
Fokker–Planck approach of Ostwald ripening:
simulation of a modified Lifshitz-Slyozov-Wagner system

with a diffusive correction

Thierry Goudon∗1 and Laurent Monasse†1

1Université Côte d’Azur, Inria, CNRS, LJAD
Parc Valrose, F-06108 Nice, France

May 9, 2019

Abstract

We propose a well–balanced scheme for the modified Lifshitz–Slyozov equation,
that incorporates a size–diffusion term. The method uses the Fokker–Planck structure
of the equation. In turn, large time simulations can be performed with a reduced
computational cost, since the time step constraints are relaxed. The simulations bring
out the critical mass threshold and the relaxation to equilibrium, which can be expected
from the formal analogies with the Becker–Döring system.
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1 Introduction
Ostwald ripening [40] is a physical mechanism that arises in many industrial, physical
or biological processes, like alloys formations [32, 33, 42], synthesis of quantum dots,
emulsion dynamics (it is at the origin of the so-called “Ouzo effect” [44]), protein poly-
merization [23], etc. The mechanism can be described as an interaction between free
particles, or monomers, and polymers, which can be seen as aggregates of monomers.
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Roughly speaking, the dynamics is governed by attachment to or detachment from
polymers of monomers.

Having an accurate model for such phenomena is particularly important in material
sciences. The models involve particle size distributions, describing the dynamics of
mass exchanges between particles. A major advance is due to Lifshitz-Slyozov [33, 32]
and Wagner [49], and their theory is widely considered as classical. An important
prediction of the LSW theory is the emergence of a universal profile, toward which all
initial distributions evolve with time (up to an appropriate total-mass-rescaling). Such
a conclusion is particularly relevant since the large time behavior usually corresponds
to the observable states.

However, the conclusions of the LSW theory are subject to controversy. We refer
the reader to [1, 4] for various aspects of the debate. The discussion is motivated by the
combined improvements of the experiments [4] and of the numerical approaches [11, 10,
47]. Indeed, the LSW equations, that have the misleadingly simple form of a transport
equation coupled to an integral constraint, present some hidden stiffness that makes
the numerical problem singularly challenging: it is particularly difficult to capture the
correct large time behavior, and one definitely needs dedicated schemes. Moreover,
the mathematical analysis has also established the limitations of the LSW predictions
[34, 36]. In particular, the large time behavior is highly sensitive to properties of the
initial conditions.

There are several options to address these issues and to modify the original LSW
model in order to clarify the asymptotic behavior of the solutions. The derivation of
the LSW equations assumes that the distance between clusters remains large so that
they do not interact directly; however, since the dynamics produces larger and larger
clusters, this assumption becomes questionable as time becomes large. Therefore, the
model can be completed by adding a coagulation term into the transport equation for
macroscopic grains. This coagulation term is intended to restore a selection mechanism
of the LSW profile [33, Section 3], an intuition that has been confirmed on numerical
grounds [47]. Another approach goes back to a discrete version of the clusters popula-
tion, where clusters are just seen as aggregates of a certain number of monomers. One is
led to an infinite set of ODEs, the Becker-Döring system [5], which has a more standard
asymptotic behavior than the LSW system: under a certain critical mass condition, an
equilibrium state can be identified, which indeed attracts the solutions of the Cauchy
problem [2, 3, 8, 6, 7, 25]. By rescaling appropriately the equations, the LSW system
can be interpreted as the limit of the BD equations [14, 41, 43]. Moreover, keeping a
higher-order correction term in the equation, we obtain a modified LSW system, which
involves a size-diffusion term. The remarkable fact, pointed out in [21, 22], is that this
correction restores formally the equilibrium properties of the discrete model.

In this paper, we address the question of the numerical treatment of the modified
LSW system. We identify a structure which is common to that of the Fokker-Planck
equation and which makes the effect of relaxation to an equilibrium state appear.
Inspired by [26] for the (non linear) Fokker-Planck equation that arises in gas dynamics
and plasma physics, we design a numerical strategy of Finite Volume type which has
the Well-Balance property: equilibria are automatically preserved, a crucial property
for large-time simulations. The scheme allows us to numerically check the conjecture
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of the asymptotic trend to equilibrium.
The paper is organized as follows. In Section 2 we review the basic facts about

the Becker-Döring and Lifshitz-Slyozov-Wagner equations. In Section 3, we detail the
construction of the scheme, which relies on a time-splitting and the resolution of a
symmetric linear diffusion system. We pay attention to discuss the stability issues that
govern the choice of the time step. Section 4 is devoted to numerical experiments.
In particular we compare the scheme with a numerical approach recently designed in
[27], based on an implicit-explicit strategy, coupled with a high-order method for the
discretization of the transport term of the equation. Our findings can be summarized
as follows:
• On the numerical side, the new scheme finds and preserves the expected equilibria,

it is less constrained by stability conditions and therefore it reaches large time
simulations for a reduced numerical cost.

• On the modeling side, the simulation confirms the trend to equilibrium, with an
exponential rate. These indications will be a motivation for further analytical
investigations, for instance inspired from the recent developments in [17].

2 From Becker-Döring to Lifshitz-Slyozov-Wagner
2.1 Discrete viewpoint: the Becker-Döring system
We start by considering that polymers are simply aggregates of i monomers, with i
ranging over N\{0, 1}. Let t 7→ ci(t) stand for the concentration at time t of i-mers and
t 7→ c1(t) be the monomers concentration. Mass-action kinetics apply to the reactions

(i) + (1) 
 (i+ 1),

with coagulation rate ai and fragmentation rate bi+1, respectively. We are thus led to
the Becker-Döring equations [5]

d
dtci = Ji−1 − Ji for i ≥ 2, (1)

with, for i ≥ 1,
Ji = aicic1 − bi+1ci+1. (2)

Monomers are involved in all the reactions, thus the evolution of c1 is driven by an
equation with a different form

d
dtc1 = −2J1 −

∞∑
i=2

Ji. (3)

At least formally, solutions of (1)–(3) satisfy

d
dt

∞∑
i=1

ici(t) = 0
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which can be cast as a mass conservation property

c1 +
∞∑
i=2

ici = ρ is constant. (4)

Natural assumptions on the coefficients and the data can be summarized as follows

ai ≤ Ci, bi ≤ Ci,
∞∑
i=1

i2ci(0) <∞,

which allows us to establish the existence and uniqueness of globally defined solutions,
see [3], and [31] for sharpened uniqueness results. Equilibrium solutions (mi)i∈N\{0} of
the Becker-Döring system can be identified by imposing that the associated fluxes van-
ish: Ji = 0 leads to the recursion relation mi+1 = ai

bi+1
m1mi. (This defines the detailed

balance equilibria, which are considered as consistent with microscopic reversibility
principle from chemical kinetics.) Finally, we obtain a family of equilibrium states,
parametrized only by the monomers concentration m1

mi = Qim
i
1, Qi = ai−1ai−2....a1

bibi−1....b2
. (5)

We find the value of this parameter by going back to the mass constraint
∞∑
i=1

iQim
i
1 = ρ. (6)

This relation makes a threshold appear, in connection to the notion of critical mass.
Indeed, let µcrit be the radius of convergence of the entire series in (6) (that is, when
the limit exists, µcrit = limi→∞

bi+1
ai

) and set ρcrit =
∑∞
i=1 iQiµ

i
crit ∈ [0,∞], the critical

mass. The asymptotic behavior depends on whether or not the total mass ρ exceeds
the critical mass ρcrit: when 0 ≤ ρ < ρcrit, a monotonicity argument shows that
there exists a unique m1 ∈ (0, µcrit) such that

∑∞
i=1 iQim

i
1 = ρ. This equilibrium

is therefore a natural candidate for the asymptotic behavior of the solutions of the
system with mass ρ, and the convergence to the equilibrium (in a strong sense) can
indeed be justified [2, 3, 8], with rates that depend on the technical assumptions on
the coefficients and the initial data [6, 7, 25]. When ρ exceeds the critical mass, as
time becomes large the excess mass ρ− ρcrit concentrates in larger and larger clusters,
a phenomenon interpreted as a phase transition [3]. Technically, this phenomenon is
reflected from the fact that ci(t) converges, as t → ∞, weakly-? in the Banach space{(
un)n∈N,

∑∞
n=0 nun < ∞

}
to mcrit,i, the equilibrium state associated to the critical

mass ρcrit. For this supercritical situation the rate of convergence remains an open
question.

2.2 Continuous viewpoint: the Lifshitz-Slyozov-Wagner
system
In this description, which dates back to [32, 33, 42] and, independently, [49], roughly
speaking, the polymers are assumed to have a “large” size compared to the monomers.
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However, they are not that large, so that direct interactions between clusters can still
be neglected. The unknowns of the model are the size-density of polymers (t, x) 7→
f(t, x) and the monomers concentration t 7→ c(t). Given ξ2 > ξ1 ≥ 0, the integral∫ ξ2
ξ1
f(t, x) dx gives the number of polymers which have a volume x ∈ (ξ1, ξ2). On the

same token, the first order moment
∫∞

0 xf(t, x) dx defines the mass of the aggregates
within the considered solution. The attachment and detachment processes are governed
by principles of overall reduction of the interface energy, where volume effects, which
favor growth, compete with surface effects, which favor dissolution. The description of
these processes is embodied into two nonnegative coefficients a, b, that depend on the
variable x ≥ 0. The evolution is thus driven by

∂tf + ∂xJ = 0,
J(t, x) =

(
a(x)c(t)− b(x)

)
f(t, x), (7)

coupled to the mass conservation constraint

c(t) +
∫ ∞

0
xf(t, x) dx = ρ is constant. (8)

A standard assumption requests

a(0)ρ− b(0) ≤ 0. (9)

It means that the characteristics curves associated to the field (t, x) 7→ a(x)c(t)− b(x)
are always pointing outward the domain {x ≥ 0}, and, under this assumption, the
equation does not need a boundary condition at x = 0. Moreover, the function x 7→
b(x)
a(x) is usually assumed to be non increasing so that, at each time t a critical size
xcrit(t) =

(
b
a

)−1(c(t)) can be identified where the growth rate vanishes: it describes
the fact that larger particles grow at the expense of smaller particles, which are thus
assigned to become still smaller. We refer the reader to [13, 29, 30, 35, 37, 38] for the
analysis of the existence-uniqueness issues for (7)–(8).

As pointed out in [41], adopting a suitable rescaling, the system (7)–(8) can be de-
rived from the discrete model (1)–(3), see also the analysis in [14], and, more recently
in [43] where this question is revisited within the framework of the gradient flow struc-
ture of the equations. We equally refer the reader to [19] for a discussion on the case
where (9) does not hold and how the connection with the discrete modeling can help
in finding a relevant boundary condition for (7)–(8) in this case, a situation which is
relevant for applications in biology (assemblies of amyloid fibrils). Quite surprisingly,
despite this natural connection with the Becker-Döring system, the large time behavior
of the solutions of (7)–(8) is completely different. Let us focus on the standard case
where a(x) = x1/3 and b(x) = 1. The asymptotic behavior can be summarized as

f(t, x) ∼
t→∞

Aρ
(1 + t)2 MK

( x

1 + t

)
where Aρ = ρ

( ∫∞
0 yMK(y) dy

)−1 is a normalizing constant related to mass conserva-
tion, and z 7→ MK(z) is a profile (which has an explicit expression), which depends
on a certain constant K ∈ R. Lifshitz and Slyozov [32, 33, 42] conjectured a selection
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process which defines a universal profile, associated to a specific value of the constant
K = KLS . However, both numerical simulations [10, 47] and mathematical analysis
[34, 36] have shown that the selection of the profile is much more complicated: con-
sidering a data with compact support, the large time behavior selects K according to
the shape of the initial data at the tip of the support ! Such a phenomenon is highly
unusual and it has motivated the introduction of sharp notions to describe the behav-
ior of a function at the end of its support. Further details and references about the
Becker-Döring and Lifshitz-Slyozov systems can be found in the surveys [12, 24, 45].

2.3 A model with diffusive correction
The derivation of a continuous model from the discrete equations can be pushed for-
ward: keeping the next terms in the asymptotic expansion leads to the following Fokker-
Planck equation

∂

∂t
g + ∂

∂x
G(g; t, x) = 0,

G(g; t, x) = (a(x)c(t)− b(x))g − ε ∂
∂x

(
a(x)c(t) + b(x)

2 g(t, x)
)
,

(10)

where ε > 0 is the scaling parameter. Equation (10) is supplemented by the mass
conservation law

c(t) +
∫ ∞

0
xg(t, x) dx = ρ. (11)

This model has been proposed in [21, 22] as a variant of the Lifshitz-Slyozov model.
The asymptotic analysis further developed in [14] has also permitted to identify a
relevant boundary condition for (10); it reads(

a(0)c(t) + b(0)
)
g(t, 0) = α c(t)2. (12)

The coefficient α > 0 is reminiscient to the specific role of the aggregation between
monomers to form 2−mers in the scaling adopted in [14]: the coupling between macro-
scopic clusters and (microscopic) monomers introduced by this reaction is considered
to be weak, see also [18] for related observations. Alternative versions of the diffusion
corrections are discussed in [16, 17, 48]. In these papers the diffusion coefficients do
not depend on the time variable, the properties of the coefficients a, b and the bound-
ary condition are also different, which leads to completely different phenomena. We
also refer the reader to [39] for a derivation of (much more intricate) diffusion correc-
tions that goes back to an even more microscopic description by means of a mean-field
regime.

Remark 2.1 It is worth explaining, at least formally, that the model (10)–(12) pre-
serves the positivity of c, which is a crucial property in view of its physical interpreta-
tion. The argument is like for the diffusion-less Lifshitz-Slyozov equation, see [13]: we
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compute the time derivative of the first order moment

d
dt

∫ ∞
0

xg(t, x) dx = c(t)
∫ ∞

0
a(x)g(t, x) dx−

∫ ∞
0

b(x)g(t, x) dx

−ε2

∫ ∞
0

∂x((a(x)c(t) + b(x))g(t, x)) dx

= c(t)
∫ ∞

0
a(x)g(t, x) dx−

∫ ∞
0

b(x)g(t, x) dx+ ε

2αc
2(t),

by taking into account (12). The constraint (11) implies that this is equally − d
dtc(t).

If c vanishes at time t∗, we get

d
dtc(t∗) =

∫ ∞
0

b(x)g(t∗, x) dx > 0.

Then, either t∗ = 0, and c(t) becomes strictly positive for t > 0, or t∗ > 0, with c(t) > 0
on [0, t∗), which leads to a contradiction. Therefore we have c(t) > 0 on (0,∞). (Note
that this argument works with the homogeneous Dirichlet condition as in [16, 48], but
it does not apply with the boundary condition proposed in [17].)

For the model (10), we obtain the following equilibrium solutions

mc(x) = mc(0) a(0)c+ b(0)
a(x)c+ b(x) exp

(2
ε

∫ x

0

a(y)c− b(y)
a(y)c+ b(y) dy

)
, (13)

where (12) gives

mc(0) = αc2

a(0)c+ b(0) .

This corresponds to the detailed balance equilibria that make the flux function G
vanish. Therefore, we have a family of equilibrium states parametrized only by the
monomers concentration c. The function M : c 7→ c +

∫∞
0 xmc(x) dx is well defined

for c ∈ [0, cs), with cs = lim supx→∞
b(x)
a(x) , see [21, 22]. Let us denote ρs = M(cs).

Observing that c 7→ M(c) is increasing, for any ρ ∈ (0, ρs) we can find a unique
c ∈ (0, cs) such that M(c) = ρ, which in turn defines uniquely the equilibrium with
total mass ρ. We thus recover a similar discussion as for the Becker-Döring system.

As a matter of fact, let us consider the simplest case where the coefficients a, b are
constant. The equilibrium reads

mc(x) = αc2

ac+ b
exp

(2
ε

ac− b
ac+ b

x
)
.

The critical mass is non trivial when 0 < a < b: cs = b
a . Performing an expansion of the

formulas for the equilibrium states of both the Becker-Döring and (10) as c approaches
the critical value, we are led to the following analogous formulae, see [21, 22]

mi ' m1 exp
(
i

(
am1
b
− 1

))
, mc(x) ' c α

2a exp
(
x

ε

(ac
b
− 1

))
.

From this discussion, we can therefore expect that the diffusive model (10) restores the
asymptotic properties of the Becker–Döring system.
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2.4 Further comments on different diffusive corrections
As mentioned in the previous section, other diffusive corrections to the Lifshitz-Slyozov
equations have been proposed. However, they can describe different physical regimes,
for which the present discussion is not relevant. In particular, the models discussed in
[16, 17, 48] have the form

∂tg + ∂x(V f) = ∂2
xx(Df)

with
V (t, x) = a(x)c(t)− b(x),

and the diffusion coefficient D depends on the space variable only. The parameter c is
associated to a constraint that involves a moment of the unknown g:

• c(t) =
∫
g dx∫

x1/3g dx , the inverse of the mean radius (which corresponds in the usual
Lifshitz-Slyozov equation to prescribe

∫
xf dx = ρ, see for instance the derivation

in [43]), [16], where the coefficients are given by a(x) = x1/3, b(x) = 1, D(x) =
(1 + x)1/3.

•
∫
xg dx = ρ, with the coefficients a(x) = x1/3, b(x) = 1, D(x) = x1/3, [48].

• c(t) +
∫∞
0 A(x)g(t, x) dx, with A a primitive of x 7→ a(x)

D(x) , [17].

Note also that different boundary conditions are used to complete the problem: [16,
48] impose the homogeneous Dirichlet condition g(t, 0) = 0, while [17] uses g(t, 0) =

1
D(0)e

−B(0)+c(t)A(0), with B a primitive of x 7→ b(x)
D(x) . We can write the operator as

Lcg = ∂x
(
DMc∂x

g

M c

)
(14)

where
Mc(x) = D(0)

D(x) exp
( ∫ x

0

a(y)c− b(y)
D(y) dy

)
.

In (14), this definition depends on the time variable through c(t), as given from the
constraint.

Note however that this formula for a given c > 0 does not define an admissible
equilibrium solution for the equation proposed in [16, 48]: first, it is not compatible
with the homogeneous Dirichlet condition; second, for the considered coefficients the
first moment of Mc for any c > 0 is infinite. In other words, we have cs = 0 in
these cases. Therefore, the proposed approach is not designed for such situations. In
particular, the analysis performed in [48] rather indicates that the asymptotic behavior
is described, like for the original Lifshitz-Slyozov model, by means of a rescaled profile
g(t, x) ' 1

(1+t)2 Φ( x
1+t), reflecting the formation of larger and larger clusters as time

grows.
For the model in [17], one finds the equilibrium states

Mc(x) = A(x)
D(x)e

A(x)c−B(x).

Again, with the coefficients considered in [17], limx→∞
B(x)
A(x) = 0 holds. However the

asymptotic analysis performed in [17] to establish convergence to equilibrium considers
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a noticeably different framework where c takes non positive values, and admissible
equilibrium states are obtained for c ≤ 0. This describes a completely different physical
regime where, contrarily to the standard Lifshitz-Slyozov model, the growth rate V (t, x)
is always non positive (which excludes to recover the features of the Lifshitz-Slyozov
equation in the limit of small diffusion).

3 Numerical scheme
The numerical treatment of coagulation-fragmentation equations could be surprisingly
challenging: many comments and further references for Becker-Döring and Lifshitz-
Slyozov-Wagner equations can be found for instance in [9, 10, 24, 47]. Here, we focus
on the system with diffusion (10). In fact, the simulation of such a model is addressed
in [27], using a coupling with a discrete model to describe interactions with the smallest
clusters, instead of a boundary condition like (12). The numerical approach developed
in [27] is based on a high order implicit Finite Volume method with slope limiters
on advection. We point out that, in this approach, a proper high-order accurate size
discretization of the advection term turns out to be critical to obtain valuable results.

Here, we adopt a different viewpoint inspired from the numerical treatment of the
Fokker-Planck equation in gas dynamics [26]. We split the resolution of the equation
into two steps: the first step consists in solving the linear diffusion problem on g with
c fixed, while the second step involves the numerical integration of the ODE in c.

3.1 Diffusion problem
With c > 0 given, let us consider the operator

Lcg = ∂x
(
− (ac− b)g + ε

2∂x(ac+ b)g
)
.

Let us introduce the local equilibrium, parametrized by c,

Mc(x) = a(0)c+ b(0)
a(x)c+ b(x) exp

(2
ε

∫ x

0

a(y)c− b(y)
a(y)c+ b(y) dy

)
which clearly makes the operator vanish: LcMc = 0. The use of Mc is equivalent to
the use of mc given by (13) but enables the treatment of extinction of monomers (see
Section 4.5). Then, the Fokker-Planck operator can be cast as

Lcg = ∂x
(
dMc∂x

( g

Mc

))
with

d(x) = ε

2
(
a(x)c+ b(x)

)
.

Setting h = g√
Mc

, it is convenient to define the operator

L̃ch = 1√
Mc

Lc(h
√
Mc) = 1√

Mc
∂x
(
dMc∂x

( h√
Mc

))
(15)
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which is symmetric for the usual L2 inner product (in the sense that for all ϕ ∈
C∞((0,+∞),R) with compact support, 〈L̃ch, ϕ〉L2 = 〈h, L̃cϕ〉L2 , similar to the Lapla-
cian with non-homogeneous Dirichlet boundary conditions). Such a change of un-
knowns which makes the operator symmetric already appeared for analysing the Becker-
Döring system in [28], see also [20]. Note that an alternative choice is h = g

Mc
which

yields the operator Lch = 1
Mc
∂x
(
dMc∂xh

)
. In that case, the convergence to equi-

librium of g is reflected by the convergence of h to a constant, which simplifies the
interpretation of the outflow boundary conditions for large x. However, the operator
Lc is not symmetric and the numerical resolution of the system is more involved in this
case.

Given a mesh size ∆x, the operator L̃c is discretized by using the following formula

1
∆x
√
Mc,j

(
dj+1/2

√
Mc,j+1Mc,j

hj+1/
√
Mc,j+1 − hj/

√
Mc,j

∆x

−dj−1/2

√
Mc,jMc,j−1

hj/
√
Mc,j − hj−1/

√
Mc,j−1

∆x

)

= 1
∆x2

(
dj+1/2hj+1 −

1√
Mc,j

(
dj+1/2

√
Mc,j+1 + dj−1/2

√
Mc,j−1

)
hj + dj−1/2hj−1

)
.

(16)

Indeed, we wish to approximate (15) within the Finite Volume framework. On the
cell Cj = (xj−1/2, xj+1/2), it is interpreted as 1

∆x
√
Mc,j

(Gj+1/2 − Gj−1/2), where the

numerical flux Gj+1/2 is intended to be an approximation of dMc∂x
(
g
Mc

)
on the

interface xj+1/2. To this end, the derivative is replaced by the centered finite dif-

ference hj+1/
√
Mc,j+1−hj/

√
Mc,j

∆x and Mc(xj+1/2) is approached by the geometric mean√
Mc,j+1Mc,j . For further purposes, let us denote by S the corresponding matrix.

Note that S is obviously symmetric in the case of Dirichlet boundary conditions, and
Neumann boundary conditions only modify one diagonal coefficient which does not
change the symmetry of S.

Having at hand a discrete distribution function g (which thus here is a vector with
a size N given by the number of cells in the computational domain), we wish to update
it by solving the linear problem

gn+1 −∆tSgn+1 = gn, gn+1
1 = α(cn)2

a(0)cn + b(0) . (17)

By using an implicit scheme we expect to relax the stability condition where ∆t should
be dominated by ∆x2, imposed by the diffusion operator. This is crucial when we wish
to investigate the large time behavior of the equation. Note that the boundary condi-
tion on the right of the domain is left unspecified at the moment. In most numerical
simulations, imposing a null flux (GN+1/2 = 0) is sufficient. Other choices are possible
but lead to similar results, due to the exponential convergence of the size distribution
to zero. However, in the supercritical mass case, the outflow of mass to ever larger
cluster sizes requires adequate boundary conditions, as detailed in Section 4.4.
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Numerically, the computation of (16) can be difficult due to the fact that Mc(x)
displays extremely large or small values compared to Mc(0) = 1 for large x, with the
exponential possibly exceeding the floating point capacities. In practice, we make use
of the following expression for (16):

1
∆x2

(
dj+1/2hj+1 −

(
dj+1/2

√
Mc,j+1
Mc,j

+ dj−1/2

√
Mc,j−1
Mc,j

)
hj + dj−1/2hj−1

)
,

where the quotients of Mc are expressed as:

Mc,j+1
Mc,j

= a(xj)c+ b(xj)
a(xj+1)c+ b(xj+1) exp

(
2
ε

∫ xj+1

xj

a(y)c− b(y)
a(y)c+ b(y) dy

)
.

In this expression the argument in the exponential remains of the order of O(∆x),
while each of the Mc,j could be very large. In addition, the expression only makes use
of local terms, in the sense that the integral is evaluated only on [xj , xj+1] and does
not depend on the rest of the domain. This is expected as a discretization of an elliptic
differential operator and the property stems from the appropriate choice of Mc,j+1/2
as a geometric mean of Mc,j and Mc,j+1.

3.2 Evolution of c
At the continuous level, expressing the conservation of total mass ρ, integration by
parts leads to

d
dtc(t) = − d

dt

∫ ∞
0

xg(t, x) dx =
∫ ∞

0
x∂xG(g; t, x) dx

= −
∫ ∞

0
(a(x)c(t)− b(x))g(t, x) dx− ε

2αc(t)
2, (18)

by using the boundary condition (12).
Applying a discrete analogue of the integrations by parts, assuming that gn and

gn+1 verify (17), the conservation of discrete mass ρn = cn +
∑
i≥0 xig

n
i leads to:

cn+1 − cn = −
∑
i≥0

xi(gn+1
i − gni )∆x = ∆t

∑
i≥0

xi(Gn+1
i+1/2 −G

n+1
i−1/2) (19)

= −∆t
∑
i≥0

Gn+1
i+1/2∆x. (20)

Note that this is exactly the same expression as (18), except that the purely diffusive
terms are not integrated here (the diffusive fluxes balance each other out, leaving only
the boundary condition). Replacing with the expression of the numerical fluxes G, we
find that defining

cn+1 = cn + ∆t
∑
i≥0

di+1/2Mi+1/2

(
gn+1
i+1
Mi+1

− gn+1
i

Mi

)
∆x (21)

exactly conserves total mass.
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3.3 Splitting strategy
At time tn, we have at hand a monomers concentration cn and a vector (gn1 , ..., gnN )
whose components are intended to be an approximation of g(tn, j∆x) for j ∈ {1, ..., N}.
The right endpoint is chosen large enough so that a null flux boundary condition
is correct (little to no flux to larger size clusters). When this hypothesis is invalid,
alternative conditions can be imposed, as discussed in Section 4.4. It allows us to
construct

Mn
j = Mcn(j∆x).

We set hj = gn
j√
Mn

j

. Then, we obtain an intermediate quantity h? by solving

(I−∆tS)h? = h+ β, (22)

where β = (β1, ..., βN ) accounts for the boundary condition (12), namely all the

components of β vanish but β1 = ∆td(0)
√

α|cn|2
∆x2(a(0)cn+b(0)) . By construction the matrix

S is symmetric and the linear system can be solved efficiently by the conjugate gradient
algorithm. We set gn+1

j = h?j
√
Mn
j and update the concentration cn+1 using (21).

Eventually it is worth pointing out that the scheme is, by construction, well-
balanced: if the initial data is an equilibrium state, then the numerical solution remains
at equilibrium forever.

3.4 Choice of the time-step
As noted previously, the implicit scheme on diffusion (17) is unconditionnally stable.
The only stability criterion to be satisfied is the non-negativity of the monomer concen-
tration c, and we wonder whether the time step is constrained by the preservation of
this property. Suppose that the monomer concentration cn at time tn is nonnegative.
Using (21) and (17), a sufficient condition for cn+1 to be nonnegative is

∆t|BT(I−∆tL)−1(gn + ∆tβ̄)| ≤ cn,

where L = M1/2SM−1/2, β̄ = β
∆t and B is the vector of general term

Bi =


− d1/2

M1/2
M0

if i = 0,

1
Mi

(
di+1/2Mi+1/2 − di−1/2Mi−1/2

)
otherwise.

Since the eigenvalues of L are nonpositive, a sufficient condition on ∆t is

∆t|D−1B||D(gn + ∆tβ̄)| ≤ cn,

where D is any diagonal matrix. Using a triangle inequality, the scheme is stable as
long as

∆t ≤

√
|Dgn|2 + 4 cn|Dβ̄|

|D−1B| − |Dg
n|

2|Dβ̄|
(23)

12



In practice, a good choice for D is the diagonal matrix with di as diagonal elements.
Note that with this choice, we observe in practice that the boundary condition contri-
bution cn|Dβ̄|

|D−1B||Dgn|2 is negligible, so that (23) reduces to the simpler expression in the
absence of boundary conditions:

∆t ≤ cn

|D−1B||Dgn|
.

Remark that whereas condition (23) appears to be sharp for the fast initial phase of
the system dynamics, it is suboptimal in the established regime: the variation of c
becomes very slow and the term |BT(I + ∆tL)−1(gn + ∆tβ̄)| tends to zero, while the
norms |D−1B| and |Dgn| tend to a positive constant.

4 Numerical results
4.1 Infinite critical concentration
Let us start with a few comments about the equilibrium states. On Fig. 1 we plot the
equilibrium functions for the coefficients

a(x) = x1/2, b(x) = 0.05 + 0.1× x2/3, (24)

and several values of c. We have set α = 1.3 and ε = 0.05. Note that in this case
cs = +∞, ρs = +∞ since fragmentation dominates for large clusters; the equilibrium
functions are always admissible. We observe that the shape of the equilibrium is
conserved. Note in particular that the function is not a simple bell shape, and there is
a steep slope for small sizes. We observe that both the “support” (where the function
takes significantly positive values) and the amplitude of the equilibrium varies a lot
as a function of c (note that c varies in a quite tiny interval). This sensitivity can be
a numerical difficulty, since small errors on the monomers concentration can produce
a large error on the equilibrium function. In Fig. 2 we plot the variation of the total
mass as a function of c for these equilibrium states.

In order to check the asymptotic behavior of the solutions of (10) we need to find
a reference profile for the equilibrium function with a given total mass ρ. To this end,
we simply use a dichotomy algorithm, exploiting the fact that c 7→ c +

∫∞
0 xmc(x) dx

is monotone. Fig. 3–6 illustrate the evolution with the coefficients given by (24). The
initial data reads

g(0, x) = 2e−40|x−0.5|2 , c(0) = 1.6

so that ρ = 1.8802. The discretization step in size is fixed as ∆x = 1.5× 10−3 and the
simulation domain is [0, 15]. The dichotomy procedure finds the equilibrium concen-
tration c∞ = 0.1547. In Fig. 3 we plot the evolution of the monomers concentration
t 7→ c(t) and the total number of polymers t 7→

∫∞
0 g(t, x) dx, up to the time T = 10.

At first sight, one might believe that the equilibrium state is reached since c(t) seems
to go rapidly to the equilibrium value. However, the figure is a bit misleading: we
have c(T ) = 0.1525, and, going back to Fig. 1, we realize that the corresponding local
equilibrium is actually far from the expected final state. This metastability, due to the

13



0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14

m
(x

)

x

Figure 1: Equilibrium functions for the coefficients in (24) with c ranging over
{0.154, 0.155, 0.156, 0.157, 0.158}

0

5

10

15

20

25

30

35

0.154 0.1545 0.155 0.1555 0.156 0.1565 0.157 0.1575 0.158

ρ

c

Figure 2: Total mass as a function of c for the coefficients in (24).

evolution of the stiffness of the problem, should not be mistaken with the asymptotic
trend to equilibrium, see [9] for related comments about the Becker-Döring equations.
In fact the equilibrium profile requires considerably more time to establish: Fig. 4
shows the polymers size distributions at several times, up to Tf = 5000. The succes-
sive cluster size distributions are represented in blue, with varying line style, while the
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equilibrium solution is represented in red. At Tf = 5000 the solution indeed becomes
close to the equilibrium profile, see Fig. 6 which shows how the solution, the local
equilibrium and the expected equilibrium coincide. The convergence of the monomers
concentration c to the equilibrium concentration c∞ and of the distribution of poly-
mers g to the equilibrium profile m as t→ +∞ is shown in Figs. 7 and 8. The system
appears to display an exponential convergence in time to the equilibrium. In contrast
to the diffusionless Lifshitz-Slyozov equation, the behavior is similar when we start
from a less regular initial sate, say a step function, with the same mass. Figure 5
compares the solutions starting from a smooth initial distribution and a step function
with the same mass. The cluster size distributions are represented in blue and red for
the smooth initial distribution and the step function respectively, with corresponding
line styles at successive times. The solutions are clearly different for times less than
10, with the support of the step function remaining larger than that of the smooth
initial distribution. Over long times, however, the solutions become indistinguishable
and converge to the same equilibrium profile.
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Figure 3: Evolution of c(t) and
∫∞

0 g(t, x) dx, up to the time T = 10, for the coefficients in
(24)

4.2 Comparison with an implicit-explicit scheme for ad-
vection diffusion
In order to assess the accuracy and efficiency of the present scheme, we compare the nu-
merical results with an implicit-explicit (ImEx) scheme for advection-diffusion. Equa-
tion (10) is discretized as follows:

gn+1 − gn

∆t +Acg
n −Dcg

n+1 = 0, (25)

where Ac stands for the space-discrete advection operator with velocity a(x)c−b(x) and
Dc denotes the space-discrete diffusion operator associated to ∂2

x(d(x)·). We opt for
the natural centered discretization for Dc. The advection operator Ac is obtained with
the MP5 scheme, which consists in a 5th order expansion with monotonicity preserving
flux limiting, as described in [27] (we also refer to the original article of Suresh and
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Figure 4: Polymer distribution function at several times for the coefficients in (24) up to the
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Figure 5: Polymer distribution function at times 0, 1, 2,. . . 10 for the coefficients in (24) for
initial Gaussian (blue) and step-function (red) distributions

Huynh for further reference [46]). The update of the monomer concentration is carried
out in the same fashion as in Section 3.2.

Figures 9 and 10 compare the convergence of the present scheme and the ImEx
scheme to the asymptotic equilibrium state, for the monomer concentration and the
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Figure 6: Polymer distribution function at the final time Tf = 5000, compared to the
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Figure 7: Evolution of |c(t)− c∞| for the coefficients in (24)

size distribution respectively. Note that the ImEx scheme error convergence saturates
around t = 8000 due to the fact that it is not constructed to be well-balanced, contrary
to the present scheme. This results in the ImEx scheme converging to a slightly inexact
equilibrium state.

Regarding efficiency, the time-consuming tasks for each time-step consist of the
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Figure 8: Evolution of ‖g(t, ·)−m‖L2 for the coefficients in (24)

10−12

10−10

10−8

10−6

10−4

10−2

100

0 2000 4000 6000 8000 10000

|c
−
c ∞
|

t

Present scheme
ImEx scheme

Figure 9: Evolution of |c(t) − c∞| for the coefficients in (24) with the present scheme and
the ImEx scheme

linear solve (22) for the present scheme, and of the linear solve (I − ∆tDc)gn+1 =
(I−∆tAc)gn and the slope-limited advection Acgn for the ImEx scheme. Since matrices
(I − ∆tDc) and (I − ∆tS) have similar conditioning, the cost for each time-step is
comparable for both methods (with a slight advantage for the present scheme). It
remains to compare the time-step stability condition on both schemes. The stability
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Figure 10: Evolution of ‖g(t, ·) −m‖L2 for the coefficients in (24) with the present scheme
and the ImEx scheme

condition for the ImEx scheme is given by the classical CFL condition on advection
and the non-negativity of the monomer concentration c (which depends only on the
advection fluxes, since the diffusion fluxes cancel out):

∆t ≤ min
(

∆x
maxx∈[0,L] a(x)c− b(x) ,

cn

∆x
∑+∞
i=0 Fi

)
, (26)

where Fi denotes the advection flux which verifies (Acgn)i = 1
∆x(Fi+1−Fi). We choose

∆t as 10% of the maximal CFL conditions (23) and (26) for the present scheme and
the ImEx scheme respectively. The time-step evolution is compared in log-log scale for
both schemes on Fig. 11. We observe that in both cases, the time-step should be small
in the initial part of the simulation, which can be related to the stiffness of the initial
dynamics of the distribution. The time-step can then be increased around t = 10,
which corresponds to c becoming close to the equilibrium value and the dynamics
being dominated by the slow diffusion effects. Let us note that it is possible to take
a time-step much larger, by one to two orders of magnitude, for the present scheme
than for the ImEx scheme. The difference is particularly important for the long-term
dynamics (after t = 100), which results in a significant difference in simulation time.

4.3 Finite critical concentration
We turn to a case where the critical concentration is finite. We set

a(x) = 1 + x1/2, b(x) = 0.1 + 0.75x1/2 (27)

with α = 0.001 and ε = 0.05. We have cs = 0.75 and ρs = +∞ but difficulties
appear clearly with smaller monomers concentration. Fig. 12 shows the profiles that
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Figure 11: Evolution of the time-step in log-log scale for the coefficients in (24) for the
present scheme and the ImEx scheme

correspond to several values of c in the interval [0.48, 0.51]: we clearly observe the
increase of the amplitude and the spreading of the support. Fig. 13 illustrates how the
total mass increases as a function of c.
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Figure 12: Equilibrium functions for the coefficients in (27) with c ranging over
{0.48, 0.485, 0.49, 0.495, 0.5, 0.505, 0.51}
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Figure 13: Total mass as a function of c for the coefficients in (27).

We consider the evolution of the solution for the initial data

g(0, x) = 20 e−10|x−0.5|2 , c(0) = 0.6.

The total mass for this initial condition is ρ ≈ 6.216. The discretization step in
size is ∆x = 1.5 × 10−3 and the simulation domain is [0, 30]. Fig. 14 shows the
evolution of the monomer concentration which converges very slowly to the expected
limit c∞ = 0.4987; at the final time T = 10000, we find c(T ) = 0.4982. The evolution
of the number of polymers is displayed in Fig. 15. Accordingly, the asymptotic profile
needs a considerable time to establish. Fig. 16 shows several polymer distributions
up to the final time. The successive cluster size distributions are represented in blue,
with varying line style, while the equilibrium solution is represented in red. Fig. 17
compares the solution to the expected profile.

We now start with a different initial condition:

c(0) = 6, g(0, x) =
{

0.4320194 if x < 1
0 otherwise.

Both initial conditions share the same (subcritical) mass, ensuring the existence of a
steady state. However, the initial monomer concentration c(0) is larger than the critical
concentration cs = 0.75. As a consequence, the present scheme involves operations
with a diverging exponential function. However, as noted at the end of Section 3.1, the
formulation can be recast to eliminate the diverging exponential and nonlocal terms.
In order to assess the robustness of the scheme in that case, we compare the present
scheme with the ImEx scheme (which does not involve the diverging exponential).
The comparison is carried out until T = 10, since Fig. 18 shows that the monomer
concentration c(t) decreases under cs as soon as t > 2.03. Figures 19 and 20 show
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the comparison of the solutions at times t = 1 and t = 2 respectively for the present
scheme and the ImEx scheme and for time-steps ∆t1 = 4× 10−4 and ∆t2 = 4× 10−5.
We observe that while the two schemes differ with the larger time-step ∆t1 due to the
added numerical diffusion, they are in close agreement for the fine time-step ∆t2. The
use of a higher-order discretization of the elliptic operator Lc (we have tested order
4) does not improve significantly the results. Let us note that the time-step ∆t2 for
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the final time Tf = 10000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 2 4 6 8 10 12 14
x

g
mc∞
mc

Figure 17: Polymer distribution function at the final time Tf = 10000, compared to the
equilibrium profile, for the coefficients in (27)

which we observe convergence is small compared to the theoretical stability limits for
the present and ImEx schemes: stability limit stands at at the order of ∆t = 10−3

for the ImEx scheme and ∆t = 10−2 for the present scheme. Note however that
the position of the peak size concentration is still adequately captured even for large
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time-steps and the present scheme is able to robustly accommodate the supercritical
monomer concentrations until c(t) < cs.
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Figure 18: Evolution of the monomer concentration c(t) for the coefficients in (27) in the
supercritical concentration case
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Figure 19: Solution at time t = 1 for the present scheme and the ImEx scheme for the
coefficients in (27) in the supercritical concentration case, with time-steps ∆t1 = 4 × 10−4

and ∆t2 = 4× 10−5
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Figure 20: Solution at time t = 2 for the present scheme and the ImEx scheme for the
coefficients in (27) in the supercritical concentration case, with time-steps ∆t1 = 4 × 10−4

and ∆t2 = 4× 10−5

4.4 Finite critical mass and choice of the boundary con-
dition on the right
We now study a finite critical mass case. We set

a(x) = 1 + 5x3, b(x) = 1.5 + 5x3, (28)

with α = 100 and ε = 0.05. We have cs = 1 and ρs ≈ 1.655. We consider the evolution
of the solution for the initial data

g(0, x) = max(6(1− x), 0), c(0) = 1.

The initial condition satisfies ρ = 2 > ρs, which corresponds to the supercritical mass
case. In this case, the mass excess ρ− ρs should create ever larger cluster sizes, while
the rest of the distribution (mainly contained inside the simulation domain) is expected
to converge to the equilibrium state associated to ρs [3]. As a consequence, the choice
of the boundary condition on the right is crucial since it conditions the mass flow from
the simulation domain. In the sequel, we denote [0, L] the simulation domain and N
the number of discretization points. In the numerical results, we take L = 100 and
N = 3× 104.

We have studied four different boundary conditions. The first two conditions are
straightforward: an homogeneous Dirichlet boundary condition (gN+1 = 0) and a null
flux boundary condition (GN+1/2 = 0 or, equivalently, gN+1

MN+1
= gN

MN
). Note that the

null flux is compatible with the existence with a non-trivial equilibrium state while
the homogeneous Dirichlet boundary condition is not, due to continued mass loss. On
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the other hand, the null flux condition is exactly mass-conservative and is unable to
account for mass flowing to ever-larger clusters outside the simulation domain. In order
to mitigate these difficulties, we propose two alternative boundary conditions. First,
a modified Dirichlet boundary condition consists in imposing the exact equilibrium
state associated with the current monomer concentration c. However, when c > cs,
the diverging exponential induces extremely large values for gN+1, which results in an
explosion of the system. We therefore propose to replace c with c̃ = min(c, cs) and
impose, in accordance with the left boundary condition (12),

gN+1 = αc̃2

a(0)c̃+ b(0)Mc̃(xN+1).

Similarly, the modified flux boundary condition writes
gN+1

Mc̃(xN+1) = gN
Mc̃(xN ) .

The evolution of the monomer concentration c and of the total mass in the sim-
ulation domain ρ are shown in Fig. 21 and 22 respectively, with a logarithmic scale
in time to account for the change of system dynamics. We observe that, as expected,
the null flux boundary condition enforces exact conservation of mass in the simulation
domain and consequently the equilibrium monomer concentration c is larger than cs.
The homogeneous Dirichlet boundary condition loses too much mass, as predicted,
and c does not converge to an equilibrium state (if continued, the simulation would
show that c slowly tends to zero). On the contrary, the modified Dirichlet boundary
condition and the modified flux condition display the correct general behaviour: total
mass in the simulation domain ρ decreases and reaches an equilibrium state, and the
monomer concentration c converges to a constant. Quantitatively, we observe that the
modified Dirichlet condition dissipates the correct amount of mass and converges to
the theoretical exact solution with c = cs and ρ = ρs, while the modified flux condition
does not dissipate enough mass.

The dynamics of the cluster size distribution is shown in Fig. 23, with a logarithmic
scale in size and distribution. We observe that for the first part of the dynamics
(t = 0.1 and t = 0.2), the different boundary conditions are in good agreement, except
the modified Dirichlet boundary condition. This is due to the fact that the bulk of
the cluster size distribution has not yet moved to the right and reached the right
boundary of the domain, while the modified Dirichlet boundary condition imposes a
boundary condition based on the monomer concentration c, resulting in an incorrect
influx of information from the right boundary. However, from time t = 0.4, the different
boundary conditions come into good agreement again: the limited pollution of the
modified Dirichlet in the distribution tail has been smoothed by diffusion. Starting
from t = 1, the different boundary conditions cause the solutions to diverge once
again: the homogeneous Dirichlet boundary condition forces continued outflow from
the domain, while zero flux and modified flux conditions give inaccurate derivatives at
the boundary of the numerical domain. Only the modified Dirichlet condition appears
to give a correct distribution tail behaviour.
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Figure 21: Evolution of the monomer concentration in the supercritical mass case for four
different right boundary conditions: homogeneous Dirichlet, null flux, modified Dirichlet and
modified flux
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Figure 22: Evolution of the total mass in the supercritical mass case for four different right
boundary conditions: homogeneous Dirichlet, null flux, modified Dirichlet and modified flux

4.5 Extinction of monomers
We now turn to the special case where there exists no non-trivial equilibrium state,
due to the extinction of monomers. We set

a(x) = 6× 105, b(x) = 0, (29)
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Figure 23: Solution at times t = 0.1, t = 0.2, t = 0.4, t = 1, t = 2 and t = 100 for the
supercritical mass case for four different right boundary conditions: homogeneous Dirichlet,
null flux, modified Dirichlet and modified flux

with α = 100 and ε = 1. This case is similar to Case 4.1 in [27]. Since b = 0, no
fragmentation occurs, so that the distribution shifts to ever larger clusters until the
monomers are completely consumed.
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We consider the evolution of the solution for the initial data

c(0) = 1, g(0, x) =
{

10−4 if x < 30
0 otherwise.

The discretization step in size is ∆x = 0.3 and the simulation domain is [0, 300]. The
concentration of monomers rapidly decreases to 0, as shown in Fig. 24. The solution
at final time T = 2× 10−3 for the present scheme and the ImEx scheme is displayed in
Fig. 25. We observe an excellent agreement between the two schemes, using the same
time-step for both schemes (set with the more restrictive ImEx CFL condition). This
shows that the present scheme is capable of handling the simulation of supercritical
cases, even when no equilibrium state exists.
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Figure 24: Monomer concentration evolution for case (29)

5 Conclusion
We have proposed a well-balanced scheme for the Lifshitz-Slyozov-Wagner system with
diffusion, which demonstrates its ability to capture accurately the long-time conver-
gence to the equilibrium solution. The proposed scheme is more efficient than an
implicit-explicit scheme for advection diffusion on the test-cases studied. Even if de-
signed originally for subcritical cases, the scheme demonstrated to be capable of han-
dling supercritical masses and even the extinction of monomers. However, the outflow
boundary condition has to be handled adequately in order to recover the correct weak
convergence to the critical equilibrium. The main drawback of the scheme is the in-
ability to handle vanishing diffusion ε = 0. A future possible extension of the present
work would be to investigate the (exponential in time) convergence to the equilibrium,
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Figure 25: Numerical solutions for case (29) at time t = 2× 10−3 for the present scheme and
the ImEx scheme

based on discrete entropy arguments. We have checked that the entropy techniques
developed in [15] do not apply directly here; the techniques presented in [17] for a very
similar problem look quite appealing to handle this issue, but it would need non trivial
adaptations in order to deal with the different boundary conditions and properties of
the coefficients.
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