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Abstract

We are concerned with the numerical simulation of certain multi-fluids flows, which in
particular arise in the modeling of powder–snow avalanches. The behavior of the mixture is
described through a single mass density and a velocity field, with an unusual constraint that
relates the divergence of the velocity to derivatives of the density. We discuss a derivation of
the model from a Eulerian-Lagrangian description of the mixture. We propose a numerical
scheme based on a hybrid Finite Volume/Finite Element method. This approach is validated
by comparison to analytical solutions, numerical solutions and experimental data. The scheme
works on unstructured meshes and it can be advantageously coupled to mesh refinements
strategies in order to follow fronts of high density variation. We explore numerically the
role of the leading coefficients that characterize the flow: the Froude, the Reynolds and the
Schmidt numbers.

Keywords : Variable density flows. Mixture flows. Finite Volume method. Finite Element
method. Unstructured meshes. Particulate flows and hydrodynamic regimes.

Introduction

We are concerned with systems of PDEs describing the evolution of mixture flows. The fluid is
described by the density ρ(t, x) ≥ 0, depending on time t ≥ 0 and space x ∈ Ω ⊂ RN , and the
velocity field u(t, x) ∈ RN . These quantities obey mass conservation and momentum balance,
respectively, which read

∂tρ+∇x · (ρu) = 0, (1)
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and
∂t(ρu) + Divx(ρ u⊗ u) +∇xp = ρg + Divx

(
2µD(u)

)
(2)

with D(u) = (∇xu+∇xu
T )/2. In (2), g stands for the gravity acceleration (but it can include further

external forces), while µ represents the dynamic viscosity of the fluid. This positive quantity might
depend on the density ρ as we shall detail below. The originality of the modeling of mixtures relies
on the definition of the pressure p. It is associated to the non–standard constraint

∇x · u = −∇x ·
(
κ∇x ln(ρ)

)
(3)

where κ is a positive coefficient. Of course, when κ = 0 the system (1)–(3) is nothing but the usual
Incompressible Navier–Stokes system. In this specific case, we have ∇x · u = 0 and the density
remains constant along the characteristic curves (t, x) 7→ X(t, x) of the flow:

d

dt

[
ρ(t,X(t, x))

]
= 0,

d

dt
X(t, x) = u(t,X(t, x)), X(0, x) = x

(as long as u is smooth enough and the definition of X makes sense). Accordingly, when the fluid
is initially homogeneous, it remains homogeneous for ever. Dealing with non–homogeneous flows,
the system (1)–(2) with ∇x · u = 0 couples equations of different types and it presents specific
difficulties, both for mathematical analysis and numerical simulation. For instance, a fine analysis
of the well-posedness issues can be found in [19, 22] and for further results and comments we refer
the reader to [7, Chapter 6, Section 2] or [51, Chapter 2]. Similarly, the numerical treatment is by
no way a mere adaptation of the homogeneous case, see [14, 16] and the references therein. In this
paper, we shall consider the case κ > 0 and we wish to construct numerical methods able to handle
this non–standard coupling.

The Fick law (3) relating the divergence of the velocity field to derivatives of the density has
been introduced in [42, 47] and it has been further developed in [11, 36, 46, 61] for modeling
flows where species (like salt or pollutant) are dilute in a compressible or incompressible fluid.
The mixture is seen as an averaged continuum, described by a single pair density–velocity field.
Therefore, the density ρ is naturally highly non homogeneous, and the constitutive law (3) accounts
for diffusion effects between the constituents of the mixture. It is worth pointing out that the model
has been independently discussed as a correction to the standard fluid mechanics, even for single-
phase flows [9, 12] (and for analysis reasonings that bring out remarkable mathematical structures
of the corrected system, see [34]). In this work, we are particularly interested in the application of
the model to reproduce powder–snow avalanches, as it has been proposed in [24, 27, 30, 55, 56].
Questions of existence and uniqueness of solutions are investigated in [6, 47, 64, 65, 49] and [5,
Chapter 3, Section 4]. The analysis has been completed recently in [13, 50] by using energy
estimates available when a specific relation holds between the viscosity µ and the coefficient κ (see
below), and in [44] where the numerical analysis viewpoint is developed from a Finite Element
approximation. It is worth mentioning that (1)–(2) completed with the constraint (3) shares many
features with low Mach models which arise in combustion theory. In low Mach models the logarithm
in (3) is replaced by another function of the density. We refer the reader to [52, Section 8.8] for a
sketch of analysis on weak solutions, see also [20, 49], and to [1, 2] for further details on low Mach
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regimes. We shall go back to these questions elsewhere; here we focus on the difficulties introduced
by the constraint (3) and applications to mixture flows.

The purpose of this paper is two–fold. On the one hand, we propose an overview of the modeling
issues, and we bring out the role of certain simplifying hypotheses. It allows to construct a hierarchy
of models. On the other hand, we propose a dedicated numerical method for the simulation of such
mixture flows, paying a specific attention to the simulation of powder-snow avalanches. Comparison
with other numerical simulations and experimental data demonstrate the relevancy of the model
and of the numerical techniques. In Section 1 we review the basis of the derivation of the system
(1)–(3) when describing mixture flows. In particular, we clarify the fact that different formulations
of the problem can be naturally used and we present a hierarchy of models with gradual difficulties
for numerics — and certainly for mathematical analysis too. This discussion is completed by an
Appendix where we detail how the constitutive law can be derived from the Eulerian–Lagrangian
modeling of particulate flows, in a certain hydrodynamic regime. This derivation might open new
perspectives, with models involving generalized closure relations [41]. Section 2 is mainly devoted
to the numerical simulation of avalanche phenomena. Firstly, we detail in Section 2.1 the principles
of the numerical method we propose to solve the system. A hybrid scheme is introduced, which
combines a Finite Volume method for solving the mass conservation equation to a Finite Element
method for solving the momentum balance equation and the constraint. This strategy is directly
inspired from our works [16, 14] on incompressible flows. We point out that the scheme works on
unstructured meshes, thus it is well adapted to incorporate mesh refinement procedures. In turn,
the scheme is quite efficient in capturing displacements of fronts, characterized by high variation of
the density, a typical feature of powder–snow avalanches. Secondly, in Section 2.2, we check through
numerical experiments and direct comparison with analytical solutions the accuracy properties of
the scheme. Thridly, Section 2.3 is concerned with the simulation of realistic avalanche phenomena,
and we can compare the numerical tests to other results available in the literature, obtained with
completely different numerical strategies, possibly based on the use of commercial softwares, or
coming from laboratory experiments. It turns out that the Froude, the Reynolds and the Schmidt
numbers are the key parameters that govern the flow, and grade the numerical difficulty. Finally,
in Section 2.4, we investigate the role of these parameters, based on numerical grounds.

1 Modeling of Mixtures

In this Section, we review various aspects of the derivation of the system (1)–(3). To this end, let
us introduce a few notation. We assume that the mixture is made of a disperse phase interacting
with a dense phase, but we shall adopt an averaged description of the flow. The two fluids that
constitute the mixture are characterized by their reference mass density: we denote ρ̄f the density
of the dense phase and ρ̄d the density of the dilute phase. We also need the velocity field of each
constituent: uf (t, x) and ud(t, x), respectively. We define the volume fraction of the disperse phase
0 ≤ φ(t, x) ≤ 1:

φ(t, x) = lim
r→0

Volume occupied at time t by the disperse phase in B(x, r)

|B(x, r)|
.
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Therefore, assuming that each phase is incompressible and keeps a constant mass density, the
density of the mixture is defined by the convex combination

ρ(t, x) = ρ̄f
(
1− φ(t, x)

)︸ ︷︷ ︸
:=ρf (t,x)

+ ρ̄dφ(t, x)︸ ︷︷ ︸
:=ρd(t,x)

= ρ̄f + (ρ̄d − ρ̄f )φ(t, x). (4)

We can write the mass conservation for the two phases

∂tρf +∇x · (ρfuf ) = 0 = ∂tρd +∇x · (ρdud).

Accordingly we obtain
∂tρ+∇x · (ρu) = 0 (5)

where
ρu(t, x) = (ρfuf + ρdud)(t, x),

defines the mean mass velocity (or barycentric velocity) u(t, x). Note that, even if the two con-
stituents are incompressible, u is not divergence free, by contrast to the mean volume velocity

v(t, x) =
(
1− φ(t, x)

)
uf (t, x) + φ(t, x)ud(t, x).

Indeed, the velocity field v is solenoidal because

∂t

(ρf
ρ̄f

+
ρd
ρ̄d

)
= ∂t(1− φ+ φ) = 0

= −∇x ·
(ρfuf
ρ̄f

+
ρdud
ρ̄d

)
= −∇x · v = 0.

Next, we write the usual momentum equation for ρu, that is

∂t(ρu) + Divx(ρ u⊗ u) +∇xp = ρg + Divx(2µD(u))

with D(u) = (∇xu+∇xu
T )/2. The definition of the pressure p comes from a constitutive relation

which postulates a Fick law between u, v and ρ.

1.1 The Kazhikhov–Smagulov Model

According to Kazhikhov and Smagulov [47] we set

u = v − κ∇x ln(ρ),

for some constant κ > 0. This Fick’s law describes the diffusive fluxes of one fluid into the other
[46, 61]. Clearly, this relation yields (3). In [36], it is found convenient to derive the Kazhikhov-
Smagulov relation from a similar relation for the fields associated to the dense phase, namely

uf = u− κ∇x ln(ρf/ρ).

Here, we point out another relation, involving the evolution of the volume fraction.

4



Lemma 1 Let the mixture density ρ be defined by (4). It satisfies the mass conservation (5) and
the following assertions are equivalent:

i) There exists κ > 0 and a solenoidal field v such that u = v − κ∇x ln(ρ),

ii) There exists κ̃ > 0 such that the volume fraction φ satisfies the convection–diffusion equation

∂tφ+∇x · (φu) = ∇x ·
(
κ̃∇x ln

(
ρ̄f + (ρ̄d − ρ̄f )φ

))
.

Proof. We rewrite the mass conservation (5) as follows

∂t
(
ρ̄f + (ρ̄d − ρ̄f )φ

)
+∇x ·

((
ρ̄f + (ρ̄d − ρ̄f )φ

)
u
)

= 0

= (ρ̄d − ρ̄f )
(
∂tφ+∇x · (φu)

)
+ ρ̄f∇x · u.

Let us assume that i) holds. Since v is divergence free, we obtain

∂tφ+∇x · (φu) =
ρ̄f

ρ̄d − ρ̄f
∇x ·

(
κ∇x ln

(
ρ̄f + (ρ̄d − ρ̄f )φ

))
=

ρ̄f
ρ̄d − ρ̄f

∇x ·
(
κ∇x ln(ρ)

)
.

Hence ii) holds with κ̃ = κ
ρ̄f

ρ̄d−ρ̄f
. Conversely, assuming ii), the mass conservation imposes

∇x · u = − ρ̄d − ρ̄f
ρ̄f

∇x ·
(
κ̃∇x ln

(
ρ̄f + (ρ̄d − ρ̄f )φ

))
= − ρ̄d − ρ̄f

ρ̄f
∇x ·

(
κ̃∇x ln(ρ)

)
.

We conclude that i) holds.
This statement is important because it implies that different choices of unknowns are equivalent

which, in turn, can motivate different numerical strategies. Indeed, instead of working with density
ρ and velocity u as numerical unknowns like in [24], it is equally relevant to solve the evolution
PDEs for φ and u, using ρ = ρ̄f + (ρ̄d − ρ̄f )φ. The alternative parallels with Zero-Mach flows,
where we can work either with the mass density or the temperature as primary unknown. Then the
mass conservation (5) appears as the constraint that defines the pressure. We refer the reader to
[4, 27, 30] where this viewpoint is adopted. Beyond the description of mixture flows, the interested
reader can find in Brenner’s papers [9, 10, 11, 12] the elements on a deep debate on the role of
mean mass velocity and mean volume velocity in fluid mechanics.

1.2 A hierarchy of models

Instead of working with (3), it can be convenient to consider instead a solenoidal velocity field.
From now on, we set

v = u+ κ∇x ln(ρ).

Then (1) becomes a convection–diffusion PDE

∂tρ+∇x · (vρ) = κ∆xρ. (6)
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For the momentum equation (2), we start by writing it in non conservative form

ρ
(
∂tu+ (u · ∇x)u

)
+∇xp = ρg + Divx

(
2µD(u)

)
.

Next, we observe that

ρ∂tu = ρ∂tv − κρ∂t∇x ln(ρ)

= ρ∂tv + κ
(
∇x(v · ∇xρ)− ∇xρ

ρ
v · ∇xρ

)
− κ2

(
∇x∆xρ−

∇xρ

ρ
∆xρ

)
,

while
Divx

(
2µD(u)

)
= Divx

(
2µD(v)

)
− κDivx

(
2µD2

x ln(ρ)
)

where, for a scalar function h : (t, x) ∈ (0, T ) × RN 7→ h(t, x) ∈ R, we denote by D2
xh the hessian

matrix with components ∂xi∂xjh(t, x), and

ρ(u · ∇x)u = ρ(v · ∇x)v − κ
(

(∇xρ · ∇x)v + ρ(v · ∇x)
∇xρ

ρ

)
+ κ2(∇xρ · ∇x)

∇xρ

ρ
.

Furthermore, we remark that

∇x(v · ∇xρ)− ∇xρ

ρ
v · ∇xρ− ρ(v · ∇x)

∇xρ

ρ
= ∇xv

T∇xρ.

Therefore we arrive at

ρ
(
∂tv + (v · ∇x)v

)
+∇xp = ρg + Divx(2µD(v))

+κ(∇xv −∇xv
T )∇xρ

+κ2
(
∇x∆xρ−Divx

(∇xρ⊗∇xρ

ρ

))
−κDivx

(
2µD2

x ln(ρ)
)
.

(7)

The system (6)–(7) completed by the condition ∇x · v = 0 is equivalent to (1)–(3). The advantage
relies on the fact that we are dealing with a solenoidal velocity, but we have simplified the constraint
at the price of introducing high order terms in the mass and momentum balance laws. For physical
arguments favoring this formulation, we refer the reader to [9, 10, 12].

In the Appendix, we propose a derivation of Kazhikhov–Smagulov-like systems from a particulate-
flow description: the dilute phase is described by means of its particle distribution function and
the interaction with the carrier fluid is driven by drag forces. We discuss asymptotic regimes that
allow us to identify limiting hydrodynamic equations. Let us now detail various manipulations and
simplifications that can be performed on the model (6)–(7).

a) When the viscosity µ is constant, the last term in (7) is a gradient: κDivx
(
2µD2

x ln(ρ)
)

=
2κµ∇x∆x ln(ρ) which can be incorporated in the pressure, like the term κ2∇x∆xρ. This is
the situation treated in [36].
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b) A more relevant case consists in assuming that µ is an affine function of ρ. It arises in
particular when using the formula proposed in [26] for the effective viscosity of suspensions.
According to [26], we have

µ(ρ) = µ?

(
1 +

N + 2

2
φ
)

= µ?

(
1− N + 2

2

ρ̄f
ρ̄d − ρ̄f

+
N + 2

2(ρ̄d − ρ̄f )
ρ
)

= µ̄+ µ̃ρ (8)

with µ? the standard viscosity of the fluid, and N the space dimension. Like in a), the
contribution in the last term of (7) associated to µ̄ can be incorporated in the pressure. The
perturbation reads

2µ̃Divx
(
ρD2

x ln(ρ)
)

= 2µ̃
(
∇x∆xρ−Divx

(∇xρ⊗∇xρ

ρ

))
.

The first term in the right hand side can disappear in the pressure gradient. With this
assumption on µ, which appears in [24], (7) can be recast as

ρ
(
∂tv + (v · ∇x)v

)
+∇xp = ρg + Divx(2µ(ρ)D(v))

+κ(∇xv −∇xv
T )∇xρ

+κ(κ− 2µ̃)Divx

(∇xρ⊗∇xρ

ρ

)
.

(9)

c) The Kazhikhov-Smagulov model [47] is obtained by neglecting the last term in the right hand
side of (9), which contains the higher nonlinearities and derivatives with respect to ρ, leading
to : 

∂tρ+∇x · (ρv) = κ∆xρ,
ρ
(
∂tv + (v · ∇x)v

)
+∇xp = ρg + Divx(2µ(ρ)D(v)) + κ(∇xv −∇xv

T )∇xρ,
∇x · v = 0,

(10)

This can be motivated by assuming 0 < κ � 1 and 0 < µ̃ � 1 (or µ̃ = 0 as in [36, 47]).
The later makes sense with Einstein’s formula (8) in the regime ρ̄d/ρ̄f � 1. The Kazhikhov-
Smagulov system is analyzed in [47] and [5, Chap. 3, Sect. 4, sp. Theorem 4.1] for the case
where µ is constant: assuming κ < 4 µ

ρ̄f−ρ̄d
, where 0 < ρ̄f , ρ̄d < ∞ stand for the extreme

values of the initial density, the global existence (and uniqueness in dimension 2) of a weak
solution is established. For the full model (6)–(7), local existence of solutions is shown in
[6, 64], as well as global results for small data [6] or assuming a smallness condition on the
ratio κ/µ [65]. Instead of using asymptotic arguments, ref. [24] gets rid of the last term in (9)
by postulating a ad hoc relation between the coefficient κ and µ̃, namely assuming κ = 2µ̃.
Not only this assumption simplifies the model, but it also leads to a remarkable balance law
for the energy of the system, see [24, Section 2.2]. The mathematical analysis of this specific
case is due to [13, 50, 49].

d) A further simplification arises by considering the viscosity µ constant and pushing forward
the asymptotic regime in c). We get rid of all O(κ) terms, but not in the mass conservation.
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We obtain in this way the Graffi model [42]
∂tρ+∇x · (ρv) = κ∆xρ,

ρ
(
∂tv + (v · ∇x)v

)
+∇xp = ρg + 2µ̄Divx

(
D(v)

)
,

∇x · v = 0.
(11)

A derivation of (11) from (6) and (9), with the divergence free constraint, is proposed in [36]
in the regime of small Graffi numbers G = µ̄κ

gρ̄fL3 � 1, with L a certain length of reference.

1.3 Application to powder–snow avalanches

Kazhikhov-Smagulov equations have been introduced in order to model pollution spread in atmo-
spheric flows or contaminant spread in groundwater, with further analysis on the instability of
certain layered configurations [36]. The model (10) has also been proposed to simulate the forma-
tion of powder-snow avalanches [24]. It also appeared in a slightly different form, with the dilute
volume fraction as a privileged unknown, in [27, 30]. Powder-snow avalanches can be seen as a
suspension cloud of snow particles, with a relatively dense core, surrounded by a suspension layer.
During the motion along steep slopes, air is entrained in the flow. Thus, air and snow make a com-
plex mixture. The physical characteristics of the flow make relevant to describe it like a single phase
gravity flow [62, 29]. However the mixture is characterized by quite large density variations, the
bulk density of the snow being a few tens that of the air. Accordingly Boussinesq’s approximation
in this context is highly questionable [27, 30, 56, 55], and using PDEs in the Kazhikhov-Smagulov
hierarchy for the simulation of powder-snow avalanches looks a valuable attempt.

2 Numerical Simulations

This section is devoted to the numerical simulation of solutions arising from case c) above. It
is convenient to work with dimensionless quantities. To this end, we introduce time and length
scales of reference, denoted T and L, respectively. We set U = L/T as to be the velocity unit.
We also need reference values for the mass density and the dynamic viscosity, ρ̄ > 0 and µ̄ > 0
respectively. They define the kinematic viscosity ν̄ = µ̄/ρ̄. Accordingly, with the convention that
starred quantities are dimensionless, we set

t = t? T, x = x? L,
v(t, x) = U v?(t?, x?), ρ(t, x) = ρ̄ ρ?(t?, x?),
µ(ρ) = 2 ν̄ ρ̄ µ?(ρ?).

We finally define the unit vector pointing in the direction of the gravity field g? by g = ‖g‖ g?.
To make the notation less cluttered, we skip from now on all the stars subscripts, having in mind
that, unless explicitly mentioned, all the variables are understood as dimensionless ones. Then, the
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dimensionless form of the system reads :

(i) ∂t ρ+∇x · (ρv) =
1

Re Sc
∆x ρ,

(ii) ρ
(
∂t v + (v · ∇x)v

)
+∇xp =

1

Fr2ρg +
1

Re
Divx(µ(ρ)D(v))

+
1

Re Sc
(∇xv −∇xv

T )∇xρ,

(iii) ∇x · v = 0.

(12)

The physics is embodied into three dimensionless parameters: the Reynolds number Re, the
Froude number Fr and the Schmidt number Sc:

Re =
U L

2ν̄
, Fr =

U√
‖g‖L

, Sc =
2 ν̄

κ
. (13)

The Reynolds number evaluates the strength of convection compared to viscous diffusion, the
Froude number compares the strength of inertial and gravity forces, and the Schmidt number is
the ratio of viscosity (velocity diffusivity) and mass diffusivity. Dealing with mixture flows, it is
also relevant to introduce the so–called densimetric Froude number, which is defined by:

Frd =
U√

‖g‖L ∆ρ

ρd

,

where ∆ρ = ρ̄f − ρ̄d is the difference between the extremal values of the density in the flow.
The equations are set on a bounded domain Ω ⊂ RN (N = 2 in the numerical experiments

below). The definition of relevant boundary conditions that complete (12) is definitely a delicate
modeling issue. All the simulations discussed below are performed by using the no-slip boundary
condition for the velocity field and the Neumann boundary condition for the density

v
∣∣
∂Ω

= 0, ∇xρ · ~n
∣∣
∂Ω

= 0, (14)

with ~n the outward normal unit vector on ∂Ω. As a matter of fact, (14) ensures that there is no
mass influx, and the total mass is conserved by the system: d

dt

∫
Ω
ρ(t, x) dx = 0. These boundary

conditions are equally used for the mathematical investigation of the problem in [5, 13, 44]. They
also complete the system (12) for the simulations of avalanches in [24]. In [27, 30], the Neumann
boundary condition is maintained for the density, but the no-slip condition is imposed on the mean
mass velocity u = v − 1

ReSc
∇x ln(ρ). It also makes sense to impose a friction law, characterized by

a coefficient 0 < α < 1, on the velocity

v · ~n
∣∣
∂Ω

= 0,
[
(1− α)v + αD(v)~n

]
· ~t
∣∣
∂Ω

= 0,

with ~t the tangential vector at ∂Ω, see [24], or its equivalent form on u, see [27, 30]. To decide
whether the mean mass or the mean volume velocity enters into the no-slip boundary condition is
an issue subject to debate. In [10] it is argued that the boundary condition should be

u · ~n
∣∣
∂Ω

= 0, (I− ~n⊗ ~n)v
∣∣
∂Ω

= 0.
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2.1 Description of the scheme

Several numerical approaches are available for the numerical approximation of the solutions of
(12). The simulations in [24] are realized with the open–source code OpenFoam; as far as we know
the simulations are based on a second order upwind finite volume scheme, performed on a fixed
Cartesian grid (but we are not aware of the technical details of the whole scheme). A dedicated code
has been developed in [27, 29, 30]. It uses Finite Element discretizations, coupled to a characteristic
method to treat the convection terms. The scheme is coupled to mesh refinement procedures, in
order to follow the displacement of the avalanche front. Reference [44] is concerned with numerical
analysis purposes only; the proposed Finite Element scheme is not implemented. The simulations
of [55, 56, 58], based on a different system of PDEs, are done with the commercial code Fluent,
which uses a Finite Element discretization on Cartesian grids.

In what follows, we propose a dedicated scheme for (12). The method is based on a hybrid
finite volume/finite element strategy, which has been introduced in [16] for the resolution of the
non homogeneous incompressible Navier-Stokes system1. The algorithm is based on a time splitting,
and each equation is approached by a well–adapted method: we discretize the mass conservation
equation (12)-(i) by using a Finite Volume scheme and the momentum equation 12)-(ii) coupled
with the constraint (12)-(iii) is solved by using a Finite Element approximation. Two ingredients
are crucial in the construction of the scheme:

• A relevant definition of footbridges between the two velocities discretizations (FE vs. FV) in
order to make them compatible [16].

• Working with high order methods and unstructured meshes is a necessity; however, preserving
the maximum principle in this framework needs the definition of suitable limiters. This issue
is discussed in [14]; it is absolutely crucial to consider flows with high density contrasts and
to follow fronts by a mesh refinement method.

Let us describe how we can adapt the scheme described in [14, 16] in order to explore numerically
the system (12). From now on, we restrict the discussion to the two-dimensional framework. We
consider a mesh of the computational domain made of triangles. We associate to this primal
mesh the dual mesh obtained by joining the barycenters of the triangles to the midpoints of the
edges, see Figure 1. The elements of this tessellation are the control volumes of the finite volume
approximation: the discrete density ρnC is intended to approximate the mean-value 1

|C|

∫
C
ρ(tn, y) dy

of the physical density over the control volume C at time tn. Note that the discrete densities are
stored at the vertices of the primal mesh (Vertex-Based method). By contrast, the discrete velocity
and pressure which define approximations of v and p are continuous on Ω and piecewise polynomials
on the triangles of the primal mesh. Here, we shall use P2 and P1 approximations, respectively, but
other choices such as P1-Bubble and P1 are possible.

Let h > 0 be a parameter characterizing the space discretization. At time tn, we have at hand
the discrete evaluations of the density ρnh (defined by ρnh

∣∣
C

= ρnC for all control volumes C) and of the

1An Open-Source version of the code dealing with 2D Incompressible Navier-Stokes equations with non homo-
geneous density is available at the URL: http://math.univ-lille1.fr/~simpaf/SITE-NS2DDV/home.html
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Figure 1: Primal and dual meshes.

velocity-pressure field (vnh , p
n
h). We update the unknowns according to a time-splitting approach.

The scheme is constructed according to the following techniques:

1) Let us start by explaining how we proceed with the momentum equation (12)-(ii) with the
constraint (12)-(iii); we postpone for a while the treatment of the mass conservation equation,
and we assume that we have already computed ρn+1

h . We use the standard FE framework:
we denote by Ωh the computational domain which approaches the domain Ω. It is covered
by triangles T ∈ Th. The approximations spaces are defined by

Vh =
{
wh ∈ C0(Ωh), wh

∣∣
T
∈ P2(T ) ∀T ∈ Th, wh

∣∣
∂Ωh

= 0
}
,

Qh =
{
qh ∈ C0(Ωh), qh

∣∣
T
∈ P1(T ) ∀T ∈ Th

}
.

Multiplying (12)-(ii) and (12)-(iii) by wh and qh spanning the basis of Vh and Qh respectively,
we obtain the following system for updating the velocity and pressure

1

∆t

∫
Ωh

ρ̃n+1
h

(
vn+1
h − vnh

)
· wh dx+

∫
Ωh

ρ̃n+1
h (vn+1

h · ∇xv
n+1
h )wh dx

− 1

Re

∫
Ωh

µ(ρ̃n+1
h )D(vn+1

h ) : ∇xwh dx−
∫

Ωh

pn+1
h ∇x · wh dx

=
1

Fr2

∫
Ωh

ρ̃n+1
h g · wh dx+

1

ReSc

∫
Ωh

(∇xv
n+1
h − (∇xv

n+1
h )T )∇xρ̃

n+1
h · wh dx,∫

Ωh

∇x · vn+1
h qh dx = 0.

(15)
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When the Reynolds number Re becomes large and/or the Schmidt number Sc becomes small,
an appropriate upwinding process on the convective term has to be designed to ensure the
stability of the scheme (15); for instance SUPG methods can be used in such cases. On
the same token we can also mention the recent attempt [40] which proposes a numerical
treatment fully in the FV framework of the Incompressible Navier-Stokes equation, with a
construction that imposes a certain consistency on the convective mass and momentum fluxes.
Nevertheless, in our simulations Re is not so large and Sc is of order 1 (see also [24, 54, 55, 56]),
and we did not experience any stability difficulty with the proposed centered scheme. In the

integrals, we need to define the (“FE approximation” of the) density ρ̃n+1
h , from ρn+1

h , which
is supposed to be constant on the control volumes. But, given a triangle T we can use the

densities stored on the three vertices to construct a P1 interpolation: it defines ρ̃n+1
h . In turn,

∇xρ̃
n+1
h is well-defined as a P0 function on the triangle. It allows us to treat the new coupling

terms. With this definition, and using an extrapolation formula in order to approximate the
velocity vn+1

h at time (tn + ∆t), the implicit system can be solved by using standard methods
of incompressible numerical fluid mechanics. The integrals in (15) are evaluated by using
an approximated integration method over the cells, which is exact for polynomials of degree
k ≤ 6. We do not use any mass-lumping process. Also, we recognize with the diffusion and
pressure terms the classical form of a saddle point problem which can be written in matrix
form (

A BT

B 0

)(
vn+1
h

pn+1
h

)
=

(
fh
0

)
.

Our simulation is based on the Uzawa algorithm, but projection methods (see [43] for an
overview) can be used as well. Note however that the equivalent diffusion equation for the
pressure has variable coefficients due to density inhomogeneities (roughly speaking, the op-
erator typically reads ∇x · (1

ρ
∇xp)). When the density ratio becomes high it might lead to

intricate conditioning difficulties, see [15]. Of course, variations of this formula can be pro-
posed, either by treating less terms fully implicitely (e. g. in the source and in the convection)
or by using a more elaborate time discretization (see further comments below).

2) We turn to the treatment of the mass conservation. Updating the density ρn+1
h relies on

integrating (12)-(i) over [tn, tn + ∆t]× C∫
C

ρ(tn + ∆t, x) dx−
∫
C

ρ(tn, x) dx

= −
∫ tn+∆t

tn

∫
∂C

ρ(t, x)v(t, x) · ~n dσ(x) dt

+
1

ReSc

∫ tn+∆t

tn

∫
∂C

∇xρ(t, x) · ~n dσ(x) dt.

Here and below, ~n stands for the outward normal unit vector on ∂C. The left hand side
is approached by (ρn+1

C − ρnC) |C| and we need to define relevant convection and diffusion
numerical fluxes. The interface ∂C is the reunion of a finite number of segments: ∂C =
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⋃
j σC,j, see Figure 1. Hence,∫ tn+∆t

tn

∫
∂C

ρ(t, x)v(t, x) · ~n dσ(x) dt

=
∑
j

∫ tn+∆t

tn

∫
σC,j

ρ(t, x)v(t, x) · ~n dσ(x) dt is approached by ∆t
∑
j

|σC,j|ρnj vnj · ~n,

where the interface values ρnj , vnj should be defined from the available numerical unknowns.
Since vnh is piecewise P2, it might be tempting just to evaluate it directly on the segment σC,j
in order to get vnj · ~n (say for instance vnj is the value of vnh at the midpoint of the segment
σC,j). In [16] we boil down a different definition of the normal velocity vnj · ~n. The argument
states as follows: since the velocity field is divergence free, an homogeneous density should
remain homogeneous. The naive construction does not fulfill this requirement. Indeed, for
the FV viewpoint a solenoidal velocity field satisfies∫

∂C

v · ~n dσ =
∑
j

∫
σC,j

v · ~n dσ = 0,

which becomes at the discrete level ∑
j

|σC,j|vnj · ~n = 0. (16)

But, the velocity field vnh produced by the FE step is only required to satisfy∫
Ωh

∇x · vnh qh dx = 0 (17)

for any basis element qh of the FE space Qh. Therefore we proceed as follows. Let us denote
by A the vertex which is the center of the control volume C. We assume it is the common
vertex of K triangles of the primal mesh. Writing (17) with qh the basis function associated
to A, the remarkable fact is that we obtain an expression which involves only the values of
vnh at the midpoints of the edges of these K triangles having A as a common vertex. When
σC,j lies in a triangle T , we write vnj as a convex combination of these evaluations of vnh at the
midpoints of the edges of T . Going back to (16) identifies the coefficients of this combination:
it coincides with a linear 2D interpolation at the barycenter from velocities known at these
nodes. We refer the reader to [16] for further details.

3) We are left with the task of defining ρnj . Of course, we can simply use upwinding according
to the sign of vnj ·~n, but the corresponding scheme has poor accuracy. We propose a MUSCL
method with multislope limiters (see Figure 1). The interface value on σC,j of the density is
defined by

ρnj = ρnC + pC,j|AMC,j|
where MC,j is the midpoint of the segment σC,j. The increment pC,j is defined through the
following procedure. We remind that σC,j lies in a certain triangle T of the primal mesh, and,
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of course, A is one of the vertices of T . We draw the line AMC,j. It intersects the edge of
T opposite to A in a point that we denote PC,j. The line also intersects the edge of another
triangle S having A among its vertices; we denote by QC,j the intersection point. It turns
out that APC,j (resp. AQC,j) can be written as a convex combination of AA′ and AA′′ with
T = (A,A′, A′′) (resp. AB′ and AB′′ with S = (A,B′, B′′)). Then, we define ρ(PC,j) (resp.
ρ(QC,j)) as the convex combination with the same weight of ρC = ρ(A), ρ(A′) and ρ(A′′)
(resp. ρC = ρ(A), ρ(B′) and ρ(B′′)): namely if APC,j = λAA′ + (1− λ)AA′′, then we set

ρ(PC,j) = ρ(A) + λ(ρ(A′)− ρ(A)) + (1− λ)(ρ(A′′)− ρ(A))

(and a similar formula for ρ(QC,j)). Next, we introduce the quantities

pup
C,j =

ρ(A)− ρ(QC,j)

|AQC,j|
, pdown

C,j =
ρ(PC,j)− ρ(A)

|APC,j|
, rC,j =

pdown
C,j

pup
C,j

.

Finally, we set
pC,j = pup

C,j ×Ψ(rC,j)

where Ψ is a limiter function which has to satisfy some specific properties (namely, the “τ -
limiter” property). We can use for instance the MinMod limiter, or a modified Van Leer
limiter. This scheme is introduced in [14] where the L∞ stability is established under a
suitable CFL condition. Of course the definition of the CFL number relies on certain geometric
quantities, but the scheme can be shown to be stable without geometric constraint on the
mesh, by contrast to the situation known for the Cell-Center framework [18]. We also refer the
reader to [44] for recent progress on these questions, including in the 3-dimensional framework.

4) For the diffusion fluxes, we interpret again the density as a piecewise P1 function on each
triangle of the primal mesh. It allows to properly define an approximation of 1

ReSc

∫
∂C
∇xρ ·

~n dσ on each component of ∂C. This idea is reminiscent of the so–called FVE method for the
discretization of diffusion equations [21, 35, 31, 33], and [32, Section 3.4.3]. Diffusion is treated
implicitly so that we can expect it does not deteriorate the stability condition. Note that the
preservation of the discrete maximum principle by such finite volume methods for convection-
diffusion equation is a delicate question. It might induce some restrictions on the meshes like
in [35], or require a more refined definition, possibly non-linear, of the diffusion fluxes. The
use of such elaborate schemes is beyond the scope of this work; a detailed exposition of the
state of the art can be found in [23] and the references therein. In our numerical simulations,
we did not experience loss of positivity that could be due to the treatment of the diffusion
term.

5) Finally, for the simulation we use a more involved time integrator, in order to preserve the
global second-order accuracy both in time and space. The time splitting is treated with the
Strang algorithm. In the momentum equation, the time discretization is based on the BDF
second order scheme, and the value of v̄n+1

h arising in (15) is given by an extrapolation formula
of order 2. In the mass conservation, the time discretization is based on an Adam-Bashforth
scheme of order two for the transport term and the Crank-Nicolson scheme for the diffusive
term, which formally leads to second-order consistency.
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Remark 1 Different procedures can be used to construct the dual mesh of the triangulation. For
instance, we can use the so–called dual Voronoi tesselation, which is obtained from the primal
triangulation by joining the centers of the circumcircles (in general not identical with the barycenters
of the triangles), or we can simply join the barycenters. However, proving the L∞ stability of the
scheme requires further geometric constraints and the scheme might become less accurate, see [14,
Section 2.3]. This remark motivates the construction presented above.

2.2 Validation of the Scheme: Comparison to an Exact Solution

To start with, we evaluate the ability of the scheme to recover a smooth analytical solution and we
check the corresponding rates of convergence. We pay attention to the robustness of the scheme
with respect to mesh variation and we verify that the new coupling terms do not alter the accuracy
compared to the incompressible case. Here, the computational domain is the square Ω = [−1, 1]2.
The explicit solution we wish to capture is given by

ρex(x, y, t) = 2 + cosx sin y sin t,
vex(x, y, t) = (−4y(x2 − 1)2(y2 − 1) , 4x(y2 − 1)2(x2 − 1))T ,
pex(x, y, t) = sinx sin y sin t.

(18)

The set of equations (12) is solved on the time interval 0 ≤ t ≤ 0.2, using Re = 1 and without any
gravity field (g = 0). Like in [24], we suppose that the viscosity depends affinely on the density
by setting µ(ρ) = 1 + ρ/2. The appropriate source terms f (1) and f (2) are added in the right-hand
side of the two first equations in (12), so that (18) is indeed a solution.

We work with unstructured meshes generated by the BAMG software. This software can create a
mesh from a given geometry or adapt a mesh from a background mesh using a variable metric based
on the density. We point out that, in general, the produced meshes are not regular in the sense
of Delaunay. The time step ∆t is proportional to hmin, the length of the smallest convex radius
in the mesh (see Table 1), so that the CFL stability criterion is always ensured. The maximal
errors in ρ, v and p are recorded during the time interval and given as a function of hmax, the
length of the largest edge in the mesh. They are evaluated in the L1(Ω) and L2(Ω) norm for the
density (namely ‖ρex − ρh‖L1(Ω) and ‖ρex − ρh‖L2(Ω)), and in the L2(Ω) norm for the velocity and
the pressure (namely ‖vex − vh‖L2(Ω)) and ‖pex − ph‖L2(Ω)).

Firstly, we check the influence of the new coupling terms. We consider (12) with Sc = ∞: we
get rid of the right-hand-side in (12)-(i) and we get rid of the last term of the right-hand-side in
(12)-(ii), and the system degenerates into the incompressible variable density Navier-Stokes system.
As we can see in Figure 2(a), the convergence is ensured, and Table 2 shows that the convergence
rates computed from the results obtained on the two finest grids are similar to those reported in [14,
Section 4.1] with similar unstructured meshes. Next, we consider (12) with Sc = 1. As we can see
in Figure 2(b), the convergence is also ensured. Table 2 shows that the corresponding convergence
rates are even better than for the first test.

Secondly, we consider deformed meshes obtained applying a random translation proportional
to hmin to each internal node of the grids generated by the BAMG software. We plot in Figure 3
the coarsest meshes obtained using BAMG and applying such a random small translation. This
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Mesh level 1 2 3 4 5 6
hmax 0.25 0.125 0.0625 0.03125 0.015625 0.078125
hmin 0.0686 0.0353 0.0166 0.00777 0.00398 0.001649

Table 1: hmax and hmin values on non structured meshes.
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Figure 2: Convergence rates of the numerical scheme for the analytical solution with regular meshes.

perturbation is intended to mimic mesh deformations that appear when some adaptive procedures
are applied. We perform the same two tests, Sc = ∞ and Sc = 1, on the deformed meshes: we
can see in Figure 4 ((a) for Sc = ∞ and (b) for Sc = 1) that the convergence is confirmed. Table
2 gives the corresponding convergence rates which remain second-order accurate, except for the
density in the case Sc =∞, where a lower rate of convergence is achieved, remaining nevertheless
very satisfactory and close to the case of non deformed meshes.

Hence, we conclude from these experiments that the treatment of the new terms 1
ReSc

∆xρ in
(12)-(i) and 1

ReSc
(∇xv −∇xv

T )∇xρ in (12)-(ii), as well as small random translations of the nodes,
do not alter significantly the accuracy of the scheme.

BAMG BAMG+ random
Sc =∞ Sc = 1.0 Sc =∞ Sc = 1.0

Convergence rate in ‖ρex − ρh‖L1(Ω) 1.72 2.26 1.58 2.17
Convergence rate in ‖ρex − ρh‖L2(Ω) 1.65 2.27 1.37 2.19
Convergence rate in ‖vex − vh‖L2(Ω) 2.08 2.29 2.08 2.34
Convergence rate in ‖pex − ph‖L2(Ω) 2.39 2.44 2.15 2.23

Table 2: Convergence rates for the exact solution.
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Figure 3: First line: regular meshes generated by the BAMG software, with mesh levels 1, 2, 3.
Second line: deformed meshes obtained applying a random perturbation (xi, yi) + hmin ∗ rand().
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Figure 4: Convergence rates of the numerical scheme for the analytical solution with deformed
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2.3 Simulation of an Avalanche Interacting With an Obstacle

2.3.1 Resolution in Physical Variables

We are now interested in the simulation of the interaction of an avalanche with an obstacle, a case
addressed in [24]. In order to have a direct comparison we go back to the physical quantities: in this
subsection we deal with dimensional variables. Namely, we consider the system (10) completed by
(14): homogeneous Dirichlet boundary condition on the velocity filed, and homogeneous Neumann
boundary condition on the density field. A heavy fluid flows under the effect of the gravity force
along an inclined channel and interacts with an obstacle. This kind of simulation is motivated
by the dimensioning of protection devices, see also [55, 56]. We refer the reader to the schematic
representation in Figure 5. The parameters are specified in Table 3. Initially, the heavy fluid
ρ̄f , located in the rectangle [2l0/3, h0/3], is surrounded by a fluid with intermediate density ρ̃ =
ρ̄d + 0.4 (ρ̄f − ρ̄d). This configuration is intended to roughly mimic the observed layers in actual
avalanches, with dense snow on the ground, topped by a fluidized bed that might degenerate to an
aerosol flow.

h

l0
ds

l

hs

ls
h0

θ

~g

ρ̄f , νf

ρ̄d, νd

ρ̃, ν̃

Figure 5: Domain and initial data configurations.

We take in (10) the following parameters :

κ = 2 ν with ν =
νf ρ̄f − νdρ̄d
ρ̄f − ρ̄d

, and µ = ν ρ. (19)

Concerning the numerical parameters, the mesh is made of an unstructured tessellation of tri-
angles, and the smallest convex radius (resp. the smallest edge) is about hmin ≈ 7× 10−4m (resp.
2× 10−3m). The mesh evolves dynamically in order to follow the displacement of the front of the
avalanche with finer structures in the regions of large density gradients, using an adaptive mesh
refinement strategy, based on the BAMG software. The number of triangles in the mesh increases up
to 15 000 at the end of the simulation. The computational time step is set to ∆t = 10−3 s. We have
performed a series of simulations by making both the time step and the mesh size vary in order to
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Gravity acceleration ‖g‖, ms−2 9.8
Slope of the inclined channel θ, ◦ 32
Heavy fluid density ρ̄f , kg m

−3 20
Light fluid density ρ̄d, kg m

−3 1
Heavy fluid kinematic viscosity νf , m

2 s−1 4, 8.10−4

Light fluid kinematic viscosity νd, m
2 s−1 1, 0.10−4

Domain height h, m 0.8
Domain length l, m 2.7
Initial avalanche height h0, m 0.3
Initial avalanche length l0, m 0.3
Obstacle height hs, m 0.06
Obstacle thickness ls, m 0.04
Obstacle distance ds, m 1.92

Table 3: Avalanche simulation : physical parameters.

guaranty that the convergence grid is reached. Results are reported in Figure 6 where the isovalues
of the density and the magnitude of the velocity are displayed.

We can observe a qualitatively satisfactory correspondence between the snapshots presented in
Figure 6 and Figures 5 to 7 of [24], corresponding to the same physical data (the time scale has been
erroneously reported in Figures 5 to 9 of [24]; it needs to be corrected to fit with the data: roughly
speaking the reported time should be divided by 60). At the very first times of the simulation, we
recognize the emergence of a classical elliptic front. Then during the sliding regime we can already
observe the formation of Kelvin-Helmholtz instabilities, with a large vortex that takes place behind
the head of the flow, above a zone of light density where the fluid is dragged by the avalanche.
Finally, the interaction with the obstacle generates a jet directed upward, with the formation of the
mushroom shape corresponding to a classical Rayleigh-Taylor instability. As it has been already
pointed out elsewhere, both from numerical or experimental studies [24, 27, 30, 45, 54, 55, 56], the
maximal velocity within the avalanche exceeds the front speed by 30% to 40%.

2.3.2 Resolution in Dimensionless Variables

We perform now the same simulation than the one in subsection 2.3.1, but working with the
dimensionless system. This is important to check whether the choice of the reference units is
relevant. To this end, we use as characteristic units the height of the avalanche L = h0 = 0.3m,
the gravity acceleration ‖g‖ = 9.8ms−2 and the density contrast defined by the value ∆ρ/ρ̄d =
(ρ̄f − ρ̄d)/ρ̄d. Following [30], the densimetric Froude number is fixed to be equal to one, which gives

us the velocity scale U =
√
L‖g‖∆ρ/ρ̄d = 7.47ms−1. Accordingly, we obtain from (13) and the

choices made in (19) the values :

Re = 2242, Fr = 4.3589, Sc = 1.0.
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Figure 6: Density (left column) and speed magnitude (right column) at physical times t=0.2 s,
0.4 s, 0.6 s, 0.8 s and 1.0 s (from top to bottom).

20



The system (12) is solved on the dimensionless domain Ω = [0, 9]×[0, 2.67], during the dimensionless
time interval 0 ≤ t ≤ 25 with µ(ρ) = ρ. Results are displayed in Figure 7. The correspondence
between Figures 6 and 7 shows that the definition of the dimensionless parameters Fr and Re
is clearly relevant. If U is defined as the averaged front speed deduced from Figure 6 (namely
U = 2.2ms−1), then we obtain Re = 660,Fr = 1.28, Sc = 1.0, and the results are again very similar
to those in Figure 7. We can deduce that the dimensionless process in this range of parameters is
not very sensitive to the chosen velocity scale U.

2.4 Parametric Study on the Schmidt, the Froude and the Reynolds
Numbers in Avalanches

As said above, the physical features of the avalanches are embodied into the dimensionless param-
eters Fr, Re, Sc. For real avalanches, the Reynolds number Re can be as large as 108 (with front
speed of the order of 100 ms−1) and the densimetric Froude number Frd is close to 1. However,
for experimental devices in laboratory, the values of the parameters are less extreme and become
affordable for numerical experiments. We propose here a parametric study on the Froude, Reynolds
and Schmidt numbers, inspired by an experimental device developped in [54, 55, 56, 58]. A mixture
of salt water and kaolin is released from a small tank along an inclined plane into a larger water
tank. Furthermore, the flow is confined to a channel so that lateral spreading is negligible and the
features of the flow can be considered as 2-dimensional. The physical domain considered here is the
rectangle [0, 2.0m]× [0, 0.5m]. The slope of the ground is defined by g/‖g‖ = (sin 10◦,− cos 10◦)T ,
with ‖g‖ = 9.8ms−2. The fluid is initially at rest, and the initial condition on the density is given
by:

ρ0(x, y) =

{
ρ̄f for 0 ≤ x ≤ 0.15m and 0 ≤ y ≤ 0.09m,
ρ̄d otherwise,

with ρ̄f = 1.2 103 kg m−3 and ρ̄d = 103 kg m−3. It yields ∆ρ/ρ̄d = 0.2. As reported in Figure 8
(extracted from [55]), the measured velocity of the front at the beginning of the simulation is equal
to U = 0.35ms−1; it serves as the reference velocity unit. The length of reference is defined by the
initial height of the avalanche (L = 0.09m), so that the computational domain corresponds to the
rectangle [0, 22] × [0, 5.5], and the reference kinematic viscosity is set to ν̄ = 1.575 × 10−5m2 s−1.
Consequently, the corresponding Froude and Reynolds coefficients defined in (13) are given by:

Fr = 0.3725, Re = 1000.

Let us note that these parameters correspond to a densimetric Froude number Frd = 0.83. We
also consider the Schmidt number Sc = 1, which is similar to the usual values reported in the
bibliography (see [28], [24] and the references therein). This is equivalent to take κ = 3.15 ×
10−5m2 s−1. Note that for these simulations, a constant viscosity µ(ρ) ≡ 1 is assumed in (12). The
boundary conditions (Dirichlet for the velocity, Neumann for the density) are given by (14). In
particular, friction on the ground is neglected.

The computational time step is set to ∆t = 10−3, and an adaptive mesh refinement strategy,
based on BAMG, is used in order to follow the avalanche front, like in [27, 29, 30]. For the simula-
tions presented here, the smallest convex radius in the mesh oscillates around hmin ≈ 0.0015 and
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Figure 7: Dimensionless density (left column) and speed magnitude (right column) at dimensionless
times t = 5, 10, 15, 20, 25 (corresponding to physical times t=0.2 s, 0.4 s, 0.6 s, 0.8 s and 1.0 s (from
top to bottom), using (12) with Re = 2242, Fr = 4.3589 and Sc = 1.0.
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Figure 8: Reference front speed of the avalanche for 2-D and 3-D configurations (Reproduced from
[55]).

the maximum length of the edges is of the order hmax ≈ 0.1. Going back to physical units, it means
hmin ≈ 0.00015m to be compared to 0.005m for the simulations in [54, 55, 56, 58] made on a fixed
grid, refined next to the ground. The number of triangles in the mesh increases up to 50 000 during
the simulation. All convergence grid tests have been performed to ensure that the mesh as well as
the time step are fine enough to reach the grid convergence.

The evolution of the density and of the speed magnitude during the avalanche are displayed
in Figure 9, with a zoom in Figure 10. Qualitatively, the mesh refinement strategy used in the
simulation allows us to capture details of the complex structures of the Kelvin-Helmholtz and
Rayleigh-Taylor instabilities occurring in the vicinity of the front. It has been constantly observed
that the maximal speed is recorded behind the front, and it can reach a value noticeably larger
than the front speed [24, 27, 30, 45, 54, 55]. This effect is also clearly visible in our simulations.
We also note on the velocity snapshots that a large domain is affected by the avalanche motion, a
significant part of the surrounding light fluid is dragged by the snow release; the model reproduces
the entrainment of the ambient air.

In order to allow some comparisons with the experimental data given in [58], we come back
to the dimensional values. The horizontal velocity has been recorded at two monitoring points A
and B with coordinates (50 cm, 2.7 cm) and (50 cm, 6.7 cm), respectively. Note that the origin is
not placed at the same location in [55] and needs to be horizontally shifted by 62 cm to compare
the corresponding results with ours. Experimental measurements are reported in Figure 11 (point
A on the top, point B at the bottom). These data have to be considered with caution, since
there are many sources of uncertainties due to the measurements techniques. On the one hand,
the velocity is evaluated by Doppler ultrasonic velocimetry techniques, which are sensible to the
particles concentration. We refer the reader to the discussion in [55, sp. Section 4.1] about the
corresponding sources of uncertainties, and how they can be taken into account in the interpretation
of the results. On the other hand, the release is not well-determined, and Figure 11 represents data
averaged over several experimental runs, after having decided that the maximal velocity is reached
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Figure 9: Density (left column) and speed magnitude (right column) at dimensionless times t from
5 to 25 (from top to bottom) with Sc = 1.0, Fr = 0.3725 and Re = 1000.
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Figure 10: Density (left column) and speed magnitude (right column) at dimensionless times t from
5 to 25 (from top to bottom) with Sc = 1.0, Fr = 0.3725 and Re = 1000, zoom of Figure 9.
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at the same time. We compare the experimental horizontal velocity at node A (resp. B) in
Figure 11 to the numerical results computed at the same nodes (plain blue, resp. dotted black,
line in Figure 12). For both nodes, it can be observed that the maximal value of the numerical
horizontal velocity is in good agreement with the laboratory experiments (namely 0.45ms−1 at node
A and nearly 0.40ms−1 at node B). However, we observe two peaks in Figure 12 compared to a
single peak in Figure 11. We do not know whether or not this phenomenon is physical and whether
or not the measurements techniques could detect it. The behavior might be also due to the no-slip
condition imposed to the velocity. In Figure 10, the zoom shows very clearly the development of a
Rayleigh-Taylor instability near the horizontal boundary. Small scale perturbations grow with time,
developing a vortex which lives and rolls up near the boundary. These perturbations induce the
separation of the dense phase into two quite-detached parts, exactly when the front of the avalanche
passes in front of the monitoring points A and B. Considering other boundary conditions, as for
example a friction law, can solve this discrepancy with the experiment. We should mention here
that the simulation might be sensitive to mesh orientation effects and the treatment of the boundary
conditions, see [16]. These aspects should be discussed in further details, with an interaction with
experimentalists.

Finally, using the values of the parameters defined by the laboratory experiments as a reference,
we investigate numerically how their variation influence the flow.

2.4.1 Influence of the Schmidt Number

The Schmidt number is the less clear of the three parameters that govern the flow, it highly relies
on the modeling assumptions and it is not easily accessible to measurements. The choice Sc = 1
is made in [27, 30], and Sc = 0.7 is set in [54, 55, 56, 58]. When the Schmidt number goes to
infinity, the model (12) degenerates into the incompressible inhomogeneous Navier-Stokes system.
We consider here the reference simulation (Sc = 1.0, Fr = 0.3725, Re = 1000, see Figure 9), and
we make the Schmidt number vary, namely Sc =∞ (Figure 13), Sc = 10 (Figure 14) and Sc = 0.1
(Figure 15). The solution of (12) for Sc = 1.0 (more or less the value given in the literature) given
in Figure 9 significantly differs from the solution of the incompressible case given in Figure 13.
This observation justifies that the mere incompressible system misses effects relevant for mixture
flows. As expected, for finite Sc, the density exhibits a more diffusive behavior, which impacts on
the maximum velocity recorded in the domain. Figure 14 shows that with Sc = 10, the diffusion
remains weak compared to Sc = ∞, whereas in Figure 15 corresponding to Sc = 0.1 the density
diffusion is very high, and the whole simulation strongly changes. Indeed, the smaller Sc, the more
important the diffusive behavior induced by the Fick law. Nevertheless, the velocity of the front of
the avalanche does not vary significantly.

2.4.2 Influence of the Reynolds Number

Next, we investigate the influence of the Reynolds number. We start from the reference simulation
(Sc = 1.0, Fr = 0.3725, Re = 1000, Figure 9), and we make the Reynolds number vary, namely
Re = 3000 (Figure 16) and Re = 5000 (Figure 17). As the Reynolds number increases, the number
of triangles in the mesh increases too (here up to 100 000). This is necessary in order to preserve
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Figure 11: Records and simulations (with a k/ε model) of the horizontal velocity at the monitoring
points A (top), B (bottom). Reproduced from [58].
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Figure 12: Horizontal velocity computed at the monitoring points A and B. Fr = 0.3725, Re =
1000, Sc = 1.

the grid convergence property. Indeed, high Reynolds numbers require finer meshes to resolve the
fine scales, a typical feature of Direct Numerical Simulation. In agreement to observations made
with the classical Navier-Stokes system, when the Reynolds number becomes large the maximal
modulus of velocity recorded in the domain (and, here, the front speed of the avalanche) slightly
increases. The more significant differences as Re varies are observed in the detailed structures of
the solutions, characterized for large Re’s by the formation of many vortices typical of a turbulent
behavior.

2.4.3 Influence of the Froude Number

Finally, we study the influence of the Froude number. From the reference simulation (Sc = 1.0,
Fr = 0.3725, Re = 1000, Figure 9), we modify the Froude number, namely Fr = 0.6 (Figure 18)
and Fr = 1.0 (Figure 19). When the Froude number increases, the strength of the external force
decreases and a deceleration of the front of the avalanche is observed, according to the physical
intuition. This can be seen in the evolution of the speed magnitude. Considering the same position
of the front of the avalanche, the structures of the flow remain quite similar for the three different
Froude numbers, although the corresponding physical times are not the same, of course. Besides,
it is worth pointing out that variations of the Froude number strongly impact the computational
cost: the smaller Fr, the more demanding the simulation. Indeed, as Fr decreases, finer meshes
are necessary to reach the grid convergence. Thus, the reference avalanche, with Fr = 0.3725, is
definitely more challenging than the test case addressed in Sections 2.3.1– 2.3.2.

3 Conclusion

In this work we discuss a hierarchy of models, including connection to the Eulerian-Lagrangian
description, for mixtures flows, which applies to many environmental flows. These models are
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Figure 13: Density (left column) and speed magnitude (right column) at dimensionless times t from
5 to 25 (from top to bottom) with Sc =∞, Fr = 0.3725 and Re = 1000.
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Figure 14: Density (left column) and speed magnitude (right column) at dimensionless times t from
5 to 25 (from top to bottom) with Sc = 10, Fr = 0.3725 and Re = 1000.
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Figure 15: Density (left column) and speed magnitude (right column) at dimensionless times t from
5 to 25 (from top to bottom) with Sc = 0.1, Fr = 0.3725 and Re = 1000.
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Figure 16: Density (left column) and speed magnitude (right column) at dimensionless times t from
5 to 25 (from top to bottom) with Sc = 1, Fr = 0.3725 and Re = 3000.
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Figure 17: Density (left column) and speed magnitude (right column) at dimensionless times t from
5 to 25 (from top to bottom) with Sc = 1, Fr = 0.3725 and Re = 5000.
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Figure 18: Density (left column) and speed magnitude (right column) at dimensionless times t from
10 to 50 (from top to bottom) with Sc = 1.0, Fr = 0.6 and Re = 1000.
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Figure 19: Density (left column) and speed magnitude (right column) at dimensionless times t from
10 to 70 (from top to bottom) with Sc = 1.0, Fr = 1.0 and Re = 1000.
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characterized by diffusive fluxes between the different components of the mixture, which induce new
constraints in the PDEs system. We propose a specific numerical scheme to simulate the behavior
of such systems. The method is based on a time-splitting approach and a hybrid Finite Volume-
Finite Element scheme which have shown their efficiency for non homogeneous incompressible
flows. This numerical approach is reliable : the possibility of working on unstructured meshes,
and thus of coupling the resolution with mesh refinement strategies, make it well-adapted to follow
complex fronts typical of mixture flows. The scheme is validated through comparison to analytical
solutions: the new coupling terms are treated without degrading the accuracy of the scheme.
Furthermore, we check that the method supports mesh perturbations. The method is used to
investigate avalanche phenomena. A comparison with numerical simulations, based on different
techniques, and experimental data available in the literature is discussed. Finally, we study on
numerical grounds the role of the physical parameters of the flows. It demonstrates the skills and
the robustness of the method.
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A A derivation from the Eulerian–Lagrangian modeling

We propose in this Appendix a possible derivation of the constraint (3) starting form a Eulerian–
Lagrangian description of the mixture.

A.1 Introduction to the model

In this Section the disperse phase is thought of as a large set of droplets (for instance it can be
applied to aerosols powder-snow avalanches). This description involves a coupling between the
mass and momentum conservation for the fields (ρf , uf ) characterizing the fluid and a kinetic
equation satisfied by the particle distribution function F (t, x, ξ) describing the dilute phase. In
other words, the dilute phase is seen as a set of disperse particles for which we adopt a statistical
viewpoint: F (t, x, ξ) dξ dx corresponds to the number of particles of the disperse phase having
at time t their position and velocity in the infinitesimal domain centered at (x, ξ) with volume
dξ dx. This modeling applies for particles suspension where a typical measure of the size of the
particles is small compared to the interparticles distance. From now on, we discuss the modeling
issues considering the natural three-dimensional framework. Assuming that particles are spherically
shaped with radius a > 0,

φ(t, x) =
4

3
πa3

∫
R3

F (t, x, ξ) dξ

is interpreted as the volume fraction occupied by the particles. We define accordingly the mass
density and momentum of the disperse phase

ρd(t, x) = ρ̄dφ(t, x), ρdud(t, x) = ρ̄dφud(t, x) =
4

3
πa3ρ̄d

∫
R3

ξF (t, x, ξ) dξ.

The system of PDEs describing the behavior of the mixture reads as follows. We write the mass
and momentum conservation equation for the dense phase, namely

∂tρf +∇x · (ρfuf ) = 0,

∂t(ρfuf ) + Divx(ρfuf ⊗ uf ) +∇xp = ρfg + Divx
(
2µD(uf )

)
+ Dragf

(20)

where the last term in the momentum equation accounts for the drag force exerted by the particles
on the fluid. The particle distribution function F (t, x, ξ) obeys

∂tF + ξ · ∇xF + g · ∇ξF = ∇ξ ·
(
−Dragd F +D∇ξF

)
. (21)

In this equation we take into account gravity effects on the particles that give rise to the acceleration
term g · ∇ξF , with g the gravitational acceleration. The right hand side in (21) describes both the
drag force exerted by the fluid on the particles and the Brownian motion of the particles. Brownian
motion induces diffusion with respect to the velocity variable, with a diffusion coefficient defined
by the following Einstein formula [25]

D =
9µ

2ρ̄da2

3kθ

4πa3ρ̄d
,
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where µ is the dynamic viscosity of the fluid, θ is the temperature of the flow, assumed a fixed
positive constant and k stands for the Boltzmann constant. The expression of the drag force can be
a quite intricate and non linear function, derived from phenomelogical considerations and depending
on the densities ρf , ρd, the viscosity µ, the radius a and the relative velocity ξ−u. Here we restrict
ourselves to the situation where it is given by the Stokes law, hence a linear function of the relative
velocity

−Dragd =
9µ

2a2ρ̄d
Z(φ) (ξ − uf )

with a certain (dimensionless) function Z : [0,∞)→ [0,∞). Note that the viscosity itself might be
a function of the volume fraction φ. The right hand side in (21) then becomes

9µ

2a2ρ̄d
∇ξ ·

(
Z(φ)(ξ − uf )F +

3kθ

4πa3ρ̄d
∇ξF

)
.

We refer the reader for instance to [25] or more recently [37] for a thorough discussion on this
Fokker–Planck operator. The drag force exerted on the fluid by the particles is the back–reaction
to the drag force exerted by the fluid on the particles. Hence, taking into account all particles
located at position x it is defined by the velocity average

Dragf = −4

3
πa3ρ̄d

∫
R3

Dragd F dξ.

(Note that with our convention Dragd is homogeneous to Velocity
Time

, while Dragf is homogeneous to
Mass×Velocity
Volume×Time

.) As a matter of fact, we can write

Dragf = 6πµa Z(φ)

∫
R3

(ξ − uf )F dξ =
9µ

2a2ρ̄d
Z(φ) ρd(ud − uf ).

The model is closed by setting

ρf (t, x) = ρ̄f
(
1− φ(t, x)

)
.

In other words, we assume here that the fluid is incompressible in the sense that the mass density
remains constant in the domain occupied by the dense phase; nevertheless we account locally for
the volume occupied by the particles in the mass and momentum balance. Observe that φ(t, x) ≥ 0
but there is no reason guaranteeing that φ remains bounded by 1 (except in the case where uf is
divergence–free: then the first equation in (20) can be rewritten equivalently in non–conservative
form, which implies the maximum principle for φ). It has to be considered as a modeling assump-
tion: the equations make sense as far as φ remains far below 1, which means that the particles are
highly dilute. Naturally, we can define the mass density of the mixture by

ρ(t, x) = ρf (t, x) + ρd(t, x) = ρ̄f
(
1− φ(t, x)

)
+ ρ̄dφ(t, x)
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and the mean mass velocity is

ρu(t, x) = ρfuf (t, x) + ρdud(t, x) = ρ̄f
(
1− φ(t, x)

)
uf (t, x) +

4

3
πa3ρ̄d

∫
R3

ξF (t, x, ξ) dξ.

Integrating (21) over the velocity variable we obtain

4

3
πa3ρ̄d

(
∂t

∫
R3

F dξ +∇x ·
∫
R3

ξF dξ

)
= 0 = ∂tρd +∇x · (ρdud)

and, similarly, multiplying (21) by ξ and integrating over the velocity variable, we are led to

4

3
πa3ρ̄d

(
∂t

∫
R3

ξF dξ + Divx

∫
R3

ξ ⊗ ξF dξ − g
∫
R3

F dξ

)
= −6πµa Z(φ)

∫
R3

(ξ − uf )F dξ = − 9µ

2a2ρ̄d
Z(φ) ρd(ud − uf )

= ∂t(ρdud) + Divx

(
4

3
πa3ρ̄d

∫
R3

ξ ⊗ ξF dξ

)
− gρd.

As a matter of fact, combining these relations with (20), we deduce that

∂tρ+∇x · (ρu) = 0,

∂t(ρu) + Divx

(
ρfuf ⊗ uf +

4

3
πa3ρ̄d

∫
R3

ξ ⊗ ξF dξ
)

+∇xp = ρg + Divx
(
2µD(uf )

)
holds, that can be interpreted as the total mass conservation and the balance law for the total
momentum, respectively. Furthermore, we have

∂t

(ρf
ρ̄f

+
ρd
ρ̄d

)
= ∂t(1− φ+ φ) = 0 = −∇x ·

(ρf
ρ̄f
uf +

ρd
ρ̄d
ud

)
= −∇x ·

(
(1− φ)uf + φud

)
.

It recasts as a constraint on the velocity field

∇x ·
(
(1− φ)uf

)
= −4

3
πa3∇x ·

∫
R3

ξF dξ = −∇x · (φud).

It can be rephrased by saying that the mean volume velocity of the flow is divergence free. We refer
for further details on these Eulerian–Lagrangian models to [3, 60, 59, 66]; they are widely used to
describe natural or industrial flows like sedimenting and fluidized suspensions, hydraulic fracturing
of reservoirs, the dispersion of atmospheric pollutants and dusts...

B Dimensionless equations and hydrodynamic regimes

We wish to derive a hydrodynamic model with the constraint (3) through asymptotic arguments.
To this end, we need to make dimensionless parameters appear:
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• We introduce time and length scales of reference, say T and L, and we set U = L/T as the
velocity unit.

• We define the thermal velocity as to be Vth =
√

3kθ
4πa3ρ̄d

.

• We introduce a typical value 0 < φ̄ < 1 of the particle volume fraction (in practice the
quantity is quite small compared to 1), and a typical value of the viscosity µ̄.

• The driving parameters defined by means of the physical properties of the constituents are
the Stokes settling time 2ρ̄da

2

9µ̄
, and the ratio of the mass densities ρ̄d

ρ̄f
. We set

ε =
2ρ̄da

2

9µ̄T
, η =

Vth

U
, ḡ = g

T2

L

• We define dimensionless variables and unknowns as follows

t = Tt?, x = Lx?, v = Vthv?,

F (t, x, v) =
3

4πa3

1

V3
th

φ̄ F?(t?, x?, v?),

φ(t, x) = φ̄ φ?(t?, x?) = φ̄

∫
R3

F (t?, x?, v?) dv?,

ρf? = (1− φ̄φ?), uf (t, x) = U uf?(t?, x?),
µ = µ̄ µ?(φ?), Z = Z?(φ?).

From now on, we skip the stars subscripts, having in mind that, unless explicitly mentioned, all
the variables are understood as dimensionless ones . Endowed with these definitions, we are led to

∂tF + ηξ · ∇xF +
ḡ

η
· ∇ξF =

µ(φ)

ε
∇ξ ·

(
Z(φ) (ξ − uf/η)F +∇ξF

)
,

∂tρf +∇x · (ρfuf ) = 0,
∂t(ρfuf ) + Divx(ρfuf ⊗ uf ) +∇xp

= Divx
(
2µD(uf )

)
+ ρf ḡ +

φ̄ρ̄d
ερ̄f

µ(φ)Z(φ)

∫
R3

(ηξ − uf )F dξ.

For the sake of simplicity, we have assumed that the units are such that the diffusion coefficient
scales as µ̄T

ρ̄fL2 = 1. We are interested in regimes where 0 < ε� 1. It leads to relaxation processes

since the particle distribution function is pushed to resemble a Maxwellian. This is reminiscent
of hydrodynamic regimes in gas dynamics [63]. Indeed, the penalization of the Fokker–Planck
operator drives F towards an element of the kernel of this operator:

F 'M, ∇ξ ·
(
Z(φ) (ξ − uf/η)M+∇ξM

)
= 0,

which eventually means

F (t, x, ξ) ' M(t, x, ξ)

' φ(t, x)
(Z(φ(t, x))

2π

)3/2

exp
(
− Z((φ)(t, x)) |ξ − uf (t, x)/η|2

2

)
.
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However, the details of the asymptotics depends on the behavior of the other scaling parameters
with respect to ε, which will be discussed in a while. In order to investigate the asymptotic behavior
as ε tends to 0, it is convenient to introduce the following notation φ

J
P

 =

∫
R3

 1
ηξ
ξ ⊗ ξ

F dξ.

The moment equations now recast as follows

∂tφ+∇x · J = 0,

∂tJ + η2DivxP− ḡφ = −µ(φ)Z(φ)

ε
(J − φuf ).

(22)

Of course, these relations are nothing but the dimensionless version of the evolution equations
derived above for ρd and ρdud. Note that the system is not closed since the higher moment P
cannot be expressed in general by means of φ and J . The equation for the fluid velocity becomes

∂t(ρfuf ) + Divx(ρfuf ⊗ uf ) +∇xp = Divx
(
2µD(uf )

)
+ ρf ḡ +

φ̄ρ̄d
ερ̄f

µ(φ)Z(φ) (J − φuf ).

In rescaled form the mean density of the mixture reads

ρ = ρf + φ̄
ρ̄d
ρ̄f
φ

while the velocity of the mixture is defined by

ρu = ρfuf + φ̄
ρ̄d
ρ̄f
J.

Therefore, we are led to

∂tρ+∇x · (ρu) = 0,

∂t(ρu) + Divx

(
ρfuf ⊗ uf + φ̄

ρ̄d
ρ̄f
η2P +∇xp

)
= Divx

(
2µD(uf )

)
+ ḡρ.

In order to make diffusion effects appear in the evolution of the particles volume fraction, it is
necessary to introduce the following scaling assumption

0 < ε� 1, φ̄
ρ̄d
ρ̄f

1

ε
= φ̄

ρ̄d
ρ̄f
η2 = 1

or, in other words

η =
1√
ε
� 1, φ̄

ρ̄d
ρ̄f

= ε� 1.
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(In fact φ̄
ε
ρ̄d
ρ̄f

and φ̄ ρ̄d
ρ̄f
η2 can be assumed to tend to any positive constants, the important fact being

to impose the behavior with respect to ε.) Therefore, combining the relaxation effect induced by
making the Fokker–Planck operator stiff to the velocity scaling, we expect as ε goes to 0 that the
particles distribution function looks like a centered Maxwellian

F ' φ

(2π/Z(φ))3/2
e−Z(φ)|ξ|2/2.

Accordingly the kinetic pressure becomes

P =

∫
R3

ξ ⊗ ξF dξ ' φ

Z(φ)
I.

Taking into account the scaling assumption, the evolution of the first order moment is governed by

ε∂tJ + DivxP− εḡφ = −µ(φ)Z(φ) (J − φuf ).

To describe the asymptotic behavior, we assume that the sequences of unknowns admit limit

φ, J, uf → Φ`, J`, u`

in a strong enough sense so that we can pass to the limit in non linearities. We bear in mind that
φ̄ remains a free scaling parameter; we assume that φ̄→ φ̄`. Then, letting ε go to 0, we arrive at

∂tΦ` +∇x · J` = 0,

∇x

(
Φ`

Z(Φ`)

)
− = −µ(Φ`) Z(Φ`) (J` − Φ`u`).

Hence Φ` is solution of a nonlinear convection–diffusion equation

∂tΦ` +∇x ·
(

Φ`u` −
1

µ(Φ`)Z(Φ`)

(
∇x

Φ`

Z(Φ`)

))
= 0.

Now, the mean density reads ρ = (1− φ̄φ) + εφ→ ρ` = (1− φ̄`Φ`) and the mean velocity satisfies
ρu = (1− φ̄φ)uf + εJ → ρ`u`. Then, the momentum equation becomes

∂t(ρ`u`) + Divx(ρ`u` ⊗ u`) +∇x

(
p` +

Φ`

Z(Φ`)

)
= Divx

(
2µD(u`)

)
+ ḡρ`.

The mass conservation reads

∂tρ` +∇x · (ρ`u`) = 0
= −φ̄`

(
∂tΦ` +∇x · (Φ`u`)

)
+∇x · u` = 0.

Then, we distinguish two situations:

• Either φ̄` = 0, and thus ρ` = 1; in such a case the velocity is merely divergence free∇x ·u` = 0,
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• Or φ̄` > 0: in such a case the velocity field is required to satisfy the constraint

∇x · u` = φ̄` ∇x ·
(

1

µ(Φ`)Z(Φ`)

(
∇x

Φ`

Z(Φ`)

))
.

Further mathematical analysis of the asymptotics is beyond the scope of the present paper. We
refer the reader to [38, 39] for technical details on such questions and to [41] for further applications
to mixture flows.

Example 1 A relevant situation corresponds to the case where we use the Einstein definition of
the effective viscosity of the solution, see [26, 8]

µ(φ) = µ̄×
(

1 +
5

2
φ
)
.

Assuming Z = 1, ḡ = 0, it yields

∇x · u` =
2

5
∆x ln

(
1 +

5

2
φ̄Φ`

)
= −2

5
∆x ln

(7

2
− 5

2
ρ`

)
.

A relevant generalization of this simple law for the effective viscosity is proposed e. g. in [17].

Using the Stokes law for the drag force makes sense when the particle Reynolds number
2ρf |uf−Vth|a

µ

is small. The simplest case with Z = 1 is used in many applications, see for instance [48, 53].
More complex examples have the form Z(φ) = (1− φ)−κ, see [60, κ = 2.8 in Eq. (7)], [3, κ = 2.65
in Eq. (5)] or [57].
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[4] G. Ansanay-Alex. Un schéma éléments finis non-conformes/volumes finis pour l’approximation
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