
An explicit muscl scheme on staggered grids with kinetic–like
fluxes for the barotropic and full Euler system

Thierry Goudon, Julie Llobell, Sebastian Minjeaud

Université Côte d’Azur, Inria, CNRS, LJAD

Abstract. We present a second order scheme for the barotropic and full Euler equations.
The scheme works on staggered grids, with numerical unknowns stored at dual locations, while
the numerical fluxes are derived in the spirit of kinetic schemes. We identify stability con-
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1 Introduction

This work is concerned with the development of numerical schemes on staggered grids for the
Euler equations. Using staggered grids is non standard for the discretization of hyperbolic
system (see e.g. [11, 19, 25, 35, 49]), since, when stored on a collocated grid, the unknowns
of the system are usually gathered in a single vector-valued unknown allowing to identify the
wave structure of the system in order to built upwinding techniques. The motivation of the use
of staggered grids comes from the attempt to have an unified approach with an incompressible
code, see e.g. [24, 27, 50, 52, 53, 54]. This is particularly relevant when dealing with low-Mach
simulations since letting the Mach number go to 0 enforces incompressibility and collocated
approaches might lead to numerical difficulties in this regime, and to the development of spurious
instabilities due to an “odd-even decoupling”, see [20, 21, 56] and the references therein. This is
also of interest in multifluid flows simulations that involve additional solenoidal constraints on a
velocity field, see e.g. [6, 16, 17, 46]: coupled with a projection approach, the staggered method
makes the discretization of the mass conservation equations for all the species interacting in
the mixture and the definition of the pressure field (the Lagrange multiplier associated to the
solenoidal constraint) compatible.

We first deal with the barotropic Euler system{
∂tρ+ ∇ · (ρu) = 0,
∂t (ρu) + ∇ · (ρu⊗ u) + ∇ (p(ρ)) = 0.

(1)

This model describes the evolution of a compressible fluid (in the absence of external forces).
The unknowns ρ and u stand respectively for the local density and velocity field of the fluid.
They depend on the time and space variables, t > 0 and x ∈ RN . The model assumes that the
pressure p depends on the density ρ only. Here and below, we suppose that the pressure law
ρ 7→ p(ρ) belongs to C2 ([0,∞)) and satisfies

p(ρ) > 0, p′(ρ) > 0, p′′(ρ) > 0, ∀ρ > 0.

For instance, these properties hold for the classical power-law p(ρ) = λργ with λ > 0 and γ > 1.
We refer the reader to the classical treatises [11, 19, 25, 35, 49] for a thorough introduction to
these equations and for a description of the numerical issues. Our aim is here to extend at the
second order and to higher dimension the scheme introduced in [5]. This scheme is characterized
by the following two main features:

• first of all, as said previously, it works on staggered grids, meaning that densities and
velocities are stored on different grid points,

• second of all, the fluxes are defined with a flavor of kinetic schemes [18, 22, 23, 31, 43, 44].

Consequently, the scheme differs in many aspects from standard approaches, for which we refer
the reader e. g. to [11, 49]. In particular, due to the staggered discretization, the system
is not treated “as a whole”, but each equation are updated successively, which makes the
numerical analysis different, see e.g. [4, 27, 29, 48]. Next, the definition of the fluxes involves
the characteristic speeds of the system, but, despite the “kinetic” motivation, their evaluation do
not require to compute complicated integrals. They are defined by simple formula and they do
not require additional computational cost. The scheme can be shown to preserve the positivity
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of the density and the entropy dissipation property under a suitable CFL condition [5], it is
thus consistent with the Euler system [4].

Next, we address the full Euler model

∂t

 ρ
ρu
ρE

+ ∇ ·

 ρu
ρ‖u‖2 + p
ρEu + pu

 = 0. (2)

As previously, the unknowns depend on the time and space variables (t, x) ∈ [0,∞)×RN ; ρ, u,
E and p stand for the mass density, the velocity, the total energy and the pressure respectively.
The pressure is now related to the independent unknowns (ρ,u, E) through an equation of state;
in what follows we set

E = ‖u‖
2

2 + e, p = (γ − 1)ρe, (3)

where γ > 1 is the adiabatic exponent. The staggered approach induces a new difficulty since
in the energy equation, the total energy E involves quantities – the velocity and the internal
energy – which are defined on different grids. To cope with this issue, it is tempting to work
with the internal energy equation, namely

∂t(ρe) + ∇ · (ρeu) = −p∇ · u, (4)

instead of the evolution equation for ρE, since discrete densities, pressures, and internal en-
ergies are naturally stored at the same locations. Unfortunately, as it is well-known, this non
conservative formulation is not equivalent to (2) when the solution presents discontinuities and
schemes that use naively this formulation produce wrong solutions [30]. We refer the reader to
[1, 32, 33] for a thorough description of numerical difficulties and attempts to design a scheme
that use the primitive variables (ρ, u, p) and non conservative formulations. In what follows,
we shall adapt the approach discussed in [27, 29] by plugging in the discrete version of (4)
correction terms that account for the kinetic energy balance. The scheme introduced in [27, 29]
can be shown: a) to be consistent with (a weak form of) the total energy equation as the space
step δx goes to zero and b) to conserve the global discrete total energy. Even if, these properties
ensures that the scheme properly compute the correct weak solution (in particular, with shocks
satisfying the Rankine-Hugoniot conditions), the practitioner can be desappointed by the lack
of a form of local conservation for a total energy. We address this issue in this article by defining
averaged total energies that satisfy conservation relations.

Thus, the purpose of the present work can be summarized as follows:

• to adapt the scheme of [5] for dealing with the full Euler system (2),

• to establish local conservation relations satisfied by averaged total energies,

• to include reconstructed quantities in the definition of the fluxes, in the spirit of muscl
schemes [51], in order to improve the accuracy of the scheme,

• to explain how the schemes can be extended to higher dimensions. The staggered frame-
work naturally leads to a mac-like discretization, in the spirit of the pioneering work [26]
for incompressible flows,

• to analyse the properties of the schemes. In particular, we will discuss stability conditions
so that the numerical densities and internal energies (for full Euler system) remain positive.
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This work is organized as follows. In Section 2, we start by briefly describing the scheme
designed in [5] for the barotropic Euler system and by recalling its main features. The remainder
of this section is then devoted to the extension of the scheme to deal with the full Euler system
in 1d. Finally, we exhibit the stability conditions that ensure the positivity of the density and
internal energy and we define averaged total energies that satisfy a local conservation equation.
Next, we explain in Section 3 the adaptation of the muscl procedure to the staggered schemes
and justify that the construction reaches formally the second order accuracy. In Section 4,
we briefly explain how to extend the 1d scheme to higher dimensions, when working with
Cartesian grids. The case of general meshes will be addressed elsewhere, see [38, Chapter 4].
Section 5 is devoted to numerical validations for both barotropic and full Euler systems. We
check numerically the gain of accuracy on explicit solutions and on 1d Riemann problems.
Then we address 2d cases, like the simulation of falling columns by the Shallow Water system,
as proposed in [2], and the forward facing step inspired from [55].

2 First order numerical schemes and their main properties

2.1 Staggered grids and notation

We focus in this section on the one-dimensional case where x lies in the slab [0, L] ⊂ R. To
define the discrete unknowns, we proceed as follows, see Fig. 1:

• we introduce a set of J+1 points x1 = 0 < x2 < ... < xJ < xJ+1 = L in the computational
domain; we denote by Cj+ 1

2
= [xj , xj+1], j ∈ J1, JK, the cells defined by these points;

• we denote by xj+ 1
2

= (xj +xj+1)/2, j ∈ J1, JK, the centers of the cells; these points define
the dual cells Cj = [xj− 1

2
, xj+ 1

2
], j ∈ J2, JK;

• we set the following notation for the mesh-sizes

δxj+ 1
2

= xj+1 − xj , j ∈ J1, JK, and δxj =
δxj− 1

2
+ δxj+ 1

2

2 , j ∈ J2, JK,

(with the specific definition for the end-cells: δx1 = 1
2δx 3

2
and δxJ+1 = 1

2δxJ+ 1
2
).

x1
•
u1

x 3
2
|
ρ 3

2
e 3

2

δx1

x2
•
u2

δx 3
2

...

...

xj− 1
2
|

ρj− 1
2

ej− 1
2

δxj

xj
•
uj

δxj+ 1
2

xj+ 1
2
|

ρj+ 1
2

ej+ 1
2

xj+1
•

uj+1

...

...

xJ+1
•

uJ+1

Figure 1: Staggered grid in dimension one.

We have in mind the derivation of Finite Volume schemes where the discrete densities ρj+ 1
2

(resp. internal energies ej+ 1
2
) are thought of as approximation of the density ρ (resp. internal

energy e) on the cells Cj+ 1
2
whereas the discrete velocities uj are thought of as approximation

of the velocity u on the cells Cj .
The time discretization is explicit and we use the convention that, with q the evaluation of

a certain quantity at time t, q stands for its update at time t+ δt.
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2.2 Discretization of the barotropic Euler system

The scheme for barotropic Euler equations has the general form
ρj+ 1

2
− ρj+ 1

2

δt
+ Fj+1 −Fj

δxj+ 1
2

= 0, ∀j ∈ J1, JK. (5)

ρjuj − ρjuj
δt

+
Gj+ 1

2
− Gj− 1

2

δxj
+

Πj+ 1
2
−Πj− 1

2

δxj
= 0, ∀j ∈ J2, JK. (6)

Equation (5) is the discrete version of the mass balance equation and equation (6) is the discrete
version of the momentum balance equation. Of course, the scheme has to be completed by the
definition of mass fluxes Fj , momentum fluxes Gj+ 1

2
+ Πj+ 1

2
(with Πj+ 1

2
an approximation of

the pressure) and by initial and boundary conditions. The discrete momentum balance involves
quantities ρj , which stand for the approximations of ρ at the internal edges of the primal mesh
and are obtained as averages of quantities ρj− 1

2
and ρj+ 1

2
as follows:

ρj =
δxj+ 1

2
ρj+ 1

2
+ δxj− 1

2
ρj− 1

2

2δxj
, ∀j ∈ J2, JK. (7)

In contrast to the collocated approach (with the noticeable exception of ausm schemes
[37, 36]), a discretization of each physical variables, ρ and u separately, is natural on a staggered
grid. In particular, the mass flux Fj at the interface xj can use directly the material velocity
uj . For instance, it looks tempting to define the flux Fj based on the Upwinding principles
according to the sign of uj , see [29], but this approach does not use the hyperbolic properties
of the system (1) and requires extra-diffusion to reduce spurious oscillations that might appear,
see [5, Appendix B]. Instead, the flux designed in [5, 6] makes full use of the characteristic
speeds of the system (1), namely

λ±(c, u) = u± c, where c stands for the sound speed.

In the barotropic case, the sound speed depends only on ρ, that is c = cb(ρ) with

cb(ρ) =
√
p′(ρ).

The numerical mass fluxes are given by the following formula

Fj = F+
j + F−j , ∀j ∈ J1, J + 1K,

where
F+
j = F+(ρj− 1

2
, cj , uj) and F−j = F−(ρj+ 1

2
, cj , uj), ∀j ∈ J2, JK, (8)

with cj = cb(ρj). The definition of F±1 and F±J+1 depends on the prescribed boundary conditions.
The flux functions F± are defined as follows

F+(ρ, c, u) =


0 if u 6 −c,
ρ

4c(u+ c)2 if |u| 6 c,

ρu if u > c,

(9)

and

F−(ρ, c, u) =


ρu if u 6 −c,
− ρ

4c(u− c)2 if |u| 6 c,

0 if u > c.

(10)
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We do not explain in this article the derivation of these expressions which is related to kinetic
schemes, but we refer the interested reader to [5, 6] where the complete derivation is provided.
We note that a symmetry property holds

F−(ρ, c, u) = −F+(ρ, c,−u),

and it is clear that the flux–consistency condition is fulfilled

F+(ρ, c, u) + F−(ρ, c, u) = ρu. (11)

It is worth having in mind Fig. 2, which clarifies the correction with respect to the mere UpWind
flux based on the sign of the material velocity. As explained in [5], it induces some numerical
diffusion which prevents the formation of oscillations in the vicinity of small material velocities.

uc+
−c

+

F+(ρ, c, u)

UpWind

F−(ρ, c, u)

UpWind

Figure 2: Comparison of the flux (9)–(10) and the UpWind flux for a fixed ρ.

For the momentum flux, the pressure gradient at xj+ 1
2
is naturally centered by using the

densities in the neighboring cells with

Πj+ 1
2

= p(ρj+ 1
2
), (12)

while the convection flux is written by applying the upwinding principle, based on the “sign”
of the mass fluxes Fj and Fj+1, to the velocity field. We arrive at the following definition

Gj+ 1
2

= ujF+
j+ 1

2
+ uj+1F−j+ 1

2
,

where the quantities F±
j+ 1

2
are expressed as mean values of F±j , F

±
j+1:

F±
j+ 1

2
=
F±j + F±j+1

2 . (13)

It is remarkable that a conservation relation holds with the dual quantities ρj and F±j+ 1
2
:

ρj − ρj + δt

δxj
(Fj+ 1

2
−Fj− 1

2
) = 0 (14)

where, of course, Fj+ 1
2

= F+
j+ 1

2
+F−

j+ 1
2
. Due to (11), it is clear that the momentum flux is also

consistent.
The scheme has the following properties and abilities, at least in this simple 1d framework:
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• stability analysis [5]: up to a (quite standard) stability condition on the numerical param-
eters, the scheme preserves the positivity of the density, and it makes the total energy of
the system decay,

• consistency analysis [4]: the scheme satisfies a Lax-Wendroff type theorem,

• simulations: the scheme has the advantage of algorithmic simplicity (it does not require
to solve Riemann problems and the definition of the flux (9)-(10) is fully explicit; despite
its “kinetic” flavor, it does not require an additional integration procedure...), it performs
well on the standard test cases of Riemann problems and it works for very general pressure
laws, like with close-packing pressures, see [5, 6].

We propose in the next section an extension of this scheme to the discretization of the full Euler
system.

2.3 Discretization of the full Euler system

The discrete mass and momentum balance equations have been already derived in the previous
section. We use here the same definitions except for the sound speed and the pressure. Indeed,
as for the barotropic Euler system, the smallest and largest characteristic speeds of the full
Euler system are λ±(c, u) = u ± c (the third one being u) where c is the sound speed. The
sound speed now depends only on the internal energy, that is c = cf (e) with

cf (e) =
√

(γ − 1)γe.

Hence, it leads us to write

cj = cf
(
ej
)

with ej =
ej− 1

2
+ ej+ 1

2

2 ,

in the definition of the mass fluxes (8). Moreover, in the full Euler system, the pressure is no
longer defined as a function of the density only but instead using the state law (3), so that we
set:

Πj+ 1
2

= (γ − 1)ρj+ 1
2
ej+ 1

2
,

instead of (12).
We now turn to the discrete version of the internal energy equation

ρj+ 1
2
ej+ 1

2
− ρj+ 1

2
ej+ 1

2

δt
+ Ej+1 − Ej

δxj+ 1
2

+ Πj+ 1
2

uj+1 − uj
δxj+ 1

2

= Sj+ 1
2
. (15)

The left hand side corresponds to the discretization of (4), where the internal energy flux Ej is
given by

Ej = ej− 1
2
F+
j + ej+ 1

2
F−j . (16)

This formula still corresponds to the upwinding principle associated to the transport of ρe with
velocity u, according to the definition of the mass fluxes. Note that the discretization of the non
conservative term p∂xu uses the velocity field u, just updated in the previous step. Following
[27], the right hand side Sj+ 1

2
is designed to account for the remainder term that appears in the

discrete kinetic energy balance; it does not vanish when δx goes to zero, precisely because it
is intended to capture the correct behavior at discontinuities. To be more specific, the kinetic
energy balance is obtained by multiplying (6) by uj . We find, see [5, 27]:

1
2
ρju

2
j − ρju2

j

δt
+
Kj+ 1

2
−Kj− 1

2

δxj
+

Πj+ 1
2
−Πj− 1

2

δxj
uj = −Rj ,
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where the kinetic energy flux is given by

Kj+ 1
2

=
u2
j

2 F
+
j+ 1

2
+
u2
j+1
2 F−

j+ 1
2

(17)

and the remainder reads

Rj = 1
2δtρj (uj − uj)2 + 1

δxj

(
(uj − uj−1)2

2 F+
j− 1

2
− (uj+1 − uj)2

2 F−
j+ 1

2

)
+ 1
δxj

(uj − uj)(uj − uj−1)F+
j− 1

2
+ 1
δxj

(uj − uj)(uj+1 − uj)F−j+ 1
2
.

(18)

It motivates to define the source term for (15) as follows

Sj+ 1
2

= δxj+1Rj+1 + δxjRj
2δxj+ 1

2

.

The scheme shares similarities with the 1d version of the scheme presented in [29, Section 4],
see also [48, Chapter 2]. However, it differs by the following two points:

• firstly, the mass fluxes in [27, 29, 48] are upwinded with respect to the material velocity
(in other words, it corresponds to the choice F±(ρ, c, u) = ±ρ[u]± instead of (9) and (10),
see also Fig. 2). The mass flux based (9) and (10) introduces a bit of numerical diffusion
[5, Appendix B] which prevents the occurence of spurious oscillations when the material
velocity vanishes, see [28, Section 6.1.1] and [48, Section 2.3.5] where an artificial viscosity
is added to damp these oscillations.

• secondly, the organization of the time steppings are different: even if both schemes are
explicit, the variables are not updated in the same order. We solve the discrete equations
in the order ρ → u → e, as in [1], whereas [29] proceeds according to ρ → e → u. In
particular, here the corrective term Sj+ 1

2
does not need any time shift since the updated

velocity u is known when solving (15).

2.4 Stability conditions

We now turn to the study of the stability conditions which ensure the positivity of the density
and the internal energy. We start by stating a lemma that will be useful in this section and in
Section 3.3. This lemma about the flux functions F± is proved in [5].

Lemma 2.1. For all u ∈ R, for all ρ > 0 and for all c > 0, the fluxes F± satisfy the following
inequalities:

0 6 F+(ρ, c, u) 6 ρ[λ+(c, u)]+ and − ρ[λ−(c, u)]− 6 F−(ρ, c, u) 6 0. (19)

With this lemma at hand, we can prove the following statement.

Proposition 2.2. Assume that ej+ 1
2
> 0, ρj+ 1

2
> 0, for any j. If the following CFL-like

conditions hold for all j

δt

δxj+ 1
2

(
[uj+1]+ +

cf (ej+ 3
2
) + cf (ej+ 1

2
)

√
2

+ [uj ]− +
cf (ej+ 1

2
) + cf (ej− 1

2
)

√
2

)
6

1
γ
, (20)

δt

δxj+ 1
2

cf (ej+ 1
2 +k) 6

(γ − 1)
2
√

2
, ∀k ∈ {−1, 0, 1}, (21)

then ej+ 1
2
> 0 and ρj+ 1

2
> 0.
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Roughly speaking, the stability condition has the expected form of a constraint governed by the
speed |u| + c. However, in contrast to what happened for the barotropic case [5, Proposition
3.7], we observe that the expression of the constraint involves additional factors depending on
the adiabatic exponent γ. This has to be compared to [29, eq. (39)].

Proof. We assume that ej+ 1
2
> 0, ρj+ 1

2
> 0 and that (20) and (21) holds for all j.

We start by observing that
[λ±(c, u)]± 6 [u]± + c, (22)

√
2 cj 6 cf (ej− 1

2
) + cf (ej+ 1

2
). (23)

Positivity of the density. As proved in [5], the positivity of ρj+ 1
2
comes from the inequality

δt

δxj+ 1
2

(
[λ+(cj+1, uj+1)]+ + [λ−(cj , uj)]−

)
6 1.

It is directly implied by (20) since γ > 1 and (22), (23) hold.

Positivity of the internal energy. We rewrite the terms (−1)iΠj+ 1
2
uj+i, i ∈ {0, 1}, which are

involved in (15), by making the discrete time derivative (uj+i − uj+i) appear. Then, we make
use of the Young inequality as follows

(−1)iΠj+ 1
2
uj+i = (−1)i(γ − 1)

(
ρj+ 1

2
ej+ 1

2
(uj+i − uj+i) + ρj+ 1

2
ej+ 1

2
uj+i

)
> −ρj+ 1

2

(
cf (ej+ 1

2
)

2
√

2γ
(uj+i − uj+i)2 + (γ − 1)ej+ 1

2

(
cf (ej+ 1

2
)

√
2

− (−1)iuj+i

))
.

Next, we write ρj+ 1
2
ej+ 1

2
> T0 + T0

1 + T1
1 where:

T0 = ρj+ 1
2
ej+ 1

2

1− δt

δxj+ 1
2

(γ − 1)
(

2
cf (ej+ 1

2
)

√
2

− uj + uj+1

)− δtEj+1 − Ej
δxj+ 1

2

,

Ti
1 = δt

2
δxj+i
δxj+ 1

2

Rj+i −
δt

δxj+ 1
2

cf (ej+ 1
2
)

2
√

2γ
ρj+ 1

2
(uj+i − uj+i)2.

In order to guarantee that ej+ 1
2
is non negative it is sufficient to ensure that these three terms

are non negative. This holds under the assumptions (20) and (21).

Indeed, using the definition of the flux Ej and owing to (19), we obtain

T0 > ρj+ 1
2
ej+ 1

2

1− δt

δxj+ 1
2

(γ − 1)
(

[uj ]− +
cf (ej+ 1

2
)

√
2

+ [uj+1]+ +
cf (ej+ 1

2
)

√
2

)
− δt

δxj+ 1
2

ρj+ 1
2
ej+ 1

2

(
[λ+(cj+1, uj+1)]+ + [λ−(cj , uj)]−

)
where, due to (20), the right hand side is non negative by virtue of (22) and (23) .

Next, we turn to Ti
1. Using twice the Young inequality and bearing in mind the definition

of ρj , we observe that

δt

2
δxj+i
δxj+ 1

2

Rj+i >
δxj+i

4δxj+ 1
2

(uj+i − uj+i)2
(
ρj+i −

δt

δxj+i
(F+

j+i+ 1
2
−F−

j+i− 1
2
)
)
.
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Hence, we have

Ti
1 >

δxj+i
4δxj+ 1

2

(uj+i − uj+i)2
(
ρj+i −

δt

δxj+i
(F+

j+i+ 1
2
−F−

j+i− 1
2
)− δt

γ

2√
2

ρj+ 1
2
cf (ej+ 1

2
)

δxj+i

)
.

Coming back to (7) and (13), we write T i1 >
(uj+i − uj+i)2

4δxj+ 1
2

(
T i,02 + T i,12

)
where, for k = 0, 1,

Ti,k
2 =

δxj+i+k− 1
2

2 ρj+i+k− 1
2
− δt
F+
j+i+k −F

−
j+i+k−1

2 − δt

γ

2√
2
ρj+i+k− 1

2
cf (ej+ 1

2
).

Note that a non negative term has been added to obtain a symmetric formulation in the above
inequality. Due to (19) and (20) we get

F+
j+i+k −F

−
j+i+k−1 6

δxj+i+k− 1
2

γδt
ρj+i+k− 1

2
,

and this allows us to write

Ti,k
2 >

δxj+i+k− 1
2

2γ ρj+i+k− 1
2

γ − 1− δt

δxj+i+k− 1
2

4√
2
cf (ej+ 1

2
)

 .
We conclude by observing that this term is non negative by virtue of (21).

2.5 Numerical diffusion, contact discontinuities

It is worth discussing the expression of the numerical diffusion produced by the scheme (see
[5, Appendix B] for a similar discussion concerning the barotropic case). Let us introduce the
following non negative quantity

Cj =


−uj if uj 6 −cj ,
u2
j + c2

j

4cj
if |uj | < cj ,

uj if uj > cj .

It is convenient to use the following shorthand notations for averaged quantities

{q}j =
qj− 1

2
+ qj+ 1

2

2 and {q}j+ 1
2

= qj + qj+1
2 .

Finally, we denote
F |·| = F+ −F−,

which is a positive quantity. The mass and momentum fluxes can be cast as the sum of a
centered term and a diffusion term

Fj = {ρ}juj −
Cj
2
(
ρj+ 1

2
− ρj− 1

2

)
,

Gj+ 1
2

= {F}j+ 1
2
{u}j+ 1

2
−
{F |·|}j+ 1

2

2 (uj+1 − uj) .

Concerning the internal energy (16) and kinetic energy fluxes (17), they become:

Ej = {ρe}juj −
Cj
2
(
ej+ 1

2
ρj+ 1

2
− ej− 1

2
ρj− 1

2

)
,

Kj+ 1
2

= {F}j+ 1
2
{u

2

2 }j+ 1
2
−
{F |·|}j+ 1

2

2

(
u2
j+1
2 −

u2
j

2

)
.

10



Remark 2.3. As a by-product, it is remarkable that the scheme properly deals with 1d-contact
discontinuities. Indeed, let us assume that the discrete velocity and pressure are constant in the
neighborhood of xj+ 1

2
, which means that uj−1 = uj = uj+1 = uj+2 = u and Πj− 1

2
= Πj+ 1

2
=

Πj+ 3
2

= Π holds. Then the scheme guarantees that they remain constant in the neighborhood
of this point at the next time: Πj+ 1

2
= Π and uj+1 = u = uj .

2.6 Conservation of total energy

As said in the introduction, it is far from clear that we can obtain a consistent approximation of
the conservation equations (2) when the scheme is defined on the basis of the non conservative
formulation (4). In order to analyze this issue, let us now introduce the averaged total energy
at xj+ 1

2
and xj , defined by

Ej+ 1
2

= ej+ 1
2

+ 1
2
δxjρju

2
j + δxj+1ρj+1u

2
j+1

2δxj+ 1
2
ρj+ 1

2

and

Ej =
u2
j

2 +
δxj+ 1

2
ρj+ 1

2
ej+ 1

2
+ δxj− 1

2
ρj− 1

2
ej− 1

2

2δxjρj
.

We wish to obtain conservative equations for those quantities. To this end, we introduce the
fluxes

Tj = Ej +
Kj+ 1

2
+Kj− 1

2

2
and

T ∗
j+ 1

2
= Ej+1 + Ej

2 +Kj+ 1
2
− δxj+1Rj+1 − δxjRj

4
which use the quantities defined in (16), (17), (18).

We get the following consistent local balance equations for the total energy defined either
on the primal mesh ρj+ 1

2
Ej+ 1

2
or the dual mesh ρjEj :

ρj+ 1
2
Ej+ 1

2
− ρj+ 1

2
Ej+ 1

2

δt
+ Tj+1 − Tj

δxj+ 1
2

+ uj+1{Π}j+1 − uj{Π}j
δxj+ 1

2

= 0,

and
ρjEj − ρjEj

δt
+
T ∗
j+ 1

2
− T ∗

j− 1
2

δxj
+

Πj+ 1
2
{u}j+ 1

2
−Πj− 1

2
{u}j− 1

2

δxj
= 0.

Note that this construction of a local conservation equation for an averaged total energy also
holds for the extension to higher dimensions on mac grids presented in Section 4 and also for
an extension of this scheme on unstructured mesh. It will be explain in a forthcoming work,
see [38].

3 A muscl-scheme on staggered grids

In this section we discuss how we adapt the muscl principles [51] to the staggered framework.
Classicaly, we first reconstruct second order quantities at edges of primal or dual cells depending
on the domain of definition of the different variables. Then, concerning the discretization of the
mass flux, we keep unchanged the velocity defined at the interface xj and we shall replace the

11



Upwind value ρj± 1
2
by a muscl reconstruction ρ±j of the density: it defines the upgraded mass

flux FML
j . For the momentum flux, since the discretization of the pressure is centered, we only

need to define the convection flux GML
j+ 1

2
: we shall combine the obtained mass fluxes FML

j and
FML
j+1 with a muscl reconstructed velocity u±

j+ 1
2
at the interfaces xj+ 1

2
. When considering full

Euler equation, for the internal energy fluxes, a first attempt would follow the same strategy
by combining the upgraded mass fluxes FML

j with a muscl reconstructed internal energy e±j .
However, this approach produces a bad behaviour of the scheme when contact discontinuities
occur, see [48] for further comments on this issue. Instead, we combine the upgraded mass
fluxes FML

j with a muscl reconstruction of the internal energy defined from the ratio (ρe)±
j

ρ±
j

.
We shall see that stability issues might require to strengthen the limitation procedure applied
to define the reconstructed velocities u±

j+ 1
2
.

3.1 muscl reconstruction at edges of primal or dual mesh

We introduce piecewise linear reconstructions of the mass density ρ and of the density of internal
energy ρe, defined, on each cell Cj+ 1

2
, by

q̂j+ 1
2
(x) = qj+ 1

2
+ sq

j+ 1
2
(x− xj+ 1

2
), for any x ∈ Cj+ 1

2
and with q = ρ or ρe. (24)

The slope sq
j+ 1

2
∈ R is intended to be an approximation of the gradient of q on the cell Cj+ 1

2
.

Classically, it is obtained as a symmetric function of the two discrete derivatives computed using
the values of q on the neighboring cells,

sq
j+ 1

2
= Φ̂

(qj+ 1
2
− qj− 1

2

δxj
,
qj+ 3

2
− qj+ 1

2

δxj+1

)
.

A suitable adaptation of this formula needs to be introduced at the boundaries of the compu-
tational domain; for instance we can simply make the scheme degenerate to first order next to
the boundaries (sq3

2
= 0 and sq

J+ 1
2

= 0).
For stability reasons, in order to prevent the formation of over- and undershoots, the value of

the reconstructed quantities at an edge should not exceed the values of the quantity in the two
neighboring cells and the slope sq

j+ 1
2
should vanish at extrema. These properties are classically

ensured by the definition of the function Φ̂, the so-called limiter function. It is seen here as a
function of two variables (a, b) but it is also customary to use instead a function Φ of the single
variable a/b with the following equalities

Φ̂(a, b) = b Φ
(a
b

)
= a Φ

( b
a

)
= Φ̂(b, a),

where it is understood that the function Φ satisfies the symmetry property

Φ(r)
r

= Φ
(1
r

)
, ∀r 6= 0. (25)

On uniform grids, the geometric properties stated above are ensured when the limiter function
lies in the well-known Sweby TVD region, see [51, 47], which is characterized by the three
conditions

Φ(r) = 0︸ ︷︷ ︸
(a)

, ∀r 6 0, 0 6︸︷︷︸
(b)

(
Φ(r), Φ(r)

r

)
6 2︸︷︷︸
(c)

, ∀r > 0.

12



On non-uniform grids, the situation is more intricate as explained in [3]: in condition (c)
the upper bound 2 should be replaced by a quantity that depends on the mesh regularity. More
precisely the limiter Φ must satisfy

Φ(r) = 0, ∀r 6 0, 0 6
(
Φ(r), Φ(r)

r

)
6 τ, ∀r > 0, (26)

where 1 < τ 6 2 is the mesh dependent number defined by

τ = min
j∈J2,J−1K

( 2δxj
δxj+ 1

2

; 2δxj+1
δxj+ 1

2

)
.

We will that a strengthened version is needed for the approximation of the full Euler equation,
for which we assume that

τ < 2. (27)

The role of this last restriction will appear in the stability analysis for proving the positivity of
the internal energy (see Section 3.3).

Finally, in order to ensure that the scheme is second order in space (see Section 3.4 below),
the limiter function r 7→ Φ(r) should be a smooth function – with at least left and right
derivatives at the point r = 1 – and satisfy

Φ(1) = 1. (28)

As discussed in Lemma 3.6 (in Section 3.4 below), if x 7→ q(x) is a smooth function, the
derivatives of which are bounded and remain bounded, then we get

sq
j+ 1

2
= q′(xj+ 1

2
) +O (δx) .

From classical limiters defined for uniform meshes, we can define τ -limiters that satisfy proper-
ties (25), (26) and (28), see [15]:

• the MinMod limiter: Φmm(r) = max(0,min(1, r)), which is actually upper-bounded by 1,
and the τ -MinMod limiter:

Φτ,mm(r) = max
(
0,min(τ, r)

)
• the SuperBee limiter: Φsb(r) = max(0,min (2r, 1) ,min (r, 2)), bounded by 2, and the
τ -SuperBee limiter:

Φτ,sb(r) = max
(
0,min (τr, 1) ,min (r, τ)

)
(29)

The affine reconstruction q̂ of q in (24) allows us to define the two values q−j = q̂j− 1
2
(xj) and

q+
j = q̂j+ 1

2
(xj) at the interface xj :

q−j = qj− 1
2

+
δxj− 1

2

2 sq
j− 1

2
,

q+
j = qj+ 1

2
−
δxj+ 1

2

2 sq
j+ 1

2
,

which will be used in the numerical fluxes. As discussed in Lemma 3.6, if x 7→ q(x) is a smooth
function, bounded with bounded derivatives, then we get

sq
j+ 1

2
= q′(xj+ 1

2
) +O (δx) ,

13



which can be used to check that the scheme is formally second-order accurate.

A similar reconstruction is used for the velocity on the dual mesh. We set

ûj(x) = uj + wj(x− xj), ∀x ∈ Cj , ∀j ∈ J1, J + 1K.

The slopes wj ∈ R are now defined by

wj = λjΦ̂

uj − uj−1
δxj− 1

2

,
uj+1 − uj
δxj+ 1

2

 , ∀j ∈ J2, JK, and w1 = 0 = wJ+1. (30)

Here, the situation is slightly more involved since we have introduced a parameter λj ∈ [0, 1].
The value λj = 1 corresponds to the usual muscl reconstruction. This value is suitable for the
discretization of the barotropic Euler equation but, when considering the full Euler equation,
the source term Sj+ 1

2
associated to the kinetic energy balance that appears in the internal

energy equation induces further constraints in order to preserve the positivity of the internal
energy, which might require to strengthen the limitation of the slope by choosing λj < 1.

The affine reconstruction û of the velocity u allows us to define, at the interfaces xj+ 1
2
,

u−
j+ 1

2
= ûj(xj+ 1

2
) and u+

j+ 1
2

= ûj+1(xj+ 1
2
):

u−
j+ 1

2
= uj +

δxj+ 1
2

2 wj ,

u+
j+ 1

2
= uj+1 −

δxj+ 1
2

2 wj+1.

Here, we bear in mind that xj and xj+1 are not necessarily the mid-points of Cj and Cj+1
respectively (see Fig. 1); this is the reason why the formula is not expressed by means of
δxj+1/2 and δxj/2.

3.2 Definition of the second order fluxes

With the reconstructed quantities at hand, we can now define the modified fluxes. We update
the density by replacing the mass flux Fj by the muscl-flux FML

j defined by

FML
j = F+(ρ−j , cj , uj) + F−(ρ+

j , cj , uj), ∀j ∈ J2, JK,

(with the corresponding adaptation at the boundary, for instance we set FML
1 = 0 = FML

J+1 at
the endpoints of the computational domain if the zero-flux condition is imposed). We naturally
set

FML,+
j = F+(ρ−j , cj , uj) and FML,−

j = F−(ρ+
j , cj , uj).

We also introduce the notation

FML,±
j+ 1

2
=
FML,±
j + FML,±

j+1
2 , and FML

j+ 1
2

= FML,+
j+ 1

2
+ FML,−

j+ 1
2
, (31)

so that the mass balance on dual mesh (14) remain valid when replacing the mass flux Fj+ 1
2
by

the muscl-flux FML
j+ 1

2
.

The convection part of the momentum flux is given by

GML
j+ 1

2
= u−

j+ 1
2

FML,+
j + FML,+

j+1
2 + u+

j+ 1
2

FML,−
j + FML,−

j+1
2 , ∀j ∈ J2, J − 1K. (32)
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We set GML
3
2

=
u+

3
2

2 F
ML,−
2 and GML

J+ 1
2

=
u−
J+ 1

2

2 FML,+
J for the boundary values.

Finally, when considering the full Euler equations, the internal energy flux is given by

EML
j =

(ρe)−j
ρ−j
FML,+
j +

(ρe)+
j

ρ+
j

FML,−
j .

We remind the reader that the muscl procedure is not applied directly to the internal energy
but to the pressure: we evaluate (ρe)± and then divide by ρ±. This is motivated by the will to
obtain a correct treatment of contact discontinuities. Since we wish to satisfy the criterion “if
the pressure (and the velocity) is constant in the neigborhood of a point at a certain time, it
will be kept constant at the following time”, it is quite natural to work on the pressure and not
the internal energy. The remainder term reads

δxjRML
j = δxj

2δt ρj (uj − uj)2

+1
2

(
(uj − u−j− 1

2
)2FML,+

j− 1
2
− (u+

j+ 1
2
− uj)2FML,−

j+ 1
2

−(uj − u−j+ 1
2
)2FML,+

j+ 1
2

+ (u+
j− 1

2
− uj)2FML,−

j− 1
2

)
+(uj − uj)

(
(uj − u−j− 1

2
)FML,+

j− 1
2

+ (u+
j+ 1

2
− uj)FML,−

j+ 1
2

−(uj − u−j+ 1
2
)FML,+

j+ 1
2
− (u+

j− 1
2
− uj)FML,−

j− 1
2

)
.

(33)

3.3 Stability conditions

Firstly, we exhibit a CFL-condition which ensures that the numerical density remains non-
negative. This condition should be fulfilled for the approximation of the solutions of both
barotropic and full Euler equations. Next, we discuss the condition required to ensure the non-
negativity of the internal energy when considering the full Euler system. We will make use of
the properties (19) of the flux functions F± recalled in Lemma 2.1 in Section 2.4.

Proposition 3.1 (Non negativity of the density). Suppose that the limiter function Φ satisfy
(26) and that ρj+ 1

2
> 0 holds for all j ∈ J1, JK. We assume the CFL-like condition

δt

δxj+ 1
2

(
[λ−(cj , uj)]− + [λ+(cj+1, uj+1)]+

)
6

1
2 , ∀j ∈ J1, JK, (34)

Then the scheme preserves the non-negativity of the density:

ρj+ 1
2
> 0 for all j ∈ J1, JK.

Proof. We assume that ρj+ 1
2
> 0 holds for all j ∈ J1, JK. Let us introduce the following

quantities

αj =
δxj+ 1

2

2δxj
Φ

ρj+ 3
2
− ρj+ 1

2

δxj+1

δxj
ρj+ 1

2
− ρj− 1

2

 ,
and

βj =
δxj+ 1

2

2δxj+1
Φ

ρj+ 1
2
− ρj− 1

2

δxj

δxj+1
ρj+ 3

2
− ρj+ 1

2

 .
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Owing to property (26), we readily check that 0 6 αj 6 1 and 0 6 βj 6 1. Furthermore, the
reconstructed densities can be equivalently recast as

ρ+
j = (1− αj)ρj+ 1

2
+ αjρj− 1

2
and ρ−j+1 = (1 + αj)ρj+ 1

2
− αjρj− 1

2
, (35)

or
ρ+
j = (1 + βj)ρj+ 1

2
− βjρj+ 3

2
and ρ−j+1 = (1− βj)ρj+ 1

2
+ βjρj+ 3

2
. (36)

In particular, equalities (35) show that

ρ+
j > min

(
ρj− 1

2
, ρj+ 1

2

)
> 0, and ρ−j+1 6 2ρj+ 1

2
,

and equalities (36) show that

ρ+
j 6 2ρj+ 1

2
, and ρ−j+1 > min

(
ρj− 1

2
, ρj+ 1

2

)
> 0.

Reasoning now as in [5, Lemma 3.7], using the sign property of the flux functions ±F± > 0,
we are led to the following estimate

ρ̄j+ 1
2
> ρj+ 1

2
+ δt

δxj+ 1
2

(
F−(ρ+

j , cj , uj)−F
+(ρ−j+1, cj+1, uj+1)

)
.

Owing to equation (19) and since ρ+
j > 0 and ρ−j+1 > 0, we obtain

ρj+ 1
2
> ρj+ 1

2
− δt

δxj+ 1
2

(
ρ+
j [λ−(cj , uj)]− + ρ−j+1 [λ+(cj+1, uj+1)]+

)
.

Next, bearing in mind that ρ+
j 6 2ρj+ 1

2
and ρ−j+1 6 2ρj+ 1

2
, we find

ρj+ 1
2
> ρj+ 1

2

1− 2δt
δxj+ 1

2

(
[λ−(cj , uj)]− + [λ+(cj+1, uj+1)]+

) .
Since it is assumed that ρj+ 1

2
> 0, the conclusion ρj+ 1

2
> 0 is obtained as a consequence of

(34).

Remark 3.2. It is worth pointing out that the CFL condition for the muscl scheme is twice
more constrained than with the first order scheme in [5, Prop. 3.7]. This is due to the estimate
ρ+
j 6 2ρj+ 1

2
and ρ−j+1 6 2ρj+ 1

2
.

Proposition 3.3 (Non negativity of the internal energy). Assume that ej+ 1
2
> 0, ρj+ 1

2
> 0

and that the following CFL-like conditions hold for any j

δt

δxj+ 1
2

(
[uj+1]+ +

cf (ej+ 3
2
) + cf (ej+ 1

2
)

√
2

+ [uj ]− +
cf (ej+ 1

2
) + cf (ej− 1

2
)

√
2

)
6

1
γ + 3 , (37)

δt

δxj+ 1
2

cf (ej+ 1
2 +k) 6

γ − 1
2
√

2
· γ

γ + 3 , ∀k ∈ {−1, 0, 1}. (38)

Then, we can find λj ∈ [0, 1] (see formula (44)) such that ej+ 1
2
> 0.

Note that, in comparison to the first order scheme, see Proposition 2.2, the time step is more
constrained by a factor 0 < γ

γ+2 < 1.
Proof. We assume that ej+ 1

2
> 0, ρj+ 1

2
> 0 and that (37) and (38) holds for all j. Note that,

owing to inequalities (22) and (23), the condition (37) implies (34), so that we have ρj+ 1
2
> 0.
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We also recall that the reconstructed quantities satisfy the following inequalities (see the proof
of Proposition 3.1)

0 < ρ−j+1, ρ
+
j < 2ρj+ 1

2
and 0 < (ρe)−j+1, (ρe)

+
j < 2ρj+ 1

2
ej+ 1

2
. (39)

In order to analyze the positivity of the internal energy, we go back to the evolution of the
discrete kinetic energy, which now reads

1
2
ρju

2
j − ρju2

j

δt
+
KML
j+ 1

2
−KML

j− 1
2

δxj
+

Πj+ 1
2
−Πj− 1

2

δxj
uj = −RML

j ,

where

KML
j+ 1

2
=
|u−
j+ 1

2
|2

2 FML,+
j+ 1

2
+
|u+
j+ 1

2
|2

2 FML,−
j+ 1

2
.

The remainder term RML
j is given by (33). The end of the proof of Proposition 3.3 relies on

the following claim.

Lemma 3.4. We can find λj ∈ [0, 1] such that the following inequality holds:

δxjRML
j ≥ δxj

2δt (uj − uj)2
(
ρj − 4 δt

δxj
(FML,+

j+ 1
2
−FML,−

j− 1
2

)
)
. (40)

Let us temporarily assume that Lemma 3.4 holds and defines the coefficients λj needed
for the construction of the discrete velocities. As in the proof of Proposition 2.2, we write
ρj+ 1

2
ej+ 1

2
> T0 + T0

1 + T1
1 where:

T0 = ρj+ 1
2
ej+ 1

2

1− δt

δxj+ 1
2

(γ − 1)
(

2
c(ej+ 1

2
)

√
2
− uj + uj+1

)− δtEML
j+1 − EML

j

δxj+ 1
2

,

Ti
1 = δt

2
δxj+i
δxj+ 1

2

RML
j+i −

δt

δxj+ 1
2

c(ej+ 1
2
)

2
√

2γ
ρj+ 1

2
(uj+i − uj+i)2.

Thus, to guarantee that ej+ 1
2
is non negative it is sufficient to ensure that these three terms are

non negative.
We first consider T0. Using the definition of the flux EML

j and owing to equations (19) and
(39), we obtain

T0 > ρj+ 1
2
ej+ 1

2

1− δt

δxj+ 1
2

(γ − 1)
(

[uj ]− +
c(ej+ 1

2
)

√
2

+ [uj+1]+ +
c(ej+ 1

2
)

√
2

)
− 2 δt

δxj+ 1
2

ρj+ 1
2
ej+ 1

2

(
[λ+(cj+1, uj+1)]+ + [λ−(cj , uj)]−

)
where, due to (37), the right hand side is non negative by virtue of (22) and (23).

Next, we turn to Ti
1. Owing to Lemma 3.4, we have

δt

2
δxj
δxj+ 1

2

RML
j ≥ δxj

4δxj+ 1
2

(uj − uj)2
(
ρj − 4 δt

δxj
(FML,+

j+ 1
2
−FML,−

j− 1
2

)
)
.

Hence, we deduce

Ti
1 >

δxj+i
4δxj+ 1

2

(uj+i − uj+i)2
(
ρj+i − 4 δt

δxj+i
(FML,+

j+i+ 1
2
−FML,−

j+i− 1
2
)− δt

γ

2√
2

ρj+ 1
2
c(ej+ 1

2
)

δxj+i

)
.
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Coming back to (7) and (31), we write T i1 >
(uj+i − uj+i)2

4δxj+ 1
2

(
T i,02 + T i,12

)
where, for k = 0, 1,

Ti,k
2 =

δxj+i+k− 1
2

2 ρj+i+k− 1
2
− 4
FML,+
j+i+k −F

ML,−
j+i+k−1

2 − δt

γ

2√
2
ρj+i+k− 1

2
c(ej+ 1

2
),

Note that a non negative term has been added to obtain a symmetric formulation in the above
inequality. Due to equation (19) and (37), we get

FML,+
j+i+k −F

ML,−
j+i+k−1 6

δxj+i+k− 1
2

(γ + 2)δt ρj+i+k− 1
2
,

and this allows us to write

Ti,k
2 >

δxj+i+k− 1
2

2 ρj+i+k− 1
2

1− 4
γ + 3 −

δt

δxj+i+k− 1
2

2
√

2
γ

c(ej+ 1
2
)

 .
We conclude by observing that this term is non negative by virtue of (38).

We now go back to the proof of Lemma 3.4.
Proof of Lemma 3.4. We go back to (33). For given coefficients αj > 0, that will be
determined later on, we shall use the following Young inequalities

∣∣(uj − uj)(uj − u−j− 1
2
)FML,+

j− 1
2

∣∣ 6 (uj − uj)2

2 (1 + αj)FML,+
j− 1

2
+

(uj − u−j− 1
2
)2

2(1 + αj)
FML,+
j− 1

2

and

∣∣(uj − uj)(u+
j+ 1

2
− uj)FML,−

j+ 1
2

∣∣ 6 −(uj − uj)2

2 (1 + αj)FML,−
j+ 1

2
−

(uj − u+
j+ 1

2
)2

2(1 + αj)
FML,−
j+ 1

2
.

Using (14), which still holds for the muscl version of the scheme, and the standard Young
inequality for the last four terms in (33), we are led to

δxjRML
j >

δxj
2δt (uj − uj)2R

(1)
j +R

(2)
j ,

with

R
(1)
j = ρj −

δt

δxj

(
FML,+
j+ 1

2
−FML,−

j− 1
2
−FML,+

j− 1
2

+ FML,−
j+ 1

2

)
− δt

δxj

(
(FML,+

j+ 1
2
−FML,−

j− 1
2

) + (1 + αj)(FML,+
j− 1

2
−FML,−

j+ 1
2

)
)
,

R
(2)
j = αj

2(1 + αj)

(
(uj − u−j− 1

2
)2FML,+

j− 1
2
− (u+

j+ 1
2
− uj)2FML,−

j+ 1
2

)
+
(

(u+
j− 1

2
− uj)2FML,−

j− 1
2
− (uj − u−j+ 1

2
)2FML,+

j+ 1
2

)
.

We rewrite

R
(1)
j =

(
ρj − 4 δt

δxj

(
FML,+
j+ 1

2
−FML,−

j− 1
2

))
+ δt

δxj

(
2(FML,+

j+ 1
2
−FML,−

j− 1
2

)− αj(FML,+
j− 1

2
−FML,−

j+ 1
2

)
)
,

so that we get

R
(1)
j > ρj − 4 δt

δxj

(
FML,+
j+ 1

2
−FML,−

j− 1
2

)
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as soon as

αj 6 2Aj with Aj =
FML,+
j+ 1

2
−FML,−

j− 1
2

FML,+
j− 1

2
−FML,−

j+ 1
2

. (41)

Note that the quantity Aj is well defined and always positive since

FML,+
j± 1

2
−FML,−

j∓ 1
2

> (FML,+
j −FML,−

j )/2 > 0.

We now turn to the study of R(2)
j . Using the following shorthand notation for the discrete

derivative
aj+ 1

2
= uj+1 − uj

δxj+ 1
2

,

we remark on one hand that

(uj − u−j− 1
2
)2 = δx2

j− 1
2

(
aj− 1

2
− λj−1

2 Φ̂
(
aj− 3

2
, aj− 1

2

))2

> δx2
j− 1

2
a2
j− 1

2

(
1− λj−1

2 τ

)2

> δx2
j− 1

2
a2
j,m

(
1− τ

2

)2

with aj,m = min
{
|aj− 1

2
|, |aj+ 1

2
|
}

> 0. Similarly, we have

(u+
j+ 1

2
− uj)2 > δx2

j+ 1
2
a2
j,m

(
1− τ

2

)2
,

so that we get

(uj − u−j− 1
2
)2FML,+

j− 1
2
− (u+

j+ 1
2
− uj)2FML,−

j+ 1
2

>
(
δx2

j− 1
2
FML,+
j− 1

2
− δx2

j+ 1
2
FML,−
j+ 1

2

)
a2
j,m

(
1− τ

2

)2
. (42)

On the other hand, since |Φ̂(a, b)| 6 τ min(|a|, |b|), we have

(u+
j− 1

2
− uj)2 =

λ2
j

4 δx
2
j− 1

2
Φ̂
(
aj− 1

2
, aj+ 1

2

)2
6
λ2
j

4 δx
2
j− 1

2
τ2a2

j,m,

(uj − u−j+ 1
2
)2 =

λ2
j

4 δx
2
j+ 1

2
Φ̂
(
aj− 1

2
, aj+ 1

2

)2
6
λ2
j

4 δx
2
j+ 1

2
τ2a2

j,m,

so that we have

(u+
j− 1

2
−uj)2FML,−

j− 1
2
− (uj−u−j+ 1

2
)2FML,+

j+ 1
2

> −
λ2
j

4 τ
2a2
j,m

(
δx2

j+ 1
2
FML,+
j+ 1

2
− δx2

j− 1
2
FML,−
j− 1

2

)
. (43)

Thus combining (42) and (43) we arrive at

R
(2)
j >

αj
2(1 + αj)

(
δx2

j− 1
2
FML,+
j− 1

2
− δx2

j+ 1
2
FML,−
j+ 1

2

)
a2
j,m

(
1− τ

2

)2

−
λ2
j

4 τ
2a2
j,m

(
δx2

j+ 1
2
FML,+
j+ 1

2
− δx2

j− 1
2
FML,−
j− 1

2

)
>
(
δx2

j− 1
2
FML,+
j− 1

2
− δx2

j+ 1
2
FML,−
j+ 1

2

)
a2
j,m

(
αj

2(1 + αj)

(
1− τ

2

)2
−
λ2
j

4 τ
2Bj

)
,
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with

Bj =
δx2

j+ 1
2
FML,+
j+ 1

2
− δx2

j− 1
2
FML,−
j− 1

2

δx2
j− 1

2
FML,+
j− 1

2
− δx2

j+ 1
2
FML,−
j+ 1

2

Then, R(2)
j > 0 provided

λ2
j

(τ
2
)2
Bj 6

αj
2(1 + αj)

(2− τ
2

)2
.

To relax the condition on λj as far as possible, and bearing in mind the condition (41) we set

αj = 2Aj
so that we are reduced to check that

λ2
j 6

(2− τ
τ

)2 Aj
(1 + 2Aj)Bj

.

Therefore it is sufficient to set

λj = 2− τ
τ

1√
1 + 2Aj

√
Aj
Bj
. (44)

Remark 3.5. The case λj = 1 corresponds to the second order (except for extrema, where
the gradient is zero and the scheme degenerates to order 1 due to the limiter) while λj = 0
corresponds to the first order. Note that assumption (27) on the limiter allows us to make
use of positive values of λj since τ is assumed to be strictly less than 2. On uniform grids,
equation (44) becomes

λj = 2− τ
τ

1√
1 + 2Aj

,

so that the coefficient λj satisfies 0 < λj < 1. However, setting λj < 1 implies a loss of accuracy
compared to the pure second-order muscl scheme. Thus, in practice, we adopt the following
strategy:

• we first set λj = 1 and compute the discrete internal energies ej+ 1
2
.

• if we obtain a negative value for ej+ 1
2
, meaning that (40) is not satisfied for Rj and/or

Rj+1, we modify the value of λj and/or λj+1 following (44) to ensure (40) for both Rj
and Rj+1.

• we compute the new values for uj−1, uj , uj+1, Rj−1, Rj , Rj+1, ej− 1
2
, ej+ 1

2
and/or uj ,

uj+1, uj+2, Rj , Rj+1, Rj+2, ej+ 1
2
, ej+ 3

2
.

Nevertheless, we observe that, in practice, it is quite infrequent in the simulations that the
criterion that requires to reduce λj is activated. Indeed, none the simulations that we are going
to show in the last section of this chapter has needed this criterion. Besides, we point out that
the scheme designed in [48, Chapter 2] adapts a muscl reconstruction on the density and on
the internal energy fluxes only, the convection fluxes for the momentum equation remain the
first order fluxes (that corresponds here to always set λj = 0). Note also that the stability
conditions in [48] are slightly different, precisely because the fluxes in this scheme are based on
the material velocity only. However, it requires in certain circumstances (vanishing velocities,
low Mach regimes) to introduce artificial diffusion.
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3.4 Consistency of the scheme

Let us briefly check the consistency of the scheme, showing it can reach the second order
accuracy for smooth solutions, and far away from extrema (since otherwise the limiter reduces
the order of the approximation) when λj is set to 1 for all j in (30). To this end, we study (at
a fixed time) the consistency of the fluxes. The time being fixed, we consider smooth functions
ρ, u and e (when considering full Euler system) of the space variable x only (say of class C1

with bounded and not vanishing derivatives). We set ρ
j+ 1

2
= ρ(xj+ 1

2
), ej+ 1

2
= e(xj+ 1

2
) and

uj = u(xj) and insert these quantities in the scheme instead of ρj+ 1
2
, ej+ 1

2
and uj . We denote

with an underline all the quantities (slopes, reconstructed densities, pressure and velocities,
fluxes...) defined in this way from ρ

j+ 1
2
, ρe

j+ 1
2
and uj . The first observation, stated in Lemma

3.6, is that the reconstructed densities ρ±
j
and velocities u±

j+ 1
2
are second order approximations

of ρ(xj) and u(xj+ 1
2
), respectively.

Lemma 3.6. The following equalities hold (when λj is set to 1 for all j in (30)):

ρ+
j

= ρ(xj) +O(δx2), ∀j ∈ J1, J − 1K, ρ−
j

= ρ(xj) +O(δx2), ∀j ∈ J2, JK, (45)

u+
j+ 1

2
= u(xj+ 1

2
) +O(δx2), ∀j ∈ J1, J − 1K, u−

j+ 1
2

= u(xj+ 1
2
) +O(δx2), ∀j ∈ J2, JK, (46)

and, when considering full Euler system,

ρe+
j

= ρe(xj) +O(δx2) and ρe−
j

= ρe(xj) +O(δx2). (47)

Proof. We first prove that
sj+ 1

2
= ρ′

(
xj+ 1

2

)
+O

(
δx
)
. (48)

Indeed, we clearly have
ρ
j+ 1

2
− ρ

j− 1
2

δxj
= ρ′

(
xj+ 1

2

)
+O(δx), and

ρ
j+ 3

2
− ρ

j+ 1
2

δxj+1
= ρ′

(
xj+ 1

2

)
+O(δx),

so that
ρ
j+ 3

2
− ρ

j+ 1
2

δxj+1

δxj
ρ
j+ 1

2
− ρ

j− 1
2

= 1 +O
(
δx
)
.

Since Φ(1) = 1 and r 7→ Φ(r) admits left and right derivatives at the point r = 1 (cf. assump-
tion (28)), we get

Φ
(ρ

j+ 3
2
− ρ

j+ 1
2

δxj+1

δxj
ρ
j+ 1

2
− ρ

j− 1
2

)
= 1 +O

(
δx
)
.

This last equality together with the definition of sj+ 1
2

sj+ 1
2

=
ρ
j+ 1

2
− ρ

j− 1
2

δxj
Φ
(ρ

j+ 3
2
− ρ

j+ 1
2

δxj+1

δxj
ρ
j+ 1

2
− ρ

j− 1
2

)
,

proves (48). Next, from (48) and the definition of ρ±
j
we readily find, for all j ∈ J1, JK,

ρ−
j+1 = ρ

j+ 1
2

+
δxj+ 1

2

2 ρ′
(
xj+ 1

2

)
+O

(
δx2),

ρ+
j

= ρ
j+ 1

2
−
δxj+ 1

2

2 ρ′
(
xj+ 1

2

)
+O

(
δx2).
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The conclusion is then obtained using the following identities, direct consequences of the Taylor-
Young expansion,

ρ(xj+1) = ρ
j+ 1

2
+
δxj+ 1

2

2 ρ′
(
xj+ 1

2

)
+O

(
δx2)

and

ρ(xj) = ρ
j+ 1

2
−
δxj+ 1

2

2 ρ′
(
xj+ 1

2

)
+O

(
δx2).

The equalities for u±
j+ 1

2
or ρe±

j
can be proved by following the same lines.

With Lemma 3.6 at hand, we can now prove that the approximation of the fluxes can reach
second order accuracy in space. Concerning the momentum flux, since the pressure is centered
we focus on the convective part GML

j+ 1
2
. We can prove the following result.

Proposition 3.7. The following equalities hold:

FML
j = ρ(xj)u(xj) +O(δx2). (49)

GML
j+ 1

2
= ρ(xj+ 1

2
)u(xj+ 1

2
)2 +O(δx2) (50)

When considering the full Euler system, we have also the following results:

EML
j = ρ(xj)u(xj)e(xj) +O(δx2),

KML
j+ 1

2
= ρ(xj+ 1

2
)
u(xj+ 1

2
)3

2 +O(δx2).

Proof. By using (11), namely F+(ρ, u) + F−(ρ, u) = ρu, we start by rewriting the mass flux
as follows

FML
j =

ρ+
j

+ ρ−
j

2 uj +
F |·|

(
ρ−
j
, uj

)
−F |·|

(
ρ+
j
, uj

)
2 ,

where the function F |·| is defined by F |·|(ρ, u) = F+(ρ, u) − F−(ρ, u) > 0. Owing to (45), we
readily find that

ρ+
j

+ ρ−
j

2 uj = ρ(xj)uj +O(δx2).

Furthermore, since the function (ρ, u) 7→ F |·|(ρ, u) is of class C1 (see [5, Lemma 3.3]), we have

F |·|
(
ρ±
j
, uj

)
= F |·|

(
ρ(xj), uj

)
+O(δx2).

Thus, we find
F |·|

(
ρ−
j
, uj

)
−F |·|

(
ρ+
j
, uj

)
2 = O(δx2)

and (49) is proved.
We turn to momentum flux. By using (46), and bearing in mind definition (32) of GML

j+ 1
2
, we

first observe that

GML
j+ 1

2
= u

(
xj+ 1

2

)(FML,+
j + FML,+

j+1
2 +

FML,−
j + FML,−

j+1
2

)
+O(δx2),

= u
(
xj+ 1

2

)(FML
j + FML

j+1
2

)
+O(δx2).
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We then use (49) to find

GML
j+ 1

2
= u

(
xj+ 1

2

)(ρ(xj)u(xj) + ρ(xj+1)u(xj+1)
2

)
+O(δx2).

The conclusion (50) is then obtained since we have
ρ(xj)u(xj) + ρ(xj+1)u(xj+1)

2 = ρ(xj+ 1
2
)u(xj+ 1

2
) +O(δx2).

The results for EML
j and KML

j+ 1
2
are obtained by following the same lines.

The second order accuracy can equally be reached with respect to the time variable, by
using the Runge-Kutta discretization (RK2) for approximating the time derivative. Note that
this approach may lead to further restriction on the time step in order to preserve the positivity
of the density.

4 Higher dimensions on mac grids
As far as we restrict to Cartesian grids, our approach can be easily extended to higher dimensions
since the discretization can be interpreted by means of the mac framework. Dealing with general
meshes in higher dimension is much more intricate [7, 8, 15, 13, 45] and beyond the scope of
the present paper, see [38].

Remark 4.1. It is worth mentioning here the recent work by C. Berthon, Y. Coudière and
V. Desveaux [9, 10] who develop a high order scheme on unstructured meshes for the barotropic
Euler system by doubling the set of numerical unknowns: the conserved quantities U = (ρ, ρu)
are stored on both the primal and the dual cells. This approach is very appealing in the multi-
dimensional case since it provides naturally a way to define full gradients on the interface of the
control volumes of an unstructured mesh. Note also that the definition of limiters on general
unstructured meshes gives rise to challenging issues, see [15, 12, 13] and the references therein.
Here we are only concerned with the simpler situation of Cartesian grids and the scheme does
not need to double all variables. Note also that in the present framework it is more adapted to
work with the physical quantities ρ and u.

Let us explain how the scheme works in dimension two for the barotropic Euler system.
The application to the full Euler system is left to the reader. The computational domain is the
square

Ω = [ax, bx]× [ay, by] ⊂ R2,

and we thus aim at writing the scheme for the PDE system

∂t

 ρ
ρu
ρv

+ ∂x

 ρu
ρu2 + p(ρ)

ρuv

+ ∂y

 ρv
ρvu

ρv2 + p(ρ)

 = 0.

We define the meshes as follows:

• The primal mesh is defined by the points

ax = x1 < x2 < ... < xi−1 < xi < xi+1 < ... < xM < xM+1 = bx,

and
ay = y1 < y2 < ... < yj−1 < yj < yj+1 < ... < yN < yN+1 = by.
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• Then we define the midpoints

xi+ 1
2

= xi + xi+1
2 , ∀i ∈ J1,MK, and yj+ 1

2
= yj + yj+1

2 , ∀j ∈ J1, NK.

• We set δxi+ 1
2
, δyj+ 1

2
, δxi and δyj the length of [xi, xi+1], [yj , yj+1], [xi− 1

2
, xi+ 1

2
] and

[yj− 1
2
, yj+ 1

2
] respectively.

According to the pioneering approach for incompressible flows in [26], we store the discrete
densities, the horizontal and the vertical velocities at different locations, see Fig. 3:

• the density ρ is evaluated at the centers of the primal cells: we are dealing with the
numerical unknowns ρi+ 1

2 ,j+
1
2
,

• the horizontal velocity u is evaluated at the centers of the cells [xi− 1
2
, xi+ 1

2
] × [yj , yj+1]:

the numerical unknowns thus reads ui,j+ 1
2

• the vertical velocity v is evaluated at the centers of the cells [xi, xi+1]× [yj− 1
2
, yj+ 1

2
]: the

numerical unknowns thus reads vi+ 1
2 ,j

.

As in 1d, we need an approximation of ρ at the edges of the primal mesh,

ρi,j+ 1
2

=
δxi+ 1

2
ρi+ 1

2 ,j+
1
2

+ δxi− 1
2
ρi− 1

2 ,j+
1
2

2δxi
and ρi+ 1

2 ,j
=
δyj+ 1

2
ρi+ 1

2 ,j+
1
2

+ δyj− 1
2
ρi+ 1

2 ,j−
1
2

2δyj
.

ρi+ 1
2 ,j+

1
2

ui+1,j+ 1
2×

ui,j+ 1
2×

vi+ 1
2 ,j+1

×

vi+ 1
2 ,j×

i i+ 1
2

i+ 1

j

j + 1
2

j + 1

Figure 3: Position of the unknowns on a mac grid.

The first order scheme is a direct extension of the one proposed in [6] to the 2d framework.
First, the discrete densities ρi+ 1

2 ,j+
1
2
, i ∈ J1,MK, j ∈ J1, NK, are updated using the following

explicit scheme

ρi+ 1
2 ,j+

1
2
− ρi+ 1

2 ,j+
1
2

δt
+
Fx
i+1,j+ 1

2
−Fx

i,j+ 1
2

δxi+ 1
2

+
Fy
i+ 1

2 ,j+1 −F
y

i+ 1
2 ,j

δyj+ 1
2

= 0.

Fig. 4 illustrate the following construction: the discrete mass fluxes in the x direction Fx
i,j+ 1

2
are defined, for each value of j ∈ J1, NK, as the 1d fluxes, using the values of the horizontal
velocity ui,j+ 1

2
to upwind the density in the horizontal direction

Fx
i,j+ 1

2
= Fx,+

i,j+ 1
2

+ Fx,−
i,j+ 1

2
, ∀(i, j) ∈ J2,MK× J1, NK,

with Fx,+
i,j+ 1

2
= F+(ρi− 1

2 ,j+
1
2
, ui,j+ 1

2
) and Fx,−

i,j+ 1
2

= F−(ρi+ 1
2 ,j+

1
2
, ui,j+ 1

2
).

(51)
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Symmetrically, the mass fluxes Fy
i+ 1

2 ,j
in the y direction are defined using the values of the

vertical velocity vi+ 1
2 ,j

to upwind the density in the vertical direction

Fy
i+ 1

2 ,j
= Fy,+

i+ 1
2 ,j

+ Fy,−
i+ 1

2 ,j
, ∀(i, j) ∈ J1,MK× J2, NK,

with Fy,+
i+ 1

2 ,j
= F+(ρi+ 1

2 ,j−
1
2
, vi+ 1

2 ,j
) and Fy,−

i+ 1
2 ,j

= F−(ρi+ 1
2 ,j+

1
2
, vi+ 1

2 ,j
).

For boundary values, we use here zero fluxes: Fx1,j+ 1
2

= 0 = Fx
M+1,j+ 1

2
and Fy

i+ 1
2 ,1

= 0 =
Fy
i+ 1

2 ,N+1.

ρi+ 1
2 ,j+

1
2× Fx

i+1,j+ 1
2

Fx
i,j+ 1

2

Fy
i+ 1

2 ,j+1

Fy
i+ 1

2 ,j

Figure 4: Fx and Fy fluxes.

Next, the horizontal velocities ui,j+ 1
2
, i ∈ J2,MK, j ∈ J1, NK are updated with the following

scheme

ρi,j+ 1
2
ui,j+ 1

2
− ρi,j+ 1

2
ui,j+ 1

2

δt
+
Gu,x
i+ 1

2 ,j+
1
2
− Gu,x

i− 1
2 ,j+

1
2

δxi

+
Πi+ 1

2 ,j+
1
2
−Πi− 1

2 ,j+
1
2

δxi
+
Gu,yi,j+1 − G

u,y
i,j

δyj+ 1
2

= 0. (52)

We would define the fluxes Gu,x
i+ 1

2 ,j+
1
2
, resp. Gu,yi,j , by upwinding the horizontal momentum

(ρu)i+ 1
2 ,j+

1
2
, resp. (ρu)i,j , with respect to the value of the horizontal velocity ui+ 1

2 ,j+
1
2
, resp.

the vertical velocity vi,j . However, on staggered grids, none of these quantities are obviously
defined. As in 1d, we have to bear in mind that, when discretizing the mass conservation
equation, we already defined a discrete form of the horizontal, resp. vertical, mass flux based on
an upwinding of the density (with respect to the horizontal, resp. vertical, velocity). Thus, the
upwinding of horizontal momentum can be next obtained by upwinding the horizontal velocity
with respect to the “positive” or “negative” part of the mass fluxes. However, horizontal, resp.
vertical, mass fluxes are only defined at points (xi, yj+ 1

2
), resp. (xi+ 1

2
, yj). The first step is

thus to define the “positive” and “negative” parts of the horizontal, resp. vertical, mass flux at
points (xi+ 1

2
, yj+ 1

2
), resp. (xi, yj). This is done by taking the following mean values

Fx,±
i+ 1

2 ,j+
1
2

= 1
2

(
Fx,±
i,j+ 1

2
+ Fx,±

i+1,j+ 1
2

)
and Fy,±i,j =

δxi+ 1
2
Fy,±
i+ 1

2 ,j
+ δxi− 1

2
Fy,±
i− 1

2 ,j

2δxi
.

Next, for each j ∈ J1, NK, the momentum fluxes Fu,x
i+ 1

2 ,j+
1
2
are defined, as in 1d, by

Gu,x
i+ 1

2 ,j+
1
2

= ui,j+ 1
2
Fx,+
i+ 1

2 ,j+
1
2

+ ui+1,j+ 1
2
Fx,−
i+ 1

2 ,j+
1
2
, ∀i ∈ J2,M − 1K.
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and
Πi+ 1

2 ,j+
1
2

= p(ρi+ 1
2 ,j+

1
2
), ∀i ∈ J2,M − 1K.

For boundary fluxes, as in 1d, we use slightly different definitions

Gu,x3
2 ,j+

1
2

=
u2,j+ 1

2

2 Fx,−2,j+ 1
2
, and Gu,x

M+ 1
2 ,j+

1
2

=
uM,j+ 1

2

2 Fx,+
M,j+ 1

2
.

The fluxes Gu,yi,j , for any (i, j) ∈ J2,MK× J2, NK are defined by

Gu,yi,j = ui,j− 1
2
Fy,+i,j + ui,j+ 1

2
Fy,−i,j .

For the boundary values, we set Gu,yi,1 = 0 and Gu,yi,N+1 = 0 for all j ∈ J2, NK. Fig. 5 illustrate this
construction by putting forward the mass fluxes used in the definition of the momentum flux
Gu,x
i+ 1

2 ,j+
1
2
and Gu,yi,j .

Finally, symmetrically, the vertical velocity vi+ 1
2 ,j

, i ∈ J1,MK, j ∈ J2, NK is updated with
the following scheme

ρi+ 1
2 ,j
vi+ 1

2 ,j
− ρi+ 1

2 ,j
vi+ 1

2 ,j

δt
+
Gv,xi+1,j − G

v,x
i,j

δxi+ 1
2

+
Gv,y
i+ 1

2 ,j+
1
2
− Gv,y

i+ 1
2 ,j−

1
2

δyj
+

Πi+ 1
2 ,j+

1
2
−Πi+ 1

2 ,j−
1
2

δyj
= 0. (53)

The momentum fluxes Gv,x and Gv,y are defined like Gu,x and Gu,y by inverting the roles
played by u and v, by x and y, and by i and j.

ui,j+ 1
2

×
Fx
i,j+ 1

2
Fx
i+1,j+ 1

2
Gu,x
i+ 1

2 ,j+
1
2

(a) Flux Gu,x

i+ 1
2 ,j+ 1

2

Fy
i− 1

2 ,j
Gu,yi,j Fy

i+ 1
2 ,j

ui,j+ 1
2×

(b) Flux Gu,y
i,j

Figure 5: Mass flux used in the definition of momentum fluxes.

It can be shown that under a CFL condition – which can be readily deduced from the
1d statement – the positivity of ρ is preserved. Similarly, strengthened assumptions can be
identified to guaranty that the decay of the global entropy under suitable stability constraints
is still valid on mac meshes, see [4].

We now turn to explain how to extend the second order scheme to the 2d framework. We
apply the 1d muscl method to the rows or the columns of the physical variables.

• To define the upgraded mass flux Fx,ML we use a muscl reconstruction only on the
columns of the density ρ :

Fx,ML

i,j+ 1
2

= F+(ρ−
i,j+ 1

2
, ui,j+ 1

2
) + F−(ρ+

i,j+ 1
2
, ui,j+ 1

2
).

26



• To define the upgraded mass flux Fρ,y,ML we use a muscl reconstruction only on the rows
of the density ρ.

With this new definition of the mass flux Fx,ML and Fy,ML we define the new convective part
of the momentum flux Gu,x,ML and Gu,y,ML:

• To define the upgraded momentum flux Gu,x,ML + p we use a muscl reconstruction only
on the columns of the velocity u in the convection flux:

Gu,x,ML

i+ 1
2 ,j+

1
2

=
u−
i+ 1

2 ,j+
1
2

2

(
Fx,ML,+
i+1,j+ 1

2
+ Fx,ML,+

i,j+ 1
2

)
+
u+
i+ 1

2 ,j+
1
2

2

(
Fx,ML,−
i+1,j+ 1

2
+ Fx,ML,−

i,j+ 1
2

)

• To define the upgraded mass flux Gu,y,ML we use a muscl reconstruction only on the rows
of the velocity u.

The stability and consistency analysis performed in 1d generalize directly to higher dimensions
on mac meshes, a configuration which is appealing when dealing with low Mach regimes, see
[38, Chapter 3].

5 Numerical simulations

5.1 Barotropic Euler sytem

5.1.1 Accuracy study using a 1d manufactured solution

In order to numerically validate the abilities of the muscl-like approach, we compute the solu-
tions of the 1d problem

∂t

(
ρ
ρu

)
+ ∂x

(
ρu

ρu2 + p(ρ)

)
=
(

0
f

)
,

where the force field (x, t) 7→ f(x, t) is tailored so that the solution reads ρ(x, t) = ρ0(x)et

(x+ et(1− x))2 ,

u(x, t) = x(1− x).

In what follows we simply choose ρ0(x) = 1. The solution is smooth and we can expect a full
benefit of the muscl approach. The computational domain is the slab [0, 1] and we perform
the simulation for t ∈ [0, 0.5]. In the definition of the fluxes, we make use of the SuperBee flux
limiter (see (29) for the definition).

We first consider the case where the pressure is defined by the perfect gas state law: p(ρ) =
ρ2. We give in Table 1 the L2-norm of the error between the discrete and exact solutions for
several numbers J of grid points and δt = 10−5. The small value of the time step ensures that
the stability condition is satisfied for all the considered grids. We use here the first order Euler
scheme in time and compare the solution produced by the first order scheme of [5] and the
solution produced by the proposed muscl extension. We clearly observe the gain of accuracy
with the muscl scheme. Moreover, it reaches the second order for both the density and the
velocity, while, as expected, the scheme of [5] approaches the solution at first order only.
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First order scheme Second order muscl scheme
Density Velocity Density Velocity

J Error Rate Error Rate Error Rate Error Rate
70 5.2e−3 – 4.27e−3 – 7.31e−5 – 7.90e−5 –
80 4.6e−3 0.96 3.77e−3 0.93 5.60e−5 2.00 6.17e−5 1.85
90 4.1e−3 0.97 3.38e−3 0.94 4.40e−5 2.05 4.93e−5 1.90
100 3.7e−3 0.97 3.06e−3 0.95 3.56e−5 2.01 4.01e−5 1.96
110 3.4e−3 0.97 2.79e−3 0.95 2.93e−5 2.04 3.36e−5 1.86

Table 1: L2-norm of the error between approximate and exact solutions for different numbers
of grid points. Computations done with δt = 10−5 on uniform grids using the perfect gas state
law.

It is also worth discussing the interest of replacing the Euler scheme by the RK2 method for
the time discretization. Hence, for the given mesh size J = 800, and using the muscl version of
the scheme for the space discretization, we make the time step vary δt ∈ {10−4; 5×10−5; 2.5×
10−5; 1.25× 10−5}. Results are displayed in Table 2: we observe a convergence of order 1 with
the Euler scheme, while with RK2 the error due to the time discretization is hidden by the error
in space. There is a clear advantage in using the RK2 scheme.

First order scheme Second order RK scheme
Density Velocity Density Velocity

δt Error Rate Error Rate Error Rate Error Rate
1e−4 8.5e−5 – 6.1e−5 – 9e−7 – 7e−7 –
5e−5 4.2e−5 1.01 3.1e−5 0.99 9e−7 – 7e−7 –

2.5e−5 2.1e−5 1.01 1.6e−5 0.98 9e−7 – 7e−7 –
1.25e−5 1.0e−5 1.01 8.0e−6 0.97 9e−7 – 7e−7 –

Table 2: L2-norm of the error between approximate and exact solutions for different time steps.
Computation done with J = 800 on uniform grids using the perfect gas state law.

We next apply the method on non-uniform meshes for the same tailored solution. We build a
sequence of non-uniform nested meshes as follows: we randomly pick J = 100 points that define
the coarser non-uniform mesh (max δxj+ 1

2
/min δxj+ 1

2
= 4.18) ; then, we split each cell in its

middle to obtain the next finer mesh – still non-uniform – with twice as many as grid points and
so on. Table 3 shows the L2 error norms for δt = 1e−6 and four nested meshes. The convergence
rate is the same on uniform and non-uniform meshes, in agreement with Lemma 3.6.
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First order scheme Second order muscl scheme
Density Velocity Density Velocity

J Error Rate Error Rate Error Rate Error Rate
100 2.6e−3 – 2.1e−3 – 2.3e−5 – 3.4e−5 –
200 1.6e−3 0.72 1.3e−3 0.69 7.7e−6 1.56 9.5e−6 1.83
400 8.7e−4 0.87 7.3e−4 0.85 1.9e−6 2.01 2.5e−6 1.90
800 4.6e−4 0.94 3.8e−4 0.93 6.0e−7 1.68 1.0e−7 1.33

First order scheme Second order muscl scheme
Density Velocity Density Velocity

J Error Rate Error Rate Error Rate Error Rate
100 3.4e−3 – 3.3e−3 – 3.9e−5 – 5.0e−5 –
200 2.1e−3 0.72 1.7e−3 0.94 1.2e−5 1.63 1.3e−5 1.93
400 1.0e−3 0.98 8.7e−4 0.97 3.0e−6 2.05 2.3e−6 2.50
800 5.2e−4 0.99 4.4e−4 0.98 1.2e−6 1.32 1.1e−6 1.06

Table 3: L2-norm of the error between approximate and exact solutions for different numbers
of grid points. Computation done with δt = 1e−6 on uniform grids (top) and non uniform grids
(bottom) using the perfect gas state law.

We finally check the ability of the scheme in dealing with a more complex pressure law. The
tailored solution is still the same, but now we set p(ρ) = (γ−1)2

4γ

(
ρ

ρ∗−ρ

)γ
. This is a particular

case of the Van der Waals state law, it arises in the modeling of dusty gases for instance. We
point out that this pressure law does not lead to any difficulty in the design of the scheme and
its consistency properties apply equally well to this case. Tests are performed with γ = 0.6
and ρ∗ = 3. Note that admissible densities should remain in the domain 0 ≤ ρ < ρ∗; this issue
is further discussed in Section 5.1.2 below. Table 4 shows the L2-error norms: for the smooth
solution considered here, the convergence rate is still second order.

First order scheme Second order muscl scheme
Density Velocity Density Velocity

J Error Rate Error Rate Error Rate Error Rate
100 1.6e−3 – 8.2e−4 – 2.1e−4 – 4.0e−5 –
200 8.0e−4 0.99 4.2e−4 0.97 5.5e−5 1.94 1.0e−5 1.95
400 4.0e−4 0.98 2.1e−4 0.98 1.4e−5 1.98 2.5e−6 2.03
800 2.0e−4 0.99 1.1e−4 0.99 3.9e−6 1.83 8.0e−7 1.64

Table 4: L2-norm of the error between approximate and exact solutions for different numbers
of grid points. Computation done with δt = 5e−6 on uniform meshes using the Van der Waals
state law.

5.1.2 Simulation of 1d Riemann problems

Perfect gases pressure law We now study the behavior of the scheme with discontinuous
solutions. We consider Riemann problems on a computational domain [a, b]: the initial data
is piecewise constant with a jump located at x = 0 and we denote by (ρl, ul) and (ρr, ur) the
left and right states for the density/velocity pair, respectively. The pressure law is defined by
p(ρ) = (γ−1)2

4γ ργ with γ = 1.6. We use the MinMod limiter and the others data are given in
Table 5.
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a b ρl ρr ul ur

Test 1 −0.7 0.3 0.5 1 −0.5 −0.2
Test 2 −0.2 0.8 1 2 1 0.25
Test 3 −0.7 0.3 1 0.5 −0.5 −0.5

Table 5: Definition of the test case. Computational domain [a, b]. Left and right states for the
density and velocity (jump located at x = 0).

The corresponding Riemann solutions develop two rarefaction waves, two shocks and a
rarefaction wave followed by a shock wave respectively. The results obtained at time T = 0.5
using the first order scheme and the muscl-RK scheme with J = 200 and δt = 1e−3 are plotted
in Fig 6, Fig 7 and Fig 8. Of course the solutions of Riemann problems are not smooth and
the consistency analysis does not apply. Nevertheless, we clearly see that using the muscl-like
method provides more accurate results than the first order method. The convergence study of
the different test cases is presented in Table 6 and we observe a first order convergence.

0e00−4e−01 −2e−01 2e−01

1

0.4

0.6

0.8

First order

MUSCL−RK

Exact

0e00−4e−01 −2e−01 2e−01

−4e−01

−2e−01

−5e−01

−3e−01

First order

MUSCL−RK

Exact

Figure 6: Test 1. Density (at left) and velocity (at right) at time T = 0.5. Computation done
with J = 200 and δt = 1e−3.
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First order
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Figure 7: Test 2. Density (at left) and velocity (at right) at time T = 0.5. Computation done
with J = 200 and δt = 1e−3.
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Figure 8: Test 3. Density (at left) and velocity (at right) at time T = 0.5. Computation done
with J = 200 and δt = 1e−3.

Test 1
Density Velocity

J Error Rate Error Rate
100 6.7e−3 – 3.0e−3 –
200 3.4e−3 0.97 1.5e−3 0.98
400 1.8e−3 0.97 7.8e−4 0.97
800 8.9e−4 0.98 3.9e−4 0.98
1600 4.5e−4 0.99 2.0e−4 0.99

Test 2
Density Velocity

J Error Rate Error Rate
100 3.2e−2 – 5.8e−3 –
200 1.8e−2 0.81 2.6e−3 1.18
400 8.0e−3 1.19 1.3e−3 0.94
800 4.7e−3 0.77 6.9e−4 0.96
1600 2.2e−3 1.11 3.8e−4 0.87

Test 3
Density Velocity

J Error Rate Error Rate
100 6.0e−3 – 2.3e−3 –
200 3.2e−3 0.89 1.3e−3 0.89
400 1.7e−3 0.96 6.4e−4 0.96
800 8.3e−4 1.00 3.2e−4 1.00
1600 4.2e−4 1.00 1.6e−4 1.00

Table 6: Riemann problems. L1-norm of the error at time T = 0.5 between approximate and
exact solutions for different numbers of grid points. Computations done with the muscl-RK
scheme with δt = 0.25 δx.

Van der Waals pressure law As already said above, our method does not rely on the
resolution of Riemann problems, and the numerical fluxes have a simple expression for very
general pressure laws, while the scheme is entropy-decaying. For instance the scheme is still
efficient for Van der Waals-like laws p(ρ) = (γ−1)2

4γ
ργ

ρ∗−ρ . Such a relation is intended to retain
some packing effects that prevent the density to exceed the threshold ρ?, see Fig 9.

31



Figure 9: Intermediate volume fraction ρm as a fonction of the velocity u.

However the preservation of this constraint by the numerical unknown leads to a strength-
ened stability condition, see [6, Prop. 5]. For the muscl version of the scheme the stability
condition takes the following form.

Proposition 5.1 (Close-packing threshold). Suppose that the initial data satisfies ρ0
j+ 1

2
≤ ρ?

for all j ∈ J1, JK and assume that the following CFL-like condition holds

δt

δxj+ 1
2

([
λ+(ρ−j , uj)

]+
+
[
λ−(ρ+

j+1, uj+1)
]−)

6
1
2

(
1−

ρj+ 1
2

ρ?

)
, ∀j ∈ J1, JK.

Then ρj+ 1
2
≤ ρ? for all j ∈ J1, JK and k ∈ RN .

Proof. We have

ρj+ 1
2

= ρj+ 1
2

+ δt

δxj+ 1
2

(
F−(ρ+

j , uj)−F
+(ρ−j+1, uj+1)

)
+ δt

δxj+ 1
2

(
F+(ρ−j , uj)−F

−(ρ+
j+1, uj+1)

)
≤ ρj+ 1

2
+ δt

δxj+ 1
2

(
F+(ρ−j , uj)−F

−(ρ+
j+1, uj+1)

)
≤ ρj+ 1

2
+ δt

δxj+ 1
2

(
ρ−j

[
λ+(ρ−j , uj)

]+
+ ρ+

j+1

[
λ−(ρ+

j+1, uj+1)
]−)

.

Let us assume ρj+ 1
2
≤ ρ? for any j; then ρ±j ≤ 2ρ? (see the proof of Proposition 3.1). Let us

introduce
εj+ 1

2
= 1−

ρj+ 1
2

ρ?
.

We get

ρj+ 1
2
≤ ρ? − ρ?

εj+ 1
2
− 2δt
δxj+ 1

2

([
λ+(ρ−j , uj)

]+
+
[
λ−(ρ+

j+1, uj+1)
]−) .

Finally, assuming

εj+ 1
2
≥ 2δt
δxj+ 1

2

([
λ+(ρ−j , uj)

]+
+
[
λ−(ρ+

j+1, uj+1)
]−)

we obtain ρj+ 1
2
≤ ρ? for any j.
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As observed for the condition ensuring the positivity of the density, the CFL-like condition
for the muscl scheme is twice more constrained than with the first order scheme. More im-
portant, this condition is much more demanding than the standard CFL condition since the
right-hand side vanish when the discrete density become close to ρ?. Numerical simulations
confirm that such a strengthened condition is actually needed to prevent the density to exceed
the threshold ρ? when using the scheme proposed in this paper. To illustrate the difficulty, we
go back to the numerical tests proposed in [6, Section 4.1]. We set γ = 2 and ρ? = 1 and we
perform 1d simulations of the Riemann problem defined by ρl = ρr = 1

3 and ul = uabs and
ur = −uabs for different values of uabs ∈ {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5} and different
values of the time step δt. The larger the velocity uabs is, the closer to ρ? the density ρm in the
intermediate state is. The simulations are performed up to the time T = 0.1 with J = 200 on
the computational domain [−0.5, 0.5] with a discontinuity initially at x = 0. In Fig. 10 we show
the solutions obtained with different schemes: for the same numerical conditions δt and δx,
the Lax-Friedrichs scheme produces much more numerical diffusion and the solution is poorly
captured. In Fig. 11 we zoom on the left part of the density.

Figure 10: Barotropic gas with Van der Waals law: comparison of the kinetic scheme (1st and
2nd order) with the Lax-Friedrichs scheme. Density and Velocity solutions for uabs = 2.
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Lax−Friedrichs, J=800
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Figure 11: Barotropic gas with Van der Waals law: comparison of the kinetic schemes (1st and
2nd order with J = 200) with the Lax-Friedrichs scheme (J = 200 and J = 800). Zoom on the
density solution for uabs = 2.

For each values of uabs, we select the largest value of δt which yields an “admissible” result
(in the sense that it remains oscillation-free at T = 0.1). In Fig. 12, we plot this selected δt as
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a function of 1 − ρm
ρ? : in a logarithm scale, we obtain a straight line with a slope close to 2,

which is consistent with Proposition 5.1 since when ρm becomes close to ρ?, the characteristic
speeds behave like

(
1− ρm

ρ?

)−1
.

Figure 12: Maximal admissible time step δt as a function of 1− ρm
ρ? in blue; the green line has

a slope 1.94.

Note, nevertheless, that the standard CFL is enough to preserve the bounds on the density
when using a Godunov or a Lax-Friedrichs scheme. (This latter result uses crucially the con-
vexity of the invariant domain of the PDE, see [11, Section 2.2.1 & Prop. 2.11], and it does not
apply when the invariant regions are non-convex, see e.g. [14].) However, the scheme based on
the kinetic fluxes is far less diffusive than Lax-Friedrichs’ method, so that it finally competes in
terms of numerical effort for a given numerical accuracy.

5.1.3 Numerical simulations in 2d

Falling water columns We turn to 2d simulations, with a test-case inspired from [2]. We
simulate three falling columns into a rectangular basin. The computational domain is the two-
dimensional square [−1, 1] × [−1, 1]. We are using the dimensionless Shallow Water system
which amounts to set p(ρ) = ρ2, without source terms. The PDE system is endowed with zero
flux boundary conditions and the following initial data

ρ(0, x, y) = 3 + 1(x−0.5)2+(y−0.5)2<(0.15)2 + 1(x+0.5)2+(y+0.5)2<(0.15)2 + 2 · 1x2+y2<(0.2)2 ,
u(0, x, y) = 0,
v(0, x, y) = 0.

The simulation performed in [2] on a 512 × 512 Cartesian mesh is reproduced in Fig. 13: it is
based on the second order Nessayhu-Tadmor scheme [40], coupled to a specific reconstruction
procedure which is intended to reduce the numerical diffusion and to capture shocks with an
enhanced accuracy. The muscl scheme competes with such an approach, as it appears in Fig. 14
on the right (simulations have been performed with the MinMod limiter). Fig. 14 shows the
advantages in using the muscl method compared to the first order scheme, which, for the same
numerical parameters, loses the complex structures of the flow. In these simulations, the mesh
is a 512 × 512 Cartesian mesh, the final time T = 1.035 and the time step is δt = 10−4. As
already observed in [2], the simulation is quite sensitive to the time step: some oscillations
might appear when δt is not small enough.
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Figure 13: Simulation of the Shallow Water system, by courtesy of N. Aguillon [2].

Figure 14: Simulation of the Shallow Water system for δt = 10−4 on a 512× 512 grid: Results
with the first order scheme (left) and with the muscl scheme (right)

We also compare the results obtained with the first and second order schemes to a simulation
performed with a Spectral Element Method (SEM), stabilized with an entropy viscosity method
(EVM), see [42, 41]. We also refer the reader to [39] for further details on this method and the
test case which is computed to show the ability of this approach to deal with dry-wet transitions
and shocks. The SEM-EVM method is driven by two parameters, α, β in the notations of [39].
The color map is identical in Fig. 15 and Fig. 16, but it differs from Fig. 13 and Fig. 14.
The left picture shows the result we get when using a first order viscosity everywhere and
parameters that imply a O(h) numerical diffusion equivalent to the numerical diffusion of the
upwind scheme (precisely the (α, β) pair is (0.5, ∞)). The entropy stabilization is strengthened
in the right picture (with (α, β) = (1, 3)). The mesh is of size 100 × 100 and a fifth order
polynomial approximation is used in each quadrangle; this yields 255001 interpolation points in
the computational domain whereas our scheme, used for Fig. 16, has 262144 degrees of freedom.
In both figures, the results are shown at final time T = 1.035, reached with δt = 10−4.
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Figure 15: Visualizations of the height at the final time with the stabilized SEM method.

Figure 16: Visualizations of the height at the final time with our first and second order schemes.

Clearly, the result obtained with our first order scheme is smooth and close to the one
obtained with the SEM-EVM scheme when adding a first order viscosity. The result obtained
with the second order scheme — using the muscl procedure — recovers the correct solution
(free of spurious oscillations) and is very close to the one obtained with the strengthened EVM
stabilization.

Forward facing step This test case is inspired by the standard 2d Mach 3 wind tunnel with
a step introduced in [55]. The computational domain Ω is the L-shaped domain

Ω = Ω0 \ Ωstep, Ω0 = [0, 3]× [0, 1], Ωstep = [0.6, 3]× [0, 0.2].

The rectangle Ω0 is discretized with a 30σ × 10σ uniform Cartesian grid (σ ∈ N∗). We take
the step into account by removing the mesh points corresponding to the step Ωstep at the right
bottom part of the domain.

The equation of state of the fluid is p(ρ) = ρ and the initial data are given by ρ = 1 and
u = (3, 0). On the top and bottom walls, we use reflection boundary conditions (ie zeros flux
boundary conditions as described in the previous parts of the article). A Dirichlet boundary
condition, ρ = 1 and u = (3, 0), makes the flow enter through the left boundary whereas a free
boundary condition is used for the right section. The free boundary condition is implemented
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by assuming a priori that the outgoing flow is supersonic. The mass fluxes at the free boundary
are thus defined using (51) but with an incoming part set to 0; that is, here, on the right
boundary,we set

Fx
M+1,j+ 1

2
= F+(ρM+ 1

2 ,j+
1
2
, uM+1,j+ 1

2
).

The update of the velocity at the free boundary is performed using (52) and (53) which now
involve momentum fluxes at the exterior the domain (here at the points (xM+ 3

2
, yj+ 1

2
)). These

ghost fluxes are defined using a constant extrapolation for the pressure and a linear extrapolation
for the outgoing part of the mass fluxes; that is here on the right boundary

(
xM+ 3

2
, yj+ 1

2

)
(using

a uniform mesh), we set
uM+1,j+ 1

2
Fx,+
M+ 3

2 ,j+
1
2

+ p(ρM+ 1
2 ,j+

1
2
),

with Fx,+
M+ 3

2 ,j+
1
2

= 3
2F

x,+
M+ 1

2 ,j+
1
2
− 1

2F
x,+
M− 1

2 ,j+
1
2
.

Fig. 17 presents the results obtained with the first order scheme and the second order
scheme (muscl-RK scheme) on a 900× 300 grid (σ = 30) with time steps respectively defined
by δt = 1/3000 and δt = 1/6000. We observe that the structures are sharper with the muscl
scheme. Cutlines of the density along the lines y = 0.3 obtained using the second order scheme
on different grids are plotted in Fig. 18. The results are in agreement with the literature [34].

Figure 17: Simulation of the 2d Mach 3 wind tunnel with a step: Density with the first order
scheme (up) and with the muscl/RK scheme (down)
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Figure 18: Simulation of the 2d Mach 3 wind tunnel with a step: density cutlines at y = 0.3
for different grids with the muscl-RK scheme

5.2 Full Euler system

5.2.1 Accuracy study using a 1d manufactured solution

In order to numerically validate the abilities of the muscl-like approach, we compute the solu-
tions of the 1d problem

∂t

 ρ
ρu
ρe

+ ∂x

 ρu
ρu2 + p(ρ, e)

ρeu

+ p(ρ, e)∂x

0
0
u

 =

0
f
g

 ,

where the force fields (t, x) 7→ f(t, x) and (t, x) 7→ g(t, x) are tailored so that the solution reads


ρ(t, x) = et

(x+ et(1− x))2 ,

u(t, x) = x(1− x),

p(t, x) = (γ − 1)et(1 + x)2.

The solution is smooth and we can expect a full benefit of the muscl approach. The computa-
tional domain is the slab [0, 1] and we perform the simulation for t ∈ [0, 0.2] on uniform grids
with γ = 1, 4. Table 7 gives the L1-norm of the error between the discrete and the exact solu-
tions for several numbers J of grid points. For this test, we have δt = 10−6: the small value of
the time step ensures that the stability condition is satisfied for all the considered grids. In fact,
we have δt = O(δx2) so that the error can be expected to be dominated by the spatial errors
(we use the first order Euler scheme in time). We compare the solution produced by the first
order scheme and the solution produced by the proposed muscl extension. We clearly observe
the gain of accuracy with the muscl scheme. It reaches the second order for both the density,
the velocity and the internal energy, while, as expected, the first order scheme approaches the
solution at first order only.
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First order scheme Second order muscl scheme
J Density Velocity Internal energy Density Velocity Internal energy

100 – – – – – –
200 0.850700 0.949060 0.992880 1.820381 1.874050 1.503473
300 0.880656 0.964206 0.994994 1.821862 1.892868 1.619922
400 0.896963 0.971184 0.995998 1.821327 1.910123 1.566806
500 0.907691 0.975388 0.996509 1.808201 1.927109 1.593161
600 0.914963 0.977970 0.996853 1.803942 1.943983 1.607096

Table 7: Error rate in L1-norm between approximate and exact solutions for different numbers
of grid points.

5.2.2 Simulation of 1d Riemann problems

We perform the numerical resolutions of some Riemann problems inspired from the classical
textbook [49, Section 4.3.3, Chapter 4, pages 129-131] on the computational domain [0, 1], see
8. All tests are with γ = 1.4. The simulations are performed 1000 grid points. The time step
is given by δt1 = δx/100 for the first order scheme and δt2 = δt1

2 for the muscl scheme. The
initial data ρ, u, p are piecewise constant functions with a discontinuity located at x0 = 0.5,
according to the table below.

ρl ρr ul ur pl pr T

Test 1 1 0.125 0 0 1 0.1 0.25
Test 2 1 1 −2 2 0.4 0.4 0.15
Test 3 1 1 0 0 1000 0.01 0.012
Test 4 1 1 0 0 0.01 100 0.35
Test 5 5.99924 5.99242 19.5975 −6.19633 460.894 46.0950 0.035

Table 8: Definition of the test cases: left and right states.

In Figures 19 to 23, we represent at the final time T the density ρj+ 1
2
and the velocity uj

on the first line and the pressure pj+ 1
2
and the internal energy ej+ 1

2
one the second line. The

exact solution is in dotted lines and the numerical solutions are given with the solid blue lines
for the SML-scheme and with the solid red lines for the ML-scheme.
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Figure 19: Test 1: the so-called Sod test problem, is a mild test: the solution consists in a left
rarefaction, a contact discontinuity and a right shock.

Figure 20: Test 2: the so-called 123 problem, has a solution made of two strong rarefactions
and a trivial stationary contact discontinuity.
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Figure 21: Test 3: inspired from [55], has a solution made of left rarefaction, a contact discon-
tinuity and a right shock.

Figure 22: Test 4: has a solution made of a left shock, a contact discontinuity and a right
rarefaction.
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Figure 23: Test 5: corresponds to the collision of two strong shocks, we have a left facing
shock, that travels very slowly to the right, a right travelling contact discontinuity and a right
travelling shock wave.

Both versions of the scheme produce satisfactory results. As expected, the second order
scheme has a reduced numerical diffusion and offers better approximations. Concerning Test
#2, we remark that the results obtained for the physical variables ρ, p and u is quite satisfactory
while the internal energy presents significative discrepancies. According to [49, Section 6.4,
Chapter 6, pages 225-235], this test is indeed known to be particularly challenging for the
internal energy e, and even Godunov’s method fails on this problem (and the results in Fig. 19
to Fig. 23 are definitely better than what can be obtained with, say, the Lax-Friedrichs scheme).
In [49], a detailed description of the test cases is given and the performance of several standard
numerical methods is commented. Be aware that from [49, Chapter 5] to the end Test 1 is not
the same as in [49, Chapter 4], and that Test 5 from [49, Chapter 4] (which is also our Test #5)
becomes Test 4 from [49, Chapter 5] to the end. About the overshoot that may be seen in Test
#5 and at a lower level in Test #1 and #3, Toro explains in [49, Chapter 6] that is quite usual,
and even unresolved in the case of Test #5. In [49, Section 8.5.5, Chapter 8, pages 282], more
details are given about the spurious oscillations and diffusion that appears with most type of
resolutions, whereas, similarly to the scheme of Liou and Steffen shown in this part of [49], our
scheme sharply solves the fast right shock but at the price of the creation of an overshoot.

5.2.3 Numerical simulations in 2d

This test case is the well-known 2d Mach 3 wind tunnel with a step, introduced in [55]. The
computational domain Ω is the L-shaped domain

Ω = Ω0 \ Ωstep, Ω0 = [0, 3]× [0, 1], Ωstep = [0.6, 3]× [0, 0.2].

The rectangle Ω0 is discretized with a 30σ× 10σ uniform Cartesian grid (σ ∈ N∗). We take the
step into account by removing the mesh points corresponding to the domain Ωstep at the right
bottom part of the domain.

The equation of state of the fluid is p(ρ, e) = (γ − 1)ρe where γ = 1.4, and the initial data
are given by ρ = 1.4, u = (3, 0) and p = 1. On the top and bottom walls, we use reflection
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boundary conditions which means zero flux boundary conditions as described in the previous
parts of the paper). A Dirichlet boundary condition, ρ = 1.4 and u = (3, 0), makes the flow
enter through the left boundary whereas a free boundary condition is used for the right section.
The free boundary condition is implemented by assuming a priori that the outgoing flow is
supersonic. The mass fluxes at the free boundary are thus defined with an incoming part set to
0; that is, here, on the right boundary, we set

Fx
M+1,j+ 1

2
= F+(ρM+ 1

2 ,j+
1
2
, uM+1,j+ 1

2
).

The update of the velocity at the free boundary is performed by involving momentum fluxes
at the exterior the domain (here at the points (xM+ 3

2
, yj+ 1

2
)). These ghost fluxes are defined

using a constant extrapolation for the pressure and a linear extrapolation for the outgoing part
of the mass fluxes; that is here on the right boundary

(
xM+ 3

2
, yj+ 1

2

)
(using a uniform mesh)

uM+1,j+ 1
2
Fx,+
M+ 3

2 ,j+
1
2

+ p(ρM+ 1
2 ,j+

1
2
),

with Fx,+
M+ 3

2 ,j+
1
2

= 3
2F

x,+
M+ 1

2 ,j+
1
2
− 1

2F
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M− 1
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1
2
.

We present the results obtained with the first order scheme and the second order scheme on a
960×320 grid (σ = 32) with time steps respectively defined by δt = 1/(100σ) and δt = 1/(400σ)
at time T = 4. We observe that the structures are sharper with the muscl scheme in Fig. 24
and cutlines of the density along the lines y = 0.3 obtained using the first and second order
scheme are plotted in Fig. 25.

Figure 24: Simulation of the 2d Mach 3 wind tunnel with a step: Density with the first order
scheme (up) and with the muscl scheme (down).

43



Figure 25: Simulation of the 2d Mach 3 wind tunnel with a step: density cutlines at y = 0.3
for the first (blue) and second (red) order scheme.
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