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ON THE SHOCKLEY–READ–HALL MODEL:
GENERATION-RECOMBINATION IN SEMICONDUCTORS∗
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Abstract. The Shockley–Read–Hall model for generation-recombination of electron-hole pairs
in semiconductors based on a quasi-stationary approximation for electrons in a trapped state is
generalized to distributed trapped states in the forbidden band and to kinetic transport models for
electrons and holes. The quasi-stationary limit is rigorously justified both for the drift-diffusion and
for the kinetic model.
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1. Introduction. The Shockley–Read–Hall (SRH) model was introduced in
1952 [15], [9] to describe the statistics of recombination and generation of holes and
electrons in semiconductors occurring through the mechanism of trapping.

The transfer of electrons from the valence band to the conduction band is referred
to as the generation of electron-hole pairs (or pair-generation process), since not only
is a free electron created in the conduction band, but also a hole in the valence band
which can contribute to the charge current. The inverse process is termed recombina-
tion of electron-hole pairs. The bandgap between the upper edge of the valence band
and the lower edge of the conduction band is very large in semiconductors, which
means that a big amount of energy is needed for a direct band-to-band generation
event. The presence of trap levels within the forbidden band caused by crystal im-
purities facilitates this process, since the jump can be split into two parts, each of
them “cheaper” in terms of energy. The basic mechanisms are illustrated in Figure 1:
(a) hole emission (an electron jumps from the valence band to the trapped level),
(b) hole capture (an electron moves from an occupied trap to the valence band, and
a hole disappears), (c) electron emission (an electron jumps from the trapped level to
the conduction band), (d) electron capture (an electron moves from the conduction
band to an unoccupied trap).

Models for this process involve equations for the densities of electrons in the
conduction band, holes in the valence band, and trapped electrons. Basic for the
SRH model are the drift-diffusion assumption for the transport of electrons and holes,
the assumption of one trap level in the forbidden band, and the assumption that
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Fig. 1. The four basic processes of electron-hole recombination.

the dynamics of the trapped electrons is quasi-stationary, which can be motivated by
the smallness of the density of trapped states compared to typical carrier densities.
This last assumption leads to the elimination of the density of trapped electrons from
the system and to a nonlinear effective recombination-generation rate, reminiscent
of Michaelis–Menten kinetics in chemistry. This model is an important ingredient of
simulation models for semiconductor devices (see, e.g., [10], [14]).

In this work, two generalizations of the classical SRH model are considered: In-
stead of a single trapped state, a distribution of trapped states across the forbidden
band is allowed, and, in a second step, a semiclassical kinetic model including the
fermion nature of the charge carriers is introduced. Although direct band-to-band
recombination-generation (see, e.g., [13]) and impact ionization (e.g., [2], [3]) have
been modelled on the kinetic level before, this is (to the best of the authors’ knowl-
edge) the first attempt to derive a “kinetic SRH model.” (We also mention the
modelling discussions and numerical simulations in [7], [8].)

For both the drift-diffusion and the kinetic models with self-consistent electric
fields existence results and rigorous results concerning the quasi-stationary limit are
proven. For the drift-diffusion problem, the essential estimate is derived similarly
to [6], where the quasi-neutral limit has been carried out. For the kinetic model
Degond’s approach [4] for the existence of solutions of the Vlasov–Poisson problem
is extended. Actually, the existence theory already provides the uniform estimates
necessary for passing to the quasi-stationary limit.

In the following section, the drift-diffusion based model is formulated and nondi-
mensionalized, and the SRH model is formally derived. Section 3 contains the rigorous
justification of the passage to the quasi-stationary limit. Section 4 corresponds to sec-
tion 2, dealing with the kinetic model, and in section 5 existence of global solutions
for the kinetic model is proven, and the quasi-stationary limit is justified.

2. The drift-diffusion Shockley–Read–Hall model. We consider a semi-
conductor crystal with a forbidden band represented by the energy interval (Ev, Ec)
with the valence band edge Ev and the conduction band edge Ec. The constant (in
space) number density Ntr of trapped states is obtained by summing up contributions
across the forbidden band:

Ntr =

∫ Ec

Ev

Mtr(E) dE.
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Here Mtr(E) is the energy dependent density of available trapped states. The position
density of occupied traps is given by

ntr(ftr)(x, t) =

∫ Ec

Ev

Mtr(E)ftr(x,E, t) dE,

where ftr(x,E, t) is the fraction of occupied trapped states at position x ∈ Ω, energy
E ∈ (Ev, Ec), and time t ≥ 0. Note that 0 ≤ ftr ≤ 1 should hold from a physical
point of view.

The evolution of ftr is coupled to those of the density of electrons in the con-
duction band, denoted by n(x, t) ≥ 0, and the density of holes in the valence band,
denoted by p(x, t) ≥ 0. Electrons and holes are oppositely charged. The coupling is
expressed through the following quantities:

Sn =
1

τnNtr

[
n0ftr − n(1 − ftr)

]
, Sp =

1

τpNtr

[
p0(1 − ftr) − pftr

]
,(1)

Rn =

∫ Ec

Ev

SnMtr dE, Rp =

∫ Ec

Ev

SpMtr dE.(2)

Indeed, the governing equations are given by

∂tftr = Sp − Sn =
p0

τpNtr
+

n

τnNtr
− ftr

(
p0 + p

τpNtr
+

n0 + n

τnNtr

)
,(3)

∂tn = ∇ · Jn + Rn, Jn = μn(UT∇n− n∇V ),(4)

∂tp = −∇ · Jp + Rp, Jp = −μp(UT∇p + p∇V ),(5)

εsΔV = q(n + ntr(ftr) − p− C).(6)

For the current densities Jn, Jp we use the simplest possible model, the drift diffu-
sion ansatz, with constant mobilities μn, μp, and with thermal voltage UT . Moreover,
since the trapped states have fixed positions, no flux appears in (3).

By Rn and Rp we denote the recombination-generation rates for n and p, respec-
tively. The rate constants are τn(E), τp(E), n0(E), p0(E), where n0(E)p0(E) = ni

2

with the energy independent intrinsic density ni.
Integration of (3) yields

(7) ∂tntr = Rp −Rn.

By adding (4), (5), (7), we obtain the continuity equation

(8) ∂t(p− n− ntr) + ∇ · (Jn + Jp) = 0,

with the total charge density p− n− ntr and the total current density Jn + Jp.
In the Poisson equation (6), V (x, t) is the electrostatic potential, εs the permittiv-

ity of the semiconductor material, q the elementary charge, and C = C(x) the given
doping profile.

Note that if τn, τp, n0, p0 are independent of E, or if there exists only one trap
level Etr with Mtr(E) = Ntrδ(E − Etr), then Rn = 1

τn
[n0

ntr

Ntr
− n(1 − ntr

Ntr
)], Rp =

1
τp

[p0(1 − ntr

Ntr
) − p ntr

Ntr
], and (4), (5) together with (7) are a closed system governing

the evolution of n, p, and ntr.
We now introduce a scaling of n, p, and ftr in order to render (4)–(6) dimension-

less:
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Scaling of parameters:
i. Mtr → Ntr

Ec−Ev
Mtr.

ii. τn,p → τ̄ τn,p, where τ̄ is a typical value for τn and τp.
iii. μn,p → μ̄μn,p, where μ̄ is a typical value for μn,p.
iv. (n0, p0, ni, C) → C̄(n0, p0, ni, C), where C̄ is a typical value of C.

Scaling of unknowns:
v. (n, p) → C̄(n, p).
vi. ntr → Ntrntr.
vii. V → UTV .
viii. ftr → ftr.

Scaling of independent variables:
ix. E → Ev + (Ec − Ev)E.
x. x →

√
μ̄UT τ̄ x, where the reference length is a typical diffusion length before

recombination.
xi. t → τ̄ t, where the reference time is a typical carrier life time.

Dimensionless parameters:

xii. λ =
√

εs
qC̄μ̄τ̄

= 1
x̄

√
εsUT

qC̄
is the scaled Debye length.

xiii. ε = Ntr

C̄
is the ratio of the density of traps to the typical doping density, and

will be assumed to be small: ε � 1.
The scaled system reads as follows:

(9)

ε∂tftr = Sp(p, ftr) − Sn(n, ftr), Sp =
1

τp

[
p0(1 − ftr) − pftr

]
,

Sn =
1

τn

[
n0ftr − n(1 − ftr)

]
,

(10)

∂tn = ∇ · Jn + Rn(n, ftr), Jn = μn(∇n− n∇V ), Rn =

∫ 1

0

SnMtr dE,

(11)

∂tp = −∇ · Jp + Rp(p, ftr), Jp = −μp(∇p + p∇V ), Rp =

∫ 1

0

SpMtr dE,

(12)

λ2ΔV = n + εntr − p− C, ntr(ftr) =

∫ 1

0

ftrMtr dE,

with n0(E)p0(E) = n2
i and

∫ 1

0
Mtr dE = 1.

By letting ε → 0 in (9) formally, we obtain ftr =
τnp0+τpn

τn(p+p0)+τp(n+n0)
, and the

reduced system has the following form:

∂tn = ∇ · Jn + R(n, p),(13)

∂tp = −∇ · Jp + R(n, p),(14)

R(n, p) = (ni
2 − np)

∫ 1

0

Mtr(E)

τn(E)(p + p0(E)) + τp(E)(n + n0(E)) dE
,(15)

λ2ΔV = n− p− C.(16)
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Note that if τn, τp, n0, p0 are independent of E or if there exists only one trap level,

then we would have the standard SRH model, with R = ni
2−np

τn(p+p0)+τp(n+n0)
. Exis-

tence and uniqueness of solutions of the limiting system (13)–(16) under assumptions
(21)–(25) stated below is a standard result in semiconductor modelling. A proof can
be found in, e.g., [10].

3. Rigorous derivation of the drift-diffusion Shockley–Read–Hall mod-
el. We consider the system (9)–(12) with the position x varying in a bounded domain
Ω ∈ R

3 (all our results are easily extended to the one- and two-dimensional situations),
the energy E ∈ (0, 1), and time t > 0, subject to initial conditions

(17) n(x, 0) = nI(x), p(x, 0) = pI(x), ftr(x,E, 0) = ftr,I(x,E)

and mixed Dirichlet–Neumann boundary conditions

(18) n(x, t) = nD(x, t), p(x, t) = pD(x, t), V (x, t) = VD(x, t), x ∈ ∂ΩD ⊂ ∂Ω,

and

(19)
∂n

∂ν
(x, t) =

∂p

∂ν
(x, t) =

∂V

∂ν
(x, t) = 0, x ∈ ∂ΩN := ∂Ω \ ∂ΩD,

where ν is the unit outward normal vector along ∂ΩN . We permit the special case
that either ∂ΩD or ∂ΩN is empty. More precisely, we assume that either ∂ΩD has
positive (d − 1)-dimensional measure, or it is empty. In the second situation (∂ΩD

empty) we have to assume total charge neutrality; i.e.,

(20)

∫
Ω

(n + εntr − p− C) dx = 0 if ∂Ω = ∂ΩN .

The potential is then determined only up to a (physically irrelevant) additive constant.
The following assumptions on the data will be used: For the boundary data, given

any 0 < T < ∞,

(21) nD, pD ∈ W 1,∞(0, T ;W 1,∞
loc (Ω)), VD ∈ L∞(0, T ;W 1,6(Ω));

for the initial data

nI , pI ∈ H1(Ω) ∩ L∞(Ω), 0 ≤ ftr,I ≤ 1,(22) ∫
Ω

(nI + εntr(ftr,I) − pI − C) dx = 0 if ∂Ω = ∂ΩN ;(23)

for the doping profile

(24) C ∈ L∞(Ω);

and for the recombination-generation rate constants

(25) n0, p0, τn, τp ∈ L∞((0, 1)), τn, τp ≥ τmin > 0.

With these assumptions, a local existence and uniqueness result for the problem
(9)–(12), (17)–(19) for fixed positive ε can be proven by a straightforward extension
of the approach in [5] (see also [10]). In the following, local existence will be assumed,
and we shall concentrate on obtaining bounds which guarantee global existence and
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which are uniform in ε as ε → 0. For the sake of simplicity, we consider that the data
in (21), (22), and (24) do not depend on ε; of course, our strategy works when dealing
with sequences of data bounded in the mentioned spaces.

The following result is a generalization of [6, Lemma 3.1], where the case of ho-
mogeneous Neumann boundary conditions and vanishing recombination was treated.
Our proof uses a similar approach.

Lemma 3.1. Let the assumptions (21)–(25) be satisfied. Then, the solution
of (9)–(12), (17)–(19) exists for all times and satisfies n, p ∈ L∞(0, T ;L∞(Ω)) ∩
L2(0, T ;H1(Ω)) uniformly in ε as ε → 0 as well as 0 ≤ ftr ≤ 1.

Proof. Global existence will be a consequence of the following estimates. Intro-
ducing the new variables ñ = n−nD, p̃ = p− pD, C̃ = C− εntr −nD + pD, (10)–(12)
take the following form:

∂tñ = ∇ · Jn + Rn − ∂tnD, Jn = μn

[
∇ñ + ∇nD − (ñ + nD)∇V

]
,(26)

∂tp̃ = −∇Jp + Rp − ∂tpD, Jp = −μp

[
∇p̃ + ∇pD + (p̃ + pD)∇V

]
,(27)

λ2ΔV = ñ− p̃− C̃.(28)

As a consequence of 0 ≤ ftr ≤ 1, C̃ ∈ L∞((0,∞) × Ω) holds. For q ≥ 2 and even, we
multiply (26) by ñq−1/μn and (27) by p̃q−1/μp, and add:

d

dt

∫
Ω

[
ñq

qμn
+

p̃q

qμp

]
dx = −(q − 1)

∫
Ω

ñq−2∇ñ∇ndx− (q − 1)

∫
Ω

p̃q−2∇p̃∇p dx

+ (q − 1)

∫
Ω

[
ñq−2n∇ñ− p̃q−2p∇p̃

]
∇V dx

+

∫
Ω

ñq−1

μn
(Rn − ∂tnD) +

∫
Ω

p̃q−1

μp
(Rp − ∂tpD)

=: I1 + I2 + I3 + I4 + I5.

(29)

Using the assumptions on nD, pD and |Rn| ≤ C(n+ 1), |Rp| ≤ C(p+ 1), we estimate

I4 ≤ C

∫
Ω

|ñ|q−1(n + 1) dx ≤ C

(∫
Ω

ñq dx + 1

)
, I5 ≤ C

(∫
Ω

p̃q dx + 1

)
.

The term I3 can be rewritten as follows:

I3 =

∫
Ω

[
ñq−1∇ñ− p̃q−1∇p̃

]
∇V dx

+

∫
Ω

[
ñq−2∇ñ

]
(nD∇V ) dx−

∫
Ω

[
p̃q−2∇p̃

]
(pD∇V ) dx

= − 1

λ2q

∫
Ω

[ñq − p̃q] (ñ− p̃− C̃) dx

− 1

λ2(q − 1)

∫
Ω

ñq−1
(
∇nD∇V + nD(ñ− p̃− C̃)

)
dx

+
1

λ2(q − 1)

∫
Ω

p̃q−1
(
∇pD∇V + pD(ñ− p̃− C̃)

)
dx.

The second equality uses integration by parts and (28). The first term on the right-
hand side is the only term of degree q + 1. It reflects the quadratic nonlinearity of
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the problem. Fortunately, it can be written as the sum of a term of degree q and a
nonnegative term. By estimation of the terms of degree q using the assumptions on

nD and pD as well as ‖∇V ‖Lq(Ω) ≤ C(‖ñ‖Lq(Ω) + ‖p̃‖Lq(Ω) + ‖C̃‖Lq(Ω)), we obtain

I3 ≤ − 1

λ2q

∫
Ω

[ñq − p̃q] (ñ− p̃) dx + C

(∫
Ω

(ñq + p̃q) dx + 1

)
≤ C

(∫
Ω

(ñq + p̃q) dx + 1

)
.

The integral I1 can be written as

(30) I1 = −
∫

Ω

ñq−2|∇n|2 dx +

∫
Ω

ñq−2∇nD∇ndx.

By rewriting the integrand in the second integral as

ñq−2∇nD∇n = ñ
q−2
2 ∇nñ

q−2
2 ∇nD

and applying the Cauchy–Schwarz inequality, we have the following estimate for (30):

I1 ≤ −
∫

Ω

ñq−2|∇n|2 dx +

√∫
Ω

ñq−2|∇n|2 dx
∫

Ω

ñq−2|∇nD|2 dx

≤ −1

2

∫
Ω

ñq−2|∇n|2 dx + C‖ñ‖q−2
Lq ≤ −1

2

∫
Ω

ñq−2|∇n|2 dx + C

(∫
Ω

ñq dx + 1

)
.

For I2, the same reasoning (with n and nD replaced by p and pD, respectively) yields
an analogous estimate. Collecting our results, we obtain

d

dt

∫
Ω

[
ñq

qμn
+

p̃q

qμp

]
dx ≤ −1

2

∫
Ω

ñq−2|∇n|2 dx− 1

2

∫
Ω

p̃q−2|∇p|2 dx

+ C

(∫
Ω

(ñq + p̃q) dx + 1

)
.

(31)

Since q ≥ 2 is even, the first two terms on the right-hand side are nonpositive, and
the Gronwall lemma gives∫

Ω

(ñq + p̃q) dx ≤ eqCt

(∫
Ω

(ñ(t = 0)q + p̃(t = 0)q) dx + 1

)
.

A uniform-in-q-and-ε estimate for ‖n‖Lq , ‖p‖Lq follows, and the uniform-in-ε bound
in L∞(0, T ;L∞(Ω)) is obtained in the limit q → ∞. The estimate in L2(0, T ;H1(Ω))
is then derived by returning to (31) with q = 2.

Now we are ready to prove the main result of this section.
Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied. Then, as ε → 0,

for every T > 0, the solution (ftr, n, p, V ) of (9)–(12), (17)–(19) converges with
convergence of ftr in L∞((0, T ) × Ω × (0, 1)) weak*, n and p in L2((0, T ) × Ω), and
V in L2(0, T ;H1(Ω)). The limits of n, p, and V satisfy (13)–(19).

Proof. The L∞-bounds for ftr, n, and p, which are uniform with respect to
ε, and the Poisson equation (12) imply ∇V is bounded in L2((0, T ) × Ω). From the
definition of Jn, Jp (see (4), (5)), it then follows that Jn, Jp ∈ L2((0, T )×Ω). Then (10)
and (11) together with Rn, Rp ∈ L∞((0, T ) × Ω) imply ∂tn, ∂tp ∈ L2(0, T ;H−1(Ω)).
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The previous result and the Aubin lemma (see, e.g., Simon [16, Corollary 4, p. 85])
give compactness of n and p in L2((0, T ) × Ω).

We already know from the Poisson equation that ∇V ∈ L∞(0, T ;H1(Ω)). By
taking the time derivative of (12), one obtains

∂tΔV = ∇ · (Jn + Jp),

with the consequence that ∂t∇V is bounded (uniformly with respect to ε) in L2((0, T )×
Ω). Therefore, the Aubin lemma can again be applied as above to prove compactness
of ∇V in L2((0, T ) × Ω).

These results and the weak compactness of ftr are sufficient for passing to the limit
in the nonlinear terms n∇V , p∇V , nftr, and pftr. Let us also remark that ∂tn and ∂tp
are bounded in L2(0, T ;H−1(Ω)), so that n, p are compact in C0([0, T ];L2(Ω) weak).
With this remark the initial data for the limit equation make sense. By the uniqueness
result for the limiting problem (mentioned at the end of section 2), the convergence
is not restricted to subsequences.

4. A kinetic Shockley–Read–Hall model. In this section we replace the
drift-diffusion model for electrons and holes by a semiclassical kinetic transport model.
It is governed by the system

∂tfn + vn(k) · ∇xfn +
q

�
∇xV · ∇kfn = Qn(fn) + Qn,r(fn, ftr),(32)

∂tfp + vp(k) · ∇xfp −
q

�
∇xV · ∇kfp = Qp(fp) + Qp,r(fp, ftr),(33)

∂tftr = Sp(fp, ftr) − Sn(fn, ftr),(34)

εsΔxV = q(n + ntr − p− C),(35)

where fi(x, k, t) represents the particle distribution function (with i = n for electrons
and i = p for holes) at time t ≥ 0, at the position x ∈ R

3, and at the wave vector
(or generalized momentum) k ∈ R

3. All functions of k have the periodicity of the
reciprocal lattice of the semiconductor crystal. Equivalently, we shall consider only
k ∈ B, where B is the Brillouin zone, i.e., the set of all k which are closer to the origin
than to any other lattice point, with periodic boundary conditions on ∂B.

The coefficient functions vn(k) and vp(k) denote the electron and hole velocities,
respectively, which are related to the electron and hole band diagrams by

vn(k) = ∇kεn(k)/�, vp(k) = −∇kεp(k)/�,

where � is the reduced Planck constant. The elementary charge is still denoted by q.
The collision operators Qn and Qp describe the interactions between the particles

and the crystal lattice. They involve several physical phenomena and can be written
in the general form

Qn(fn) =

∫
B

Φ̃n(k, k′)[Mnf
′
n(1 − fn) −M ′

nfn(1 − f ′
n)] dk′,(36)

Qp(fp) =

∫
B

Φ̃p(k, k
′)[Mpf

′
p(1 − fp) −M ′

pfp(1 − f ′
p)] dk

′,(37)

with the primes denoting evaluation at k′, with the nonnegative, symmetric scattering
cross sections Φ̃n(k, k′) and Φ̃p(k, k

′), and with the Maxwellians

Mn(k) = cn exp(−εn(k)/kBT ), Mp(k) = cp exp(−εp(k)/kBT ),
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where kBT is the thermal energy of the semiconductor crystal lattice and the constants
cn, cp are chosen such that ∫

B

Mn dk =

∫
B

Mp dk = 1.

The remaining collision operators Qn,r(fn, ftr) and Qp,r(fp, ftr) model the generation
and recombination processes and are given by

(38) Qn,r(fn, ftr) =

∫ Ec

Ev

Ŝn(fn, ftr)Mtr dE,

with

Ŝn(fn, ftr) =
Φn(k,E)

Ntr
[n0Mnftr(1 − fn) − fn(1 − ftr)] ,

and

(39) Qp,r(fp, ftr) =

∫ Ec

Ev

Ŝp(fp, ftr)Mtr dE,

with

Ŝp(fp, ftr) =
Φp(k,E)

Ntr
[p0Mp(1 − fp)(1 − ftr) − fpftr] ,

and where Φn,p are nonnegative and Mtr(x,E) is the same density of available trapped
states as for the drift-diffusion model, except that we allow for a position dependence
now. This will be commented on below. The parameter Ntr is now determined as

Ntr = supx∈R3

∫ 1

0
Mtr(x,E) dE.

The right-hand side in the equation for the occupancy ftr(x,E, t) of the trapped
states is defined by

(40) Sn(fn, ftr) =

∫
B

Ŝn dk = λn[n0Mn(1 − fn)]ftr − λn[fn](1 − ftr),

with λn[g] =
∫
B

Φng dk, and

(41) Sp(fp, ftr) =

∫
B

Ŝp dk = λp[p0Mp(1 − fp)](1 − ftr) − λp[fp]ftr,

with λp[g] =
∫
B

Φpg dk.
The factors (1− fn) and (1− fp) take into account the Pauli exclusion principle,

which therefore manifests itself in the requirement that the values of the distribution
function have to respect the bounds 0 ≤ fn, fp ≤ 1.

The position densities on the right-hand side of the Poisson equation (35) are
given by

n(x, t) =

∫
B

fn dk, p(x, t) =

∫
B

fp dk, ntr(x, t) =

∫ Ec

Ev

ftrMtr dE.

The following scaling, which is strongly related to the one used for the drift-diffusion
model, will render (32)–(35) dimensionless:
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Scaling of parameters:
i. Mtr → Ntr

Ev−Ec
Mtr.

ii. (εn, εp) → kBT (εn, εp), with the thermal energy kBT .
iii. (Φn,Φp) → τ−1

rg (Φn,Φp), where τrg is a typical carrier life time.

iv. (Φ̃n, Φ̃p) → τ−1
coll(Φ̃n, Φ̃p).

v. (n0, p0, C) → C(n0, p0, C), where C is a typical value of |C|.
vi. (Mn,Mp) → C

−1
(Mn,Mp).

Scaling of independent variables:

vii. x → kBT
√
τrgτcollC

−1/3
�
−1 x.

viii. t → τrgt.

ix. k → C
1/3

k.
x. E → Ev + (Ec − Ev)E.

Scaling of unknowns:
xi. (fn, fp, ftr) → (fn, fp, ftr).
xii. V → UTV , with the thermal voltage UT = kBT/q.

Dimensionless parameters:
xiii. α2 = τcoll

τrg
.

xiv. λ = �

q
√
τrgτcollC

1/6

√
εs

kBT .

xv. ε = Ntr

C
, where again we shall study the situation ε � 1.

Finally, the scaled system reads as follows:

α2∂tfn + αvn(k) · ∇xfn + α∇xV · ∇kfn = Qn(fn) + α2Qn,r(fn, ftr),(42)

α2∂tfp + αvp(k) · ∇xfp − α∇xV · ∇kfp = Qp(fp) + α2Qp,r(fp, ftr),(43)

ε∂tftr = Sp(fp, ftr) − Sn(fn, ftr),(44)

λ2ΔxV = n + εntr − p− C = −ρ,(45)

with vn = ∇kεn, vp = −∇kεp, with Qn and Qp still having the form (36) and (37),
respectively, with the scaled Maxwellians

(46) Mn(k) = cn exp(−εn(k)), Mp(k) = cp exp(−εp(k)),

and with the recombination-generation terms

(47) Qn,r(fn, ftr) =

∫ 1

0

ŜnMtr dE, Qp,r(fp, ftr) =

∫ 1

0

ŜpMtr dE,

with

(48) Ŝn = Φn[n0Mnftr(1−fn)−fn(1−ftr)], Ŝp = Φp[p0Mp(1−ftr)(1−fp)−fpftr].

The right-hand side of (44) still has the form (40), (41). The position densities are
given by

(49) n =

∫
B

fn dk, p =

∫
B

fp dk, ntr =

∫ 1

0

ftrMtr dE.

The system (42)–(44) conserves the total charge ρ = p + C − n − εntr. With the
definition

Jn = − 1

α

∫
B

vnfn dk, Jp =
1

α

∫
B

vpfp dk
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of the current densities, the following continuity equation holds formally:

∂tρ + ∇x · (Jn + Jp) = 0.

Formally setting ε = 0 in (44), we obtain

f tr(fn, fp) =
p0λp[Mp(1 − fp)] + λn[fn]

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
.

Substituting f tr into (47) leads to the kinetic SRH recombination-generation operators

Qn,r(fn, fp) = gn[fn, fp](1 − fn) − rn[fn, fp]fn,

Qp,r(fn, fp) = gp[fn, fp](1 − fp) − rp[fn, fp]fp,
(50)

with

gn =

∫ 1

0

ΦnMnn0

(
p0λp[Mp(1 − fp)] + λn[fn]

)
Mtr

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
dE,

rn =

∫ 1

0

Φn

(
λp[fp] + n0λn[Mn(1 − fn)]

)
Mtr

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
dE,

gp =

∫ 1

0

ΦpMpp0

(
n0λn[Mn(1 − fn)] + λp[fp]

)
Mtr

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
dE,

rp =

∫ 1

0

Φp

(
λn[fn] + p0λp[Mp(1 − fp)]

)
Mtr

p0λp[Mp(1 − fp)] + λp[fp] + λn[fn] + n0λn[Mn(1 − fn)]
dE.

Of course, the limiting model still conserves charge, which is expressed by the identity∫
B

Qn,r dk =

∫
B

Qp,r dk.

Pairs of electrons and holes are generated or recombine, however, generally not with
the same wave vector. This absence of momentum conservation is reasonable since
the process involves an interaction with the trapped states fixed within the crystal
lattice.

5. Rigorous derivation of the kinetic Shockley–Read–Hall model. The
limit ε → 0 will be carried out rigorously in an initial value problem for the kinetic
model: From now on we work with x ∈ R

3 (and we avoid any discussion on boundary
conditions and possible boundary layers). Concerning the behavior for |x| → ∞, we
shall require the densities to be in L1 and use the Newtonian potential solution of the
Poisson equation; i.e., (45) will be replaced by

(51) E(x, t) = −∇xV = λ−2

∫
R3

x− y

|x− y|3 ρ(y, t) dy.

We define Problem (K) as the system (42)–(44), (51) with (36), (37), (47)–(49), (40),
and (41), subject to the initial conditions

fn(x, k, 0) = fn,I(x, k), fp(x, k, 0) = fp,I(x, k), ftr(x,E, 0) = ftr,I(x,E).
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We start by stating our assumptions on the data. For the velocities we assume

(52) vn, vp ∈ W 1,∞
per (B),

where here and in the following, the subscript per denotes Sobolev spaces of functions
of k satisfying periodic boundary conditions on ∂B. Further we assume that the cross
sections satisfy

(53) Φ̃n, Φ̃p ≥ 0, Φ̃n, Φ̃p ∈ W 1,∞
per (B ×B),

and

(54) Φn,Φp ≥ 0, Φn,Φp ∈ W 1,∞
per (B × (0, 1)).

A finite total number of trapped states is assumed:

Mtr ≥ 0, Mtr ∈ W 1,∞(R3 × (0, 1)) ∩W 1,1(R3 × (0, 1)).

The L1-assumption with respect to x is needed for controlling the total number of
generated particles. For the initial data we assume

0 ≤ fn,I , fp,I ≤ 1, fn,I , fp,I ∈ W 1,∞
per (R3 ×B) ∩W 1,1

per(R
3 ×B),

0 ≤ ftr,I ≤ 1, ftr,I ∈ W 1,∞
per (R3 × (0, 1)).

(55)

We also assume

(56) n0, p0 ∈ L∞((0, 1)), C ∈ W 1,∞(R3) ∩W 1,1(R3).

Finally, we need an upper bound for the life time of trapped electrons:

(57)

∫
B

(Φn min{1, n0Mn} + Φp min{1, p0Mp}) dk ≥ γ > 0.

The reason for the various differentiability assumptions above is that we shall con-
struct smooth solutions by an approach along the lines of [13], which goes back to [4].

An essential tool relies on the following potential theory estimates:

‖E‖L∞(R3) ≤ C‖ρ‖1/2
L1(R3)‖ρ‖

1/2
L∞(R3),(58)

‖∇xE‖L∞(R3) ≤ C
(
1 + ‖ρ‖L1(R3) + ‖ρ‖L∞(R3)

[
1 + log(1 + ‖∇xρ‖L∞(R3))

])
.(59)

This kind of estimate was already crucial in [17]; for the sake of completeness, we recall
the proof in the appendix. We start by rewriting the collision and recombination-
generation operators as

Qi(fi) = ai[fi](1 − fi) − bi[fi]fi, i = n, p,

and

Qi,r(fi, ftr) = gi[ftr](1 − fi) − ri[ftr]fi, i = n, p,

with

ai[fi] =

∫
B

Φ̃iMif
′
i dk

′, bi[fi] =

∫
B

Φ̃iM
′
i(1 − f ′

i) dk
′, i = n, p,

gn[ftr] =

∫ 1

0

Φnn0MnftrMtr dE, gp[ftr] =

∫ 1

0

Φpp0Mp(1 − ftr)Mtr dE,

rn[ftr] =

∫ 1

0

Φn(1 − ftr)Mtr dE, rp[ftr] =

∫ 1

0

ΦpftrMtr dE.
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In order to construct an approximating sequence (f j
n, f

j
p , f

j
tr, Ej) we begin with

(60) f0
i (x, k, t) = fi,I(x, k), i = n, p, f0

tr(x,E, t) = ftr,I(x,E).

The field always satisfies

(61) Ej(x, t) =

∫
R3

x− y

|x− y|3 ρ
j(y, t) dy.

Let (f j
n, f

j
p , f

j
tr, Ej) be given. Then the fi

j+1 are defined as the solutions of the
following problem:

α2∂tf
j+1
n + αvn(k) · ∇xf

j+1
n − αEj · ∇kf

j+1
n

= (an[f j
n] + α2gn[f j

tr])(1 − f j+1
n ) − (bn[f j

n] + α2rn[f j
tr])f

j+1
n ,

α2∂tf
j+1
p + αvp(k) · ∇xf

j+1
p + αEj · ∇kf

j+1
p

= (ap[f
j
p ] + α2gp[f

j
tr])(1 − f j+1

p ) − (bp[f
j
p ] + α2rp[f

j
tr])f

j+1
p ,

ε∂tf
j+1
tr = (p0λp[Mp(1 − f j

p )] + λn[f j
n])(1 − f j+1

tr ) − (n0λn[Mn(1 − f j
n)] + λp[f

j
p ])f j+1

tr ,

(62)

subject to the initial conditions
(63)
f j+1
n (x, k, 0) = fn,I(x, k), f j+1

p (x, k, 0) = fp,I(x, k), f j+1
tr (x,E, 0) = ftr,I(x,E).

For the iterative sequence we state the following lemma, which is very similar to
Proposition 3.1 from [13].

Lemma 5.1. Let the assumptions (52)–(56) be satisfied. Then the sequence
(f j

n, f
j
p , f

j
tr, Ej) defined by (60)–(63) satisfies the following for any time T > 0:

(a) 0 ≤ fi
j ≤ 1, i = n, p, tr.

(b) f j
n and f j

p are uniformly bounded with respect to j → ∞ and ε → 0 in
L∞(0, T ;L1(R3 ×B)).

(c) Ej is uniformly bounded with respect to j and ε in L∞((0, T ) × R
3).

Proof. The first two equations in (62) are standard linear transport equations,
and the third equation is a linear ODE. Existence and uniqueness for the initial value
problems is therefore a standard result.

Note that the ai, bi, gi, ri, and λi in (62) are nonnegative if we assume that (a)
holds for j. Then (a) for j+1 is an immediate consequence of the maximum principle.

To estimate the L1-norms of the distributions, we integrate the first equation
in (62) and obtain

(64) ‖f j+1
n ‖L1(R3×B) ≤ ‖fn,I‖L1(R3×B) +

∫ t

0

∥∥∥∥an[f j
n]

1

α2
+ gn[f j

tr]

∥∥∥∥
L1(R3×B)

(s) ds.

The boundedness of Φ̃n, Φn, and f j
tr and the integrability of Mtr imply

(65) ‖an[f j
n]‖L1(R3×B) ≤ C‖f j

n‖L1(R3×B), ‖gn[f j
tr]‖L1(R3×B) ≤ C.

This is now used in (64). Then an estimate is derived for f j
n by replacing j + 1 by

j and using the Gronwall inequality. Finally, it is easily seen that this estimate is
passed from j to j + 1 by (64). An analogous argument for f j

p completes the proof
of (b).
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A uniform-in-ε (L1∩L∞)-bound for the total charge density ρj = nj+εnj
tr−pj−C

follows from (b) and from the integrability of Mtr. Statement (c) of the lemma is now
a consequence of (58).

For passing to the limit in the nonlinear terms some compactness is needed.
Therefore we prove uniform smoothness of the approximating sequence.

Lemma 5.2. Let the assumptions (52)–(57) be satisfied. Then for any time T > 0
the following hold:

(a) f j
n and f j

p are uniformly bounded with respect to j and ε in L∞(0, T ;W 1,1
per(R

3×
B) ∩W 1,∞

per (R3 ×B)).

(b) f j
tr is uniformly bounded with respect to j and ε in L∞(0, T ;W 1,∞(R3 ×

(0, 1))).
(c) Ej is uniformly bounded with respect to j and ε in L∞(0, T ;W 1,∞(R3)).
Proof. We start by introducing νj = ∇x,kf

j
n = (νjx, ν

j
k), π

j = ∇x,kf
j
p = (πj

x, π
j
k),

φj = ∇xf
j
tr, and by differentiating the last equation in (62) with respect to x:

ε∂tφ
j+1 = (−p0λp[Mpπ

j
x] + λn[νjx])(1 − f j+1

tr ) − (−n0λn[Mnν
j
x] + λp[π

j
x])f j+1

tr

− (p0λp[Mp(1 − f j
p )] + λn[f j

n] + n0λn[Mn(1 − f j
n)] + λp[f

j
p ])φj+1.

The coefficient of φj+1 on the right-hand side is bounded from below by the term
appearing in assumption (57) and, thus, bounded away from zero. The maximum
principle implies

sup
(0,t)

‖φj+1‖∞ ≤ C

(
sup
(0,t)

‖νjx‖∞ + sup
(0,t)

‖πj
x‖∞ + 1

)
,

where here and in the following we use the symbol ‖ · ‖∞ for the L∞-norm on R
3, on

R
3 ×B, and on R

3 × (0, 1). The gradient of the first equation in (62) with respect to
x and k can be written as

α2∂tν
j+1 + αvn · ∇xν

j+1 − αEj · ∇kν
j+1 + (an + bn + α2gn + α2rn)νj+1 = Sj

n,

where it is easily seen that, using our assumptions,

‖Sj
n‖∞ ≤ C

(
1 + ‖νj‖∞ + ‖φj‖∞ + ‖νj+1‖∞(1 + ‖∇xEj‖∞)

)
holds. The analogous treatment of the second equation in (62), the potential theory
inequality (59), and the definition

γj(t) = sup
(0,t)

(‖νj‖∞ + ‖πj‖∞ + ‖φj‖∞)

lead to

γj+1 ≤ C

(
1 +

∫ t

0

(γj + γj+1(1 + log(1 + γj))) ds

)
,

implying boundedness of γj on arbitrary bounded time intervals (as in [4]). This
proves (c) and the L∞-part of (a). The equation for ∂Ef

j+1
tr can be treated as above,

completing the proof of (b).
By

∫
R3 ntr dx ≤

∫
R3 Mtr dx, it is trivial that the total number of trapped electrons

is bounded. Therefore, the L1-estimates in (a) follow the line of [13] since no coupling
with the equation for the trapped electrons is necessary.
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With the previous results, the first two equations in (62) also give uniform bounds
for the time derivatives of f j

n and f j
p . Thus, subsequences converge strongly locally

in x and t. In the same way, the right-hand side of the time derivative of the Pois-
son equation is bounded in L1 and in L∞, and (58) implies boundedness of the time
derivative of the field. So the field also converges strongly. This and the (obvious)
weak convergence of f j

tr are sufficient for passing to the limit in the quadratic nonlin-
earities. Note also that we have enough bounds on the time derivative to define the
trace at time t = 0. Existence of a global solution of Problem (K) follows. By the
same argument, the limit ε → 0 can be justified, since all estimates are also uniform
in ε.

Theorem 5.3. Let the assumptions (52)–(57) be satisfied. Then Problem (K)
has a global solution (fn, fp, ftr, E) with fn, fp ∈ L∞(0, T ;W 1,∞

per (R3 × B)), ftr ∈
L∞(0, T ;W 1,∞(R3 × (0, 1))), E ∈ L∞(0, T ;W 1,∞(R3)). For ε → 0, a subsequence of
solutions converges to the formal limit problem. The convergence of fn and fp is in
L∞((0,∞)× R

3 ×B), that of E in L∞((0,∞)× R
3), and that of ftr in L∞((0,∞)×

R
3 × (0, 1)) weak*.

6. Relation between macroscopic and kinetic models. In this section the
relation between the two models in sections 2 and 4 is clarified on a formal level. The
drift-diffusion model of section 2 can be derived from the kinetic model of section 4
by two simplification steps: a macroscopic and a low density limit.

Starting with the macroscopic limit, i.e., the limit when the Knudsen number α
tends to zero in (42), (43), the solutions are expanded in terms of powers of α:

fn = f0
n + αf1

n + O(α2), fp = f0
p + αf1

p + O(α2),(66)

ftr = f0
tr + O(α), V = V 0 + O(α).(67)

The limit of (42), (43) as α → 0 leads to Qn(f0
n) = Qp(f

0
p ) = 0. With the (frequently

used) simplifying assumption that the cross sections Φ̃n and Φ̃p are strictly positive,
the limiting distributions are of Fermi–Dirac type (see [13]):

f0
n(x, k, t) =

1

1 + e−μn(x,t)/Mn(k)
, f0

p (x, k, t) =
1

1 + eμp(x,t)/Mp(k)
,

where the scaled Maxwellians Mn,Mp are given by (46) and the chemical potentials
μn and μp are yet to be specified. Note the one-to-one relations between the chemical
potentials and the macroscopic electron and hole densities:

n(μn) =

∫
B

dk

1 + e−μn/Mn(k)
, p(μp) =

∫
B

dk

1 + eμp/Mp(k)
.

Now (42) is divided by α, and then again the limit α → 0 is carried out (formally):

(68) vn · ∇xf
0
n + ∇xV

0 · ∇kf
0
n = LQn(f0

n)f1
n,

where LQn is the linearization of Qn:

LQn(f0
n)f1

n =

∫
B

Φ̃n

[
(Mn(1 − f0

n) + M ′
nf

0
n)f1′

n − (Mnf
0′

n + M ′
n(1 − f0′

n ))f1
n

]
dk′.

For the following we shall need two facts about the linearized collision operator
LQn(f0

n) (see, e.g., [1]): It has a one-dimensional kernel spanned by f0
n(1 − f0

n), and
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its range consists of functions whose integral with respect to k vanishes. Therefore,
for solvability of (68), seen as an equation for f1

n, the integral with respect to k of the
left-hand side has to vanish. This is obvious for the second term ∇xV

0 · ∇kf
0
n by the

periodicity with respect to k. Since the first term can be written as

vn · ∇xf
0
n = ∇kεn · ∇x

Mn

Mn + e−μn
= −∇k · ∇x log

(
Mn + e−μn

)
,

it also satisfies the solvability condition. Now (68) is written as

(69)
Mne

−μn

(Mn + e−μn)2
∇kεn · (∇xV

0 −∇xμn) = LQn(f0
n)f1

n.

Note that the factor in parentheses is independent of k. Thus, choosing a solution
hn(k, μn) of

(70) LQn(f0
n)hn = − Mne

−μn

(Mn + e−μn)2
∇kεn,

the solution of (69) can be written as

f1
n = hn(k, μn) · (∇xV

0 −∇xμn) + μ1
nf

0
n(1 − f0

n).

Analogously,

(71) f1
p = hp(k, μp) · (∇xV

0 + ∇xμp) + μ1
pf

0
p (1 − f0

p )

is obtained (with μ1
n(x, t) and μ1

p(x, t) not specified, and not needed in the following).
Finally, (42), (43) are divided by α2 and integrated with respect to k, and the limit
α → 0 is carried out:

∂tn + ∇x ·
∫
B

vnf
1
n dk =

∫
B

Qn,r(f
0
n, f

0
tr) dk =

∫ 1

0

Sn(f0
n, f

0
tr) dE,(72)

∂tp + ∇x ·
∫
B

vpf
1
p dk =

∫
B

Qp,r(f
0
p , f

0
tr) dk =

∫ 1

0

Sp(f
0
p , f

0
tr) dE.(73)

With the formulas for f1
n and f1

p , we obtain the drift-diffusion fluxes∫
B

vnf
1
n dk = Dn(μn)(∇xV

0 −∇xμn),

∫
B

vpf
1
p dk = Dp(μp)(∇xV

0 + ∇xμp),

with the diffusion matrices

Dn =

∫
B

vn ⊗ hn dk, Dp =

∫
B

vp ⊗ hp dk.

For the recombination-generation terms, we obtain

Sn(f0
n, f

0
tr) = λn

[
e−μn

1 + e−μn/Mn

]
(n0f

0
tr − eμn(1 − f0

tr)),

Sp(f
0
p , f

0
tr) = λp

[
eμp

1 + eμp/Mp

]
(p0(1 − f0

tr) − e−μpf0
tr).
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Finally, we consider the small densities situation, when μn is large and negative
and μp large and positive. This gives n(μn) ≈ eμn and p(μp) ≈ e−μp . The above
recombination-generation terms can then be approximated by the terms in (9) with
1/τn = λn[Mn] and 1/τp = λp[Mp].

Equation (70) for hn can be approximated by∫
B

Φ̃n

[
Mnh

′
n −M ′

nhn

]
dk′ = −nMn∇kεn,

implying hn = nh̃n(k) and, thus, Dn = nD̃n. With this and the analogous ap-
proximation for holes, the macroscopic model becomes the drift-diffusion model from
section 2.

It is worth pointing out that the drift-diffusion SRH model has been obtained from
the kinetic model by a two-step approximation procedure: At first, the hydrodynamic
limit leads to a more nonlinear system, and we perform additionally the small densities
asymptotics. This remark appeals to further mathematical questions:

• It could be interesting to investigate the intermediate macroscopic model that
comes directly from the Fermi–Dirac statistics.

• It could be tempting to reverse the limits. Roughly speaking, it means that
we do not take into account the Pauli exclusion principle in the kinetic equations,
and the collision operator is replaced by a linear Boltzmann operator which relaxes
to a Maxwellian (instead of a Fermi–Dirac distribution). Mathematically, this leads
to additional difficulties since we lose the natural L∞-estimate given for free with the
exclusion terms. Rigorous derivation of the diffusion regime for the corresponding
Boltzmann–Poisson system in a bounded domain, with only one species of charged
particles, has been obtained only very recently by using a tricky renormalization
argument; see [11] (and [12] for an earlier work on renormalized solutions).

Appendix. Proof of (58) and (59). We recall that the fundamental solution
of −Δ in R

N , N ≥ 3, reads E(x) = CN |x|2−N . For a given function ρ : R
N → R

+,
we set

Φ = E ∗ ρ, ∇xΦ(x) = CN (2 −N)

∫
RN

x− y

|x− y|
ρ(y)

|x− y|N−1
dy.

For any 0 < R < ∞, we have∫
RN

ρ(y)

|x− y|N−1
dy =

∫
|x−y|≤R

. . . dy +

∫
|x−y|≥R

. . . dy ≤ ‖ρ‖∞
ΩNR2

2
+

1

RN−1
‖ρ‖1,

where ΩN stands for the surface of the N -dimensional sphere. Optimizing with respect
to R yields

‖∇Φ‖∞ ≤ KN‖ρ‖(N−1)/(N+1)
∞ ‖ρ‖2/(N+1)

1 ,

where KN is the constant depending only on the dimension.
Since |x|N−1 is locally integrable, we compute the second derivatives of the po-

tential as follows. For any ϕ ∈ C∞
c (RN ), we have〈

∂2
ijΦ;ϕ

〉
= CN (2 −N)

∫
RN

xj

|x|N ∂jϕ(x) dx = CN (2 −N) lim
η→0

∫
|x|≥η

xj

|x|N ∂jϕ(x) dx

= CN (N − 2) lim
η→0

(∫
|x|≥η

(
δij
|x|N −N

xixj

|x|N+2

)
ϕ(x) dx +

∫
|x|=η

xj

|x|N
xi

|x|ϕ(x) dσ(x)

)
.
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The second integral in the right-hand side can be recast as∫
SN−1

ϕ(ηω)ωiωj dω,

and therefore it converges to

ΩN

N
δij ϕ(0).

Let us introduce the matrix

Kij(x) = CN
N − 2

|x|N

(
δij −N

xixj

|x|2

)
.

Then, in the sense of distribution the Hessian matrix of E satisfies

D2E(x) = CN (2 −N)
ΩN

N
I δ(x = 0) + lim

η→0
K(x)χ|x|≥η.

In particular we remark that

(74)

∫
SN−1

K(rω) dω = 0, Tr K = 0.

Accordingly, the Hessian matrix of the potential Φ is given by

D2Φ(x) = CN (2 −N)
ΩN

N
I ρ(x) + lim

η→0

∫
|x−y|≥η

K(x− y)ρ(y) dy.

Let us discuss the last term. Consider 0 < η < R1 < R2 < ∞. Using the notation C
to stand for any constant depending only on the dimension, we get∣∣∣∣∣
∫
|x−y|≥η

K(x− y)ρ(y) dy

∣∣∣∣∣ ≤ C

(∫
|x−y|≥R2

ρ(y)

|x− y|N dy +

∫
R1≤|x−y|≤R2

ρ(y)

|x− y|N dy

+

∣∣∣∣∣
∫
η≤|x−y|≤R1

K(x− y)ρ(y) dy

∣∣∣∣∣
)

≤ C
1

RN
2

‖ρ‖1 + C‖ρ‖∞ ln

(
R2

R1

)
+ C

∣∣∣∣∣
∫
η≤|x−y|≤R1

K(x− y)
(
ρ(y) − ρ(x)

)
dy

∣∣∣∣∣
where we used (74). We deduce the following estimate:∣∣∣∣∣

∫
|x−y|≥η

K(x− y)ρ(y) dy

∣∣∣∣∣ ≤ C

(
1

RN
2

‖ρ‖1 + ‖ρ‖∞ ln

(
R2

R1

)
+ ‖∇xρ‖∞R1

)
.

Then, we choose R2 = 1 > R1 = (1 + ‖∇xρ‖∞)−1 and conclude that

|D2Φ(x)| ≤ C
(
1 + ‖ρ‖1 + ‖ρ‖∞

(
1 + ln(1 + ‖∇xρ‖∞)

))
holds. A similar analysis can be done in dimension two; see [17].
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