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the tumor growth. Therefore the growth rate of the tumor cells is enhanced by the
presence of protumor immune cells and it becomes

V (z)
(

1 +
ˆ

Ω
b1(y)cr(t, y) dy

)
(9)

with a certain non negative, radially symmetric and compactly supported kernel b1.
Finally, we turn to the dynamics of the tumor-secreted cytokines, which promote the

protumor reactions. The production of such cytokines occurs beyond a certain critical
mass, denoted by m. Moreover, the cytokine concentration is naturally damped with
a constant rate τ > 0. This leads to the ODE

∂tI = ψ(µ1)− τI (10)

where ψ is a threshold function, non negative and non decreasing. For instance, given
a constant ψ̄ > 0, it can be defined by:

ψ(µ1) = ψ̄

{
(µ1 −m), µ1 > m

0, µ1 ≤ m
(11)

We shall need the technical assumptions ψ(0) = ψ′(0) = 0, which clearly holds when
m > 0. The threshold m can be used to describe the degree of inflammation of the
tumor environment: the smaller m, the more inflamed the environment, and a reduced
m can correspond to altered soil, due to systemic effects caused by a primary tumor.
Eventually, we arrive at the following system describing the interactions between the
tumor cells, the effector and protumor immune cells:

∂tn+ ∂z

(
V (z)

(
1 +
ˆ

Ω
b1(y)cr(t, y)

)
n

)
= Q (n)−m(n, c), (12a)

∂tc+∇x · (cχ∇xφ−D∇xc) = g(µ1)S − γc− krIθc− kcccr, (12b)

∂tcr +∇x · (crχ∇xφ−D∇xcr) = I(Sr + krθc)− γrcr, (12c)

∂tI = ψ(µ1)− τI, (12d)

−∇x · (K∇xφ) = f(µ1)σ, (12e)

n(t, 0) = 0, c
∣∣
∂Ω = 0, cr

∣∣
∂Ω = 0, K∇xφ · ν(·)

∣∣
∂Ω = 0, (12f)

n(t = 0, z) = n0(z), c(t = 0, x) = c0(x), c(t = 0, x) = c0
r(x), I(t = 0) = I0. (12g)

We remind the reader that the cell division operator Q(n) and the immune cell-tumor
interaction term m(c, n) are defined in (2) and (8) respectively. Table 1 recapitulates
the biological meaning of the parameters of the model. We refer the reader to [24] for
details on the units and typical values of these quantities; further parameter identifi-
cation from experimental data and sensitivity analysis is detailed in [36].

A simplified model: role of the parameters on damping
and escape
Let us consider the very specific case where
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variable description
z volume of tumor cells
t time variable
x space variable
n size-density of tumor cells with a volume z
V tumor cells growth rate
a tumor cells division rate
µ0 total number of tumor cells
µ1 total volume of tumor cells
c concentration of antitumor cells
cr concentration of protumor cells
χ chemotactic coefficient
φ chemotactic potential
D diffusion coefficient of the immune cells
S source of antitumor immune cells
Sr source of protumor immune cells
K diffusion coefficient of the chemotactic signal
σ chemotactic signal
I cytokine concentration
γ death rate of the antitumor immune cells
γr death rate of the protumor immune cells
τ damping rate of the cytokine concentration
kc suppression rate of antitumor cells by the protumor cells
kr conversion rate of antitumor cells into protumor cells
θ form function of the conversion of antitumor cells into protumor cells
δ form function of the antitumor action in the TME
b1 tumor growth rate induced by the protumor cells
m threshold on the tumor volume driving the cytokine activation

Table 1: Recap of the main definitions and notations

• V and a are constant,
• the source S of immune cell is constant,
• the source Sr = 0 vanishes and the other parameters D, K are constant and

positive,
• the coupling function is linear: g(µ1) = µ1,
• the space variation of the concentrations of immune cells is neglected,
• we consider the binary division model (3) with a constant frequency a.

These assumptions completely disregard the space dependence of the unknowns and
certainly lack of biological relevance, but the simplified framework shed some light on
the possible behavior of the solutions and the role of the parameters. In this simple
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situation, the dynamics is described by the following system of ordinary differential
equations for µ0, µ1, given by (4), (5), and the time-dependent concentrations of im-
mune cells and of cytokines:

d
dtµ0 = µ0 (a− δc) ,
d
dtµ1 = V (1 + b1cr)µ0 − δµ1c,

d
dtc = µ1S − γc− krcI − kcccr,
d
dtcr = krcI − γrcr,
d
dtI = ψ(µ1)− τI.

(13)

The state 
µH0
µH1
cH

cHr
IH

 =


0
0
0
0
0


is a trivial equilibrium solution to (13) which corresponds to a healthy state. However,
we can also find equilibrium states with residual tumor cells, effector immune cells and
even protumor immune cells. Indeed, let

µNP0
µNP1
cNP

cNPr
INP

 =


γa2

δV S
γa
δS
a
δ
0
0

 .

If µNP1 ≤ m, the threshold for the activation of cytokines, this defines an equilib-
rium solution with a residual tumor and free of protumor immune cells. Next, let us
introduce

Q = kra

δτ
,

and let

µP1 =

γa

δ
−Qm− kca

γrδ
Qm

S −Q− kca

γrδ
Q

. (14)
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be the tumor mass at equilibrium with the presence of protumor immune cells. Indeed,
if µP1 > m another equilibrium solution is given by


µP0
µP1
cP

cPr
IP

 =



a

V (1 + b1cPr )µ
P
1

µP1

a

δ

Q
ψ(µP1 )
γr

ψ
(
µP1

)
/τ


That the definition of this unhealthy state makes sense requires that the right hand
side in (14) is positive. It means that

either S > Q

(
1 + kca

γrδ

)
> 0 and γa

δ
> Qm

(
1 + kca

γrδ

)
or S < Q

(
1 + kca

γrδ

)
and γa

δ
< Qm

(
1 + kca

γrδ

)
,

(15)

imposing constraints on the parameters. Let us discuss the possibility of obtaining the
different equilibrium states µNP1 , µP1 , depending on the ratio a

δ between the tumor divi-
sion rate a and the strength of the immune response δ. It measures the competitiveness
between the tumor and the antitumor immune cells. We thus study respectively the
sign of µNP1 −m and µP1 −m. On the one hand,

µNP1 −m < 0 if and only if a
δ
<
mS

γ
, (16)

and on the other hand

µP1 −m =
γ
a

δ
−mS

S −Q1
a

δ
−Q2

(
a

δ

)2 , (17)

where
Q1 = kr

τ
and Q2 = kckr

γrτ
.

Let us denote by

X2 =
−Q1
Q2

+
√(

Q1
Q2

)2
+ 4S
Q2

2 , (18)

the non-negative root of the denominator in (17). By analyzing the sign of (17), we
distinguish two cases
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• if m < γX2
S (relatively small critical mass),

µP1 −m > 0 if and only if a
δ
∈
(
mS

γ
,X2

)
(19)

and
µP1 −m < 0 if and only if a

δ
∈
(

0, mS
γ

)
∪ (X2,+∞) . (20)

This is summarized in the following table

a

δ

µP1 −m

µNP1 −m

0
mS

γ
X2 +∞

< 0 0 > 0 < 0

µP1 admissible

< 0 0 > 0 > 0

µNP1 admissible

There is no admissible equilibrium when a
δ ∈ [X2,+∞): the aggressiveness of the

tumor is strong and the tumor mass certainly blows up.
• if m > γX2

S , we have

a

δ

µP1 −m

µNP1 −m

0 X2
mS

γ
+∞

< 0 > 0 0 < 0

µP1 admissible

< 0 < 0 0 > 0

µNP1 admissible

Again, there is no admissible equilibrium when a/δ becomes large.

Discussion on the stability of the equilibrium points. The Jacobian matrix
evaluated at the healthy state (H) reads

JH =


a 0 0 0 0
V 0 0 0 0
0 S −γ 0 0
0 0 0 −γr 0
0 0 0 0 −τ


Since a > 0, JH has a positive eigenvalue and the healthy state is linearly unstable.
The equilibrium state (NP ) corresponds to the unhealthy state in [24]. The Jacobian
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matrix at this state reads

JNP =



0 0 −γa
2

V S
0 0

V −a −γa
S

0 0

0 S −γ −kc
a

δ
−kr

a

δ
0 0 0 −γr kr

a

δ
0 0 0 0 −τ


and its characteristic polynomial is

p(λ) = −(γr + λ)(τ + λ)(λ3 + (γ + a)λ2 + 2aγλ+ γa2).

As in [24], we distinguish two cases, which depends on the ratio γ
a . The ratio compares

the death rate of the antitumor immune cells to the tumor cells division rate. We get
• if γ > 4a, the eigenvalues of JNP are given by

λ1 = −γr, λ2 = −τ, λ3 = −a, λ4 = 1
2p

(
−
√
γ(γ − 4a)− γ

)
,

λ5 = 1
2

(√
γ(γ − 4a)− γ

)
.

They are all real and negative.
• if γ < 4a, the eigenvalues are given by

λ1 = −γr, λ2 = −τ, λ3 = −a, λ4 = 1
2

(
−i
√
γ(γ − 4a)− γ

)
,

λ5 = 1
2

(
i
√
γ(γ − 4a)− γ

)
.

They all have a negative real part.
Therefore, when admissible (µNP1 < m), the unhealthy state with no protumor immune
cells is always linearly stable. In addition, the ratio γ/a discriminates between a
damped behavior, and an oscillatory behavior. As observed in [24], the greater the
cell division, the faster the oscillations of the tumor mass µ1. For the equilibrium with
protumor cells, the Jacobian matrix becomes full and we are not able to find such
explicit formula for the eigenvalues.
We observe on numerical grounds that in the case where the equilibrium states µNP1
and µP1 coexist (X2 <

a
δ <

mS
γ ), there is either the formation of an equilibrium free of

protumor cells, namely the state referred to by the superscript NP , or the blow up of
the tumor mass due to the activation of protumor immune cells; when a

δ >
mS
γ , the

tumor mass always blows up. Typical results are depicted in Fig. 3: when the control
occurs, the concentration of antitumor immune cells tends to the equilibrium value a/δ
(Fig. 3-a)); otherwise, it reaches a constant state below the equilibrium value (Fig. 3-
b)-d)). The simulations also show that the control of the tumor is very sensitive to the
strength of the source of naive immune cells and to the division rate of the tumor cells.
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It is worth remarking that the damping of the tumor mass towards an equilibrium can
be restored by strengthening the activation law of effector immune cells for large tumor
masses, for instance by using g(µ1) = µ2

1, see Fig. 4.

(a) a = 1 (b) a = 3

(c) a = 8 (d) a = 16

Figure 3: Typical behavior of the solutions of (13). Data: V = 0.616, δ = 1., S = 1.5,
kr = 1.25, kc = 0.1, m = 2. x-axis: time, y-axis: µ1, mass of the tumor (plain),
and c, strength of the active immune cells (dashed), expected equilibrium value
a/δ (dotted)
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(a) a = 1 (b) a = 3

(c) a = 8 (d) a = 16

(e) a = 8, c and cr (f) a = 16, c and cr

Figure 4: Typical behavior of the solutions of (13) with g(µ1) = µ2
1. Data: V = 0.616,

δ = 1., S = 1.5, kr = 1.25, kc = 0.1, m = 2. x-axis: time, y-axis: µ1, mass of the
tumor (plain), and c, strength of the active immune cells (dashed), expected
equilibrium value a/δ (dotted), or cr, concentration of protumor cells (square, in
fig. (e) and (f))
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Existence of equilibrium phases
The analysis and simulations carried out in [24] for the model without protumor im-
mune cells reveal the existence and stability of a cancer-persistent equilibrium. It turns
out that the equilibrium phase corresponds to the situation where the death rate in-
duced by the effector immune cells precisely counterbalances the natural exponential
growth of the tumor cell population.

Indeed, it is known that the growth-fragmentation operator admits an eigenpair
(λ,N) satisfying

∂z(V N)−Q(N) + λN = 0 for z ≥ 0,

N(0) = 0, N(z) > 0 for z > 0,
ˆ +∞

0
N(z) dz = 1, λ > 0.

We refer the reader to [35] for a detailed analysis of this eigenproblem. When the
action of the immune system is neglected, namely m(n, c) = 0 and b1 = 0 in (12a), the
population of tumor cells grows exponentially fast and its size-distribution is governed
by the eigenfunction: n(t, z) ∼t→∞ eλtN(z), see [26, 27, 28]. Equilibrium occurs
when the death rate due to the effector cells reaches the eigenvalue. Namely, the
concentration C of cytotoxic effector cells at equilibrium should satisfy

ˆ
Ω
δ(x)C(x) dx = λ. (21)

In turn, the definition of the concentration of activated immune cells by means of
stationary convection-diffusion-reaction equations defines implicitly the total tumor
mass at equilibrium. This intuition is made precise by the following statement.

Theorem 1 Let Φ be the solution of

∇x · (K∇xΦ) = σ,

endowed with the homogeneous Neumann boundary condition. There exists `? > 0 such
that for any 0 < ` < `?, there exists a unique µ̄1(`) > 0 and (Cµ̄1(`), Cr,µ̄1(`), Iµ̄1(`)),
solution of the stationary equations

γC + krIθC + kcCCr − f(µ̄1)∇x · (Cχ∇xφ)−∇x · (D∇xC) = g(µ̄1)S, (22a)

γrCr − f(µ̄1)∇x · (Crχ∇xφ)−∇x · (D∇xCr) = I(Sr + krθC), (22b)

I = ψ(µ̄1)
τ

, (22c)

C
∣∣
∂Ω = 0, Cr

∣∣
∂Ω = 0, (22d)

satisfying
´

Ω δC dx = `.

Proof. We adapt the arguments from [24]. We start by introducing the mapping

F : (`, µ1) ∈ [0,∞)× [0,∞) 7−→
ˆ

Ω
δCµ1 dx− `
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where Cµ1 is the solution of (22a) associated to µ1. We are searching for the zeroes of F .
Clearly, when µ1 = 0, C0 = 0, I0 = 0, Cr,0 = 0 satisfies (22a)-(22d), together with the
constraint

´
δC0 dx = 0, so that F (0, 0) = 0. Next, we have ∂µ1F (`, µ1) =

´
Ω δC

′
µ1 dx,

where C ′µ1 is defined by the system

(γ + krIθ + kcCr)C ′ + (krI ′θ + kcC
′
r)C −∇x · (D∇xC ′)− f(µ1)∇x · (C ′∇xΦ)

= g′(µ1)S + f ′(µ1)∇x · (Cµ1∇xΦ)

γrC
′
r −∇x · (D∇xC ′r)− f(µ1)∇x · (C ′r∇xΦ),

= I ′(Sr + krθC) + IkrθC
′ + f ′(µ1)∇x · (Cµ1∇xΦ),

I ′ = ψ′(µ1)
τ

.

With µ1 = 0, the right hand side of the equation for C ′r vanishes and we get C ′r =
0. In the right hand side of the equation for C ′, g′(0)S 6= 0 is non negative and
the maximum principle for elliptic equations tells us that C ′0 > 0. It follows that
∂µ1F (0, 0) =

´
Ω δC

′
0 dx > 0. We can thus apply the implicit function theorem: there

exists `? > 0 and a mapping µ̄1 : ` ∈ [0, `?) 7→ µ̄1(`) such that F (`, µ̄1(`)) = 0 holds
for any ` ∈ [0, `?). We have

∂`F (`, µ̄1(`)) + µ̄′1(`)∂µ1F (`, µ̄1(`)) = −1 + µ̄′1(`)∂µ1F (`, µ̄1(`)) = 0

with ∂µ1F (0, 0) > 0. Hence, ` 7→ µ̄1(`) is increasing on the neighborhood of ` = 0,
and it thus takes positive values.

Theorem 1 applies directly when the action of protumor immune cells is neglected
on the cell-division equation (namely assuming b1 = 0): the eigenstate (λ,N) is defined
a priori and the statement directly defines the equilibrium phase with the constraint
(21). The statement involves a smallness assumption and it justifies the existence of
equilibria with small tumor masses. In the case of the binary division model with
a constant division rate a and a constant growth rate V , the smallness assumption is
equivalent to a smallness assumption on the division rate a. The numerical simulations
indicate a quite robust property [24, 36] and the smallness assumption could be only
technical.

The analysis of the full model accounting for a protumor action on the tumor growth
rate is much more involved: V (z) is multiplied by the factor (1 + β(t)) with

β(t) =
ˆ
b1(y)cr(t, y) dy.

As t→∞, we expect that cr(t, x) and c(t, x) admits limits so that
´
δc(t, x) dx tends to

some λ > 0 and β(t) tends to an asymptotic value β∞ while the size-distribution of the
tumor cells is described by an eigenpair (λ,N). However, in general the eigenvalue λ
depends on the value of β∞, which induces a stronger coupling between the unknowns.
The case where both a and V are constant is specific and allows us to strengthen the
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intuition. In this case, the leading eigenvalue λ = a does not change when V is replaced
by V (1 + β∞); only the profile is rescaled into

Nβ∞(z) = N1
( z

1 + β∞

)
,

where the profile N1 is known. As β∞ increases, the asymptotic size-distribution of
tumor cells contains larger cells, see [24, Fig. 3]. For general coefficients, the leading
eigenstate of the growth-fragmentation operator is not explicitly known but it can
be computed numerically using the power method designed in [36]: Fig. 5 gives the
value of the eigenvalue λ and shows the profiles of the eigenfunctions when the growth
rate z 7→ V (z) follows the Gompertz law (1) and the division rate is given by z 7→
a(z) = a1z0≤z<∞ for some z0 > 0. Changing V now modifies both the profile and the
eigenvalue.

Figure 5: Different shapes of the leading eigen-function of the growth-division equation for
several values of a

r
where r = (1 + β∞) is the intrinsic growth rate of the tumor

cells (x-axis: z, size of the tumor cells, y-axis: number of tumor cells at the final
time)

For the same reasons, when the protumor cells modify the growth rate of the tumor
cells, we cannot use as such the method designed in [36] to predict the equilibrium state.
Nevertheless, the numerical simulations of the initial-boundary value problem highlight
the following features:
• when the critical mass m is positive, either the steady state is free of protumor

immune cells (cr ≡ 0) and the tumor is controlled by the antitumor immune cells
or both the tumor mass µ1 and the concentration of protumor immune cells cr
blow up. The former occurs for small division rates, the latter is observed with
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more aggressive tumors. Furthermore, when the tumor growth is controlled, we
can check that the asymptotic concentration of antitumor immune cells (x 7→
C(x)) satisfies (21) (see the numerical experiments detailed below)

• when the critical mass is equal to zero (m = 0), either we observe an equilibrium
state containing residual protumor immune cells or the tumor mass µ1 and the
concentration of protumor immune cells cr blow up.

Results
The mathematical model account for the action of both anti- and protumor immune
cells shaping tumor growth kinetics. Numerical experiments were used to challenge the
model. We perform the numerical simulations considering the binary division operator
(3) with a constant division rate a > 0. For details on the numerical methods, which
are based on finite volume discretizations, we refer the reader to [24, 36]. According
to the framework in [24], we assume that the tumor is located at the origin of the
computational domain Ω, which here is the unit ball of R2, and we use the following
definitions

δ(x) = A

ξ
√

2π
exp

(
−|x|

2

2ξ2

)
, b1(x) = Ab1

ξb1

√
2π

exp
(
− |x|

2

2ξ2
b1

)
. (23)

For defining the source term of the chemoattractant potential and the form function θ
we also use the following Gaussian profiles:

σ(x) = Aσ

ξσ
√

2π
exp

(
−|x|

2

2ξ2
σ

)
, θ(x) = Aθ

ξθ
√

2π
exp

(
−|x|

2

2ξ2
θ

)
(24)

In what follows, we use the Michaelis-Menten law (7) and we simply set g(µ1) = µ1.
For the simulations, we shall use the following data, otherwise explicitly stated: the
initial data are (c0(x), cr,0(x)) = (0, 0) and n0(z) = 10.125≤z≤5. The parameters are
given in Table 2. We use dimensionless equations, without addressing precisely the
issue of parameter calibration (see [24, 36] for further details on this issue). For the
numerical experiments, we consider the source of antitumor cells, that contains T cells
recruited in specific sites like the lymph nodes, as well as NK, N1, M1 taken from the
circulation, as space-homogeneous. In contrast, we work with an heterogeneous source
Sr of protumor cells, distant from the tumor site (see Fig. 6; in practice, we use 1/5
of the source depicted in this figure). This assumption corresponds to a privileged
recruitment of protumor cells in specific sites, like the bone marrow.
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A ξ2 Aσ ξ2
σ a V r b χ S γ

1 0.02 0.002 0.05 0.8 0.616 0.616 10 0.864 5 0.18

Ab1 ξb1 Aθ ξθ kr kc τ η m
10−6 0.03 0.2 0.3 1 1 1 1 2

Table 2: Data for the simulations

Figure 6: Source Sr of protumor cells

Emergent qualitative features: promotumor cells are de-
terminant for the shift to the escape phase
We perform a set of simulations where
• z 7→ V (z) obeys the Gompertz law(1);
• the division rate z 7→ a(z) = a1z0≤z<∞ for some z0 > 0 (for the numerical tests

we set z0 = 1) vanishes for the smallest cells;
• the presence of the protumor immune cells promotes tumor growth with b1 6= 0.
We generically observe two behaviors: either an equilibrium state establishes, with

a residual tumor and free of protumor immune cells, or the immune system fails in
controlling the tumor, with a significant concentration of protumor immune cells at
the center of the domain (like in Fig. 7 which also clearly illustrates how the antitumor
resources is stemmed in the vicinity of the tumor) and the tumor mass blows up.
This rough conclusion should be nuanced: the threshold m certainly plays a critical
role. With m = 0, the worst situation since protumor immune cells are immediately
activated, we can find equilibria with the three types of cells (tumor cells, antitumor
and protumor immune cells). Such equilibria occur with quite small values of the
cell division rate a; increasing a leads to an escape phase. It is likely that similar
phenomena occur with positive threshold m and very small a’s. When a steady regime
establishes, we check on numerical ground, by evaluating the eigenpair of the growth-
division equation, that the asymptotic antitumor cell concentration is consistent with
the constraint (21).
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(a) c (b) cr

Figure 7: Space distribution of antitumor cells c (left) and protumor cells cr (right) at time
t = 2.23, with a = 4

We make the parameters vary in order to discuss the influence of their value on the
behavior of the system. We only modify one quantity at a time, the others being kept
as in Table 2.

• Tumor aggressiveness. As indicated in [24], by increasing the division rate a, we
make the tumor more aggressive. The results with the PDE system are consistent
with this intuition and the observations made above on the simplified ODE sys-
tem: for small division rates, the mass of the tumor is rapidly damped, while the
tumor escapes the control of the immune system as a increases, see Fig. 8. When
control occurs, protumor immune cells can be activated in the transient states,
but insufficiently to counterbalance the effector immune response. Therefore, the
concentration of protumor immune cells decreases to zero, while

µ̄c(t) =
ˆ

Ω
δ(x)c(t, x) dx

tends to the leading eigenvalue λ of the growth-division equation, see Fig. 8,
and Fig. 12-(a). When the tumor is more aggressive, it recruits more protumor
immune cells: in turn, the action of these cells restrains the concentration of
antitumor immune cells which remains below the expected equilibrium value,
eventually favoring the tumor escape. The specific value of a for the bifurcation
from a controlled tumor growth to the escape state depends on the critical mass
m: the smaller the critical mass m, the smaller the critical division rate a.

• Efficiency of the immune response. The immune response is enhanced by increas-
ing A, that measures the strength of the immune cells against the tumor cells,
see (23), or the source S of effector antitumor cells. For small values of these
parameters, the tumor escapes the control of the immune response, see Fig. 9,
10. While the tumor mass µ1 keeps growing, the immune strength µ̄c remains
limited and cannot balance the growth rate of the tumor. For large S or A, the
equilibrium establishes, with µ̄c(t) tending asymptotically to counterbalance the
tumor growth rate λ.
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(a) a = 0.0625 (b) a = 0.25

(c) a = 4 (d) a = 16

Figure 8: Evolution of the tumor mass µ1 (plain, left axis), and of the immune strength µ̄c
(dashed, right axis) for several values of the division rate a; expected equilibrium
value λ (dotted)
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(a) S = 0.002 (b) S = 0.2

(c) S = 20 (d) S = 200

Figure 9: Evolution of the tumor mass µ1 (plain, left axis), and of the immune strength µ̄c
(dashed, right axis) for several values of the source of effector immune cells S;
expected equilibrium value λ (dotted)
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(a) A = 0.0001 (b) A = 0.01

(c) A = 1 (d) A = 10

Figure 10: Evolution of the tumor mass µ1 (plain, left axis), and of the immune strength µ̄c
(dashed, right axis) for several values of the immune strength A; expected
equilibrium value λ (dotted)

Further numerical validation. The case where the growth rate V and the
division rate a are constant is less relevant biologically, but it can be used to check
the properties of the model and of the numerical procedures since the eigenpair
(λ,N) is explicitly known in this case, see [37, 38] and [28, Lemma 4.1]: in fact
we have λ = a. Still with the purpose of assessing the model and the numerical
method on simple basis, it is relevant to perform simulations by assuming also
that the protumor immune cells do not enhance the growth rate of the tumor
cells (b1 = 0). It means that the protumor effect is limited to the suppression
of antitumor capacities. This case is biologically questionable, but, as explained
above, we have an intuition a priori on the details of the possible equilibrium state,
and we can directly check whether or not the large time behavior is described by
this expected equilibrium.
Beyond the validation, it is remarkable that the qualitative conclusions do not
substantially change when comparing the results to the more complete situation
dealt before: compare Fig. 8, 9, 10 to Fig. 11, 13, 14, respectively. The evolu-
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tion of the concentration of protumor immune cells in Fig. 12 is equally quite
generic: we clearly see the difference between an equilibrium case where this con-
centration vanishes as time grows, and an escape case where it blows up. These
observations show the robustness of the model in describing the equilibrium vs
escape phenomena and this is very reassuring for further investigations with clin-
ical data, as in [36]. In this direction, identifying the parameters of the equations
is a critical issue. It can be interesting, based on the present observations, to
neglect some phenomena which can only marginally affect the dynamics, while
potentially introducing a set of unknown parameters.

(a) a = 0.0625 (b) a = 0.25

(c) a = 4 (d) a = 16

Figure 11: Case b1 = 0, V and a constant: Evolution of the tumor mass µ1 (plain, left
axis), and of the immune strength µ̄c (dashed, right axis) for several values of
the division rate a; expected equilibrium value λ = a (dotted)
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(a) a = 0.25 (b) a = 4

Figure 12: Case b1 = 0, V and a constant: Evolution of the protumor cells concentration
µcr (square, left axis), and of the immune strength µ̄c (dashed, right axis) for
several values of the division rate a
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(a) S = 0.002 (b) S = 0.2

(c) S = 20 (d) S = 200

Figure 13: Case b1 = 0, V and a constant: Evolution of the tumor mass µ1 (plain, left
axis), and of the immune strength µ̄c (dashed, right axis) for several values of
the source of immune cells S; expected equilibrium value λ = a (dotted)
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(a) A = 0.0001 (b) A = 0.01

(c) A = 1 (d) A = 10

Figure 14: Case b1 = 0, V and a constant: Evolution of the tumor mass µ1 (plain, left
axis), and of the immune strength µ̄c (dashed, right axis) for several values of
the source of immune strength A expected equilibrium value λ = a (dotted)

Effect of immunotherapy strategies
Now that we have validated a robust mathematical model of tumor growth which takes
into account the contribution of anti and protumor immune cells, we use it to compare
the effects of two immunotherapy treatments targeting these immune cells with opposed
functions. To this end, we bear in mind that a proportion of the effector cells are just
inhibited by immunosuppressive mechanisms; in other words they are not destroyed:
they become hyporesponsive. However, they can be re-activated by specific treatments.
The restoration of the antitumoral activity of effector T cells can be obtained by using
Immune Checkpoint Inhibitors, like anti-PD-1 or anti-CTLA4 antibodies [14, 15]. The
infusion of CAR-T and CAR-NK cells can also mimic such rescue [39]. A second
strategy is to reduce the recruitment of protumor immune cells by blocking infiltration
of MDSCs (anti-CXCR2, cMet) [40, 41] and Tregs (anti-CD25) [13]. We discuss the
effect of these approaches, illustrated in Fig. 15, independently and we also consider
the combination of the two treatments compared to the mono-therapies.

30



Antitumor immune cells Protumor immune cells

Cytokines

Exhausted immune cells

PIC suppress
AIC or make
them EIC

Treatment T1:
restore EIC into
AIC

Treatment
T2: reduce
shift/activation

Figure 15: Action of treatments on the immune response. AIC: antitumor cells, PIC:
protumor cells, EIC: exhausted immune cells.

Therapy based on the reactivation of exhausted antitumor immune
cells

To consider the action of treatments boosting the immune response against the tu-
mor, we introduce the concentration ca of exhausted cells. In order to describe the
restoration mechanism, we add the following equation to the model:

∂tca +∇x · (caχ∇xφ−D∇xca) = αkcccr − γaca, (25)

where the parameter 0 < α < 1 describes the proportion of effector T cells that become
hyporesponsive under the action of the protumor cells (see (26a)). Note that the death
rate γa could be significantly larger than the original death rate γ: it is believed that
exhausted T cells have a shorter life time. Next, the effect of treatments able to restore
the antitumor activity of the exhausted immune cells is described by a time-dependent
function t 7→ T1(t). It is assumed to be proportional to the drug concentration in the
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TME. Consequently, the dynamic is governed by the following system

∂tc+∇x · (cχ∇xφ−D∇xc) = g(µ1)S + T1ca − γc− krIθc− kcccr, (26a)

∂tcr +∇x · (crχ∇xφ−D∇xcr) = I(Sr + krθc)− γrcr (26b)

∂tca +∇x · (caχ∇xφ−D∇xca) = αkcccr − γaca − T1ca, (26c)

∂tI = ψ(µ1)− τI (26d)

−∇x · (K∇xφ) = f(µ1)σ, (26e)

c
∣∣
∂Ω = 0, cr

∣∣
∂Ω = 0, ∇xφ · ν(·)

∣∣
∂Ω = 0, (26f)

c(t = 0, x) = c0(x), c(t = 0, x) = c0
r(x), I(t = 0) = I0. (26g)

The kinetic of the drug effect is described by the following equation

∂tT1 = κ(t)− dT1T1, (27)

where t 7→ κ(t) describes the drug administration protocol and dT1 is the degradation
rate of this drug. For the numerical tests, we set

κ(t) =


0, ∀0 ≤ t ≤ t0∑
k≥0

κk(t− kT2), ∀t ≥ t0 (28)

where,

κk(t) =

q, t0 + kT2 < t ≤ t0 + kT2 + T1

0, t0 + kT2 + T1 ≤ t < t0 + (k + 1)T2.
(29)

The model depends on
• the time t0 when the treatment starts,
• the duration T2 between two drug administrations,
• the duration T1 of the drug administration,
• the administered drug concentration q.

For the numerical tests, we place ourselves in the same configuration as in Fig. 8-(c)
where the tumor escapes the immune control due to the effects of protumor immune
cells. We fix α, the proportion of effector T cells that become exhausted to 0.5 and we
keep the other parameters as in Table 2. We set

T1 = 1, T2 = 7, dT1 = 0.05

and we make the starting time t0 and the dose q vary. We indeed observe that these
parameters have a critical role on the treatment efficacy.

When the treatment is given early (for instance, when 0 ≤ t0 ≤ 5), the control of the
tumor can be obtained with relatively low drug doses (see Fig. 16), in comparison to the
cases where the treatment is administered later (Fig. 17). At these early administration
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of the treatment, the tumor growth is controlled with a residue of dormant tumor cells
and activated effector immune cells. Reducing the treatment dose reduces the drug
efficacy with smaller tumor masses reached over longer period of time. For very small
doses, the escape can occur.

When the treatment is given later (for instance, when 10 ≤ t0 ≤ 15, see Fig. 17):
the tumor growth is slowed down by the treatment, but the tumor continues to grow
exponentially fast. Increasing the drug dose increases the treatment efficacy. However,
this observation raises the issue of the toxicity of the administered drug.

These observations are in line with experimental data using immune checkpoint
inhibitors or CART/NK cells. Indeed, syngeneic CMS5 fibrosarcomas allowed to grow
for 3 days in vivo were easily eradicated by adoptive transferred tumor-specific T cells
while a 100-fold larger number of transferred tumor specific T-cell was mandatory to
eradicate tumors that have been grown for an additional 48 hours. The same tumors
that have been grown for 7 days before transferring adoptive tumor-specific T cells
were not eradicated [42].

(a) t0 = 0 and q = 0.002 (b) t0 = 0 and q = 0.5 (c) t0 = 0 and q = 2

(d) t0 = 5 and q = 0.002 (e) t0 = 5 and q = 0.5 (f) t0 = 5 and q = 2

Figure 16: Reactivation of exhausted antitumor cells: early administration of the
treatment. Evolution of the tumor mass µ1 (plain, left axis), and of the immune
strength µ̄c (dashed, right axis) for several values of the treatment dose q. The
dash-dotted line represents the time at which the treatment starts.
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(a) t0 = 10 and q = 0.5 (b) t0 = 10 and q = 2 (c) t0 = 10 and q = 5

(d) t0 = 15 and q = 0.5 (e) t0 = 15 and q = 2 (f) t0 = 15 and q = 5

Figure 17: Reactivation of exhausted antitumor cells: late administration of the treatment.
Evolution of the tumor mass µ1 (plain, left axis), and of µ̄c (dashed, right axis)
for several values of the treatment dose q. The dash-dotted line represents the
time at which the treatment starts.

Therapy based on reducing cytokine signals recruiting protumor im-
mune cells

Treatments based on blocking cytokine signals can help reducing the recruitment of
protumor immune cells. A possible strategy uses cytokine traps [43], [44], by means of
molecules that inhibit signal transduction from T cell cytokine receptors. Therefore,
the treatment acts by down-regulating the effect of the tumor induced cytokines. We
denote by T2, the effect of treatments which are able to block those cytokines. It obeys
a kinetic similar to (27)

∂tT2 = κ(2)(t)− dT2T2, (30)

where

κ(2)(t) =


0, ∀0 ≤ t ≤ t0∑
k≥0

κ
(2)
k (t− kT2), ∀t ≥ t0 (31)

and

κ
(2)
k (t) =

q2, t0 + kT2 < t ≤ t0 + kT2 + T1

0, t0 + kT2 + T1 ≤ t < t0 + (k + 1)T2.
(32)

The effect on the cytokines is described by modifying in (12b), (12c) the terms re-
lated to the cytokine-dependent recruitment of protumor immune cells. Therefore, the
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equations on the immune response become

∂tc+∇x · (cχ∇xφ−D∇xc) = g(µ1)S − γc− krI[1− T2]+θc− kcccr, (33a)

∂tcr +∇x · (crχ∇xφ−D∇xcr) = I[1− T2]+(Sr + krθc)− γrcr (33b)

∂tca +∇x · (caχ∇xφ−D∇xca) = αkcccr − γaca, (33c)

∂tI = ψ(µ1)− τI (33d)

−∇x · (K∇xφ) = f(µ1)σ, (33e)

c
∣∣
∂Ω = 0, cr

∣∣
∂Ω = 0, ∇xφ · ν(·)

∣∣
∂Ω = 0, (33f)

c(t = 0, x) = c0(x), c(t = 0, x) = c0
r(x), I(t = 0) = I0. (33g)

For the numerical tests, we set

T1 = 1, T2 = 7, dT2 = 0.0105.

For the cytokine-blockade based treatment we observe a similar behavior as with the
treatment based on the reactivation of the exhausted immune cells. The efficacy of the
treatment is particularly sensitive to the starting time t0, see Fig. 18.

(a) t0 = 0 and q2 = 0.04 (b) t0 = 0 and q2 = 0.12 (c) t0 = 0 and q2 = 0.28

(d) t0 = 5 and q2 = 0.04 (e) t0 = 5 and q2 = 0.12 (f) t0 = 5 and q2 = 0.28

Figure 18: Reduction of the protumor recruitment: early administration of the treatment.
Evolution of the tumor mass µ1 (plain, left axis), and of the immune strength µ̄c
(dashed, right axis) for several values of the treatment dose q. The dash-dotted
line represents the time at which the treatment starts.
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(a) t0 = 10 and q2 = 0.04 (b) t0 = 10 and q2 = 0.12 (c) t0 = 10 and q2 = 0.28

(d) t0 = 15 and q2 = 0.04 (e) t0 = 15 and q2 = 0.12 (f) t0 = 15 and q2 = 0.28

Figure 19: Reduction of the protumor recruitment: late administration of the treatment.
Evolution of the tumor mass µ1 (red curves, left axis), and of the immune
strength µ̄c (blue curve, right axis) for several values of the treatment dose q.
The dash-dotted line represents the time at which the treatment starts.

Combination of the two immunotherapy strategies

When we combine the two treatments described above, acting on both the reactivation
of antitumor immune cells and the blockade of the recruitment of protumor immune
cells, we observe that this combination is more efficient than the mono-therapies. In-
deed a suitable combination of the treatment doses is able to control the tumor growth.
For instance, the treatment based on the reactivation of exhausted immune cells fails
in controlling the tumor when given at t0 = 10 with a dose q = 2 see Fig. 17-(b), and
the treatment based on cytokine/chemokine blockade fails with a dose q2 = 0.12 at
t0 = 10, see Fig. 19. However, the combination of the two treatments controls the
tumor. Again, we observe that giving the treatments later requires to readjust the
doses in order to control the tumor growth, see Fig. 21. We notice that the controlled
state contains residual tumor cells and activated immune cells, see Fig. 20-(b) and (c).
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(a) t0 = 10, q = 2 and
q2 = 0.04

(b) t0 = 10, q = 2 and
q2 = 0.12

(c) t0 = 10, q = 2 and
q2 = 0.28

Figure 20: Administration of the combined treatments at t0 = 10 . Evolution of the tumor
mass µ1 (plain, left axis), and of the immune strength µ̄c (dashed, right axis) for
several values of the treatment dose q. The dash-dotted line represents the time
at which the treatment starts.

(a) t0 = 15, q = 2 and
q2 = 0.36

(b) t0 = 15, q = 2 and
q2 = 0.4

(c) t0 = 15, q = 5 and
q2 = 0.36

(d) t0 = 15, q = 5 and
q2 = 0.4

Figure 21: Administration of the combined treatments at t0 = 15 . Evolution of the tumor
mass µ1 (plain, left axis), and of the immune strength µ̄c (dashed, right axis) for
several values of the treatment dose q. The dash-dotted line represents the time
at which the treatment starts.
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Conclusion
This work introduces a mathematical model describing the interactions between tumor
cells and the immune system that regulate tumor growth, taking into account the
antagonistic effects of antitumor and protumor immune cells. While the antitumor
action aims at eliminating tumor cells, the protumor effects favor its growth. The
later can take different forms: elimination of antitumor cells, conversion of antitumor
cells into protumor cells, or enhancement of tumor growth. Mechanisms that dictate
the balance between these two conflicting functions with the TME are still not clear,
mainly because of their complexity and heterogeneity. Mathematical modeling can
help capture such complexity. Our model based on partial differential equations is
remarkably able to reproduce equilibrium and escape phases, depending on the value
of the biological parameters.

Compared to the situation free of protumor activities we previously modeled [24],
where the equilibrium seems to always occur (possibly on very long scale of time,
though), the addition of protumor immune cells leads to uncontrolled tumor growth
when tumor aggressiveness overcomes the efficiency of the antitumor immune responses.
Our model thus pinpoints the critical role of the protumor immune response in the es-
tablishment of the escape phase. This is consistent with experimental and clinical data.
Indeed, as reported in [41] the blockade of protumor neutrophil recruitment by cMet
inhibitor decreases tumor growth and potentiates anti-PD1 immunotherapy. Similarly,
anti-CD25 depleting antibody optimized to deplete Treg within tumors enhances anti-
tumor immune responses and synergizes with anti-PD1 treatment [45]. Based on these
findings, we used our model to study the effects on tumor progression of two common
cancer therapeutic strategies, either the reactivation of hyporesponsive antitumor cells
or the reduction of the recruitment of protumor cells. Such therapies boost the im-
mune response and restore the equilibrium that maintains the tumor in a viable state.
Importantly, the numerical investigation brings out the influence of the starting time of
the treatment and of the administrated dose. We also show on numerical grounds that
combining the two approaches clearly improves the efficacy of the treatment. Such
information is highly valuable and together with clinical observations, can comfort
clinical decisions.

This preliminary study opens challenging perspectives. First, mathematical anal-
ysis can provide useful information, starting with further simplified equations, to un-
derstand the driving mechanisms of the equilibrium/escape phenomena and the effect
of treatments. In particular this raises the practical issue of defining criteria that char-
acterize the efficiency of the immune response, in line with RECIST recommendations
[46]. Indeed, not only the residual mass of the tumor can be used as a relevant criterion,
as in [36], but one has also to consider the time necessary to reach an equilibrium, as
well as the features of the transient states. For treatments, the analysis, that should
additionally consider toxicity effects, can help in understanding the optimal balance
between dose and time of administration. Second, as simplified as it is, the model con-
tains many parameters. Most of them are not known or even not easily accessible to
experiments. Hence, based on optimisation techniques, an important work of parame-
ter calibration should be performed from clinical data, with the two-fold difficulty that
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available data are rarely structured in time and space, and that data fitting techniques
are far less developed for PDE than for ODE. Nevertheless, new mass cytometry im-
agery techniques open perspectives to address this issue [47]. Such investigation will
permit us to determine relevant ranges for the parameters, which, in turn, will allow
us to perform a detailed sensitivity analysis, beyond the attempt in [36]. This will
be a decisive step to address in details the effects and the optimization of targeted
treatments.
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