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Unsteady motion of a rarefied gas between two parallel plates caused when one of the
plates starts a harmonic oscillation in its normal direction is investigated under a slightly rar-
efied condition, i.e., for small Knudsen numbers. The compressible Navier-Stokes equations
are employed and their appropriate temperature jump condition is derived systematically.
The equations with the correct boundary conditions are solved numerically to give the
unsteady flow field. In particular, the time-periodic solution established at later times is
investigated in detail and it is shown that the one-period average of the oscillating part of
the momentum and that of the energy transferred from the oscillating plate to the resting
one take nonzero values in contrast to the linear theory. This confirms the numerical result
based on the Bhatnagar-Gross-Krook model of the Boltzmann equation for intermediate
Knudsen numbers [T. Tsuji and K. Aoki, Microfluid. Nanofluid. 16, 1033 (2014)]. It is also
shown that the gas approaches the time-periodic motion exponentially fast in time.
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I. INTRODUCTION

Moving boundary problems for the Boltzmann and related kinetic equations have attracted much
attention in microfluid dynamics and in rarefied gas dynamics (e.g., [1–7]) in connection with the
importance of the gas motion caused by an oscillator in microelectromechanical systems (e.g.,
[8–12]) and of the wave propagation in a rarefied gas (e.g., [13–21]). When a system containing an
oscillating boundary is of microscale or in vacuum facilities, the mean free path of the gas molecules
can be comparable to the size of the system. In this case, the ordinary continuum gas dynamics is
not applicable and is to be replaced by kinetic theory [22–25]. In addition, even when the system is
of ordinary size in an atmospheric pressure, if the oscillator makes an oscillation with a very high
frequency comparable to the collision frequency of the gas molecules, the ordinary gas dynamics
should be replaced by kinetic theory.

In the present paper we consider a fundamental problem containing an oscillating boundary. More
specifically, we consider the time-dependent motion of a gas between two infinitely wide plates
parallel to each other when one of the plates starts a harmonic oscillation in its normal direction.

This problem, as well as the problem without the stationary plate (i.e., the gas occupies the half
space bounded by the oscillating plate), is one of the most fundamental time-dependent problems
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in kinetic theory and has been investigated by many authors (see, e.g., [13–21]). However, many of
the existing works are based on the linearized setting, in which the speed of the oscillating plate is
much smaller than the sonic speed, and consider the time-periodic state. In the present study, we
focus our attention on the fully nonlinear setting in which the speed and amplitude of the oscillation
of the plate can be large, as studied in [15,16,20,21].

The present problem was investigated numerically in a recent paper [21] on the basis of the
Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation [26,27] and the transient behavior
of the gas approaching a time-periodic state was clarified. In this problem, the oscillating plate
creates and propagates discontinuities in the velocity distribution function of the gas molecules
continuously. In [21], a numerical method that can describe the propagation of the discontinuities
proposed in [4] was used and an accurate numerical solution was obtained for a wide range of the
Knudsen number, the ratio of the mean free path of the gas molecules to the characteristic length
of the system. However, since the method is computationally expensive, it is hard to obtain the
long-time behavior as well as the solution for small Knudsen numbers.

For small Knudsen numbers, however, it is commonly known that the Navier-Stokes equations
can describe the behavior of the gas well if appropriate slip boundary conditions are used. This
may give a good alternative to the Boltzmann and its model equations that enables us to investigate
the long-time behavior more easily. In fact, the slip flow theory has been established by Sone in a
series of papers by a systematic asymptotic analysis for the Boltzmann equation [28–33] (see also
[24,25]). For ordinary solid boundaries, the theory consists of (see [24,25]) the linear theory for small
Reynolds numbers [28,29,31], the weakly nonlinear theory for finite Reynolds numbers [29–31], the
partially nonlinear theory for finite Reynolds numbers [32], and the fully nonlinear theory for large
Reynolds numbers [33], each of which provides appropriate fluid-dynamic equations, slip boundary
conditions, and the corrections in the vicinity of the boundary (Knudsen layer). However, the theory
is restricted to time-independent problems, so it cannot be applied to the present problem. The linear
theory has been extended to time-dependent problems recently [34–36] (see also Sec. 3.7 in [25]).
However, since the boundary is assumed not to be moving in its normal direction, it is not applicable
to the present problem even if we consider the linear setting.

For this reason, we need a different framework for the present problem. In the present study, we
have decided to use the compressible Navier-Stokes equations as our basic equation. However, if
we search the appropriate and correct slip boundary conditions for the compressible Navier-Stokes
equations that can be applied immediately to the present problem with a moving plate, we notice that
it is hard to find them in the literature. For this reason, following the standard procedure [24,25,37,38],
that is, the analysis of the Knudsen layer combined with the Chapman-Enskog expansion, we try
to derive the slip boundary conditions, specialized to the present problem, in a systematic way.
Then we apply the compressible Navier-Stokes equations and the derived slip conditions, consisting
of the no-slip condition for the flow velocity and a jump condition for the temperature, to the
present problem and investigate the unsteady behavior of the gas and the process of approach to a
time-periodic state numerically.

The paper is organized as follows. After the introduction in Sec. I, we state the problem and the
assumptions in Sec. II and formulate the problem using kinetic theory in Sec. III. Then we summarize
the Chapman-Enskog solution and the compressible Navier-Stokes equations in Sec. IV and the jump
boundary conditions in Sec. V. Section VI is devoted to the explanation of the numerical method for
the compressible Navier-Stokes equations, and the numerical results are given in Sec. VII. Section
VIII contains short concluding remarks. In addition, we summarize the basic matters concerning the
collision operator of the Boltzmann equation in Appendix A, derive the slip boundary conditions in
Appendix B, and discuss the accuracy of the numerical solution in Appendix C.

II. PROBLEM AND ASSUMPTIONS

Let us consider a gas between two infinitely wide plates, kept at temperature T̃0 and parallel to
each other. One of the plates is located at x̃1 = ãw (greater than 0) and the other at x̃1 = d̃ (greater
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gas

x̃1 = ãw cos ω̃t̃

x̃1 = d̃

x̃1

FIG. 1. Gas between an oscillating plate and a stationary plate.

than ãw), where (x̃1,x̃2,x̃3) is the Cartesian coordinate system, and the gas is in a uniform equilibrium
state at rest at density ρ̃0 and temperature T̃0. At time t̃ = 0, the plate at x̃1 = ãw starts a harmonic
oscillation with amplitude ãw and angular frequency ω̃ around x̃1 = 0, that is, the location of the
plate is described as x̃1 = x̃w(t̃), with x̃w(t̃) = ãw cos ω̃t̃ for t̃ � 0 (see Fig. 1). We investigate the
unsteady motion of the gas numerically under the following assumptions.

(i) The behavior of the gas is described by the Boltzmann equation.
(ii) The gas molecules undergo diffuse reflection on the surfaces of the plates.
(iii) The problem is spatially one dimensional, so the physical quantities depend on neither x̃2

nor x̃3, and the macroscopic gas flow is perpendicular to the plates.
(iv) The mean free path of the gas molecules is much shorter than the characteristic length of the

system. That is, the gas is slightly rarefied.
Because of assumption (iv), we will analyze the problem using the Navier-Stokes equations and

the appropriate jump conditions on the plates that are consistent with the assumptions (i) and (ii).

III. FORMULATION OF THE PROBLEM USING KINETIC THEORY

A. Notation

Before formulating the problem, we introduce some notation. Let ζ̃i be the velocity of gas
molecules, f̃ (t̃ ,x̃1,ζ̃i) the velocity distribution function of gas molecules, ρ̃(t̃ ,x̃1) the mass density
of the gas, ṽi(t̃ ,x̃1) = (ṽ1(t̃ ,x̃1),0,0) the flow velocity of the gas [cf. assumption (iii)], T̃ (t̃ ,x̃1) the
temperature of the gas, and p̃(t̃ ,x̃1) = Rρ̃T̃ the pressure of the gas, where R is the gas constant
per unit mass (R = kB/m with the Boltzmann constant kB and the mass of a gas molecule m). In
addition, let p̃ij (t̃ ,x̃1) be the stress tensor and q̃i(t̃ ,x̃1) the heat-flow vector. We set the reference time
t̃0, the reference speed c̃0, and the reference length L as

t̃0 = 1/ω̃, c̃0 = (2RT̃0)1/2, L = c̃0 t̃0 = (2RT̃0)1/2/ω̃. (1)

Then we introduce the dimensionless quantities (t,xi,ζi,f,ρ,vi,T ,p,pij ,qi) that correspond to
(t̃ ,x̃i ,ζ̃i ,f̃ ,ρ̃,ṽi ,T̃ ,p̃,p̃ij ,q̃i) by the relations

t = t̃/t̃0 = t̃ ω̃, xi = x̃i/L, ζi = ζ̃i/c̃0,

f (t,x1,ζi) = (
c̃3

0/ρ̃0
)
f̃ (t̃ ,x̃1,ζ̃i),

ρ(t,x1) = ρ̃/ρ̃0, vi(t,x1) = (v1(t,x1),0,0) = ṽi/c̃0,

T (t,x1) = T̃ /T̃0, p(t,x1) = p̃/p̃0,

pij (t,x1) = p̃ij /p̃0, qi(t,x1) = q̃i/p̃0c̃0,

(2)
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where p̃0 = Rρ̃0T̃0 is the reference pressure based on ρ̃0 and T̃0. Then the dimensionless macroscopic
quantities ρ, vi , T , p, pij , and qi are expressed as follows [25]:

ρ =
∫

f dζ , vi = 1

ρ

∫
ζif dζ , T = 2

3ρ

∫
(ζi − vi)

2f dζ , p = ρT , (3a)

pij = 2
∫

(ζi − vi)(ζj − vj )f dζ , qi =
∫

(ζi − vi)(ζj − vj )2f dζ , (3b)

where dζ = dζ1dζ2dζ3. Here and in what follows, the summation convention (i.e., aibi = a1b1 +
a2b2 + a3b3 and a2

i = a2
1 + a2

2 + a2
3) is used and the domain of integration with respect to ζi is its

whole space unless otherwise stated. The assumption v2 = v3 = 0 [assumption (iii)] means that we

implicitly assume that f is cylindrically symmetric in ζi , i.e., f = f (t,x1,ζ1,

√
ζ 2

2 + ζ 2
3 ). Therefore,

some components of pij and qi vanish, that is,

p12 = p21 = p23 = p32 = p31 = p13 = 0, q2 = q3 = 0. (4)

Let us denote by ṽw the velocity (in the x̃1 direction) of the oscillating plate, i.e., ṽw =
−ãwω̃ sin ω̃t̃ . We introduce the dimensionless position xw(t) and velocity vw(t) of the oscillating
plate and the dimensionless parameters aw and d corresponding to the amplitude ãw of the oscillating
plate and the position d̃ of the resting plate by

xw(t) = x̃w/L, vw(t) = ṽw/c̃0, aw = ãw/L, d = d̃/L. (5)

Then

xw(t) = aw cos t, vw(t) = −aw sin t. (6)

It should be noted that the dimensionless amplitude (and speed) of the plate aw is of the order of the
Mach number Ma based on the maximum speed of the plate, that is,

aw =
√

5/6Ma, Ma = ãwω̃/[(5/3)RT̃0]1/2. (7)

B. Basic equations

The dimensionless Boltzmann equation [25] in the present spatially-one-dimensional problem is
written as

∂f

∂t
+ ζ1

∂f

∂x1
= 1

ε
J (f,f ), (8)

with a small parameter ε,

ε = (
√

π/2)Kn = (
√

π/2)(l0/L), (9)

where Kn is the Knudsen number and l0 is the mean free path of the gas molecules at the initial
equilibrium state at rest. In Eq. (8), J (f,f ) is the dimensionless collision term, the explicit form of
which is given in Appendix A.

The diffuse-reflection condition [25] on the moving boundary is written as

f (t,xw(t),ζi) = σw

π3/2
exp

(−{
[ζ1 − vw(t)]2 + ζ 2

2 + ζ 2
3

})
for ζ1 − vw(t) > 0, (10a)

σw = −2π1/2
∫

ζ1−vw(t)<0
[ζ1 − vw(t)]f (t,xw(t),ζi)dζ , (10b)
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where xw and vw are given by Eq. (6), and that on the plate at rest is

f (t,d,ζi) = σw

π3/2
exp

[−(
ζ 2

1 + ζ 2
2 + ζ 2

3

)]
for ζ1 < 0, (11a)

σw = 2π1/2
∫

ζ1>0
ζ1f (t,d,ζi)dζ . (11b)

The initial condition is

f (0,x1,ζi) = π−3/2 exp
[−(

ζ 2
1 + ζ 2

2 + ζ 2
3

)]
for aw � x1 � d. (12)

It is seen from Eqs. (8), (10a), (11a), and (12) that the problem is characterized by the three parameters
ε, aw, and d.

IV. CHAPMAN-ENSKOG SOLUTION AND THE COMPRESSIBLE
NAVIER-STOKES EQUATIONS

The Chapman-Enskog expansion [25,39,40] is a well-known procedure to derive the Euler and
Navier-Stokes equations for a compressible fluid from the Boltzmann equation. In this section we
summarize the Chapman-Enskog solution obtained by the Chapman-Enskog expansion and the
resulting compressible Navier-Stokes equations for the present spatially-one-dimensional problem.
We basically follow the description and notation of Sec. B4 in [25], but note that some symbols
are not exactly the same. For example, the caret indicating the dimensionless quantities in [25] is
omitted here and Ci in [25] is denoted by Ci here.

The first-order Chapman-Enskog solution for the spatially-one-dimensional Boltzmann equation
(8) can be expressed as

f = f
(1)
CE + O(ε2) = f (0) + f (1)ε + O(ε2). (13)

Here the leading-order term f (0) is a local Maxwellian distribution

f (0) = ρ

(πT )3/2
exp

(
− (ζ1 − v1)2 + ζ 2

2 + ζ 2
3

T

)
= ρ

T 3/2
E(C) (14)

and the first-order term f (1) takes the form

f (1) = f (0)	, (15a)

	 = − 1

ρT 1/2

(
C2

1 − 1

3
C2

)
∂v1

∂x1
B(0)(C,T ) − 1

ρT
C1

∂T

∂x1
A(C,T ), (15b)

where

C1 = ζ1 − v1

T 1/2
, C2 = ζ2

T 1/2
, C3 = ζ3

T 1/2
, (16a)

E(C) = π−3/2 exp(−C2), C = (
C2

1 + C2
2 + C2

3

)1/2
, (16b)

and B(0)(C,T ) and A(C,T ) are, in principle, known functions of C and T , which are specified in
Appendix A.

The expansion (13) is designed in such a way that ρ, v1, and T in Eq. (14) are, respectively, the
density, the x1 component of the flow velocity, and the temperature associated with f [cf. Eq. (3a)].
Therefore, we construct the remainder so that, at any order, the corresponding moments vanish,
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that is, ∫ (
1,ζ1,ζ

2
i

)
f (1) dζ = 0,

∫ (
1,ζ1,ζ

2
i

)
O(ε2)dζ = 0. (17)

Formulas (15) that define f (1) fulfill this requirement.
With Eq. (13), pij and qi in Eq. (3b) become

p11 = p − 4

3
ε
1(T )

∂v1

∂x1
, p22 = p33 = p, pij = 0 (i �= j ), (18a)

q1 = −5

4
ε
2(T )

∂T

∂x1
, q2 = q3 = 0, (18b)

where 
1(T ) and 
2(T ) are expressed as


1(T ) = 8

15
√

π
T 1/2

∫ ∞

0
C6B(0)(C,T )e−C2

dC, (19a)


2(T ) = 16

15
√

π
T 1/2

∫ ∞

0
C6A(C,T )e−C2

dC (19b)

and are related to the viscosity μ and the thermal conductivity λ as

μ = (p̃0L/c̃0)ε
1(T ) = (
√

π/2)(p̃0l0/c̃0)
1(T ), (20a)

λ = (5/4)(p̃0c̃0L/T̃0)ε
2(T ) = (5
√

π/8)(p̃0c̃0l0/T̃0)
2(T ). (20b)

For hard-sphere molecules and the BGK model, 
1(T ) and 
2(T ) are explicitly expressed as,
respectively,


1(T ) = 1.270 042 427T 1/2, 
2(T ) = 1.922 284 066T 1/2, (21a)


1(T ) = 
2(T ) = T . (21b)

With Eq. (18), the Maxwell transport equations, which are derived by integrating Eq. (8) times
(1,ζi,ζ

2
j ) over the whole space of ζi , reduce to the compressible Navier-Stokes equations

∂ρ

∂t
+ ∂(ρv1)

∂x1
= 0, (22a)

∂(ρv1)

∂t
+ ∂

(
ρv2

1

)
∂x1

= −1

2

∂p

∂x1
+ 2

3
ε

∂

∂x1

[

1(T )

∂v1

∂x1

]
, (22b)

∂

∂t

[
ρ

(
3

2
T + v2

1

)]
+ ∂

∂x1

[
ρv1

(
5

2
T + v2

1

)]
= 5

4
ε

∂

∂x1

[

2(T )

∂T

∂x1

]
+ 4

3
ε

∂

∂x1

[

1(T )

∂v1

∂x1
v1

]
,

(22c)

where p = ρT [Eq. (3a)], and the x2 and x3 components of the momentum equation become trivial
(i.e., 0 = 0). If we substitute Eq. (13) with ρ, v1, and T satisfying the Navier-Stokes equations (22)
into the Boltzmann equation (8) multiplied by ε, then we observe that the expansion (13) satisfies
the latter with the error of O(ε2).

V. JUMP BOUNDARY CONDITIONS

In the first-order Chapman-Enskog solution (13), which corresponds to the Navier-Stokes
equations (22), the boundary conditions on the plates (10a) and (11a) are not taken into account. To
be consistent with the fact that the term up to O(ε) is considered in Eq. (13), we need to satisfy the
boundary conditions up to the order of ε.
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We first try to satisfy the boundary conditions with the Chapman-Enskog solution (13). If we
recall that the leading-order term f (0) is a local Maxwellian [Eq. (14)], it can be made to satisfy
Eqs. (10a) and (11a) by assuming that

v1 = vw(t), T = 1 at x1 = xw(t), (23a)

v1 = 0, T = 1 at x1 = d. (23b)

On the other hand, in order that the first-order term f (1) satisfies Eqs. (10a) and (11a) at the order of
ε, we need to impose the following conditions:

∂v1

∂x1
= 0,

∂T

∂x1
= 0 at x1 = xw(t), d. (24)

However, the constraints on the plates [Eqs. (23) and (24)] are too many as the boundary conditions
for the Navier-Stokes equations (22). Therefore, this approach does not work. However, the fact that
the choice (23) works at the zeroth order in ε suggests that

v1 − vw(t) = O(ε), T − 1 = O(ε) at x1 = xw(t), (25a)

v1 = O(ε), T − 1 = O(ε) at x1 = d. (25b)

In order to obtain the solution satisfying the boundary conditions, it is required to introduce the
kinetic boundary layer, the so-called Knudsen layer, with thickness of the order of ε adjacent to the
plates. To be more specific, we seek the solution in the form

f = f
(1)
CE + f (0)�ε + O(ε2) = f (0)(1 + 	ε + �ε) + O(ε2), (26)

where we use Eqs. (14) and (15) and � is the correction inside the Knudsen layer. We note that �

has a length scale of variation of the order of ε in the direction normal to the boundary and vanishes
outside the Knudsen layer. The correction is introduced only at the order of ε because, as we saw, the
leading-order term f (0) of the Chapman-Enskog expansion could be made to satisfy the boundary
conditions.

The analysis of the Knudsen-layer correction � determines the boundary conditions for the
Navier-Stokes equations (22) that are correct up to the order of ε. Leaving the detailed analysis of
� and the process of deriving the boundary conditions to Appendix B, we summarize the resulting
boundary conditions here, that is,

v1 − vw(t) = 0, T − 1 = 1

ρ

∂v1

∂x1
αvε + 1

ρ

∂T

∂x1
αT ε at x1 = xw(t), (27a)

v1 = 0, T − 1 = 1

ρ

∂v1

∂x1
αvε − 1

ρ

∂T

∂x1
αT ε at x1 = d, (27b)

where αv and αT are constants that depend on the model for the intermolecular collision. We refer
the reader to Appendix B for further explanations of these formulas [see in particular the comments
after Eq. (B38), which explain the changes of sign arising in Eqs. (27a) and (27b)]. For hard-sphere
molecules and for the BGK model, the coefficients αv and αT are given as, respectively,

αv = 0.45957, αT = 2.4001, (28a)

αv = 0.44045, αT = 1.30272. (28b)

These values are for the diffuse reflection condition. For different boundary conditions of ordinary
type, these constants take different values, the form of the boundary conditions (27) being unchanged.
Although the velocity v1 is the same as that of the plate, the temperature T differs from that of the
plates, that is, there is a temperature jump of O(ε). The term containing αT is the usual temperature
jump proportional to the temperature gradient normal to the plates. The term containing αv is the
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jump proportional to the normal stress, which becomes higher order in the steady problems with small
Mach number flows. We note that [15] contains the numerical analysis of the present problem using
the compressible Navier-Stokes equations with slip boundary conditions. However, the temperature
jump condition used there includes neither the term proportional to the normal stress nor the factor
1/ρ [cf. Eq. (27)]. In the linearized problem, ρ is replaced by its reference value ρ = 1, so the
factor 1/ρ does not appear. However, in the nonlinear problem, there is a significant density change
in the gas and the temperature jump should be proportional to the local Knudsen number, not the
global one. Since the local Knudsen number is expressed as ε/ρ, the factor 1/ρ appears in Eq. (27).

The initial condition for the Navier-Stokes equations corresponding to that for the Boltzmann
equation (12) is

ρ = 1, v1 = 0, T = 1 at t = 0. (29)

We are going to solve the Navier-Stokes equations (22) numerically under the boundary conditions
(27) and the initial condition (29). In the present problem, the initial condition (12) for the Boltzmann
equation is consistent with the first-order Chapman-Enskog solution (13) and satisfies the boundary
conditions (10a) and (11a) at t = 0. In addition, the left plate starts the motion gradually with the
fluid-dynamic time scale. Therefore, the initial layer does not appear. In other words, the Navier-
Stokes equations with the initial condition (29) describe the initial stage of the gas motion correctly.

VI. NUMERICAL METHOD

In this section we explain the numerical method used in the computation of Eqs. (22), (27), and
(29). For brevity, we omit the subscript 1 of x1 and v1 in the present section, i.e., we let

x = x1, v = v1. (30)

A. Numerical scheme

Let us divide the region of the gas xw(t) � x � d into N cells by the grid points xj (t) (j =
0, . . . ,N ) with x0(t) = xw(t) and xN (t) = d, which move with time. In the case of uniform cells,
xj (t) = xw(t) + (j/N )[d − xw(t)]. We call the interval xj−1(t) � x � xj (t) the j th cell and define
the center of the j th cell xj−1/2(t) as the middle point, i.e., xj−1/2(t) = [xj−1(t) + xj (t)]/2.

We consider the spatially-one-dimensional equation of the form

∂F

∂t
+ ∂G

∂x
= 0, (31)

where F (t,x) and G(t,x) are functions of x and t . For the Navier-Stokes equations, F and G are
given by

F = ρ, G = ρv (32)

for Eq. (22a),

F = ρv, G = ρv2 + 1

2
p − 2

3
ε
1(T )

∂v

∂x
(33)

for Eq. (22b), and

F = ρv2 + 3

2
ρT , G =

(
ρv2 + 5

2
ρT

)
v − 5

4
ε
2(T )

∂T

∂x
− 4

3
ε
1(T )v

∂v

∂x
(34)

for Eq. (22c). We try to discretize this equation on the system of moving grids xi(t).
Let us integrate Eq. (31) over the interval [xj−1(t),xj (t)] in x and then [t,t + �t] in t :

∫ t+�t

t

∫ xj (τ )

xj−1(τ )

∂F

∂τ
dx dτ +

∫ t+�t

t

∫ xj (τ )

xj−1(τ )

∂G

∂x
dx dτ = 0. (35)
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The second term on the left-hand side is transformed as follows:∫ t+�t

t

∫ xj (τ )

xj−1(τ )

∂G

∂x
dx dτ =

∫ t+�t

t

[G(τ,xj (τ )) − G(τ,xj−1(τ ))]dτ

� [G(t,xj (t)) − G(t,xj−1(t))]�t

� [G(t + �t,xj (t + �t)) − G(t + �t,xj−1(t + �t))]�t

� [G(t,xj (t + �t)) − G(t,xj−1(t + �t))]�t. (36)

On the other hand, we have the identity

∂

∂τ

∫ xj (τ )

xj−1(τ )
F (τ,x)dx =

∫ xj (τ )

xj−1(τ )

∂F

∂τ
(τ,x)dx + F (τ,xj (τ ))ẋj (τ ) − F (τ,xj−1(τ ))ẋj−1(τ ), (37)

where ẋj (t) = dxj (t)/dt . Using this identity, we can transform the first term on the left-hand side
of Eq. (35) as

∫ t+�t

t

∫ xj (τ )

xj−1(τ )

∂F

∂τ
dx dτ =

∫ t+�t

t

∂

∂τ

∫ xj (τ )

xj−1(τ )
F (τ,x)dx dτ

−
∫ t+�t

t

[F (τ,xj (τ ))ẋj (τ ) − F (τ,xj−1(τ ))ẋj−1(τ )]dτ

=
∫ xj (t+�t)

xj−1(t+�t)
F (t + �t,x)dx −

∫ xj (t)

xj−1(t)
F (t,x)dx

−
∫ t+�t

t

[F (τ,xj (τ ))ẋj (τ ) − F (τ,xj−1(τ ))ẋj−1(τ )]dτ. (38)

With the middle point xj−1/2(t) between xj−1(t) and xj (t), the first two integrals in the last line of
Eq. (38) are approximated as

∫ xj (t+�t)

xj−1(t+�t)
F (t + �t,x)dx −

∫ xj (t)

xj−1(t)
F (t,x)dx

� F (t + �t,xj−1/2(t + �t))[xj (t + �t) − xj−1(t + �t)]

− F (t,xj−1/2(t))[xj (t) − xj−1(t)]. (39)

The last integral in the last line of Eq. (38) is approximated as
∫ t+�t

t

[F (τ,xj (τ ))ẋj (τ ) − F (τ,xj−1(τ ))ẋj−1(τ )]dτ

� F (t,xj (t))[xj (t + �t) − xj (t)] − F (t,xj−1(t))[xj−1(t + �t) − xj−1(t)]. (40)

Let us denote by tk the discretized time variable. If the time step is uniform, tk+1 = tk + �t for
any k. We use the following notation:

xk
i = xi(tk), xk

w = xw(tk), F k
i = F

(
tk,x

k
i

)
, Gk

i = G
(
tk,x

k
i

)
. (41)

If we let t = tk and t + �t = tk+1 in Eq. (35) with the approximations (36) (the approximation in
the second line) and Eqs. (38)–(40), we have the following discretized version of (31):

Fk+1
j−1/2

(
xk+1

j − xk+1
j−1

) − Fk
j−1/2

(
xk

j − xk
j−1

) − Fk
j

(
xk+1

j − xk
j

) + Fk
j−1

(
xk+1

j−1 − xk
j−1

)
+ (

Gk
j − Gk

j−1

)
�t = 0. (42)
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From this equation, Fk+1
j−1/2 is expressed as

Fk+1
j−1/2 = Fk

j−1/2

(
xk

j − xk
j−1

) + Fk
j

(
xk+1

j − xk
j

) − Fk
j−1

(
xk+1

j−1 − xk
j−1

)
xk+1

j − xk+1
j−1

− Gk
j − Gk

j−1

xk+1
j − xk+1

j−1

�t, (43)

in terms of F and G at the previous time step tk . If we use the approximation in the last line of
Eq. (36) instead of that in the second line, we have

Fk+1
j−1/2 = Fk

j−1/2

(
xk

j − xk
j−1

) + Fk
j

(
xk+1

j − xk
j

) − Fk
j−1

(
xk+1

j−1 − xk
j−1

)
xk+1

j − xk+1
j−1

− G
(
tk,x

k+1
j

) − G
(
tk,x

k+1
j−1

)
xk+1

j − xk+1
j−1

�t. (44)

Before moving on to the details for the Navier-Stokes equations, we interpret the meaning of

Eq. (44). Let us consider the integral
∫ xk+1

j

xk+1
j−1

F (tk,x)dx and write it as

∫ xk+1
j

xk+1
j−1

F (tk,x)dx =
∫ xk

j

xk
j−1

F (tk,x)dx +
∫ xk+1

j

xk
j

F (tk,x)dx −
∫ xk+1

j−1

xk
j−1

F (tk,x)dx. (45)

We approximate this equality using the middle points as

F
(
tk,x

k+1
j−1/2

)(
xk+1

j − xk+1
j−1

) � F
(
tk,x

k
j−1/2

)(
xk

j − xk
j−1

) + F
(
tk,x

k
j

)(
xk+1

j − xk
j

)
− F

(
tk,x

k
j−1

)(
xk+1

j−1 − xk
j−1

)
. (46)

Then we have

F
(
tk,x

k+1
j−1/2

) � Fk
j−1/2

(
xk

j − xk
j−1

) + Fk
j

(
xk+1

j − xk
j

) − Fk
j−1

(
xk+1

j−1 − xk
j−1

)
xk+1

j − xk+1
j−1

. (47)

This expression is the same as the first fractional term on the right-hand side of Eq. (43) or (44).
This gives an interpolation, using Fk

j−1, Fk
j−1/2, and Fk

j , to give the value of F at time tk and at

position xk+1
j−1/2, i.e., at the middle point that is supposed to be at time tk+1. In other words, it is

an interpolation based on the conservation of F at t = tk when the j th cell moves from [xk
j−1,x

k
j ]

to [xk+1
j−1,x

k+1
j ] [cf. Eq. (45)]. For later convenience, we rewrite Eqs. (44) and (47) in the following

form:

Fk+1
j−1/2 = F

(
tk,x

k+1
j−1/2

) − G
(
tk,x

k+1
j

) − G
(
tk,x

k+1
j−1

)
xk+1

j − xk+1
j−1

�t, (48a)

F
(
tk,x

k+1
j−1/2

) = Fk
j−1/2

(
xk

j − xk
j−1

) + Fk
j

(
xk+1

j − xk
j

) − Fk
j−1

(
xk+1

j−1 − xk
j−1

)
xk+1

j − xk+1
j−1

. (48b)

Then we can see that Eq. (48a) is a finite-difference version of Eq. (31). That is, if we
consider Eq. (31) at point x = xk+1

j−1/2 and time t = tk and if we replace ∂F/∂t with the

forward difference [F (tk+1,x
k+1
j−1/2) − F (tk,x

k+1
j−1/2)]/�t and ∂G/∂x with the central difference

[G(tk,x
k+1
j ) − G(tk,x

k+1
j−1)]/(xk+1

j − xk+1
j−1), then we obtain Eq. (48a). Therefore, the scheme (48)

consists of two steps: the interpolation required by grid displacement and the time marching. This
method was proposed in [41,42].

Here we make some remarks on the accuracy of the scheme (48) on the basis of its derivation
described in the preceding paragraph. For simplicity, let us consider xk+1

j − xk+1
j−1 � xk

j − xk
j−1 � �x
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(see Appendix C for the precise definition of �x). By looking into the approximation (46) of
Eq. (45) carefully, we see that the error terms contained in Eq. (46) consist of the terms of O((�x)3),
originating from the left-hand side and the first term on the right-hand side of Eq. (45), and the terms
of O(�x(�t)2) and O((�t)3), originating from the second and third terms on the right-hand side of
Eq. (45) (the details are omitted for conciseness). Since the scheme is explicit, the stability condition
imposes that �t is comparable to �x. If we set �t = c�x with a constant 0 < c < 1, then the errors
contained in Eq. (46) become of O((�x)3). Accordingly, Eq. (48b) contains a consistency error of
O((�x)2). Moreover, the second term on the right-hand side in Eq. (48a) is a central difference
approximation of ∂G/∂x and the space derivatives in G are approximated by central differences
as shown in Eq. (49) appearing later. Therefore, the error originating from the second term on
the right-hand side in Eq. (48a) should be of O((�x)2). In this way, the scheme (48) retains the
second-order accuracy in x. This is also seen from the numerical result (see Appendix C).

B. Compressible Navier-Stokes equations

Now we are ready to apply the scheme (48) to the Navier-Stokes equations, for which F and
G are listed in Eqs. (32)–(34). In this section we let h represent the macroscopic quantities, i.e.,
h = ρ, v, and T . Suppose that at time t = tk the quantities hk

j−1, hk
j−1/2 (j = 1, . . . ,N), and hk

N are
all known. Then the procedure is as follows.

(i) From Eqs. (32)–(34) we obtain Fk
j−1, Fk

j−1/2 (j = 1, . . . ,N), and Fk
N .

(ii) From Eq. (48b) we obtain F (tk,x
k+1
j−1/2), which gives h(tk,x

k+1
j−1/2).

(iii) For 1 � j � N − 1, we obtain the values of the macroscopic quantities at the interfaces of
the new cell, h(tk,x

k+1
j ), by the linear interpolation using h(tk,x

k+1
j−1/2) and h(tk,x

k+1
j+1/2). For j = 0 and

N (i.e., on the boundary, x = xk+1
0 and xk+1

N ), we first obtain ρ(tk,x
k+1
j ) by the linear extrapolation

[i.e., ρ(tk,x
k+1
0 ) = 2ρ(tk,x

k+1
1/2 ) − ρ(tk,x

k+1
1 ) and ρ(tk,x

k+1
N ) = 2ρ(tk,x

k+1
N−1/2) − ρ(tk,x

k+1
N−1)] and then

assume that v(tk,x
k+1
j ) and T (tk,x

k+1
j ) are the same as v(tk,xk

j ) and T (tk,xk
j ), respectively [i.e.,

v(tk,x
k+1
0 ) = v(tk,xk

0 ), v(tk,x
k+1
N ) = v(tk,xk

N ), T (tk,x
k+1
0 ) = T (tk,xk

0 ), and T (tk,x
k+1
N ) = T (tk,xk

N )].
(iv) We obtain the pressure at the grid points p(tk,x

k+1
j ) and that at the cell centers p(tk,x

k+1
j−1/2)

by the equation of state p = ρT .
(v) We update the macroscopic quantities at the cell centers by the discrete equation (48a): We

obtain Fk+1
j−1/2 and thus hk+1

j−1/2. In this process, we use the finite difference based on the two points

xk+1
j−1/2 and xk+1

j+1/2 (the central difference when the size of the cells is uniform) for ∂v/∂x and ∂T /∂x

in G. For example, for G in Eq. (34), we use the following G(tk,x
k+1
j ):

G
(
tk,x

k+1
j

) =
{
ρ
(
tk,x

k+1
j

)[
v
(
tk,x

k+1
j

)]2 + 5

2
ρ
(
tk,x

k+1
j

)
T

(
tk,x

k+1
j

)}
v
(
tk,x

k+1
j

)

− 5

4
ε
2

(
T

(
tk,x

k+1
j

))T
(
tk,x

k+1
j+1/2

) − T
(
tk,x

k+1
j−1/2

)
xk+1

j+1/2 − xk+1
j−1/2

− 4

3
ε
1

(
T

(
tk,x

k+1
j

))
v
(
tk,x

k+1
j

)v
(
tk,x

k+1
j+1/2

) − v
(
tk,x

k+1
j−1/2

)
xk+1

j+1/2 − xk+1
j−1/2

. (49)

(vi) For 1 � j � N − 1, we obtain the interface values hk+1
j by the linear interpolation using

hk+1
j−1/2 and hk+1

j+1/2. For j = 0 and N (i.e., on the boundary, x = xk+1
0 and xk+1

N ), we first obtain

ρk+1
j by the linear extrapolation (i.e., ρk+1

0 = 2ρk+1
1/2 − ρk+1

1 and ρk+1
N = 2ρk+1

N−1/2 − ρk+1
N−1) and then

obtain vk+1
j and T k+1

j using the boundary conditions. More specifically, the boundary conditions,

Eq. (27) discretized by using a one-sided finite difference for derivatives, give the following vk+1
j
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and T k+1
j :

vk+1
0 = vk+1

w , (50a)

T k+1
0 =

1
2ρk+1

0

(
xk+1

1 − xk+1
0

) + αvε
(
vk+1

1/2 − vk+1
0

) + αT εT k+1
1/2

1
2ρk+1

0

(
xk+1

1 − xk+1
0

) + αT ε
, (50b)

vk+1
N = 0, (50c)

T k+1
N =

1
2ρk+1

N

(
xk+1

N − xk+1
N−1

) − αvεv
k+1
N−1/2 + αT εT k+1

N−1/2
1
2ρk+1

N

(
xk+1

N − xk+1
N−1

) + αT ε
. (50d)

(vii) We obtain the pressure pk+1
j and pk+1

j−1/2 by the equation of state p = ρT .
The scheme (48) is conservative except that some errors are introduced by the treatment of the

boundary values in process (iii). Concerning the mass conservation, we can show that the total
mass of the gas between the two plates (per unit area of the plates) changes by an amount of
O((�t)2) + O((�x)2�t) at each time step (the details are omitted here). The second error comes
from the extrapolation of the density. The numerical results seem to be consistent with this estimate
and show satisfactory conservation properties as discussed in Appendix C.

VII. RESULTS OF COMPUTATION

In this section we show the results of numerical computation. We consider the cases of hard-sphere
molecules [Eqs. (21a) and (28a)] and the BGK model [Eqs. (21b) and (28b)]. We recall that the
problem is characterized by three dimensionless parameters: the (modified) Knudsen number ε

[Eq. (9)], the dimensionless amplitude of the plate aw [Eq. (7)], and the dimensionless distance
between the center of the oscillation of the left plate and the right plate d [Eq. (5)].

In this paper, the computation is made for a single value of ε (ε = 0.1), five values of aw

(aw = 0.01, 0.02, 0.05, 0.1, and 0.5), and various values of d in the range d0 � d � 3d0; here
d0 = 2π

√
5/6 = 5.7357 . . . and its dimensional counterpart d̃0, i.e., d̃0 = d0L = 2π (5RT̃0/3)1/2/ω̃,

is the wavelength of the sinusoidal acoustic wave with angular frequency ω̃ in an inviscid (Euler) gas.
In the present computation, we use uniform grids for x1 and uniform time steps. The basic

choices of the numerical parameters N and �t are N = 2000 (d = d0) to 6000 (d = 3d0) and
�t ≈ 1.9 × 10−5 (aw = 0.01 and 0.1) to 9.8 × 10−6 or 4.9 × 10−6 (aw = 0.5). We also use coarser
and finer grid systems for the accuracy tests. The details of the numerical parameters and the accuracy
tests are summarized in Appendix C.

A. Profiles of macroscopic quantities

After the start of the oscillation of the left plate at t = 0, the plate sends out expansion and
compression waves continuously. These waves interact with the waves reflected by the right plate
at rest and form a complicated flow field. However, the unsteady flow field tends to converge to a
time-periodic flow field after a few tens of oscillations of the plate.

In Figs. 2–6 we show the profiles of the physical quantities for hard-sphere molecules after the
time-periodic state seems to have been established. Figures 2–4 show the profiles of the dimensionless
density ρ, flow velocity v1, temperature T , and pressure p over a period 199 < t/2π � 200 (i.e., at
t/2π = 199.1,199.2, . . . ,200) for ε = 0.1 and d = d0: Fig. 2 is for aw = 0.01, Fig. 3 for aw = 0.1,
and Fig. 4 for aw = 0.5. It should be noted that ρ, T , and p need corrections inside the Knudsen
layers, which extend over 0 � x1 − xw(t) � 0.3 and 0 � d − x1 � 0.3, in order to give correct
density, temperature, and pressure, as discussed in Appendix B 4. These corrections are omitted in
Figs. 2–6 and Fig. 7 appearing later.

In the case of a small amplitude (and small Mach number) (Fig. 2), the profile of v1 [Fig. 2(b)],
which is fixed at zero on the stationary plate, exhibits a structure similar to a standing wave with a
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(a)
x1

ρ

199.8
t/2π = 199.1

199.4

(b)
x1

v1

t/2π = 199.1
199.9

199.5

(c)
x1

T
t/2π = 199.1

199.5
199.9

(d)
x1

p

199.8 t/2π = 199.1

199.5

FIG. 2. Profiles of (a) ρ, (b) v1, (c) T , and (d) p in the time interval 199 < t/2π � 200 for ε = 0.1,
aw = 0.01, and d = d0 (hard-sphere molecules). The thin solid lines indicate the profiles at t/2π =
199.1,199.2, . . . ,199.5, the dashed lines indicate those at t/2π = 199.6,199.7, . . . ,199.9, and the thick solid
line indicates the profile at t/2π = 200.

(a)
x1

ρ

199.8
t/2π = 199.1

199.5

(b)
x1

v1

t/2π = 199.1
199.9

199.5

(c)
x1

T
t/2π = 199.1

199.5
199.9

(d)
x1

p

199.8 t/2π = 199.1

199.5

FIG. 3. Profiles of (a) ρ, (b) v1, (c) T , and (d) p in the time interval 199 < t/2π � 200 for ε = 0.1,
aw = 0.1, and d = d0 (hard-sphere molecules). See the caption of Fig. 2 for definitions of the lines.
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(a)
x1

ρ

199.8

t/2π = 199.1

199.5

(b)
x1

v1

199.8
t/2π = 199.1

199.5

(c)
x1

T

199.8 t/2π = 199.1

199.5

(d)
x1

p

199.8 t/2π = 199.1

199.5

FIG. 4. Profiles of (a) ρ, (b) v1, (c) T , and (d) p in the time interval 199 < t/2π � 200 for ε = 0.1,
aw = 0.5, and d = d0 (hard-sphere molecules). See the caption of Fig. 2 for definitions of the lines.

(a)
x1

ρ

t/2π = 299.1
299.8

299.5

(b)
x1

v1

t/2π = 299.1
299.9

299.5

(c)
x1

T

t/2π = 299.1
299.8

299.5

(d)
x1

p

t/2π = 299.1
299.8

299.5

FIG. 5. Profiles of (a) ρ, (b) v1, (c) T , and (d) p in the time interval 299 < t/2π � 300 for ε = 0.1,
aw = 0.1, and d = 1.2d0 (hard-sphere molecules). The thin solid lines indicate the profiles at t/2π =
299.1,299.2, . . . ,299.5, the dashed lines indicate those at t/2π = 299.6,299.7, . . . ,299.9, and the thick solid
line indicates the profile at t/2π = 300.
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(a)
x1

ρ

t/2π = 399.1
399.9

399.5

(b)
x1

v1

t/2π = 399.1
399.9

399.5

(c)
x1

T

t/2π = 399.1
399.9

399.5

(d)
x1

p

t/2π = 399.1
399.9

399.5

FIG. 6. Profiles of (a) ρ, (b) v1, (c) T , and (d) p in the time interval 399 < t/2π � 400 for ε = 0.1,
aw = 0.1, and d = 2d0 (hard-sphere molecules). The thin solid lines indicate the profiles at t/2π =
399.1,399.2, . . . ,399.5, the dashed lines indicate those at t/2π = 399.6,399.7, . . . ,399.9, and the thick solid
line indicates the profile at t/2π = 400.

(a)
x1

ρ

199.8

t/2π = 199.1

199.5

(b)
x1

v1

199.8
t/2π = 199.1

199.5

(c)
x1

T

199.8
t/2π = 199.1

199.5

(d)
x1

p

199.8 t/2π = 199.1

199.5

FIG. 7. Profiles of (a) ρ, (b) v1, (c) T , and (d) p in the time interval 199 < t/2π � 200 for ε = 0.1, aw = 0.5,
and d = d0 (the BGK model). The thin solid lines indicate the profiles at t/2π = 199.1,199.2, . . . ,199.5, the
dashed lines indicate those at t/2π = 199.6,199.7, . . . ,199.9, and the thick solid line indicates the profile at
t/2π = 200.
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node and two antinodes and it is close to sinusoidal curves at t/2π = 199.5 and 200. The profiles
of ρ, T , and p roughly show the two-node structure with a clearer nodelike point closer to the
stationary plate (x1 ≈ 4.4). This standing-wave-like structure with nodelike and antinodelike points
is less clear for a larger amplitude (Fig. 3), though v1 still retains the structure [Fig. 3(b)]. For a
large amplitude (Fig. 4), for which the nonlinearity becomes significant, the profiles deviate from
the standing-wave-like profile and no nodelike or antinodelike point is observed. In this case, ρ

increases almost up to twice the initial density (ρ = 1) on the two plates, but decreases down to 60%
of it in the middle of the gas. The T becomes almost twice the initial temperature (and the plate
temperature) in the middle of the gas. There is a significant temperature jump on the resting plate
because of the steep gradient of T and that of v1 there [cf. Eq. (27b)].

Figures 5 and 6 show the profiles at ε = 0.1 and aw = 0.1 but for different d: d = 1.2d0 (Fig. 5)
and 2d0 (Fig. 6). For a slightly wider gap between the two plates (Fig. 5), the feature of the
profile changes from that of Fig. 3. The standing-wave-like structure becomes less clear for v1 but
clearer for ρ, T , and p. In particular, ρ and T exhibit profiles with two nodelike points and three
antinodelike points rather clearly [Figs. 5(a) and 5(c)]. On the other hand, for d = 2d0 (Fig. 6), the
standing-wave-like structure is clear (in particular, in the right half of the gas region) only for v1

[Fig. 6(b)]. This difference between the profile of v1 and those of ρ, T , and p is due to the difference
in constraint on the plates. The v1 takes the imposed values on the plate [cf. Eq. (27)], which
corresponds to the fixed-end condition for a standing wave, whereas no constraint is imposed on ρ

on the plates, which corresponds to the free-end condition for a standing wave. The condition for the
temperature on the plates is somewhat intermediate, since the jump condition (27) does not fix the
values completely. Of course, the situation is not so simple because there is the viscous dissipation
and v1, ρ, and T are not independent but interact nonlinearly. Nevertheless, some behavior of the
profiles may be understood from these properties. For instance, the oscillating plate inputs kinetic
energy into the gas, so the velocity field is affected by the plate most directly. In the cases of d = d0

(Fig. 3) and 2d0 (Fig. 6), the standing-wave-like profile of v1 is observed, as mentioned above. For
d = d0, the amplitude of v1 in the gas exceeds the input amplitude aw = 0.1 in the gas [Fig. 3(b)]
in spite of the fact that the viscous dissipation should decay the amplitude. This amplification is
caused by a sort of resonance (see the last paragraph in Sec. VII B). It is also observed for d = 2d0

[Fig. 6(b)]. In this case, because of the wider gas region, the waves attenuate more. Nevertheless,
the amplitude of v1 reaches almost the input value 0.1 in the gas. For d = 1.2d0 [Fig. 5(b)], the
amplitude of v1 is smaller than the input value.

In Fig. 7, the profiles corresponding to Fig. 4 (ε = 0.1, aw = 0.5, and d = d0) are shown for
the BGK model. They are qualitatively the same as those in Fig. 4, but the maximum values of the
density and temperature during one period is larger.

B. Momentum and energy transfer

Let us denote by P̃L and P̃R the x̃1 component of the momentum transferred from the left
(oscillating) plate to the gas and that transferred from the gas to the right (resting) plate per unit area
and per unit time, respectively. We also denote by ẼL and ẼR the energy transferred from the left plate
to the gas and that from the gas to the right plate, respectively. Then we define their dimensionless
counterparts PL, PR, EL, and ER by

PL = P̃L/p̃0, PR = P̃R/p̃0, EL = ẼL/p̃0c̃0, ER = ẼR/p̃0c̃0. (51)

If we neglect the terms of O(ε2), they are expressed in the following form:

PL(t) =
(

p − 4

3
ε
1

∂v1

∂x1

)
x1=xw(t)

, (52a)

PR(t) =
(

p − 4

3
ε
1

∂v1

∂x1

)
x1=d

, (52b)
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FIG. 8. Average momentum and energy transfer over a period at the time-periodic state for ε = 0.1 and
some aw (hard-sphere molecules): (a) and (b) (PL − 1)/aw and (PR − 1)/aw vs d/d0 and (c) and (d) EL/aw and
ER/aw vs d/d0. The results shown are at t/2π = 200 for 1 � d/d0 � 2, at t/2π = 400 for 2 < d/d0 � 2.5,
and at t/2π = 600 for 2.5 < d/d0 � 3.

EL(t) =
[(

p − 4

3
ε
1

∂v1

∂x1

)
vw(t) − 5

4
ε
2

∂T

∂x1

]
x1=xw(t)

, (52c)

ER(t) =
(

−5

4
ε
2

∂T

∂x1

)
x1=d

. (52d)

These formulas are not subject to the Knudsen-layer corrections, as discussed in Appendix B 4. In
addition, we introduce the time average of PL, PR, EL, and ER over one period from t − 2π to t and
denote them by an overline, i.e.,

W(t) = 1

2π

∫ t

t−2π

W(t ′)dt ′, (53)

where W stands for PL, PR, EL, or ER.
Figures 8 and 9 show (PL − 1)/aw, (PR − 1)/aw, EL/aw, and ER/aw at a long time, for which the

time-periodic state seems to have been reached, versus d/d0 at ε = 0.1 for several values of aw: Fig. 8
is for hard-sphere molecules and Fig. 9 for the BGK model. The results shown are at t/2π = 200
for 1 � d/d0 � 2, at t/2π = 400 for 2 < d/d0 � 2.5, and at t/2π = 600 for 2.5 < d/d0 � 3. As
is seen from the figures, PL = PR and EL = ER hold. This also indicates that the time-periodic state
has been established. If PL, PR, EL, and ER make a sinusoidal oscillation in time with period 2π

as in the case of linear setting, PL − 1, PR − 1, EL, and ER all vanish. In fact, when aw is small
(aw = 0.01), these quantities are very small. For aw = 0.01, PL − 1 and PR − 1 are negative for
all d/d0 (� 3) in Fig. 8 and for d/d0 � 2 in Fig. 9. This is because the average distance between
the plates after a long time is d, which is longer than the initial distance d − aw. Therefore, the
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FIG. 9. Average momentum and energy transfer over a period at the time-periodic state for ε = 0.1 and
some aw (the BGK model): (a) and (b) (PL − 1)/aw and (PR − 1)/aw vs d/d0 and (c) and (d) EL/aw and ER/aw

vs d/d0. The results shown are at t/2π = 200 for 1 � d/d0 � 2, at t/2π = 400 for 2 < d/d0 � 2.5, and at
t/2π = 600 for 2.5 < d/d0 � 3.

stationary plate is pulled (relative to the pressure exerted on the plate in the initial equilibrium state)
by the gas and the same is true for the oscillating plate. As d increases, the difference between
d and d − aw becomes small, so the pulling effect becomes small. Indeed, PL − 1 and PR − 1
are closer to zero for larger d/d0. When the amplitude (and the Mach number) aw becomes large
(aw = 0.01 → 0.5), PL − 1 and PR − 1 become positive and larger and EL and ER also increase.
In other words, when aw is not small, the stationary plate is pushed outward (i.e., in the positive
x1 direction), on average, by the oscillating plate via the gas. The stationary plate also receives the
energy (for all d), on average, from the oscillating plate via the gas. The mechanism of this average
momentum and energy transfer is explained in view of the interaction of the gas molecules with
the moving plate in [21] (see Sec. 3.3 in [21]). Therefore, we do not repeat it here. If there is no
stationary plate that receives the positive momentum relative to the initial pressure (PR − 1 > 0),
the gas flows in the x1 direction, i.e., toward infinity. This flow is called the acoustic stream [43,44].

It is seen from Figs. 8 and 9 that both PL (or PR) and EL (or ER) exhibit local maxima and
minima almost periodically with respect to d/d0. When aw is small, the period is almost equal to
d0/2, that is, these quantities take local maxima near d/d0 = n/2 with integer n and local minima
near d/d0 = n/2 + 1/4. For larger values of aw (aw = 0.1 → 0.5), the period tends to increase.

The appearance of the local maxima at d/d0 ≈ n/2 for small aw is reasonable for the following
reason. Let us consider a column of an inviscid (or Euler) gas and a sinusoidal sound wave
propagating along the column. If the column has reflective ends and its length is a multiple of
d0/2 = π (5RT̃0/3)1/2/ω̃, the natural frequency of the column coincides with ω̃. That is, a sinusoidal
standing wave may be formed, and if one of the ends oscillates sinusoidally with angular frequency
ω̃, the amplitude of the standing wave is amplified. In other words, the resonance takes place. If
there is no energy dissipation, the amplitude increases indefinitely. In a real gas, however, the energy
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|hdiff|

t/2π

FIG. 10. Schematic for |hdiff | vs t . The circles indicate the peaks, each of which corresponds to the maximum
after the previous peak.

dissipates and escapes from the column in the form of heat through the ends, so the amplitude remains
finite even in the case of resonance, i.e., even when d/d0 ≈ n/2. Nevertheless, the amplitude in these
cases is still larger than that for other d. In other words, more energy and momentum are transmitted
to the gas in this situation. This roughly explains the appearance of the local maxima at d/d0 ≈ n/2
when the amplitude of the oscillation of the plate aw is small.

C. Approach to the time-periodic state

As mentioned in Sec. VII A, the motion of the gas approaches a time-periodic state as time
proceeds. In this section we investigate the speed of approach to the time-periodic state. We consider
the case of ε = 0.1, aw = 0.1, and d = d0 and regard the numerical solution for 199 < t/2π � 200
as the time-periodic solution. For any given time t , an integer n and a number τ ∈ (0,2π ] such that
t = (n − 1)2π + τ are uniquely determined, i.e., n − 1 is the maximum integer that is smaller than
t/2π . Then we define the difference between the solution at time t and the time-periodic solution by

hdiff(t,x1) = h(t,x1) − h(199 × 2π + τ,x1), (54)

where h represents the macroscopic quantities, i.e., h = ρ, v1, T , and p. Obviously, h(199 × 2π +
τ,x1) (0 < τ � 2π ) indicates our time-periodic solution. If we plot |hdiff| at a fixed x1 as a function
of t , it is oscillatory, as is shown schematically in Fig. 10. Therefore, we pick up the peaks indicated
by circles in the figure. Each of these peaks corresponds to the maximum after the previous peak
and can be picked up by the following procedure.

(i) We first prepare the time-series data of all local maxima of |hdiff|.
(ii) We compare one of the local maxima with the next one. If the former maximum is smaller

than the latter, we remove the former one from the time-series data.
(iii) We repeat step (ii) until there is no local maximum to be removed.
In Fig. 11 we show the curves joining the peaks thus obtained in semilogarithmic scale for

x1 = aw = 0.1 [Fig. 11(a)], x1 = (aw + d)/2 = (0.1 + d0)/2 = 2.9178 . . . [Fig. 11(b)], and x1 =
d = d0 = 5.7357 . . . [Fig. 11(c)] [v1 is excluded in Fig. 11(c) because v1 = 0 at x1 = d]. For all
ρ, v1, T , and p and at all three points, the curve tends to approach a straight line after the initial
stage and the gradients of all lines are almost the same for each of the hard-sphere molecules
and the BGK model. If we denote the function corresponding to the curve by F (t,x1), then we
have |hdiff(t,x1)| � F (t,x1) and log10 F (t,x1) ≈ −α′t + β ′, with α′ and β ′ being constants. This is
equivalent to writing

|hdiff(t,x1)| � F (t,x1) ≈ C exp(−αt) for t 
 1, (55)
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|hdiff |

t/2π

(a)

BGK

HS

|hdiff |

t/2π

(b)

BGK

HS

|hdiff |

t/2π

(c)

BGK

HS

FIG. 11. Curves joining the peaks obtained by steps (i)–(iii) of the procedure for ε = 0.1, aw = 0.1, and d =
d0 at (a) x1 = aw = 0.1, (b) x1 = (aw + d)/2 = (0.1 + d0)/2 = 2.9178 . . ., and (c) x1 = d = d0 = 5.7357 . . ..
The solid lines indicate |ρdiff |, the dashed lines |v1diff |, the dash-dotted lines |Tdiff |, and the dash–double-dotted
lines |pdiff |. The curve of |v1diff | is excluded in (c) because v1 = 0 at x1 = d .

where C and α (= α′ ln 10 = α′ × 2.302 585 . . .) are constants and α is seemingly independent
of x1 and the physical quantities but dependent on the molecular model. The approach to the
time-periodic state is faster for hard-sphere molecules. The curves of F (t,x1) cease to decrease
when F (t,x1) becomes 10−5-10−7. This is probably because the computation has reached the limit
of accuracy. In fact, we have confirmed that the part for the exponential decay extends for finer space
grids and time steps. We now pick up the interval of t in which each curve corresponding to F (t,x1)
seems to be a straight line, that is, we take the interval 10 < t/2π � 30 for hard-sphere molecules
and 20 < t/2π � 50 for the BGK model. Then, for this interval, we construct an approximate
straight line, by the least-squares method, for each of ρ, v1, T , and p and for each of the three points
of x1 as well as two additional points x1 = (3aw + d)/4 = (0.3 + d0)/4 and x1 = (aw + 3d)/4 =
(0.1 + 3d0)/4. As a result, the gradient −α′ of the curve of log10 F is obtained as −1.65 × 10−2

(9 cases out of 19 cases), −1.64 × 10−2 (6 cases), −1.66 × 10−2 (2 cases), −1.62 × 10−2 (1 case),
and −1.67 × 10−2 (1 case) for hard-sphere molecules and −9.8 × 10−3 (7 cases out of 19 cases),
−9.9 × 10−3 (5 cases), −10.0 × 10−3 (3 cases), −9.7 × 10−3 (2 cases), and −10.1 × 10−3 (2 cases)
for the BGK model. Therefore, we can conclude that the factor α in Eq. (55) is approximately given
as α = 3.80 × 10−2 for hard-sphere molecules and α = 2.26 × 10−2 for the BGK model.

VIII. CONCLUSION

In the present paper we investigated the unsteady motion of a rarefied gas between two parallel
plates caused when one of the plates starts a harmonic oscillation in its normal direction. We
considered the case where the speed of oscillation of the plate is not necessarily small compared
to the sonic speed (i.e., fully nonlinear setting), but the Knudsen number is small. Therefore, as an
alternative to the Boltzmann or its model equations, for which accurate numerical computation for a
long time is difficult for small Knudsen numbers, we decided to use the compressible Navier-Stokes
equations and slip boundary conditions. However, it was practically impossible to find appropriate
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slip (or jump) boundary conditions for the compressible Navier-Stokes equations that can be applied
immediately to the present problem. For example, one can find formulas for slip boundary conditions
for compressible Navier-Stokes equations in [37]. However, the boundary is assumed to be at rest
and the numerical values of the coefficients in the formulas are not given. Therefore, we revisited
this classical problem and derived the correct temperature jump condition for the present problem
(Appendix B).

After we had prepared the boundary condition, we solved the compressible Navier-Stokes system
numerically by a method suitable for the present problem containing a plate moving in its normal
direction (Sec. VI). The result shows that the flow field approaches the time-periodic state after a
few tens of oscillations of the plate. The properties of this time-periodic state were investigated in
detail (Secs. VII B and VII C). When the speed of oscillation of the plate is not very small compared
to the sonic speed, the momentum in the outward direction and the energy, averaged over a period,
is transmitted to the stationary plate by the oscillating plate (Sec. VII B). This confirms the earlier
result [21] based on the BGK model for the intermediate Knudsen numbers, though the computation
there was carried out until shorter times.
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APPENDIX A: BOLTZMANN COLLISION INTEGRAL

In this Appendix we summarize the collision integral and related matters on the basis of [25].
Thus, the notation here basically follows that in [25] (see Sec. 1.9 and Appendix A in [25]). However,
since we avoided using a caret to indicate dimensionless quantities in the main text, there are some
differences in notation. For instance, [f,g,J (f,g)] in this appendix correspond to [f̂ ,ĝ,Ĵ (f̂ ,ĝ)] in
[25]. In addition, we occasionally use boldface to indicate vectors and a centered dot the scalar
product, e.g., ζ = ζi and α · (ζ ∗ − ζ ) = αj (ζ∗j − ζj ), here and in Appendix B.

1. Collision operators

We start with the definition of the bilinear form J (f,g):

J (f,g) = 1

2

∫
ζ ∗∈R3,α∈S2

(f ′g′
∗ + f ′

∗g
′ − fg∗ − f∗g)B̂d�(α)dζ ∗. (A1)

Here we used the convention, i.e., f = f (ζ ), f∗ = f (ζ ∗), f ′ = f (ζ ′), f ′
∗ = f (ζ ′

∗), and the same
for g; ζ , which was denoted by ζi in the main text, is the dimensionless molecular velocity; when
a pair of molecules with velocities ζ and ζ ∗ collide, the velocities of the respective molecules after
collision ζ ′ and ζ ′

∗ are expressed as

ζ ′ = ζ + [α · (ζ ∗ − ζ )]α, ζ ′
∗ = ζ ∗ − [α · (ζ ∗ − ζ )]α, (A2)

where α is the unit vector in the direction of ζ ′ − ζ ; dζ ∗ = dζ∗1dζ∗2dζ∗3 and d�(α) is the solid-angle
element around α; B̂ is a non-negative function of |α · (ζ ∗ − ζ )|/|ζ ∗ − ζ | and |ζ ∗ − ζ |, i.e.,

B̂ = B̂

( |α · (ζ ∗ − ζ )|
|ζ ∗ − ζ | ,|ζ ∗ − ζ |

)
, (A3)
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which depends on the intermolecular potential, and B̂ = |α · (ζ ∗ − ζ )|/4
√

2π for hard-sphere
molecules (see Sec. 1.9 and Appendix A in [25] for the details of B̂, noting that B̂ here is the
same as B̂ in [25]).

According to Sec. 1.9 in [25], the mean collision frequency ν̄c0 and the mean free path l0 in the
equilibrium state at rest with density ρ̃0 and temperature T̃0 are, respectively, expressed as

ν̄c0 = (ρ̃0/m)B0, l0 = (2/
√

π)c̃0/ν̄c0 = (2/
√

π )c̃0/(ρ̃0/m)B0, (A4)

where B0 is defined by

B0 = 1

ρ̃2
0

∫
f̃0(ζ̃ )f̃0(ζ̃ ∗)B

( |α · (ζ̃ ∗ − ζ̃ )|
|ζ̃ ∗ − ζ̃ | ,|ζ̃ ∗ − ζ̃ |

)
d�(α)d ζ̃ d ζ̃ ∗. (A5)

Here f̃0(ζ̃ ) is the dimensional Maxwellian with density ρ̃0, velocity 0, and temperature T̃0, i.e.,
f̃0(ζ̃ ) = ρ̃0(2πRT̃0)−3/2 exp(−|ζ̃ |2/2RT̃0), and B is the dimensional counterpart of B̂ appearing in
the dimensional form of the Boltzmann collision integral. In fact, B̂ is defined by B̂ = B/B0. For
hard-sphere molecules with diameter dm,

ν̄c0 = 2
√

2πc̃0d
2
m(ρ̃0/m), l0 = 1/

√
2πd2

m(ρ̃0/m). (A6)

When the intermolecular potential extends to infinity, the integral in Eq. (A5) generally diverges.
See Sec. 1.9 in [25] for the treatment in such a case.

The linearized collision operator L(·) is defined by

L(ϕ) = 2J (E,Eϕ)/E

=
∫

E(ζ∗)(ϕ′
∗ + ϕ′ − ϕ∗ − ϕ)B̂

( |(ζ ∗ − ζ ) · α|
|ζ ∗ − ζ | ,|ζ ∗ − ζ |

)
d�(α)dζ ∗, (A7)

where ζ∗ = (ζ 2
∗1 + ζ 2

∗2 + ζ 2
∗3)1/2, E(·) is the function defined by Eq. (16b), and the same convention

as in Eq. (A1) is used, i.e., ϕ∗ = ϕ(ζ ∗), ϕ′ = ϕ(ζ ′), etc. Now we introduce the following extended
linearized collision operator La(·):

La(ϕ) =
∫

E(ζ∗)(ϕ′
∗ + ϕ′ − ϕ∗ − ϕ)B̂a

( |(ζ ∗ − ζ ) · α|
|ζ ∗ − ζ | ,|ζ ∗ − ζ |

)
d�(α)dζ ∗, (A8)

where

B̂a = B̂a

( |α · (ζ ∗ − ζ )|
|ζ ∗ − ζ | ,|ζ ∗ − ζ |

)
= 1√

a
B̂

( |α · (ζ ∗ − ζ )|
|ζ ∗ − ζ | ,

√
a|ζ ∗ − ζ |

)
(A9)

and a is a positive quantity independent of ζ . Obviously, L1(ϕ) = L(ϕ) holds, and for hard-sphere
molecules, La(ϕ) = L(ϕ) holds.

For the BGK model, the dimensionless collision integral J (f,f ) in Eq. (8) is replaced by the
following JBGK(f ):

JBGK(f ) = ρ(fe − f ), (A10)

where fe is a local Maxwellian

fe = ρ

(πT )3/2
exp

(
− (ζi − vi)2

T

)
(A11)

and ρ, vi , and T are defined by Eq. (3a). In this model, the collision frequency νc of a molecule
with velocity ζ̃i depends neither on ζ̃i nor on the shape of f̃ and is assumed to be Acρ̃, where
Ac is a constant. This corresponds to the Maxwell molecules in which the intermolecular potential
is proportional to 1/r4, with r the distance between two molecules. Therefore, the mean collision
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frequency ν̄c0 and the mean free path l0 in the equilibrium state at rest with density ρ̃0 and temperature
T̃0 become

ν̄c0 = Acρ̃0, l0 = (2/
√

π )c̃0/Acρ̃0. (A12)

The linearized collision operators LaBGK(·) and LBGK(·) for the BGK model, which correspond to
La(·) and L(·), respectively, take the forms

√
aLaBGK(ϕ) =

∫ [
1 + 2ζ · ζ ∗ + 2

3

(
ζ 2 − 3

2

)(
ζ 2
∗ − 3

2

)]
ϕ(ζ ∗)E(ζ∗)dζ ∗ − ϕ(ζ ), (A13a)

LBGK(ϕ) = L1BGK(ϕ), (A13b)

where ζ = (ζ 2
1 + ζ 2

2 + ζ 2
3 )1/2.

2. Functions A and B(0)

The functions A(C,T ) and B(0)(C,T ) occurring in the first-order term of the Chapman-Enskog
solution (15) are defined as follows: A(ζ,a) is the solution of the integral equation

La[ζiA(ζ,a)] = −ζi

(
ζ 2 − 5

2

)
, (A14)

with the subsidiary condition ∫ ∞

0
ζ 4A(ζ,a)E(ζ )dζ = 0, (A15)

and the function B(0)(ζ,a) is the solution of the integral equation

La

[(
ζiζj − 1

3ζ 2δij

)
B(0)(ζ,a)

] = −2
(
ζiζj − 1

3ζ 2δij

)
. (A16)

In [25], A(ζ,1) is denoted by A(ζ ) and B(0)(ζ,1) by B(ζ ):

A(ζ,1) = A(ζ ), B(0)(ζ,1) = B(ζ ). (A17)

Thus, for hard-sphere molecules, A(ζ,a) = A(ζ ) and B(0)(ζ,a) = B(ζ ) for any a. The numerical
values of A(ζ ) and B(ζ ) for hard-sphere molecules are tabulated in Table 3.1 of [25] (see also
[45,46]). These numerical data make it possible to perform numerical integration of the integrals
in Eq. (19) and give 
1 and 
2 shown in Eq. (21a) [46]. For the BGK model, Eqs. (A14) [with
Eq. (A15)] and (A16), with La = LaBGK, give the solutions

A(ζ,a) = √
a
(
ζ 2 − 5

2

)
, B(0)(ζ,a) = 2

√
a, (A18)

which give 
1 and 
2 shown in Eq. (21b).

APPENDIX B: DERIVATION OF THE JUMP BOUNDARY CONDITIONS

In this Appendix we give an outline of the derivation of the jump boundary conditions (27). The
method of analysis is basically based on the asymptotic theory developed by Sone (see, e.g., [25]).
Therefore, the method itself is not new. However, the results that will be presented here are new in
the sense that they are not found in [25].

1. Knudsen layer: Equation

We restrict ourselves to the derivation of the condition (27a) on the oscillating plate. From the
result, the condition (27b) on the resting plate is derived immediately. Let us consider Eq. (26) near
the moving plate x1 = xw(t). Then � is appreciable only in the thin layer of thickness of the order
of ε adjacent to the plate. If we substitute Eq. (26) into the Boltzmann equation (8) and note the fact

013402-23



AOKI, KOSUGE, FUJIWARA, AND GOUDON

that

∂f
(1)
CE

∂t
+ ζ1

∂f
(1)
CE

∂x1
= 1

ε
J
(
f

(1)
CE ,f

(1)
CE

) + O(ε), (B1)

we have

ε

(
∂f (0)�

∂t
+ ζ1

∂f (0)�

∂x1

)
= 2J

(
f

(1)
CE ,f (0)�

) + εJ (f (0)�,f (0)�) + O(ε). (B2)

Further, if we note that

∂f (0)�

∂t
+ ζ1

∂f (0)�

∂x1
= f (0)

(
∂�

∂t
+ ζ1

∂�

∂x1

)
+ �f (0)O(1), (B3a)

2J
(
f

(1)
CE ,f (0)�

) = 2J (f (0),f (0)�) + εf (0)O(�), (B3b)

Eq. (B2) is transformed to

∂�

∂t
+ ζ1

∂�

∂x1
= 1

εf (0)
2J (f (0),f (0)�) + O(�). (B4)

Let us introduce the new coordinate system (t̂ ,η,ζ̂1,ζ̂2,ζ̂3) by

t̂ = t, εη = x1 − xw(t), ζ̂1 = ζ1 − vw(t), ζ̂2 = ζ2, ζ̂3 = ζ3 (B5)

and change the variables from (t,x1,ζ1,ζ2,ζ3) to (t̂ ,η,ζ̂1,ζ̂2,ζ̂3). More specifically, we write

�(t,x1,ζ1,ζ2,ζ3) = �̂(t̂ ,η,ζ̂1,ζ̂2,ζ̂3) (B6)

and assume that

∂�̂

∂η
= O(�̂), �̂ → 0 (rapidly) as η → ∞. (B7)

Then the left-hand side of (B4) becomes

∂�̂

∂t̂
+ 1

ε
ζ̂1

∂�̂

∂η
− v̇w(t̂)

∂�̂

∂ζ̂1
. (B8)

On the other hand, Eq. (A1) gives, with the same convention,

2J (f (0),f (0)�)(f (0))−1 =
∫

f (0)
∗ (�′

∗ + �′ − �∗ − �)B̂

( |(ζ ∗ − ζ ) · α|
|ζ ∗ − ζ | ,|ζ ∗ − ζ |

)
d�(α)dζ ∗,

(B9)

where

f (0)
∗ = ρ

(πT )3/2
exp

(
− (ζ∗1 − v1)2 + ζ 2

∗2 + ζ 2
∗3

T

)
, (B10)

and the fact that f (0)′f (0)′
∗ = f (0)f

(0)
∗ has been used. We consider the range of η for which � is

appreciable, i.e., η = O(1). Then, for h = ρ, v1, and T , we can write

h = h(t̂ ,xw(t̂) + εη) = hB(t̂) + O(εη), (B11)

where hB(t̂) ≡ h(t̂ ,xw(t̂)) indicates the value on the plate. If we assume Eq. (25), then from Eq. (B11)
we have

ρ = ρB(t̂) + O(εη), v1 = vw(t̂) + O(ε(η + 1)), T = 1 + O(ε(η + 1)). (B12)
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Therefore, f
(0)
∗ can be expressed as

f (0)
∗ = ρB

π3/2
exp

{ − [
(ζ∗1 − vw)2 + ζ 2

∗2 + ζ 2
∗3

]}
[1 + O(ε(η + 1))] = ρBE(ζ̂∗)[1 + O(ε(η + 1))].

(B13)

In the last expression, the new variable ζ̂i [Eq. (B5)] and E(·) defined in Eq. (16b) are used;
more specifically, ζ̂∗i is defined by Eq. (B5) with ζi = ζ∗i and ζ̂∗ = (ζ̂ 2

∗1 + ζ̂ 2
∗2 + ζ̂ 2

∗3)1/2. With this
expression, Eq. (B9) can be expressed in terms of the new variables as

2J (f (0),f (0)�)(f (0))−1 = ρB

∫
E(ζ̂∗)(�̂′

∗ + �̂′ − �̂∗ − �̂)

× B̂

( |(ζ̂ ∗ − ζ̂ ) · α|
|ζ̂ ∗ − ζ̂ | ,|ζ̂ ∗ − ζ̂ |

)
d�(α)d ζ̂ ∗ + O(ε(η + 1)�̂), (B14)

where ζ̂ ′
i and ζ̂ ′

∗i are defined by Eq. (B5) with ζi = ζ ′
i and ζi = ζ ′

∗i , respectively, so that ζ̂i , ζ̂∗i , ζ̂ ′
i ,

and ζ̂ ′
∗i satisfy the same relations as Eq. (A2). In Eq. (B14), the same convention is used: More

specifically, �̂ = �̂(t̂ ,η,ζ̂i), �̂∗ = �̂(t̂ ,η,ζ̂∗i), �̂′ = �̂(t̂ ,η,ζ̂ ′
i ), and �̂′

∗ = �̂(t̂ ,η,ζ̂ ′
∗i).

In summary, Eqs. (B8) and (B14) lead to the following expression of Eq. (B4):

ζ̂1
∂�̂

∂η
= ρBL(�̂) + O(ε(η + 1)�̂), (B15)

where the linearized collision operator defined by Eq. (A7) is used, i.e.,

L(�̂) =
∫

E(ζ̂∗)(�̂′
∗ + �̂′ − �̂∗ − �̂)B̂

( |(ζ̂ ∗ − ζ̂ ) · α|
|ζ̂ ∗ − ζ̂ | ,|ζ̂ ∗ − ζ̂ |

)
d�(α)d ζ̂ ∗. (B16)

Since �̂ vanishes rapidly as η → ∞, the term of O(ε(η + 1)�̂) in Eq. (B15), which is of O(ε) for
finite η, vanishes rapidly as η → ∞. If we neglect this term, introduce a new coordinate y by

y = ρBη, (B17)

and define

�̂(t̂ ,η,ζ̂i) = φ(t̂ ,y,ζ̂i), (B18)

then we have the following equation for φ:

ζ̂1
∂φ

∂y
= L(φ) (0 < y < ∞). (B19)

2. Knudsen layer: Boundary condition

Next we derive the boundary conditions for Eq. (B19). The velocity distribution function of the
form of Eq. (26) has to satisfy the boundary condition on the plate, Eq. (10a), that is,

f
(0)
B (1 + 	Bε + �Bε) = σw

π3/2
exp

(−{
[ζ1 − vw(t)]2 + ζ 2

2 + ζ 2
3

})
for ζ1 − vw(t) > 0, (B20a)

σw = −2π1/2
∫

ζ1−vw(t)<0
[ζ1 − vw(t)]f (0)

B (1 + 	Bε + �Bε)dζ , (B20b)

where the subscript B indicates the value on the plate, i.e., at x1 = xw(t) or η = 0, and the terms of
O(ε2) are omitted.

Now we recall Eq. (25a), i.e., v1B − vw(t) = O(ε) and TB − 1 = O(ε), and let

v1B − vw(t) = v̌1ε, TB − 1 = Ť ε. (B21)
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Then v̌1 = O(1) and Ť = O(1). By expanding v1B around vw(t) and TB around 1 in f
(0)
B and 	B ,

the boundary value f
(0)
B (1 + 	Bε) is expressed in the form

f
(0)
B (1 + 	Bε) = ρBE(ζ̂ )

[
1 + 2ζ̂1v̌1ε +

(
ζ̂ 2 − 3

2

)
Ť ε − 1

ρB

(
ζ̂ 2

1 − 1

3
ζ̂ 2

)(
∂v1

∂x1

)
B

B(0)(ζ̂ ,1)ε

− 1

ρB

ζ̂1

(
∂T

∂x1

)
B

A(ζ̂ ,1)ε + O(ε2)

]
, (B22)

where the variable ζ̂i [Eq. (B5)] and E(·) [Eq. (16b)] are used and ζ̂ = (ζ̂ 2
1 + ζ̂ 2

2 + ζ̂ 2
3 )1/2. If we

use this expression in the integrand in Eq. (B20b) and carry out possible integrations, we have the
following expression for σw:

σw = ρB[1 + δε + O(ε2)], (B23a)

δ = −√
πv̌1 + 1

2
Ť − 1

3ρB

(
∂v1

∂x1

)
B

∫ ∞

0
r5B(0)(r,1)e−r2

dr − 2
√

π

∫
ζ̂1<0

ζ̂1�BE(ζ̂ )d ζ̂ . (B23b)

Let us note that

�B = �(t,xw(t),ζi) = �̂(t̂ ,η = 0,ζ̂i) = φ(t̂ ,y = 0,ζ̂i). (B24)

Then Eq. (B20), together with Eqs. (B22)–(B24), gives the boundary condition for φ on the plate,
that is,

φ(t̂ ,y = 0,ζ̂i) = − (2ζ̂1 + √
π )v̌1 − (ζ̂ 2 − 2)Ť

+
[
−1

3

∫ ∞

0
r5B(r)e−r2

dr +
(

ζ̂ 2
1 − 1

3
ζ̂ 2

)
B(ζ̂ )

]
1

ρB

(
∂v1

∂x1

)
B

+ ζ̂1A(ζ̂ )
1

ρB

(
∂T

∂x1

)
B

− 2
√

π

∫
ζ̂∗1<0

ζ̂∗1φ(t̂ ,y = 0,ζ̂∗i)E(ζ̂∗)d ζ̂ ∗ for ζ̂1 > 0.

(B25)

Here the terms of O(ε) have been neglected and A(ζ̂ ,1) and B(0)(ζ̂ ,1) have been replaced by A(ζ̂ )
and B(ζ̂ ) [cf. Eq. (A17)]. In addition, because of Eq. (B7), φ should vanish rapidly as y → ∞, i.e.,

φ → 0 as y → ∞. (B26)

Equations (B25) and (B26) form the boundary conditions for Eq. (B19).

3. Jump boundary conditions

Before analyzing Eqs. (B19), (B25), and (B26), we integrate Eq. (B19) multiplied by E(ζ̂ ) with
respect to ζ̂i over its whole space. Then we have

∂

∂y

∫
ζ̂1φE(ζ̂ )d ζ̂ = 0, (B27)

since the integral of L(φ) vanishes. Because of Eq. (B26),∫
ζ̂1φE(ζ̂ )d ζ̂ = 0 (B28)

holds for any y. Therefore, we have∫
ζ̂1φ(t̂ ,y = 0,ζ̂i)E(ζ̂ )d ζ̂ = 0. (B29)
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On the other hand, the boundary condition (10a) satisfies the impermeability condition∫
[ζ1 − vw(t)]fBdζ =

∫
ζ̂1f

(0)
B [1 + 	Bε + �Bε + O(ε2)]d ζ̂ = 0. (B30)

Since f
(0)
B = ρBE(ζ̂ )[1 + O(ε)] and �B = φ(t̂ ,y = 0,ζ̂i) [Eq. (B24)], Eqs. (B29) and (B30) give

the relation ∫
ζ̂1f

(0)
B (1 + 	Bε)d ζ̂ = O(ε2). (B31)

Using Eq. (B22), performing the integration, and noting that
∫

ζ̂ 2
1 A(ζ̂ ,1)E(ζ̂ )d ζ̂ = 0, we obtain the

relation

v̌1 = [v1B − vw(t)]/ε = O(ε). (B32)

Therefore, we can neglect v̌1 in Eq. (B25).
The mathematical structure of the solution of the half-space boundary-value problem, Eqs. (B19),

(B25), and (B26), is discussed in [25] on the basis of the theorem conjectured in [47], proved in
[48], and further analyzed in [49] (the reader is also referred to the more recent overview in [50]).
In the present case, where v̌1 = 0 in Eq. (B25), the unique solution exists when Ť is related to
(1/ρB)(∂v1/∂x1)B and (1/ρB )(∂T /∂x1)B appropriately. This relation, which we will obtain below,
gives the boundary condition for the temperature.

Let us set

φ = 1

ρB

(
∂v1

∂x1

)
B

φv + 1

ρB

(
∂T

∂x1

)
B

φT , (B33a)

Ť = 1

ρB

(
∂v1

∂x1

)
B

αv + 1

ρB

(
∂T

∂x1

)
B

αT (B33b)

and insert them in Eqs. (B19), (B25) (with v̌1 = 0), and (B26). Then, because of the linearity of the
problem, we obtain the equations and boundary conditions for φv and φT : For φv the equation and
boundary conditions are

ζ̂1
∂φv(t̂ ,y,ζ̂ )

∂y
= L[φv(t̂ ,y,ζ̂ )], (B34a)

φv(t̂ ,0,ζ̂ ) = −2
√

π

∫
ζ̂∗1<0

ζ̂∗1φv(t̂ ,0,ζ̂ ∗)E(ζ̂∗)d ζ̂ ∗ − αv(ζ̂ 2 − 2)

− 1

3

∫ ∞

0
r5B(r)e−r2

dr +
(

ζ̂ 2
1 − 1

3
ζ̂ 2

)
B(ζ̂ ) (ζ̂1 > 0), (B34b)

φv(t̂ ,y,ζ̂ ) → 0 (y → ∞) (B34c)

and for φT they are

ζ̂1
∂φT (t̂ ,y,ζ̂ )

∂y
= L[φT (t̂ ,y,ζ̂ )], (B35a)

φT (t̂ ,0,ζ̂ ) = −2
√

π

∫
ζ̂∗1<0

ζ̂∗1φT (t̂ ,0,ζ̂ ∗)E(ζ̂∗)d ζ̂ ∗ − αT (ζ̂ 2 − 2) + ζ̂1A(ζ̂ ) (ζ̂1 > 0), (B35b)

φT (t̂ ,y,ζ̂ ) → 0 (y → ∞). (B35c)

The undetermined constants αv and αT are determined together with the solutions φv and φT ,
respectively.

Problem for φT . The problem for φT , Eq. (B35), is exactly the same as the classical
temperature jump problem (see, e.g., [27,51–54]). For hard-sphere molecules, the problem was
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solved numerically in [54] (see also [46]). We note that (y,ζ̂i ,φT ,αT ) (here) is equal to (x1,ζi,�K,β)
(in [54]), which is equal to (η,ζi,�1,b) (in [46]) and αT (here) is equal to d1 (in [25]; see Sec. 3.1.5
in [25]). For the BGK model, an accurate value of αT was obtained in [55,56]: αT (here) is equal
to d1 (in [55,56]). In summary, we have from [25] the values listed in Eq. (28), i.e., for hard-sphere
molecules and the BGK model, respectively,

αT = 2.4001, αT = 1.30272 (B36)

for the diffuse reflection.
Problem for φv . The problem for φv , Eq. (B34), has been studied rarely because it does not

correspond to a specific half-space problem of physical interest. It has appeared only in the
generalized slip flow theory (linear theory) with evaporation and condensation on the boundary
[25,56] (the BGK model) and that for time-dependent problems with solid boundary [34–36]
(hard-sphere molecules). For instance, (y,ζ̂1,φv,αv) (here) is equal to (η,μζ,φ5,c

(0)
5 ) (in [35]) and αv

(here) is equal to (4/3)d6 in [25,56]. To summarize, we have, from [35] for hard-sphere molecules
and from [25] for the BGK model, the values of αv listed in Eq. (28), i.e., for hard-sphere molecules
and the BGK model, respectively,

αv = 0.45957, αv = 0.44045 (B37)

for the diffuse reflection.
In summary, Eqs. (B21), (B32), and (B33b) give v1B and TB in the form

v1B − vw(t) = 0, TB − 1 = 1

ρB

(
∂v1

∂x1

)
B

αvε + 1

ρB

(
∂T

∂x1

)
B

αT ε, (B38)

where the term of O(ε2) in Eq. (B21) has been neglected. With the values of αv and αT mentioned
above, these relations give the boundary conditions for the Navier-Stokes equations on the oscillating
plate, i.e., at x1 = xw(t) [see Eq. (27a)]. The boundary conditions on the plate at rest, i.e., at x1 = d,
are obtained by replacing (x1,v1,vw) with (d − x1, − v1,0) in Eq. (B38) [see Eq. (27b)] and noting
that the subscript B indicates the values at x1 = d.

4. Macroscopic quantities inside the Knudsen layer

Let h stand for any of the macroscopic quantities ρ, vi , T , p, pij , and qi in this section. The
general relation between the velocity distribution function f and h is given by Eqs. (3a) and (3b).
For convenience in the following discussion, we use subscript CE to indicate h associated with
the Chapman-Enskog solution f

(1)
CE . To be more specific, hCE (or ρCE, vCEi , TCE, pCE, pCEij , and

qCEi) in this section is equal to h (or ρ, vi , T , p, pij , and qi) appearing in Secs. IV–VII and in
Appendixes B 1–B 3. The Chapman-Enskog solution is subject to the correction inside the Knudsen
layer [cf. Eq. (26)] to provide the correct solution there. We rewrite Eq. (26) in the following form,
using the subscript tot to indicate the correct solution inside the Knudsen layer:

ftot = f
(1)
CE + f (0)� + O(ε2) = f (0)(1 + 	ε + �ε) + O(ε2), (B39)

where it is noted that the macroscopic quantities contained in f (0) are hCE. Now we denote the
correct macroscopic quantities inside the Knudsen layer by htot and express it as

htot = hCE + h
(1)
K ε + O(ε2). (B40)

In other words, this provides the definition of h
(1)
K .

We derive h
(1)
K in the Knudsen layer at the oscillating plate [x1 = xw(t)]. The corresponding

result in the Knudsen layer at the resting plate (x1 = d) can be obtained immediately. We substitute
Eqs. (B39) and (B40) into the general relations (3a) and (3b) (with f = ftot and h = htot) and take
into account that f

(1)
CE and hCE also satisfy Eqs. (3a) and (3b). Then we simplify the expressions by
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using Eq. (B12) for hCE contained in the factors multiplied by � and neglect the terms of O(ε2).
After changing the integration variables from ζi to ζ̂i (thus changing from � to φ) [cf. Eqs. (B5),
(B6), and (B18)], we obtain the following expressions of h

(1)
K :

ρ
(1)
K = (ρCE)B

∫
φE(ζ̂ )d ζ̂ , v

(1)
Ki =

∫
ζ̂iφE(ζ̂ )d ζ̂ , (B41a)

T
(1)

K = 2

3

∫ (
ζ̂ 2
j − 3

2

)
φE(ζ̂ )d ζ̂ , p

(1)
K = (ρCE)BT

(1)
K + ρ

(1)
K , (B41b)

p
(1)
Kij = 2(ρCE)B

∫
ζ̂i ζ̂j φE(ζ̂ )d ζ̂ , q

(1)
Ki = (ρCE)B

∫
ζ̂i

(
ζ̂ 2
j − 5

2

)
φE(ζ̂ )d ζ̂ . (B41c)

From the symmetry of the problem [cf. Eq. (4)], v
(1)
K2 = v

(1)
K3 = 0, p

(1)
K12 = p

(1)
K21 = p

(1)
K23 = p

(1)
K32 =

p
(1)
K31 = p

(1)
K13 = 0, and q

(1)
K2 = q

(1)
K3 = 0. Furthermore, Eq. (B28) shows that v

(1)
K1 = 0. Integrating

Eq. (B19) multiplied by ζ̂1E(ζ̂ ) and that multiplied by (ζ̂ 2
j − 5/2)E(ζ̂ ) with respect to ζ̂i over its

whole space and repeating the argument that led to Eq. (B28), we observe that p
(1)
K11 = q

(1)
K1 = 0.

Now we remove the subscript CE and summarize the correct (nontrivial) macroscopic quantities
htot inside the Knudsen layer. That is, if we neglect the terms of O(ε2), we have

ρtot = ρ + ερ
(1)
K , vtot1 = v1, Ttot = T + εT

(1)
K , ptot = p + εp

(1)
K , (B42a)

ptot11 = p − 4

3
ε
1(T )

∂v1

∂x1
, ptot22 = p + εp

(1)
K22, ptot33 = p + εp

(1)
K33, (B42b)

qtot1 = −5

4
ε
2(T )

∂T

∂x1
, (B42c)

where

ρ
(1)
K = ρB

∫
φE(ζ̂ )d ζ̂ , T

(1)
K = 2

3

∫ (
ζ̂ 2
j − 3

2

)
φE(ζ̂ )d ζ̂ , (B43a)

p
(1)
K = ρBT

(1)
K + ρ

(1)
K , p

(1)
Kij = 2ρB

∫
ζ̂i ζ̂j φE(ζ̂ )d ζ̂ . (B43b)

If we insert Eq. (B33a) in Eq. (B43a), we have

ρ
(1)
K =

(
∂v1

∂x1

)
B

�v(y) +
(

∂T

∂x1

)
B

�T (y), (B44a)

T
(1)

K = 1

ρB

(
∂v1

∂x1

)
B

�v(y) + 1

ρB

(
∂T

∂x1

)
B

�T (y), (B44b)

where

�v(y) =
∫

φvE(ζ̂ )d ζ̂ , �T (y) =
∫

φT E(ζ̂ )d ζ̂ , (B45a)

�v(y) = 2

3

∫ (
ζ̂ 2
j − 3

2

)
φvE(ζ̂ )d ζ̂ , �T (y) = 2

3

∫ (
ζ̂ 2
j − 3

2

)
φT E(ζ̂ )d ζ̂ . (B45b)

For hard-sphere molecules, �T (y) and �T (y) were obtained in [46,54]. More precisely,
[y,�T (y),�T (y)] (here) is equal to [x1,�(x1),�(x1)] (in [54]), which is equal to [η,�(η),�(η)]
(in [46]) and [η,�1(η),�1(η)] (in [25]). These functions are tabulated in the respective references
(see, for example, Table 3.2 in [25]). On the other hand, �v(y) and �v(y) were obtained in [35];
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[y,�v(y),�v(y)] (here) is equal to [η,�
(0)
5 (η),�(0)

5 (η)] (in [35]) and �
(0)
5 (η) and �

(0)
5 (η) are tabulated

in Table 5.2 of [35].
For the BGK model, �T (y) and �T (y) were obtained, e.g., in [56]; [y,�T (y),�T (y)] (here) is

equal to [η,�1(η),�1(η)] (in [56]), which is equal to [η,�1(η),�1(η)] (in [25]) and these functions are
tabulated in the respective references (see, for example, Table 3.3 in [25]). As for �v(y) and �v(y),
they were also obtained in [56]; [y,�v(y),�v(y)] (here) is equal to [η,(4/3)�6(η),(4/3)�6(η)] (in
[56]), which is equal to [η,(4/3)�6(η),(4/3)�6(η)] (in [25]), and �6(η) and �6(η) are tabulated, for
instance, in Table 3.3 in [25].

Once the data of �v(y), �v(y), �T (y), and �T (y) are obtained from the references quoted above,
the correct macroscopic quantities ρtot, Ttot, and ptot are obtained from Eqs. (B42a), (B43b), and
(B44) (we omit the result of p

(1)
K22 and p

(1)
K33). We emphasize that vtot1, ptot11, and qtot1 are free from

the Knudsen-layer corrections.
The form of Eq. (B42) is the same in the Knudsen layer at the resting plate (x1 = d). The

corresponding corrections ρ
(1)
K and T

(1)
K are obtained by replacing (x1,v1) with (d − x1, − v1),

defining y by y = ρB(d − x1)/ε, and noting that the subscript B indicates the values at x1 = d in
Eq. (B44).

APPENDIX C: DATA AND ACCURACY TEST FOR NUMERICAL COMPUTATION

First, we summarize the data for the numerical computation. We have used uniform cells in x1.
The number of the cells Nx per length d0 = 2π

√
5/6 = 5.7357 . . . is common to all the results shown

in the figures and is 2000 (note that N = Nx for d = d0, N = 3Nx for d = 3d0, etc.). Therefore, the
size of a cell �x when the oscillating plate is located at x1 = 0 is �x = d0/2000 = 0.0028 . . .. The
time step is also uniform and the number of steps Nt per period is from 3.2 × 105 to 1.28 × 106. More
precisely, the time step is �t = 2π/3.2 × 105 = 1.9 . . . × 10−5 for the result shown in Figs. 2, 3, 5,
and 6; �t = 2π/6.4 × 105 = 9.8 . . . × 10−6 for Fig. 4; and �t = 2π/1.28 × 106 = 4.9 . . . × 10−6

for Fig. 7. The �x and �t for the results shown in Figs. 8, 9, and 11 are more or less based on the
data given above.

We next give some examples of the accuracy check. Hereafter, we consider the case of
ε = 0.1, aw = 0.1, and d = d0. In the following, we use the four grid systems: grid 1,
�x = d0/500 = 1.1 . . . × 10−2 and �t = 2π/8 × 104 = 7.8 . . . × 10−5; grid 2, �x = d0/1000 =
5.7 . . . × 10−3 and �t = 2π/1.6 × 105 = 3.9 . . . × 10−5; grid 3, �x = d0/2000 = 2.8 . . . × 10−3

and �t = 2π/3.2 × 105 = 1.9 . . . × 10−5; and grid 4, �x = d0/4000 = 1.4 . . . × 10−3 and �t =
2π/6.4 × 105 = 9.8 . . . × 10−6.

Let h stand for ρ, v1, T , and p and let hGi denote the result of h based on the grid (grid i)
(i = 1,2,3,4). At t/2π = 200, we have |hG1 − hG4| < 1.2 × 10−4, |hG2 − hG4| < 3.3 × 10−5, and
|hG3 − hG4| < 8.6 × 10−6. This shows that the grid systems used in the computation have given the
results of sufficient accuracy. Here �t and �x are related as �t = c�x with c = 0.006 846 . . ., so
the scheme (48) should have second-order accuracy in x (see the last paragraph in Sec. VI A). The
errors listed here are consistent with the second-order accuracy. Similar checks have been carried
out by changing �x for a fixed �t (�t = 9.8 . . . × 10−6) and by changing �t for a fixed �x

(�x = 1.1 . . . × 10−2), but the results are omitted here.
The total mass of the gas between the two plates per unit area of the plates is expressed as

m(t) =
∫ d

xw(t)
ρ(t,x1)dx1, (C1)

which is theoretically constant. However, because of numerical errors, it changes slightly with
time. If we plot |m(t) − m(0)|/m(0) versus t , it increases almost linearly in t , oscillating with an
amplitude that does not increase with t , after some tens of the periods. We evaluated the average
amplitude rm [i.e., the average of the maximum minus the minimum in each period (n < t/2π �
n + 1; n = 100,101, . . . ,199) over 100 � t/2π � 200] and the average rate of increase sm of
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the maximum per one period (i.e., the maximum in 199 < t/2π � 200 minus the maximum in
100 < t/2π � 101 divided by 100). The result is as follows: rm ≈ 3.2 × 10−6 and sm ≈ 3.7 × 10−8

for grid 1, rm ≈ 8.3 × 10−7 and sm ≈ 1.8 × 10−8 for grid 2, rm ≈ 2.7 × 10−7 and sm ≈ 9.0 × 10−9

for grid 3, and rm ≈ 1.6 × 10−7 and sm ≈ 4.5 × 10−9 for grid 4. The results show that better mass
conservation is attained with finer grid systems.

Finally, we consider the momentum and energy transfer. In the time-periodic state, PL = PR and
EL = ER hold (cf. Sec. VII B). We check how accurately these relations are satisfied numerically.
Let us setPerr = (PL − PR)/aw and Eerr = (EL − ER)/aw. ThenPerr ≈ 3.2 × 10−6 and Eerr ≈ 2.5 ×
10−4 (grid 1), Perr ≈ −3.5 × 10−6 and Eerr ≈ 2.5 × 10−4 (grid 2), Perr ≈ −6.8 × 10−6 and Eerr ≈
2.5 × 10−4 (grid 3), and Perr ≈ −8.2 × 10−6 and Eerr ≈ 2.5 × 10−4 (grid 4). This shows that the
grid refinement (grid 1 → grid 4) does not improve the conservation properties of momentum and
energy. On the other hand, we obtained a better result: Perr ≈ 4.0 × 10−7 and Eerr ≈ 3.2 × 10−5

for the grid system with �x = d0/500 = 1.1 . . . × 10−2 and �t = 2π/6.4 × 105 = 9.8 . . . × 10−6.
This and other tests suggest that to have better momentum and energy conservation, smaller time
steps are required.
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