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A large number of biological systems – from bacteria to sheep – can be described as
ensembles of self-propelled agents (active particles) with a complex internal dynamic
that controls the agent’s behavior: resting, moving slow, moving fast, feeding, etc. In
this study, we assume that such a complex internal dynamic can be described by a
Markov chain, which controls the moving direction, speed, and internal state of the
agent. We refer to this Markov chain as the Navigation Control System (NCS). Further-
more, we model that agents sense the environment by considering that the transition
rates of the NCS depend on local (scalar) measurements of the environment such as
e.g. chemical concentrations, light intensity, or temperature. Here, we investigate under
which conditions the (asymptotic) behavior of the agents can be reduced to an effective
convection-diffusion equation for the density of the agents, providing effective expres-
sions for the drift and diffusion terms. We apply the developed generic framework to a
series of specific examples to show that in order to obtain a drift term three necessary
conditions should be fulfilled: i) the NCS should possess two or more internal states,
ii) the NCS transition rates should depend on the agent’s position, and iii) transition
rates should be asymmetric. In addition, we indicate that the sign of the drift term – i.e.
whether agents develop a positive or negative chemotactic response – can be changed
by modifying the asymmetry of the NCS or by swapping the speed associated to the
internal states. The developed theoretical framework paves the way to model a large va-
riety of biological systems and provides a solid proof that chemotactic responses can be
developed, counterintuitively, by agents that cannot measure gradients and lack memory
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as to store past measurements of the environment.

Keywords: Navigation control system, chemotaxis, hydrodynamic limit.
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1. Introduction

Organisms, across scales, do not lock themselves in a behavioral task, but exhibit
intermittent behavior: e.g. alternate between environment exploration, feeding, and
resting 21. This observation becomes apparent for large animals, but also applies to
micro-organisms. Take as example bacteria as E. coli: these bacteria swim, adhere
to surfaces, and eventually form a biofilm or detach from one 19. Often, behaviors
are strongly related, alternate each other over time, and complement each other to
achieve a goal. Environment exploration is a good example of this. For example,
sheep alternate short moving and long stop phases as they forage, evaluating grass
quality and eventually making a stop to feed 9. In E. coli, surface exploration in-
volves, contrary to sheep, long moving and short stop phases 19. Stop phases are
related to surface adhesion, facilitate setting a new swimming direction, and ar-
guably are used by the bacteria to test the surface properties. Other bacteria as
P. putida exhibit various swimming modes that involve, among other things, dis-
placement modes at different speeds 16. The mathematical modeling of intermittent
motion, i.e. whether it is possible to conceive a generic theoretical framework to ac-
count such diversity of intermittent behaviors, is unclear and represents a major
theoretical challenge 23. The importance of such a generic theoretical framework
would be paramount, providing a tool to describe biological system across scales,
from microorganisms to large vertebrates.

Recently, it has been introduced a promising framework that describes moving
biological entities as self-propelled agents – a.k.a. active particles – with a complex
internal dynamics that controls the agent’s behavior 14. This complex internal dy-
namics is described by a Markov chain, which is also involved in the environment
perception machinery of the agent by considering transition rates that depend on
local, scalar, measurements of the environment. This framework has been proven
successful to describe intermittent motion in a variety of biological systems: E.
coli 19, P. putida 16, and sheep 12. Here, we investigate the mathematical properties
of an extended version of this framework. Assuming that the internal dynamics of
agents is given by a Markov chain – in the following referred to as Navigation Con-
trol System (NCS) – that controls the moving direction, speed, and internal state
of the agent, our main goal is to identify conditions ensuring that the (asymptotic)
behavior of the agents can be reduced to an effective convection-diffusion equation
for the density of the agents – (t, x) 7→ ρ(t, x) – of the form:

∂tρ+∇x · (ρU −D∇xρ) = 0, (1.1)

We provide effective expressions for the drift U and diffusion D, which logically
depend on the rates and network design of the NCS. By applying the framework
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Fig. 1: (a) Scheme of one self-propelled particle navigating in a complex environment
c(x). An example of a possible navigation control system is highlighted in red.
This internal system possesses four internal states, and six transition rates between
them. Each of the states has a given value for the speed s and the transition rates
might involve also the change of direction of motion of the particle. (b) Example
of a trajectory in a 2D space of a particle possessing the internal control system
presented in (a). In this case, the internal dynamics is given as a sequence of states.
(c) Plot of the speed value of the particle as a function of time that results from
the internal and the spatial dynamics presented in (b).

to a series of specific examples introduced in 14, we show that in order to observe
|U | 6= 0 , i.e. chemotactic behavior, it is required that: i) a number of internal states
equal or larger than 2, ii) at least one transition rate that depends on the agent
position (or local concentration of the external field), and iii) an asymmetric NCS
structure (in a sense to be precise below). Furthermore, we indicate that the sign of
U , which defines whether the chemotactic response is positive or negative, can be
changed by modifying the asymmetry of NCS or by swapping the speed associated
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to the internal states.
To appreciate the relevance of observing a non-zero drift term in this context, let

us briefly review the assumption of previous chemotactic models. Let us recall that
the here-considered agents cannot measure gradients directly; agents have access
to local external concentrations only. Furthermore, we assume agents do not have
the capacity to store past measurements of local concentrations – as they move in
space – as to reconstruct gradients. And yet, we find that active agents with a NCS
can respond to external gradients, exhibiting standard chemotactic responses. In
the standard Keller-Segel (KS) model for chemotactic agents, it is assumed that
agents instantaneously measure gradients and respond to it in such a way that
U = ∇xc, where c is the chemo-attractant/repellent concentration 20,26. And thus,
observing a chemotactic response comes as no-surprise in KS model. The counter-
intuitive result in the KS model is that, if it is assumed that c is produced by the
individuals themselves and c defined through the Poisson equation −∆xc = ρ, then
concentration effects emerge depending on whether or not the initial mass exceeds a
certain threshold 17,18,27. An in-depth review on the mathematical analysis of such
population concentration dynamics can be found in 2; we also refer the reader to
25 for an overview of applications of KS models in life sciences, and how they can
describe self-organization processes. For instance, chemoctatism principles can be
used to model foraging behavior of populations of ants1. Further relevant examples
and mathematical challenges can be found in the review 3. The KS model can be
derived following a Boltzmann-like equation:

∂tf + v · ∇xf = Q(f) , (1.2)

where f(t, x, v) corresponds to the distribution function of finding an individual at
time t, at position x, moving in direction v, and Q(f) is the reorientation operator
defined by:

Q(f)(t, x, v) =
ˆ
k(x, v, v′)f(t, x, v′) dv′ − f(t, x, v)

ˆ
k(x, v′, v) dv′. (1.3)

In order to obtain gradient sensing, the kernel k takes into account memory effects,
for instance by involving the concentration ahead c(x+εv) and backward c(x−εv′),
for some ε > 0, see 5. Other approaches include memory effects by assuming that k
depends on the time derivative of the concentration along the pathways of the indi-
viduals 4,24. Other alternative is to assume that external measurements are stored
by using an additional variable y, with y ∈ R, which leads to incorporate in (1.3) a
new term ∇y · (G (y)f). In this way, the kernel k depends on this variable y, see 28.
This viewpoint, where a continuous internal variable drives the run-and-tumble fre-
quency, and stores past measurements of the external field, is also at the basis of
the modeling proposed in 7,33: the model is specifically based on the behavior of E.
coli and the chemotactic sensing leads to a drift, whose expression is reminiscent
of Weber’s law. In summary, note that in all these examples it has been assumed
that either individuals can directly measure the chemical gradient or alternatively
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perform non-local measurements of the external concentration, or possess a contin-
uous internal variable that stores past concentration measurements. Here, we will
show that none of these assumptions is required for individuals to exhibit chemo-
tactic responses. Specifically, and in contrast to previous works, we consider that
the internal state of an individual is given by a single discrete variable that can
adopt a finite number of values. Importantly, the dynamics of this internal variable
has no fixed points – a clear difference with models that make use of continuous
internal variables 7,33 – but constantly evolves through a cycle, which prevents the
value of the discrete, periodic, internal variable to convey information of the re-
cent history of the individual. The relevance of the study is not the mere use of a
discrete internal variable to control the spatial behavior of the individuals, but to
show that there exists specific motifs for the closed Markov chain that defines the
internal variable cycle, as well as conditions on the transition rates, that enable the
individuals to exhibit the desired biased motion when exposed to an external con-
centration field. In summary, we develop a generic theoretical framework to model
intermittent motion of individuals exploring complex environments and provide a
novel mathematical perspective on chemotaxis by proving that agents with a NCS
can display chemotactic behavior.

The paper is organized as follows. In Section 2, we introduce the model and
assumptions. In Section 3 we present the main results obtained by coarse-graining
the proposed microscopic model, leaving the derivations for later sections. In Section
4 we apply these results to a series of illuminating examples to learn what agents
with a NCS can do, and provide a summary of the obtained results in Section 5. All
subsequent sections are devoted to the formal derivations of the results presented
in Section 3: Section 6 investigates the functional properties of the operator Q
that are needed to justify the analysis of the asymptotic regimes, while Section 7
presents the proof of the asymptotic behavior, establishing the convergence towards
the drift-diffusion equation.

2. Active Particles with an Navigation Control System – Model
Description

Our model consists of individuals that are characterized by a set of internal states
that govern how they react to external signals. The possible internal states asso-
ciated to the internal dynamics of the individuals are labelled by a discrete index
m ∈ {1, ...,M}, M ∈ N \ {0}. This set of internal states and the transition rates
between them is going to be referred as theNavigation Control System of each par-
ticle. The motion of the individuals is described by a “velocity” variable v, which
ranges a certain subdomain of RN , hereafter denoted V , endowed with a suitable
measure dv. Of course, we can simply set V = RN and dv is the usual Lebesgue
measure. But, as we shall see below, it can be relevant to consider situations where
v lies in SN−1 – in such a case it is interpreted as the direction of motion of the par-
ticles – or in a discrete subset of velocities in RN . In what follows, these frameworks
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are addressed in a unified fashion. When the set V is bounded it is particularly
relevant to introduce an additional parameter sm ≥ 0, indicating that the speed
of the individuals can have a different magnitude depending on their current in-
ternal state. For instance, certain states can be associated to significantly slower
displacements, or even describe individuals at rest (sm = 0). We consider the phase-
space distribution of individuals: Pm(t, x, v), for m ∈ {1, ...,M}, t ≥ 0, x ∈ RN ,
v ∈ V ⊂ RN . Thus,

´
Ω
´

O Pm(t, x, v) dv dx gives the number of individuals in the
statem which, at time t, occupy a position x ∈ Ω ⊂ RN , and move with the velocity
v ∈ O ⊂ V .

The evolution of the population is driven by the PDE system

∂tPm + smv · ∇xPm = Qm(P ), (2.1)

where the interaction term describes both the mechanisms of change of direction
and change of internal states. In particular, it depends on all components of P =
(P1, ..., PM ). Moreover, the rates of these modifications depend on the external
signal, embodied into a scalar field c : RN → R. In particular, the modeling assumes
that the individuals are only sensitive to the local value of the signal, but they are
not able to evaluate the gradient. To be more specific, we consider positively-valued
functions

(c, v, v′) ∈ R× V × V 7−→ γm,`(c, v, v′) > 0,

and set

γm(c, v) =
M∑
`=1

ˆ
V

γ`,m(c, v′, v) dv′. (2.2)

Next, we define

Qm(P )(c, v) =
M∑
`=1

ˆ
V

γm,`(c, v, v′)P`(v′) dv′ − γm(c, v)Pm(v). (2.3)

By virtue of (2.2), the operator is mass-conservative in the sense that
M∑
m=1

ˆ
V

Qm(P )(c, v) dv = 0.

It means that this operator governs change of velocity and exchanges between the
different sub-populations, ranked according to their internal state, but the total
population satisfies a conservation property. Consequently, denoting

ρ(t, x) =
M∑
m=1

ˆ
V

Pm(t, x, v) dv, J(t, x) =
M∑
m=1

ˆ
V

smvPm(t, x, v) dv,

we get

∂tρ+ divxJ = 0,
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and, accordingly

d
dt

M∑
m=1

¨
RN×V

Pm(t, x, v) dv dx = 0.

It is important to note that determining the values and functional form of γ`,m from
experimental measurements is a major challenge. From speed and the running-time
distributions obtained in bacterial experiments as in 32 it should be possible to
estimate NCS parameters, provided a specific NCS design is proposed. To avoid
overfitting, this should be done with the minimal NCS that reproduces the observed
phenomenology. Relevant NCS examples are thoroughly discussed below.

3. Rescaling and macroscopic description:
Drift and Diffusion Coefficients

The dynamics of the NCS – i.e. the transitions from the internal states – introduces
a time scale associated to the internal dynamics of the agent. In the following, we
assume that NCS characteristic time to be much shorter than the typical time scale
of the motion of the particle; moreover, we consider a large time scale of observation.
These considerations lead to a rescaling of the equations, embodied into a single
scaling parameter 0 < ε� 1, and the system can be rewritten:

ε∂tP
ε
m + smv · ∇xP εm = 1

ε
Qm(P ε). (3.1)

We are interested in the asymptotic behavior as ε goes to 0; we will establish that
it can be described by a mere drift-diffusion equation for a macroscopic density
ρ, with effective (drift and diffusion) coefficients depending on the rate coefficients
γm,`. Namely, we shall see that ρε =

∑M
m=1
´

V P εm dv converges (in a sense to
be made precise) towards ρ, solution of the convection-diffusion (1.1). The drift
embodied into the effective macroscopic velocity field x 7→ U(x) is precisely due to
the space dependence of the transition rates, that themselves depend on the signal
x 7→ c(x). We shall see how relevant features, observable on the macroscopic scales,
can be designed from the shape of the transition rates.

Let us briefly explain how the limit equation (1.1) emerges in the regime ε→ 0.
We expect that Qm(P ε) = ε2∂tP

ε
m + εsmv · ∇xP εm tends to 0 as ε → 0. Therefore

the asymptotic dynamics is governed by the properties of the functions that make
the interaction operator vanish. Let us suppose that the Qm(P )’s vanish iff the
components Pm are proportional to certain functions (x, v) 7→ Em(x, v) satisfying

Em(x, v) > 0,
M∑
m=1

ˆ
V

Em dv = 1, Qm(E ) = 0.

This is the first key ingredient of the analysis. Note that, because the interaction
operator involves the space-dependent signal x 7→ c(x), the equilibrium Em depends
on the space variable. We expand the solution of (3.1) as follows

P εm = P (0)
m + εP (1)

m + ε2P (2)
m + ...
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We insert this expansion in (3.1) and we identify terms arising with the same power
of ε. At leading order, we get Qm(P (0)) = 0, and we thus infer P (0)

m (t, x, v) =
ρ(t, x)Em(x, v). Next, we get

Qm(P (1)) = smv · ∇xP (0)
m = smv · ∇x(ρEm)

= ρsmv · ∇xEm + smvEm · ∇xρ.

That the equilibrium function Em depends on the space variable is the source of
the drift term. Indeed, the second key ingredient of the analysis is the possibil-
ity to invert the equations Qm(P ) = Rm, provided the compatibility condition∑M
m=1
´
smvRm dv = 0 holds. Therefore, the equilibrium is requested to fulfil this

condition
M∑
m=1

ˆ
V

smvEm dv = 0,

so that we can find the corrector P (1)
m (t, x, v) = χm(x, v) ·∇xρ(t, x)+λm(x, v)ρ(t, x)

where Qm(χ) = smvEm, and Qm(λ) = smv · ∇xEm. Finally, the mass balance
principle applied to Qm(P (2)) = ∂tP

(0)
m + v · ∇xP (1)

m yields (1.1) with the following
expression of the diffusion and transport coefficients

D(x) = −
M∑
m=1

ˆ
V

smv ⊗ χm(x, v) dv (3.2)

and

U(x) =
M∑
m=1

ˆ
V

smvλm(x, v) dv. (3.3)

This can be understood by considering the mass conservation relation as well.
Indeed, on the one hand ρε(t, x) =

∑M
m=1
´

V P εm(t, x, v) dv and Jε(t, x) =
1
ε

∑M
m=1
´

V smvP
ε
m(t, x, v) dv satisfy

∂tρ
ε +∇x · Jε = 0.

On the other hand, we guess that

P εm(t, x, v) = ρε(t, x)Em(x, v) + εGεm(t, x, v)

and (3.1) casts as

ε∂tP
ε
m + smv · ∇xP εm = Qm(Gε).

Assuming that all quantities admit limits, we obtain Qm(G) = smv · ∇x(ρEm), the
solution of which can be identified as above. The knowledge of the remainder G
allows us to conclude by passing to the limit in the mass conservation equation
since, owing to to the compatibility condition, we get

Jε =
M∑
m=1

ˆ
V

smvG
ε
m dv −−−→

ε→0

M∑
m=1

ˆ
V

smvGm dv = ρU −D∇xρ.
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We point out again that the drift only comes from the space dependence of the
equilibrium, induced by the fact the transition rates depend on the signal, but we
did not need any scaling of the signal, nor memory effect. We stress that transition
rates dependent on the signal, and consequently on space, is not a sufficient con-
dition to obtain a non-zero drift term. More than one internal state is required to
induce such a drift, and in addition, transition rates have to be asymmetric. This is
illustrated with a series of simple illuminating examples in the next sections. A rig-
orous justification of the asymptotic regime summarized in this section is presented
in Section 6 and 7.

4. Applying the formalism to key examples:
Learning what agents with a NCS can do

Here, we use the developed formalism to study two NCS designs that operate with
two states initially proposed in 14. For simplicity, we focus on one-dimensional
spatial systems. Extensions for larger number of states of higher dimensions are
straightforward.

4.1. NCS design 1: non-adaptive chemotactic behaviors

We assume that NCS possesses two states, 1 and 2, with associated speeds s1 and
s2, respectively. There are only two possible transitions: one from state 1 and 2,
characterized by rate γ12, and another one from 2 and 1 with rate γ21. The latter
transition triggers a reversal of the direction of the active motion, see Fig. 2. To ease
the notation and avoid using sub-indices, we define γ12 = α and γ21 = β. Recall that
transition rates in general depend on spatial position of the agent x (through the
local value of the external concentration). On a spatial one-dimensional space, we
can distinguish left moving and right moving particle: dv = 1

2 (δ(v = −1) + δ(v =
+1)). Then, we can use P+

1 and P−1 to denote right and left moving particles,
respectively, in state 1, and P+

2 and P−2 for right and left moving particles in state
2. Using this definitions, the system dynamics is given by the following set of PDEs:

∂t


P+

1
P−1
P+

2
P−2

+ Λ∂x


P+

1
P−1
P+

2
P−2

 =


−α 0 0 β

0 −α β 0
α 0 −β 0
0 α 0 −β



P+

1
P−1
P+

2
P−2

 , (4.1)

with Λ = diag(s1,−s1, s2,−s2).

4.2. Rescaling and effective coefficients for NCS design 1

We rescale Eq. (4.1) as indicated by expression (3.1):

ε∂tP
ε + Λ∂xP ε = 1

ε
QP ε. (4.2)
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Fig. 2: The simplest non-trivial NCS with two internal states and two transitions
rates. The grey box provides a general sketch of this two-state NCS. The transition
from state 2 to 1 – colored in red – triggers (in all examples) a reversal of the
direction of motion of the particles. Panels (a) - (e) show that agents exposed
always to the same external field c(x) (see upper panel row) respond differently to
the external signal depending on the design of the NCS: the stationary distribution
Ps(x) is provided for all examples (see lower panel row). Note that if transition rates
are identical, there is no chemotactic response, while for asymmetric transition rates
– i.e. α 6= β – agents display chemotactic responses. Interestingly, by exchanging α
and β (maintaining always the fact that the transition 2→ 1 triggers a reversal) or
by exchanging the speed associated to state 1 and 2, it is possible to switch from
a positive to a negative chemotactic response. The Individual Based Model (IBM)
simulations were performed using parameters N = 10000 particles, v1 = 0.03,
L = 1, α(x) = x/L, β = 0.1 and an observation time of Tobs = 10000. For the
numerical computations, each particle is characterized by three variables: position,
direction of motion, and internal state depending on the motif under consideration.
The spatial dynamics is solved by a stochastic Euler-Maruyama method with a
time step ∆t = 0.01. The internal dynamics is updated, at each time steip, by a
Montecarlo-like method using uniformly distributed random numbers. In each time
step, a transition in the motif is triggered if the random number is smaller than the
product of transition rate and ∆t. To get the stationary density distribution Ps(x),
a histogram of the positions of the particles is computed after transitory period.

We verify that:

Ker(Q) = Span{E }, E = 1
2(α+ β)


β

β

α

α

 ,

and

Ran(Q) =
{
R ∈ R4, R+

1 +R−1 +R+
2 +R−2 = 0

}
.
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Let

ρε(t, x) = P+,ε
1 + P−,ε1 + P+,ε

2 + P−,ε2 ,

Jε(t, x) = 1
ε

(s1P
+,ε
1 − s1P

−,ε
1 + s2P

+,ε
2 − s2P

−,ε
2 ),

that satisfy the conservation law

∂tρ
ε + ∂xJ

ε = 0.

We can rewrite (4.2) as

ε∂tP
ε + Λ∂xP ε = QGε (4.3)

where

Gε = 1
ε

(P ε − ρεE )

can be expected to remain bounded. Passing formally to the limit in (4.3), we are
led to

Λ∂x(ρE ) = QG = ΛE ∂xρ+ ρΛ∂xE .

Observe that the sum of the components of ΛE vanishes, so that it lies in Ran(Q)
and we can find vector valued quantities χ and λ such that

Qχ = ΛE , Qλ = Λ∂xE .

For the computations, we can take advantage of the fact that the subspace
generated by (1,−1, 0, 0) and (0, 0, 1,−1) is stable by the action of the matrix Q.
To be specific, we simply find

χ = 1
2(α+ β)

(s2α− s1β

2α ,
s1β − s2α

2α , −s2α+ s1β

2β ,
s2α+ s1β

2β

)
,

and

λ = 1
4(α+ β)

(s2∂xα− s1∂xβ

α
, −s2∂xα− s1∂xβ

α
,

−s2∂xα+ s1∂xβ

β
,
s2∂xα+ s1∂xβ

β

)
−∂xα+ ∂xβ

4(α+ β)2

(s2α− s1β

α
, −s2α− s1β

α
, −s2α+ s1β

β
,
s2α+ s1β

β

)
.

Thus, we arrive at G = χ∂xρ+ ρλ.
Accordingly, we also have

Jε = s1G
+,ε
1 − s1G

−,ε
1 + s2G

+,ε
2 − s2G

−,ε
2 ,

which tends to

−D∂xρ+ ρU
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with
U = (s1λ

+
1 − s1λ

−
1 + s2λ

+
2 − s2λ

−
2 )

= s2(s1β − s2α)∂xα− s1(s2α+ s1β)∂xβ
2(α+ β)αβ + s2

2α
2 + s2

1β
2

2(α+ β)2αβ
(∂xα+ ∂xβ),

(4.4)

and

D = −(s1χ
+
1 −s1χ

−
1 +s2χ

+
2 −s2χ

−
2 ) = 1

2(α+ β)

(
s2

1
β

α
+s2

2
α

β

)
= s2

2α
2 + s2

1β
2

2(α+ β)αβ . (4.5)

We are thus led to the drift-diffusion equation (1.1), which describes the asymptotic
behavior of the system. We discuss the obtained results below, after introducing and
studying NCS design 2.

4.3. NCS design 2: adaptive chemotactic behaviors

Particles operating with NCS design 1 respond to the an external concentration via
U(x) as well as via D(x). Here, we will introduce the concepts of chemotaxis and
chemokinesis. Assume U(x) = 0 and D(x) 6= 0 such that particles certainly respond
to the external concentration via D(x). Such a behavior is usually referred to as
chemokinesis. Usually D(x) depends on the value of the external concentration as
occurs with NCS design 1: D(x) is function of α and β, which in turn depend on the
external field c(x). Due to this dependency on c(x), it is said that the behavior is
non-adaptive. On the other hand, if D(x) = D0, with D0 a constant, and U(x) 6= 0
and such that U ∝ ∂xc, then the response to the external concentration is via (pure)
chemotaxis. And since particles respond mainly to ∂xc, and only weakly to c, it is
said that the behavior is adaptive: the background level of the external concentration
c does not strongly affect the behavior of the agents that respond mainly to ∂xc. In
the following, we show that it is possible to obtain adaptive chemotactic behavior
using a NCS. Again, we use two states, 1 and 2. For simplicity, we assume that
s1 = s2 = 1. The fundamental difference with NCS 1 is that here we consider three
possible transitions: one transition from state 1 to 2, characterized by rate α, and
two transitions from 2 to 1, characterized by rates β and γ. The reversal in the
moving direction is triggered only by one of the two transitions 2 → 1, the one
associated to transition rate β. The resulting system in a one-dimensional space is
given by:

∂t


P+

1
P−1
P+

2
P−2

+ Λ∂x


P+

1
P−1
P+

2
P−2

 =


−α 0 γ β

0 −α β γ

α 0 −β − γ 0
0 α 0 −β − γ



P+

1
P−1
P+

2
P−2

 , (4.6)

with Λ = diag(1,−1, 1,−1). The third transition associated to γ by itself cannot
ensure adaptive chemotactic behavior. In addition, conditions on α, β, and γ have
to be requested. We discuss these conditions after rescaling NCS 2 for three generic
transition rates.
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4.4. Rescaling and effective coefficients for NCS design 2

We rescale Eq. (4.6) as indicated by expression (3.1) and verify that:

Ker(Q) = Span{E }, E = 1
2(α+ β + γ)


β + γ

β + γ

α

α

 ,

and

Ran(Q) =
{
R ∈ R4, R+

1 +R−1 +R+
2 +R−2 = 0

}
.

With similar notations as above, we get

χ = 1
2(α+ β + γ) (X,−X,Y,−Y ), X = β − γ

2β − (γ + β)2

2αβ , Y = −α+ β + γ

2β .

Therefore, we are led to the following definition for the effective diffusion and con-
vection coefficients:

D = α2 + 2αγ + (γ + β)2

2αβ(α+ β + γ) ,

U = 1
2∂x

(α+ γ

αβ

)
− β + γ − α

2α2(α+ β + γ)∂xα+ ∂xD.

As mentioned above, it is possible to request conditions on the rate α, β, and γ in
order to obtained an adaptive chemotactic behaviors. Let us recall that α, β, and γ
depend on the external concentration field c. Then, given a function c 7→ β(c) we re-
quest β(c) ∈ [β?, β?] and set α(c) = β?β

?

β(c) and γ(c) = 2β?−α(c)−β(c) (which remains
non negative). Then, the diffusion becomes D = 1

2
β?2

β?β?(β?+β?) , which does not de-
pend on c, while we get a space-dependent convection U(x) = − 1

β?+β?
β′(c(x))
β(c(x)) ∂xc(x),

which creates an adaptive dynamics controlled by the gradient of c.

5. Concluding remarks on the behavior of agents with NCS

The developed theoretical framework allows us to analyze active agents with an
arbitrary number of internal states interconnected and controlled by the NCS. In
particular, we determined conditions that ensure that the asymptotic behavior of
the agents can be reduced to a convection-diffusion equation, providing expressions
for the drift U and diffusion coefficient D. By applying these results to specific
examples, we obtained a series of important remarks on the asymptotic behavior of
this type of agents.

(R1) At least two internal states are required to obtain a non-zero drift term U .

If we assume only one internal state, the NCS degenerates to
(
−α α

α −α

)
and even if the coefficient α depends on c(x), the equilibrium E = (1, 1)
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does not. And thus, we cannot observe a macroscopic drift U induced by
the external concentration c.

(R2) Non-symmetric transition rates are required to obtain a non-zero drift term
U .
Assuming two internal states and transition rates α and β that depend on
the external concentration c, we have shown that for α = β, U vanishes,
even when s2 6= s1. To observe a non-zero drift, it is thus necessary to
assume α 6= β, and additionally request that at least one of the transition
rate is c-dependent. See Fig. 2.

(R3) The sign of U is controlled by the design of the NCS and the speed values
associated to the internal states.
By either exchanging α and β or by exchanging the speed associated to
speed 1 and 2, it is possible to invert the sign of U . This highlights the
importance of the design of the NCS in the chemotactic response and indi-
cates that positive and negative chemotactic responses (i.e. up-gradient or
down-gradient biased motion) can be induced by altering the NCS design:
exchanging of rates or state speeds can invert the chemotactic behavior.

(R4) The asymptotic spatial distribution of agents.
By setting Ps(x) = exp

( ´ x
0
U
D (y) dy

)
, we can rewrite the limit equation as

∂tρ− ∂x
(
DPs∂x

( ρ
P s

))
= 0,

which allows us to identify the equilibrium spatial distribution of the agents.
(R5) Adaptive chemotactic responses.

We have shown in subsection 4.3 that by introducing three transition rates
into the two-state NCS, it is possible to conceive transition rates that lead to
adaptive chemotactic responses. This implies that agents operating by two-
state NCS can exhibit the same chemotactic performance independently of
the background level of c(x), exhibiting a drift that is proportional to the
external field gradient, i.e. U ∝ ∂xc.

In summary, our study provides a solid mathematical understanding of the
asymptotic behavior of agents operating by a NCS, providing a generic framework
to model and understand intermittent collective motion in biological systems, and
a novel, mathematical perspective on chemotaxis, by showing that neither memory
(in the sense of storage of past measurements) nor non-local external field measure-
ments (to directly evaluate gradients) are required to observe such type of behaviors.

Finally, it is worth stressing that chemotactic mechanisms based on a NCS,
beyond their intrinsic conceptual and theoretical interest, find applications in real-
world systems. Specifically, experiments with robots operating with a NCS corre-
sponding to design 2 and using a memory storage capacity of a single bit (a single
Boolean variable) were implemented in 14. The experiment shows that the proposed
NCS leads to a robust biased response: biased motion is observed despite exper-
imental fluctuations (imperfect rotation of the wheels, inaccurate time intervals,
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etc). Furthermore, it has been shown that experiments with P. putida bacteria 13

are consistent with NCS with only two states. In short, we speculate that there
exists a large variety of real-world systems that can be either model or understood
using the framework here discussed.

6. Study of the interaction operator

This Section is devoted to the analysis of the interaction operator Q. For future
purposes, it is important to bear in mind that the coefficients of the operator depend
on the space variable x. To make the notation less cluttered, in this Section we do
not mention this parameter, assuming implicitely that all estimates discussed below
hold uniformly with respect to x.

6.1. Equilibrium and dissipation

We assume the existence of an equilibrium

There exists a M -uplet of functions Em : RN × V → (0,∞) such that

γm(v)Em(v) =
M∑
`=1

ˆ
V

γm,`(v, v′)E`(v′) dv′,

M∑
m=1

ˆ
V

Em(v) dv = 1,

M∑
m=1

ˆ
V

(
γm(v) + 1

γm(v)

)
Em(v) dv = µ is finite.

(A1)

This property can be checked depending on the coefficients γm,`. For instance, it
holds assuming that the γm,`’s are continuous and positive, with V = SN−1. More
generally, it suffices to check that

M∑
m=1

ˆ
V

sup
v′∈V ,`

(
1 + γm(v)
1 + γm(v′)

γm,`(v, v′)
γm(v)

)
dv <∞.

It permits us to apply the Krein-Rutman theorem, see 29 , since a power of the
underlying linear operator (which is positive) is compact, see 34 . We also refer the
reader to 8 for further characterization of the compactness of integral operators.
In order to obtain useful dissipation estimates, we shall also need the following
strengthened assumption:There exists a positive constant κ such that

Em(v) ≤ κ
(
γm(v′) + 1

γm(v′)

)
1

γm(v) γm,`(v, v
′). (A2)

Let us collect here all the technical assumptions that will be necessary to justify
the derivation of a macroscopic model. We assume that there exists two positive
constants µ1 and µ2 such that

sm|v| |∇xEm(x, v)| ≤ µ1γm(x, v) Em(x, v), a.e., (B1)
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s2
m

ˆ
V

|v|2 Em(x, v)
γm(x, v) dv ≤ µ2, a.e., (B2)

M∑
m=1

ˆ
V

smv Em(x, v) dv = 0, a.e. (B3)

We point out that vF (x, v) is integrable for x a.e. because of (A2) and (B2), so
that (B3) makes sense. Finally, we need a geometrical assumption on the set of
velocities 6,22,15.

For any ξ ∈ RN\{0}, µ({v ∈ V , such that v · ξ 6= 0}) > 0. (C)

For further purposes, it is convenient to introduce the following functional space

H =
{

(P1, ..., PM ) : RN → R, such that
M∑
m=1

ˆ
V

P 2
m

γm
Em

dv <∞
}
.

Clearly, it defines a Hilbert space, and the components of any elements of H are
integrable functions. Therefore, it makes sense to consider the following closed sub-
space

H0 =
{
P ∈ H, such that

M∑
m=1

ˆ
V

Pm dv = 0
}
.

We consider the operators:

K : (P1, ..., PM ) 7−→
{ 1
γm

M∑
`=1

ˆ
V

γm,`(v, v′)P`(v′) dv′, m ∈ {1, ...,M}
}

(6.1)

and, similarly,

Q : (P1, ..., PM ) 7−→
{ 1
γm

M∑
`=1

ˆ
V

γm,`(v, v′)P`(v′) dv′ − Pm(v), m ∈ {1, ...,M}
}
.

(6.2)
We can use shorthand notation: with P = (P1, ..., PM ), we denote K (P ) and Q(P )
the vector valued quantities with components defined above and we have Qm(P ) =
Km(P ) − Pm = 1

γm
Qm(P ). The following statement is an adaptation of 6 ; the

detailed proof is given for the sake of completenesss.

Proposition 6.1. The operators (6.1) and (6.2) are well defined in L(H) and they
satisfy the following dissipation property: denoting

B(P,G) = −
M∑
m=1

ˆ
V

Qm(P )Gm
Em

dv

which is continuous on H ×H, we have

B(P, P ) = 1
2

M∑
m,`=1

¨
V ×V

γm,`(v, v′)E`(v′)
(Pm

Em
(v)−P`

E`
(v′)
)2

dv′ dv ≥ 1
2‖Q(P )‖2H ≥ 0.
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Proof. Let us start with the manipulations that lead to the dissipation property.
With (2.2) and exchanging the variables, we have

∑
m=1

ˆ
V

γm(v)P
2
m

Em
(v) dv =

∑
m=1

ˆ
V

(
M∑
`=1

ˆ
V

γ`,m(v′, v) dv′
)
P 2
m

Em
(v) dv

=
∑
`,m=1

¨
V ×V

γ`,m(v′, v)Em(v)
(
Pm
Em

(v)
)2

dv dv′

=
∑
m,`=1

¨
V ×V

γm,`(v, v′)E`(v′)
(
P`
E`

(v′)
)2

dv′ dv.

Moreover, by using (A1), we can also write

∑
m=1

ˆ
V

γm(v)P
2
m

Em
(v) dv =

∑
m=1

ˆ
V

γm(v)Em(v)
(
Pm
Em

(v)
)2

dv

=
∑
m=1

ˆ
V

(
M∑
`=1

ˆ
V

γm,`(v, v′)E`(v′) dv′
)(

Pm
Em

(v)
)2

dv.

It follows that B(P, P ) can be cast as

B(P, P ) = −
∑
m,`=1

¨
V ×V

γm,`(v, v′)E`(v′)

×

{
P`
E`

(v′)Pm
Em

(v)− 1
2

(
P`
E`

(v′)
)2
− 1

2

(
Pm
Em

(v)
)2
}

dv′ dv,

which is the asserted result.
Next, let us detail the functional inequalities. Still by combining (2.2) and (A1),

we observe that

‖P‖2H =
∑
m,`

¨
V ×V

γm,`(v, v′)E`(v′)
(
Pm
Em

(v)
)2

dv′ dv.

We shall reinterpret the bilinear form B by means of the inner product on H;
namely, we have

B(P,G) = (P |G)H − (K (P )|G).

The Cauchy-Schwarz inequality implies

|(K (P )|G)| =

∣∣∣∣∣∣
M∑

m,`=1

¨
V ×V

γm,`(v, v′)P`(v′)
Gm
Em

(v) dv′ dv

∣∣∣∣∣∣
=

∣∣∣∣∣∣
M∑

m,`=1

¨
V ×V

√
γm,`(v, v′)

P`√
E`

(v′)×
√
γm,`(v, v′)E`(v′)

Gm
Em

(v) dv′ dv

∣∣∣∣∣∣
≤ ‖P‖H‖G‖H .
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These observations prove the continuity of B of H × H together (by using
G = K (P )) ‖K (P )‖2H ≤ ‖P‖H‖K (P )‖H . Since K (E ) = E , we conclude that
‖K ‖L(H) = 1. Finally, the relation

‖Q(P )‖2H = ‖K (P )− P‖2H = ‖K (P )‖2H + ‖P‖2H − 2(K (P )|P )H

yields

B(P, P ) = ‖P‖2H−(K (P )|P )H = 1
2‖Q(P )‖2H+1

2(‖P‖2H−‖K (P )‖2H) ≥ 1
2‖Q(P )‖2H .

6.2. Fredholm alternative

Assumption (A2) strengthens the dissipation estimate into a coercivity property,
which, in turn, allows us to justify the Fredholm alternative.

Corollary 6.1. Assume (A1)-(A2). For P ∈ H, let ρ =
∑M
m=1
´
Pm(v) dv. Then,

we have B(P, P ) ≥ 1
2µκ‖P − ρE ‖

2
H . Moreover, for any h = (h1, ..., hM ) verifying

M∑
m=1

ˆ
V

|hm(v)|2

γm(v)Em(v) dv <∞,
M∑
m=1

ˆ
V

hm(v) dv = 0,

there exists a unique P ∈ H0 such that Q(P ) = h.

Proof. By virtue of (A1), we have

M∑
m=1

ˆ
V

|hm(v)|dv ≤
(

M∑
m=1

ˆ
V

|hm(v)|2

γm(v)Em(v) dv
)1/2( M∑

m=1

ˆ
V

γm(v)Em(v) dv
)1/2

so that the solvability condition makes sense.
By (2.2), we already know that

∑M
m=1
´

V Qm(P ) dv = (Q(P )|E )H = 0:
Ran(Q) ⊂ Span{E }⊥. Conversely, Proposition 6.1 shows that Span{E }⊥ ⊂
Ker(Q), and thus Ran(Q) = Span{E }⊥. With (A2), we can deduce that Ran(Q)
is closed. Indeed, with ρ =

∑M
m=1
´

V Pm(v) dv, we start by rewriting

Pm − ρEm = Em

M∑
`=1

ˆ
V

(Pm
Em

(v)− P`
E`

(v′)
)
E`(v′) dv′.
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Next, the Cauchy-Schwarz inequality yields
M∑
m=1

ˆ
V

∣∣Pm(v)− ρEm(v)
∣∣2 γm(v)

Em(v) dv

=
M∑
m=1

ˆ
V

γm(v)Em(v)
∣∣∣ M∑
`=1

ˆ
V

(Pm
Em

(v)− P`
E`

(v′)
)
E`(v′) dv′

∣∣∣2 dv

≤
M∑
m=1

ˆ
V

γm(v)Em(v)
(

M∑
`=1

ˆ
V

(Pm
Em

(v)− P`
E`

(v′)
)2 γ`(v′)E`(v′)

1 + γ2
` (v′) dv′

)

×

(
M∑
`=1

ˆ
V

1 + γ2
` (v′)

γ`(v′)
E`(v′) dv′

)
︸ ︷︷ ︸

=µ by (A1)

dv.

Now, we make use of (A2) to obtain

‖P − ρE ‖2H ≤ µ

M∑
`,m=1

¨
V ×V

γ`(v′)γm(v)Em(v)
1 + γ2

` (v′) E`(v′)
(Pm

Em
(v)− P`

E`
(v′)
)2

dv′ dv

≤ κµ

M∑
`,m=1

¨
V ×V

γm,`(v′)E`(v′)
(Pm

Em
(v)− P`

E`
(v′)
)2

dv′ dv

≤ 2κµB(P, P ),

owing to Proposition 6.1. This proves that B is coercive on H0. Then, a standard
variational argument justifies the Fredholm alternative.

7. Asymptotic analysis

7.1. A priori estimates

Proposition
7.1. Let (P ε1 , ..., P εm) satisfy (3.1), and set ρε(t, x) =

∑M
m=1
´

V P ε(t, x, v) dv. We
can find positive constants ε0, C1, C2 such that for any ε ∈ (0, ε0), we have

1
2

d
dt

M∑
m=1

¨
RN×V

|P εm|2

Em
dv dx

+C1

ε2

M∑
m=1

¨
RN×V

|P εm − ρεEm|2
γm
Em

dv dx ≤ C2

M∑
m=1

¨
RN×V

|P εm|2

Em
dv dx.

Proof. The computation adapts the approach detailed in the scalar case in 6. We
have

d
dt

M∑
m=1

¨
RN×V

|P εm|2

Em
dv dx = 1

ε

M∑
m=1

¨
RN×V

smv · ∇xP εm
P εm
Em

dv dx+ 1
ε2
B(P ε, P ε).

(7.1)
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The last term recasts as

−1
2

M∑
`,m=1

˚
RN×V ×V

γm,`(v, v′)E`(v′)
(P ε` (v′)

E`(v′)
− P εm

Em
(v)
)2

dv′ dv dx.

Let us introduce

ρε =
M∑
m=1

ˆ
V

P εm dv, Gεm = P εm − ρεEm
ε

.

Owing to (A2) we have

1
ε2
B(P ε, P ε) ≤ − 1

2κµ

M∑
`,m=1

¨
RN×V

|Gεm|2

Em
(v) dv dx.

The first term in the right hand side of (7.1) can be rewritten as follows

1
2ε

M∑
m=1

¨
RN×V

smv · ∇xEm
(
P εm
Em

)2
dv dx

= 1
2ε

M∑
m=1

¨
RN×V

smv · ∇xEm

(
|ρε|2 + 2ερG

ε
m

Em
+ ε2

(
Gεm
Em

)2
)

dv dx

=
M∑
m=1

¨
RN×V

sm
v · ∇xEm

Em

Gεm√
Em

ρε
√

Em dv dx

+ ε

2

M∑
m=1

¨
RN×V

sm
v · ∇xEm

Em

|Gεm|2

Em
dv dx,

where (B3) has been used to get rid of the stiffest term. Hence, with (B1), we are
led to

1
ε

∣∣∣∣∣
M∑
m=1

¨
RN×V

smv · ∇xP εm
P εm
Em

dv dx

∣∣∣∣∣
≤ µ1

(ˆ
RN

ρε

(
M∑
m=1

ˆ
V

Gεm γm dv
)

dx+ ε

2

M∑
m=1

¨
RN×V

|Gεm|2
γm
Em

dv dx
)
.

Let us introduce a parameter ν > 0, that will be determined later on. By using
(A1), this can dominated by

µ1

4ν

M∑
m=1

¨
RN×V

|ρε|2 γm Em dv dx+ µ1

(
ν + ε

2

)¨
RN×V

|Gεm|2
γm
Em

dv dx

≤ µ1µ

4ν

M∑
m=1

ˆ
RN
|ρε|2 dx+ µ1

(
ν + ε

2

) M∑
m=1

¨
RN×V

|Gεm|2
γm
Em

dv dx.

With the Cauchy Schwarz inequality and (A1), we have

0 ≤
ˆ
RN
|ρε|2 dx ≤

M∑
m=1

¨
RN×V

|P εm|2

Em
dv dx. (7.2)
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Thus, we arrive at

1
ε

∣∣∣∣∣
M∑
m=1

¨
RN×V

smv · ∇xP εm
P εm
Em

dv dx

∣∣∣∣∣
≤ µ1µ

4ν

M∑
m=1

¨
RN×V

|P εm|2

Em
dv dx+ µ1

(
ν + ε

2

) M∑
m=1

¨
RN×V

|Gεm|2
γm
Em

dv dx .

(7.3)
Gathering these information and coming back to (7.1), we get

1
2

d
dt

M∑
m=1

¨
RN×V

|P εm|2(t)
Em

dv dx+
( 1

2µκ −
(
ν + ε

2

)
µ1

) M∑
m=1

¨
RN×V

|Gεm|2
γm
Em

dv dx

≤ µ1µ

4ν

M∑
m=1

¨
RN×V

|P εm|2

Em
dv dx.

This becomes a useful estimate when the coefficient in front of the dissipation term
is positive. To this end, we first choose ν > 0 so that (for instance) 1

2µκ−νµ1 ≥ 1
4µκ .

Second, this determines a range so that 1
2µκ − (ν+ ε/2)C1 ≥ 1

8µκ for any 0 < ε ≤ ε0.

This statement can be translated into uniform estimates, with a direct applica-
tion of the Grönwall lemma.

Corollary 7.1. Let P εm,Init : RN×V → [0,∞) be a sequence of integrable functions
parametrized by ε ∈ (0, ε0) such that

sup
ε

M∑
m=1

¨
RN×V

P εm,Init dv dx = M0 <∞,

sup
ε

M∑
m=1

¨
RN×V

|P εm,Init|2

Em
dv dx = M1 <∞.

Let us expand the solutions to (3.1) associated to these initial data as P εm(t, x, v) =
ρε(t, x)Em(x, v) + εGεm(t, x, v), where

∑M
m=1
´
Gεm dv = 0. Then, for any 0 < T <

∞,

• P εm√
Em

is bounded in L∞(0, T ;L2(RN × V )),

•
√

γm
Em
gεm is bounded in L2((0, T )× RN × V ),

• ρε is bounded in L∞(0, T ;L1 ∩ L2(RN )),
• Jε = 1

ε

∑M
m=1
´

V smvP
ε
m dv =

∑M
m=1
´

V smvG
ε
m dv is bounded in

L2((0, T )× RN ).

We remind the reader that the pair (ρε, Jε) satisfy

∂tρ
ε + divxJε = 0.
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Then, we wish to pass to the limit in this relation, which amounts to characterize
the possible limit of

Jε =
M∑
m=1

ˆ
V

smvG
ε
m dv.

This will be obtained by identifying the limit of the fluctuation in the form

Gεm(t, x, v) −−−→
ε→0

G(t, x, v) = χm(x, v) · ∇xρ(t, x) + λm(x, v)ρ(t, x),

with χ, λ defined by some auxilliary equations involving the local equilibrium E .

7.2. Convergence to the Drift-Diffusion equation

Equation (3.1) holds at least in the sense of distributions, with P ε belonging to
C0([0,+∞[;L1(RN × V )). We shall make use of the following weak formulation

ε

(
M∑
m=1

˚
D

P εmφm∂tζ dv dxdt+
M∑
m=1

˚
D

Gεmφmsmv · ∇xζ dv dx dt
)

+
M∑
m=1

˚
D

ρεEmφmsmv · ∇xζ dv dxdt+
M∑
m=1

˚
D

Qm(Gε)φmζ dv dxdt = 0,

(7.4)
which holds for any ζ ∈ C∞c ((0, T )× RN ) φ1, ..., φM ∈ L∞(V ), and where we have
set D = (0, T )× RN × V , P εm(t, x, v) = ρε(t, x)Em(x, v) + ε Gεm(t, x, v).
Step 1: Weak compactness
Proposition 7.1 and Corollary 7.1 allow us to assume, possibly at the cost of ex-
tracting subsequences, that

ρε ⇀ ρ in L∞((0, T );L2(RN )) weak-∗, (7.5)

Jε ⇀ J in L2((0, T )× RN ) weak, (7.6)√
γm
Em

Gεm ⇀

√
γm
Em

Gm in L2(D, dv dx dt) weak. (7.7)

As a matter of fact, it immediately leads to

∂tρ+∇x · J = 0. (7.8)

Convergence (7.7) means that

lim
ε→0

˚
D

Gεmψm dv dxdt =
˚

D

Gψm dv dxdt , (7.9)

provided the test function ψ = (ψ1, ..., ψM ) satisfies
M∑
m=1

˚
D

|ψm|2
Em
γm

dv dxdt <∞. (7.10)
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In particular, it holds for

ψm(t, x, v) = φm(v)ζ(t, x), ψm(t, x, v) = smvφm(v)ζ(t, x), (7.11)

for any φm ∈ L∞(V ), ζ ∈ L2((0, T )× RN ), by virtue of (A1) and (B2).
We deduce that

P εm ⇀ Pm = ρEm weakly-∗ in L2(D, γmEm
dv dxdt),

ρε ⇀ ρ =
M∑
m=1

ˆ
V

Pm dv weakly in L2((0, T )× RN ),

Jε ⇀ J =
M∑
m=1

ˆ
V

smvGm dv.

Step 2: Passing to the limit in the kinetic equation
Going back to (7.4) we obtain

− lim
ε→0

ˆ T

0

ˆ
RN

M∑
m=1

ˆ
V

Qm(Gε)φmζ dv︸ ︷︷ ︸
B(Gε,φζF )

dxdt

= lim
ε→0

ˆ T

0

ˆ
RN

ρε

(
M∑
m=1

ˆ
V

smvEmφm dv
)
· ∇xζ dxdt.

Note that by (A1) and (B2), the integral with respect to v in the right hand side
defines a bounded function. Therefore (7.5) leads to

M∑
m=1

˚
D

Qm(G)φmζ dv dxdt+
M∑
m=1

˚
D

ρ smvEmφm · ∇xζ dv dxdt = 0. (7.12)

Step 3: Regularity of ρ
Since v 7→ v

|v| lies in L
∞(V ), we can write

M∑
m=1

˚
D

Qm(G) v
|v|
ζ dv dx dt+

ˆ T

0

ˆ
RN

Θ(x)ρ∇xζ dx dt = 0, (7.13)

where Θ stands for the following (symmetric) matrix

Θ(x) =
M∑
m=1

ˆ
V

sm
v ⊗ v
|v|

Em(x, v) dv.

By (A1), (B1) and (B2), the coefficients of both Θ and DxΘ belong to L∞(RN ).
We finally appeal to (C) which implies that Θ(x) is definite positive. By continuity,
it follows that for any compact K ⊂ RN , we can find αK > 0 such that, for all
x ∈ K,

Θ(x) ≥ αKI.
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Then, (7.13) can be recast as

|〈Divx(Θρ), ζ〉D′,D| =

∣∣∣∣∣
ˆ T

0

ˆ
RN

B
(
g,

v

|v|
E ζ
)

dxdt

∣∣∣∣∣
≤
√
M‖ζ‖L2((0,T )×RN )‖

√
γ
E G‖L2(D, dv dx dt),

by using (A1) and the continuity of B, and, for a matrix valued function x 7→ A(x),
Divx(A) is the shorthand notation for the vector with components

∑N
j=1 ∂xjAij .

Accordingly, Divx(Θρ) = ρDivx(Θ) + Θ∇xρ lies in L2((0, T ) × RN ). We deduce
that ∇xρ ∈ L2

loc((0, T )× RN ). Moreover, (7.12) becomes
M∑
m=1

˚
D

Qm(G)φmζ dv dx dt−
M∑
m=1

˚
D

divx(smvEmρ)φmζ dv dx dt = 0.

Since this relation holds for all φ, ζ, we obtain finally the following pointwise relation

Qm(G) = divx(smvρEm) = smvEm · ∇xρ+ ρsmv · ∇xEm.

Step 4: Identification of the limit equation
We check that smvEm and smv · ∇xEm define L∞((0, T )×RN ;L2(V , 1

γE dv)) func-
tions by Assumptions (A1)-(A2). Hence, (B1)-(B2) allow us to apply Corollary 6.1
and to define χ(1), ..., χ(N) and λ with values in H0, solutions of

Qm(χ(j)) = smv
(j)Em, Qm(λ) = smv · ∇xEm.

These functions belong to L∞((0, T ) × RN ;H). Furthermore, taking ψ(t, x, v) =
ζ(t, x) in (7.9) gives
ˆ T

0

ˆ
RN

ζ

(
M∑
m=1

ˆ
V

Gεm dv
)

dxdt = 0→
ˆ T

0

ˆ
RN

ζ

(
M∑
m=1

ˆ
V

Gm dv
)

dx dt.

Going back to Corollary 6.1 we end up with

Gm(t, x, v) =
N∑
j=1

χ(j)
m (x, v)∂xjρ(t, x) + λm(x, v)ρ(t, x),

and we deduce that

J(t, x) = U(x)ρ(t, x)−D(x)∇xρ(t, x),

with

U(x) =
M∑
m=1

ˆ
V

smvλ(x, v) dv, D(x) = −
M∑
m=1

ˆ
V

smv ⊗ χm(x, v) dv.

Standard arguments also show that ρε lies in a compact set of C0([0, T ];H−1
loc (RN ))

so that the initial data for the limit problem also makes sense: it corresponds to the
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weak limit of
´

V f εInit dv.

Step 5: Strong convergence
The proof of the strong convergence of ρε relies on a compensated-compactness
argument, see 22,6,15. This argument avoids the use of the averaging lemma 10,11

which would not apply for discrete velocity models. Indeed, we have

Θ(x)∇xρε = −Divx(Θ(x))ρε +
M∑
m=1

ˆ
V

v

|v|
Qm(Gε) dv

−ε

(
∂t

[
M∑
m=1

ˆ
V

v

|v|
P εm dv

]
+ Divx

[
M∑
m=1

ˆ
V

sm
v ⊗ v
|v|

Gεm dv
])

.

(7.14)
By using the a priori estimates and Rellich’s theorem, we observe that the right
hand side in (7.14) lies in a compact set of H−1

loc ((0, T )×RN ). The matrix Θ being
invertible, with the components of DxΘ, and Θ−1 locally bounded, we deduce that
∇xρε belongs to a compact set for the norm of H−1

loc ((0, T )×RN ). Let us introduce
the following vector fields (having N + 1 components)

U ε = (ρε, Jε), V ε = (ρε, 0, ..., 0),

which satisfy

divt,xUε = ∂tρ
ε + divxJε = 0 ∈ Compact set ofH−1

loc ,

curlt,xVε =
(

0 −(∇xρε)ᵀ
∇xρε 0

)
∈ Compact set of (H−1

loc )(N+1)×(N+1).

A direct application of the div-curl lemma 30,31 tells us that

Uε · Vε = |ρε|2 →
(
ρ

J

)
·
(
ρ

0

)
= ρ2 in D ′((0, T )× RN ).

It implies the strong convergence ρε −→ ρ in L2(0, T ;L2
loc(RN )).
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