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Abstract The MAPK signaling cascade is nowadays understood as a network module highly conserved
across species. Its main function is to transfer a signal arriving at the plasma membrane to the cellular interior.
Current understanding of ’how’ this is achieved involves the notions of ultrasensitivity and bistability which
relate to the nonlinear dynamics of the biochemical network, ignoring spatial aspects. Much less, indeed, is
so far known about the propagation of the signal through the cytoplasm. In this work we formulate, starting
from a Michaelis-Menten model for the MAPK cascade in Xenopus oocytes, a reaction-diffusion model of the
cascade. We study this model in one space dimension. Basing ourselves on previous general results on reaction
diffusion models, we particularly study for our model the conditions for signal propagation. We show that
the existence of a propagating front depends sensitively on the initial and boundary conditions at the plasma
membrane. Possible biological consequences of this finding are discussed.

Keywords Cell signalling ·MAPK cascade · Reaction-Diffusion equations ·Wave front

1 Introduction and formulation of the problem

Cellular responses are generated upon stimulation by growth factors or hormones, and are transported from
the plasma membrane to the inner cell compartments like the nucleus through molecular chains of molecules.
These molecular chains contribute to signal transduction by acting as pipelines for information transport and
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Tel.: +33 3 59 57 78 89
Fax: +33 3 20 21 07 76
E-mail: anne.devys@math.univ-lille1.fr, thierry.goudon@inria.fr, pauline.lafitte@math.univ-lille1.fr



2

recruit specific effectors to promote typical phenotypes or biological responses. Among the signaling chains
of molecules which are dedicated to convey information and integrate extracellular signals is the MAPK
signaling chain. The acronym stands for Mitogen-Activated Protein Kinase, which has been involved in many
aspects of cell life such as cell cycle progression, migration and angiogenesis. The MAPK signaling chain is a
three-tiers cascade in which the upstream kinase phosphorylates and activates a second kinase, which in turn
phosphorylates a third kinase. Depending on the feedback wiring, the cascade displays different temporal
responses driving different cell responses [28].

Fig. 1 Upon hormonal stimulation by progesterone association with a steroid receptor (S-R), Adenylate Cyclase (AC) activity is
decreases, leading to a decrease in cAMP level. cAMP drop drives the inactivation of PKA, which is responsible for blockade of
meiosis progression. By inhibiting PKA, hormonal stimulation promotes cytoplasmic polyadenylation and translation, leading
respectively to unsmaking of mRNA and protein synthesis. Once accumulated, Mos activates MEK by double phosphorylation,
which in turn, activates MAPK by double phosphorylation. The cascade is involved in oocyte maturation process by controlling
the dynamic of M-phase entry, spindle formation and inhibition of DNA synthesis, which is crucial to gamete formation and
correct segregation of genetic material. The cascade is embedded in a positive feed-back loop that promotes Mos accumulation.

Xenopus oocyte is a typical cell type, being a female gamete, which has provided valuable information on
the physical properties of the MAPK cascade, which are ultrasensitivity, bistability and irreversibility [2,10,
14,26,27]. A specific all-or-none response for MAPK activation is observed in Xenopus oocytes which contrasts
with the gradual answer of the MAPK cascade to external stimuli in mammalian somatic cells. The MAPK
kinase kinase Mos is the pivotal enzyme of the MAPKK/MEK-MAPK/Erk (Extracellular Regulated Kinase)
cascade in Xenopus oocytes, represented in Figure 1 and its injection is sufficient to promote M-phase entry
[4,8]. Mos is an oocyte-expressed kinase that appeared early during animal evolution, functioned ancestrally
in regulating specialization of female meiosis and was conserved from echinoderms to vertebrates [1]. The
cascade arrangement of the signalling chain generates the steepness of Erk response in Xenopus oocytes and
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both bistability and ultrasensitivity were attributed to the existence of positive feedback loop motifs within
the MAPK network. Indeed, the MAPK cascade is embedded in a feedback loop that either promotes the
synthesis of its upstream activator Mos [13,15] or enhances Mos stability by phosphorylation [7,21,25,29].

Little is known experimentally on spatial propagation of the cascade in Xenopus but for this theoretical
study, we can benefit from physiological properties of this giant, round-shaped cell type. As previously
mentioned, activation of MAPK cascade is dependent upon Mos synthesis, whose limiting step is the activation
and recruitment of cytoplasmic polyadenylation and translation machineries. Polyadenylation, by addition
of poly-A tail to mRNA, is a process that “unmasks” mRNA’s and promotes their translation. Both the
cytoplasmic polyadenylation and the translation machineries are typically found in the subcortical area of the
cell (see Figure 1 and [12,6]). Mos mRNA localization at the animal cortex in zebrafish oocytes is in agreement
with the current model [30]. Thus, first molecules of Mos, the upstream kinase activating the MAPK cascade,
are believed to arise near the plasma membrane.

A standard approach in the mathematical modeling of the spatio-temporal evolution of the MAPK cascade
is via diffusion-reaction equations. Recent reviews on the state of the field are given by [19,18,17], which
mention exhaustive lists of references. For the MAPK casacade, this approach has been most prominently
pursued by B.N. Kholodenko and collaborators [20,23]. In our work, we follow this path, but since we
are interested in propagation in Xenopus oocytes, we can make use of a number of simplifications based
on the subcellular organization and physical features of the Xenopus oocyte which allow a more in-depth
mathematical analysis. The mathematical simplifications, detailed below, are based on the fact that Xenopus
oocytes are large cells [9]: while at the beginning of the life cycle they are comparable to somatic cells, in
their development they pass into a growth phase before maturation is initiated. Cell volumes reach 1 µl with
protein total amount of 25 µg.

The mathematical model we develop is based on the usual reaction kinetics of the MAPK cascade in which
an upstream kinase activates a downstream one at two residues. For this kinetics, either a mass-action law or
a Michaelis-Menten kinetics can be assumed. The kinetic model is described in more detail in Appendix A. In
this way one obtains the usual system of ordinary differential equations for the concentrations of the molecules
in the cascade, together with conservation laws for their total concentrations. In order to arrive at a spatial
model we require the following assumptions.

Assumption 1. We assume that molecular transport in the cytoplasm does not involve the action of
specialised protein machineries in the cell. This is an acceptable assumption for the Xenopus oocytes, but
cannot be generalized to somatic cells [5]. As a result of this assumption, the main mechanism of transport is
molecular diffusion.

Assumption 2. We assume that the chemical reactions (phosphorylations) in the cascade are always to be
considered as fast in the sense that at every instant in time, the cascade molecules are in chemical equilibrium.
For a cell of high protein content such as Xenopus oocytes, this is a reasonable starting assumption, which again
might not be easily generalizable to other cell types. As a consequence of this assumption, the concentrations
of all molecular species can be expressed as simple functions of the molecule at cascade entry which initializes
the signaling chain.

Based on these two assumptions, we can immediately propose a model for the transport. Let m(x, t) be the
concentration of the molecule at cascade entry, see Figure 1. For the MAPK cascade in Xenopus oocytes, this is
the molecule Mos. We then have

∂tm(x, t) −D∆m(x, t) = R[m(x, t)] (1.1)

in which the diffusion operator on the left is balanced by a reaction-term R[m(x, t)]. The form of R[m(x, t)]
can be computed exactly for a simple model of the MAPK cascade, both for the case of a linear kinetics and
a Michaelis-Menten kinetics (see Appendix A). For our present purposes, it suffices to sketch a qualitative
shape, which can be inferred from Angeli’s paper [2], see Figure 2. Here, R[m(x, t)] is written as the sum of
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two terms, one of which has a sigmoidal shape, the other of which is a linear degradation term. Thus we have

R[m(x, t)] = Σ[m(x, t)] − γm(x, t) (1.2)

with

Σ[m] =
aMm4

M4 +M2m2 +m4
, (1.3)

where a is the inverse of the characteristic time of creation of Mos, γ is the inverse of the characteristic time of
its degradation and M is the typical concentration. As it will be described in Appendix A, the expression of
the reaction term Σ[m] accounts for the feedback loop that drives the concentration of Mos depending on the
MAPK concentration.

We call the Hill exponent h the degree of the numerator and of the denominator (which are equal to obtain
the sigmoidal shape) of the non–linearity (1.3). It is linked to the number of proteins involved in the cascade,
as well as its architecture. The notion of ultrasensitivity refers to the steepness of the sigmoidal response curve
which is characteristic of a signaling cascade: a very non linear response ensures an effective response to the
signal received by the cell. The value h = 4 is typical for the MAPK cascade, but in principle (of course) other
values h > 1 are equally possible. The limiting case h = 1 corresponds to a degenerate case, a non-cooperative
cascade with Michaelis-Menten kinetics, which we do not consider in this work, since values between h = 2
and h = 6 for the MAPK-cascade have been reported by the community (h = 2.3 [10] for the cascade without
feedback, h = 5.1 in the case of feedback [14], and h = 6 for a theoretical model [27]).

We are interested in the following questions:

i) Under what conditions does the system have three stationary states (two stable, one unstable)?
ii) Under what conditions does the system have propagating states, i.e., the build-up of a profile connecting

the two stable states and propagating from the cell surface to the nucleus?
iii) How does the propagation of the signal depend on the form of the non-linearity, and how does it depend

on the chosen initial/boundary condition?
iv) What is the selected propagation speed?

As we shall see in the next Section, by rendering the problem (1.1)–(1.3) dimensionless we extract a single
significant parameter, denoted by α, which governs the dynamics. In Section 3, we will prove that there exists
a constant αc such that for any α > αc there exist three stationary states : 0 < aα < bα. The dependence of aα
and bα on α is also explored. The stability of these stationary states is studied:

a) aα is unstable (Lemma 3) and 0 is locally stable (Theorem 2);
b) for bα no such precise result is obtained: we can exhibit sufficient conditions for stability on the initial

condition (Theorem 3) and on the boundary condition (Theorem 4). In short, one has to inject enough
mass into the system in order to reach the stationary state bα. However, one has to point out that these
conditions are not explicit enough to be numerically tractable.

Next, we investigate the existence of profiles connecting the stationary states: in Section 4, we prove the
existence of a trajectory Tc∗ connecting the two stationary states 0 and bα, linked to an asymptotic speed of
propagation c∗ which depends only on the non–linearity. It is independent of either the initial condition or the
boundary condition. Note that in our case, we do not have an explicit formula for the asymptotic velocity as
a function of the parameters. Theorem 6 shows the existence of a wave front with velocity c∗ connecting the
two stationary states 0 and bα provided that the conditions evoked in b) are satisfied. Eventually, we show
numerical simulations in Section 5.1 exploring the behavior of the solution for several boundary and initial
conditions. In Section 5.2 we compute numerically the asymptotic velocity c∗ and describe its dependence on
the parameter α and the Hill exponent h.
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2 Dimensionless equations

In order to complete the mathematical analysis of the problem, let us write the problem (1.1)–(1.3) in a
dimensionless way. Note that the constants a and γ have the same dimension, that is, inverse time. In the same
way, M has the same dimension as m. As usual, the diffusion constant D is homogeneous to the square of a
length divided by a time. We set now:

t̄ = γt, m̄ =
m

M
, x̄ =

√

γ

D
x, α =

a

γ
.

Omitting the overlines the system takes the following dimensionless form:

∂tm − ∆m = zα(m) −m, (2.1)

where

zα(m) =
αm4

m4 +m2 + 1
. (2.2)

Note that in this dimensionless form all the information is contained in the parameter α. Thus from now, the
discussion will mainly concern this parameter α. The problem (2.1) is set on t ≥ 0 and x ∈ [0, L]. Biologically, L
represents the distance between the cell membrane and the nuclear membrane. Hence the problem has to be
completed by an initial condition:

m(x, 0) = m0(x) on [0, L] (2.3)

and boundary conditions:

– At x = 0, we have
m(0, t) = ψ(t)

– At x = L < ∞we choose a no-flux condition so that we impose ∂xm(x = L) = 0 (Neumann condition).

However for the convenience of mathematical analysis we simply set L = +∞.

3 Stability analysis

From now on, we note
fα(m) = zα(m) −m.

3.1 Preliminary remarks

A plot of the two functions m 7→ zα(m) and m 7→ m reveals, under conditions to be detailed below, three
intersections. These correspond to stationary states of the kinetics for homogeneous profiles m. Two of the
states, for small and large values of m, are stable, while the intermediate state is unstable. The profile of
R[m(x, t)] thus corresponds to the reaction term of a bistable system (see [22]).

If we plot the curve corresponding to the function z : m 7→ zα(m) and the line y = m , see Figure 2 we note
that these two curves can have one or three distinct intersection points depending on the value of α.

Let us now evaluate α0 such that if α > α0 then there exist three stationary points. Let us denote

fα(m) =
m

1 +m2 +m4
(αm3 − (1 +m2 +m4))
︸                      ︷︷                      ︸

Pα(m)

,
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y = m

m

zα1
(m)

zα2
(m)

Fig. 2 Functions zα1
and zα1

with α1 > α2 and the line y = m.

thus
P′α(m) = 3αm2 − (2m + 4m3) = m(−4m2 + 3αm − 2).

It is easy to see that if f has three non negative roots, then necessarily ∆ = 9α2 − 32 > 0. Thus, denoting
0 < m1 < m2 the three non negative roots of P′α(m), a sufficient condition to have three stationary points is
fα(m2) > 0. Numerically we find:

α0 = 2.463.

In case of α > α0, fα vanishes at 0, aα and bα.

(a) α = 2 < α0 (b) α0 < α = 2.6 < α0 (c) α = αc (d) α = 4 > αc

Fig. 3 Function −Fα for three different values of α

We set

Fα(x) :=

∫ x

0

fα(u) du = αx − x2

2
− α 1
√

3

(

arctan

(

2
√

3

(

x +
1

2

))

+ arctan

(

2
√

3

(

x − 1

2

)))

. (3.1)

The quantity −Fα is naturally interpreted as a mechanical potential of the system. Figure 3 represents the
shape of the potential in the three different cases α < αc, α = αc, α > αc and makes the stable states appear,

where αc > α0 satisfies : Fαc
=

∫ bαc

0

fαc
(u) du = 0. Numerically we find :

αc = 2.878. (3.2)

For further purposes, we impose
∫ bα

0

fα(u) du > 0. (3.3)
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Referring to Figure 3, this condition means that the stable state bα has negative and minimal energy (−Fα(bα) <
0). Thanks to this condition we have:

∃κα ∈ (aα, bα) s.t. Fα(κα) =

∫ κα

0

fα(u) du = 0, (3.4)

and then ∀q ∈ (κα, bα), Fα(q) > 0 and F′α(q) = fα(q) > 0.

Thanks to Ferrari’s formula we can give an explicit equivalent of the largest root of fα that we denote bα.
After a simple computation we find out that

bα ∼ α,

and thus we get:

κα ∼
α2

2
.

From this point on, we will omit the index α.

3.2 Study of the initial-boundary value problem (2.1)–(2.3) in the quarter-space R+ ×R+

The problem (2.1)–(2.3) is rewritten just below:





mt = ∆m + f (m) in R+ ×R+,
m(x, 0) = m0(x) in R+,
m(0, t) = ψ(t) in R+,

(3.5)

where ψ is a given function, 0 ≤ ψ ≤ b. We assume the following compatibility condition on the data

ψ(0) = m0(0).

3.2.1 A maximum principle.

Two lemmas are very useful to the study of (3.5). They are given here without any proof, referring for more
details to [3]. Lemma 1 is a version of the maximum principle.

Lemma 1 Let u : R × [0,T] −→ [0, b] and v : R × [0,T] −→ [0, b] satisfy the inequalities

∂tu − ∆u − f (u) ≥ ∂tv − ∆v − f (v) in (x1, x2) × (0,T]
0 ≤ v(x, 0) ≤ u(x, 0) ≤ b in (x1, x2)

where −∞ ≤ x1 < x2 ≤ +∞ and 0 ≤ T ≤ ∞. Moreover, if x1 > −∞, assume that

0 ≤ v(x1, t) ≤ u(x1, t) ≤ b on [0,T]

and if x2 < ∞ assume that

0 ≤ v(x2, t) ≤ u(x2, t) ≤ b on [0,T] .

Then u ≥ v, and if u(x, 0) > v(x, 0) in an open sub–interval of (x1, x2) then u > v, in (x1, x2) × (0,T].



8

Lemma 2 Let q : R −→ [0, b] be a solution of the equation q′′+ f (q) = 0 in (x1, x2) with x1 > 0, and let q(x1) = q(x2) = 0.
Let v(x, t) denote the solution of the initial–boundary value problem

∂tv = ∆v + f (v) in R
+ ×R+

v(x, 0) =

{

q(x) in (x1, x2)
0 in R+\(x1, x2)

v(0, t) = φ(t) in R
+,

where φ is supposed nondecreasing and such that φ(0) = 0 and 0 ≤ φ ≤ b. Then v is nondecreasing with respect to t and

lim
t→∞

v(x, t) = τ(x)

where τ is the smallest nonnegative solution of

τ′′ + f (τ) = 0 in R
+

which satisfies the inequalities

τ(0) ≥ lim
t→∞

φ(t) and τ(x) ≥ q(x) in (x1, x2).

Moreover, the convergence of v to τ is uniform on any closed and bounded interval in the interior of R+.

3.2.2 Stability and threshold results

In our case, since f ′(0) < 0, we will see that we need a minimal amount of mass injected in the system through
the boundary to reach the stable stationary point m = b. In this section, we give two results : the first one
shows that if the boundary condition is too small in L∞–norm then the solution of (3.5) tends uniformly to
zero as t tends to infinity. The second shows that if the boundary condition combines a long enough support
and a not too small value on this support then we observe a wave front.

For ν ∈ [0, κ) (where κ is defined at (3.4)), let us denote qν a solution of

q′′ν + f (qν) = 0 in R
+, (3.6)

with qν(0) = ν. In our case there is a solution of (3.6) such that

lim
x→∞

qν(x) = 0.

In fact, choosing q′ν(0) = −
√

−2F(ν), where F is the primitive of f which vanishes at 0 (see (3.1)), one can prove
using the first integral

1

2
q′2ν + F(qν) = 0

that qν converges to zero.

Theorem 1 Let m : R+ ×R+ −→ [0, b] be the solution of the problem (3.5) with m0 ≡ 0. If

ν = sup
t∈R+

ψ(t) < κ,

then m(x, t) ≤ qν(x). In particular,
lim
x→∞

lim sup
t→∞

m(x, t) = 0.
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Proof It is a consequence of Lemma 1.
⊓⊔

The following Lemma shows that the stationary states a and 0 are such that a is unstable and 0 is locally
stable.

Lemma 3 Let m : R+ ×R+ −→ [0, b] be a solution of (3.5) in R+ × R+ and f (u) < 0 in (0, γ]. If m0 : R+ −→ [0, γ]
and sup

R+
ψ(t) ≤ γ, then

lim
x→∞

lim sup
t→∞

m(x, t) = 0.

Proof Step1: Let w be solution of

∂tw = ∆w + f (w) in R+ ×R+,
w(x, 0) = γ in R+,
w(0, t) = γ in R+.

Applying Lemma 1 we get m(x, t) ≤ w(x, t) in R+ ×R+.
Step 2: Since f (0) = f (a) = 0, Lemma 1 shows that 0 ≤ w(x, t) ≤ a in R+ ×R+. Furthermore note that f ≤ 0

on [0, a] thus

∂tw − ∆w ≤ ∂tw − ∆w − f (w) = 0 = ∂tu − ∆u,

where u ≡ γ in R+ ×R+. Applying again Lemma 1, we get w(x, t) ≤ γ in R+ ×R+.

Step 3: Note that on [0, γ], f (x) ≤ −
∣
∣
∣
∣
∣

f (γ)

γ

∣
∣
∣
∣
∣
x = : −Cγx with Cγ > 0. Let v be the solution of

∂tv = ∆v − Cγv in R+ ×R+,
v(x, 0) = γ in R+,
v(0, t) = γ in R+.

Using again Lemma 1, we show that w(x, t) ≤ v(x, t) thus m(x, t) ≤ v(x, t) in R+ ×R+.

Step 4: Finally, v̄(x, t) = eCγt
(

v(x, t) − γe−
√

Cγx
)

is the solution of

v̄t = ∆v̄ in R+ ×R+,
v̄(x, 0) = γ

(

1 − e−
√

Cγx
)

in R+,

v̄(0, t) = 0 in R+.

It is easy to see that v̄(x, t) ≤ γ in R+ ×R+, thus lim
t→∞

v(x, t) − γe−
√

Cγx
= 0 and we conclude that

lim
x→∞

lim sup
t→∞

m(x, t) = 0.

⊓⊔

For any ρ ∈ [0, a) we define

s(ρ) = sup

{

f (u)

u − ρ , u ∈ (a, b)

}

Notation 1 In what follows we shall use the following usual notation:

[u]+ = max (u, 0).
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Theorem 2 Let m(x, t) : R+ ×R+ 7→ [0, b] be the solution of (3.5). Suppose that for some T ∈ R+ and some ρ ∈ (0, a),

ψ(t) ≤ ρ in (T,∞) (3.7)

and

es(ρ)T





√

e s(ρ)

4π(s(ρ)T + 1)

∫ ∞

0

[
m0(y) − ρ]+ dy + s(ρ)

√

e

2π

∫ T

0

e−s(ρ)t [ψ(t) − ρ]+ dt




< a − ρ (3.8)

Then

lim
x→∞

lim sup
t→∞

m(x, t) = 0.

Proof Fix ρ ∈ [0, a).
Step 1 : Construction of an upper–solution w. Let w(x, t) be the solution of





∂tw = ∆w + s(ρ)w in R+ ×R+,
w(x, 0) =

[
m0(x) − ρ]+ in R+,

w(0, t) =
[
ψ(t) − ρ]+ in R+.

Using Lemma 1 we get w ≥ 0 and then w = [w]+. Since s(ρ) > 0 and f (u) < 0 in (0, a) we have f (m) ≤ s(ρ)[m−ρ]+.
Let v(x, t) := m(x, t) − ρ, then

∂tv − ∆v − s(ρ)[v]+ ≤ mt − ∆m − f (m) = 0 = ∂tw − ∆w − s(ρ)[w]+.

Using Lemma 1 again we get v(x, t) ≤ w(x, t).
Step 2 : There exists η such that w + ρ ≤ η < a. Let us define for (x, t) ∈ R+ ×R+,

w̄(x, t) := w(x, t)e−s(ρ)t

and

W(x, t) = w̄(x, t) − [
ψ(t) − ρ]+ e−s(ρ)t.

Then W satisfies




Wt − ∆W = −∂t

([
ψ(t) − ρ]+ e−s(ρ)t

)

in R+ ×R+,
W(x, 0) =

[
m0(x) − ρ]+ − [

ψ(0) − ρ]+ in R+,
W(0, t) = 0 in R+.

Let us now extend function W to R as an odd function:





W̄t − ∆W̄ = −∂t

([
ψ(t) − ρ]+ e−s(ρ)t

)

sg(x) in R+ ×R,
W̄(x, 0) =

([
m0(sg(x)x) − ρ]+ − [

ψ(0) − ρ]+
)

sg(x) in R,

W̄(0, t) = 0 in R+.

where

sg(x) =

{

1 if x ≥ 0
−1 if x < 0

Note that

∀x ∈ R+, W̄(x) =W(x).
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Omitting the overlines and using the heat kernel, the solution reads as follows:

W(x, t) =

∫

R

e−
|x−y|2

4t

√
4πt

([
m0(sg(y)y) − ρ]+ − [

ψ(0) − ρ]+
)

sg(y) dy

−
∫ t

0

∫

R

e−
|x−y|2
4(t−σ)

√

4π(t − σ)
∂t

([
ψ(σ) − ρ]+ e−s(ρ)σ

)

sg(y) dy dσ.

Let us denote g(σ) =
[
ψ(σ) − ρ]+ e−s(ρ)σ, and after an integration by parts, we get:

W(x, t) =

∫

R

e−
|x−y|2

4t

√
4πt

[
m0(sg(y)y) − ρ]+ sg(y) dy +

∫ t

0

∫

R

e−
|x−y|2
4(t−σ)

8
√
π(t − σ)3/2

(

−
|x − y|2
t − σ + 2

)

sg(y) dy g(σ) dσ

= I1(t) +

∫ t

0

I2(σ)g(σ) dσ.

Let us find an upperbound for I1:

I1(t) =

∫

R

e−
|x−y|2

4t

√
4πt

[

m0(sg(y)y) − ρ]+ sg(y) dy

=

∫ ∞

0

e−
|x−y|2

4t

√
4πt

[
m0(y) − ρ]+ dy −

∫ 0

−∞

e−
|x−y|2

4t

√
4πt

[
m0(−y) − ρ]+ dy

≤
∫ ∞

0

e−
|x−y|2

4t

√
4πt

[
m0(y) − ρ]+ dy

≤ 1√
4πt

∫ ∞

0

[
m0(y) − ρ]+ dy.

In particular,

I1

(

T +
1

s(ρ)

)

≤

√

s(ρ)

4π(s(ρ)T + 1)

∫ ∞

0

[
m0(y) − ρ]+ dy.
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Let us compute the integral in space I2:

I2 =

∫

R

e−
|x−y|2
4(t−σ)

8
√
π(t − σ)3/2

(

−
|x − y|2
t − σ + 2

)

sg(y) dy

=

∫

R+

e−
|x−y|2
4(t−σ)

8
√
π(t − σ)3/2

(

−
|x − y|2
t − σ + 2

)

sg(y) dy −
∫

R−

e−
|x−y|2
4(t−σ)

8
√
π(t − σ)3/2

(

−
|x − y|2
t − σ + 2

)

sg(y) dy

=

∫ x

2
√

t−σ

−x
2
√

t−σ

1

2
√
π
√

t − σ
e−z2

(4z2 + 2) dz

=

[

ze−z2

√
π(t − σ)

] x
2
√

t−σ

−x

2
√

t−σ

≤ e−1/2

√
2π(t − σ)

.

Finally, thanks to (3.7) we get

∫ T+ 1
s(ρ)

0

I2(σ)g(σ) dσ ≤
s(ρ)
√

2eπ

∫ T

0

e−s(ρ)t [ψ(t) − ρ]+ dt.

To conclude, we have

W

(

x,T +
1

s(ρ)

)

≤

√

s(ρ)

4π(s(ρ)T + 1)

∫ ∞

0

[
m0(y) − ρ]+ dy +

s(ρ)
√

2eπ
)

∫ T

0

e−s(ρ)t [ψ(t) − ρ]+ dt,

which, thanks to (3.8), leads to

∃η < a, s.t. w(x, t) < η − ρ (x, t) ∈ R+ ×R+.

We conclude by using Lemma 3. ⊓⊔

For any β ∈ (κ, b), where κ is defined at (3.4), we define the length

ℓβ = 2

∫ β

0

1
√

2(F(β) − F(u))
du. (3.9)

Finally, let qβ be the solution of
q′′β + f (qβ) = 0 inR+, (3.10)

with

qβ(0) = 0 and
1

2
q′β

2
+ F(qβ) = F(β).

These conditions imply

qβ > 0, qβ(0) = qβ(ℓβ) = 0 and qβ(x) ≤ qβ

(
ℓβ

2

)

= β on (0, ℓβ)

More details can be found in Appendix B.
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Theorem 3 Let m : R+ ×R+ −→ [0, b] be the solution of (3.5). For some β ∈ (κ, b) and some x0 > 0 assume

m0(x) ≥ qβ(x − x0) on (x0, x0 + ℓβ) (3.11)

then

lim
x→∞

lim
t→∞

m(x, t) = b.

Proof Step 1: We apply Lemma 2 with q(x) = qβ(x):

let define

∂tv = ∆v + f (v),

v(x, 0) =

{

qβ(x − x0) on (x0, x0 + ℓβ)
0 on R\(x0, x0 + ℓβ),

v(0, t) = 0.

Note that Lemma 1 shows that m(x, t) ≥ v(x, t). Furthermore, according to Lemma 2, t 7→ v(x, t) is a nonde-
creasing function and

lim
t→∞

v(x, t) = τ(x),

uniformly on each bounded interval in the interior of R+, where τ is the smallest non-negative function of

τ′′ + f (τ) = 0

on R which satisfies τ(x) ≥ qβ(x − x0) on (x0,+x0 + ℓβ).
Step 2: We now prove that τ(x) < [κ, b), ∀x ∈ R. Let us assume the contrary and get a contradiction. Suppose

that

∃x0 s.t. r = τ(x0) ∈ [κ, b)

then
1

2
τ′2 + F(τ) = k ≥ F(r),

since τ′2 ≥ 0. Thus 1√
k−F(u)

is integrable on [0, r] and τ(x) is implicitly defined by the equation

x = x0 ±
∫ r

τ

du
√

2(k − F(u))
,

where the sign is determined by the sign of τ′(x0). Hence τ(x) vanishes with τ′ , 0 at a finite value of x. Then
τ cannot be nonnegative and we get a contradiction.

Step 3: Note that

τ

(

x0 +
ℓβ

2

)

≥ qβ

(
ℓβ

2

)

= β > κ,

then by continuity and because τ is the minimal solution, we get

τ(x) ≡ b,

which proves the theorem.
⊓⊔
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Theorem 4 Let m : R+ × R+ −→ [0, b] be the solution of (3.5). Let κ defined at (3.4). If for any β ∈ (κ, b) there is a
positive time Tβ such that if

ψ(t) ≥ β on (t0, t0 + Tβ) (3.12)

for some nonnegative t0, then
lim
x→∞

lim inf
t→∞

m(x, t) = b.

Proof Step 1: Let χ be a smooth function such that

χ(t) =

{

0 on (−∞, 0),
β on (1,∞).

Let w denote the solution of
∂tw = ∆w + f (w) in R ×R+,
w(x, 0) = m0(x) in R+,
w(0, t) = χ(t) in R+.

Using Lemma 2, we get
lim
t→∞

w(x, t) = τ(x),

where τ is the smallest nonnegative solution of

{

τ′′ + f (τ) = 0,
τ(0) = β and τ(x) ≥ m0(x) onR.

(3.13)

Step 2: Let us show that the problem (3.13) has only one solution since β > κ. The first integral gives us

1

2
(τ′)2 + F(τ) =

1

2
(τ′(0))2 + F(β) = k ≥ F(β) > 0.

First of all, τ cannot vanish at some point: if τ(x0) = 0, then (τ′(x0))2 > 0 which is in contradiction with τ being
nonnegative. Assume next that it exists x0 such that τ′(x0) = 0, then

∀x ∈ R, 1

2
(τ′(x))2 = F(τ(x0)) − F(τ(x)).

Furthermore F(τ(x0)) > F(β) and F is increasing for x > β. This shows that τ′ ≤ 0 on [x0 − h, x0 + h]. Finally,

∀x ∈ R, τ′ ≤ 0. This implies that τ′(x) = −
√

k − F(τ) ≤ −
√

k − F(β) and necessarily, τ vanishes at some point
which is a contradiction. Finally τ′ > 0 and then τ is increasing.
τ is increasing and bounded by b, it has a limit which is necessarily b and according to the first integral we get

τ′(0) =
√

2(F(b) − F(β)).

τ is then uniquely determined and since τ′ > 0 we have τ(x) > β on R+∗ .
Step 3: Recall the function qβ defined by (3.10). Since the convergence of w(x, t) towards τ(x) as t tends to

infinity is uniform on each bounded interval, in particular, w(x, t) converges to τ(x) uniformly on [1, 1 + ℓβ],
where ℓβ is defined at (3.9). Thus there exists a time Tβ such that

w(x,Tβ) ≥ qβ(x − 1) on [1, ℓβ + 1].

Futhermore, thanks to (3.12) ψ(t + t0) ≥ χ(t) on [0,Tβ]. Lemma 1 shows that

m(x, t + t0) ≥ w(x, t) on R
+ × [0,Tβ],
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and since

w(x,Tβ) ≥ qβ(x − 1) on [1, 1 + ℓβ],

we get

m(x,Tβ + t0) ≥ qβ(x − 1) on (1, ℓβ + 1).

Step 4: Let u be the solution of

∂tu = ∆u + f (u) in R
+ ×R+

u(x, 0) =

{

qβ(x − 1) in (1, 1 + ℓβ)
0 elsewhere

u(0, t) = χ(t)

Lemma 2 shows that lim
t→∞

u(x, t) = τ̄(x) where τ̄ is the smallest nonnegative solution of τ′′ + f (τ) = 0 which

satisfies τ̄(0) ≥ limt→∞χ(t) = β and τ̄(x) > qβ(x − 1) on (1, 1 + ℓβ) and since m(x,Tβ + t0) ≥ qβ(x − 1) in (1, 1 + ℓβ),
Lemma 1 shows that m(x, t) ≥ u(x, t).
Step 5: Finally,

lim inf
t→∞

m(x, t) ≥ τ̄(x)

which implies

b ≥ lim
x→∞

lim inf
t→∞

m(x, t) ≥ lim τ̄(x)

and since

τ̄
(

1

2
ℓβ + 1

)

≥ qβ

(
ℓβ

2

)

= β > κ

the same argument as at step 2 shows that τ̄ is increasing and tends to b as x tends to infinity. This allows to
conclude that

lim
x→∞

lim inf
t→∞

m(x, t) = b.

⊓⊔

Theorems 3 and 4 not only show that the state m ≡ 0 is unstable under compactly supported perturbations,
but that m ≡ b is stable under such perturbations. Theorems 2, 3 and 4 bring to light a threshold phenomenon:
a perturbation of bounded support of the state m ≡ 0 which is sufficiently large on a sufficiently large interval
grows to b, while a not sufficiently large perturbation tends to vanish.

The reader has to note that sufficient conditions that allow the convergence to the steady state b are either
given on the initial condition, or on the boundary condition. One can imagine that if we have a boundary
condition and an initial condition which do not fulfill the conditions (3.8), (3.11) and (3.12), but where the
initial condition is ’close enough’ to the positive boundary we can observe a convergence to the steady state b,
where ’close enough’ has to be understood in the sense that we need enough mass in a small area at the same
time. This will be investigated numerically in Section 5.1.
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4 Wave Propagation

In this section we look at solutions of (3.5) as wave fronts. To this end we introduce the coordinate

ξ := x − ct, with c > 0,

and the new function

v(ξ, t) := m(ξ + ct, t).

Then the set R+ ×R+ is mapped onto the set {(ξ, t) : ξ > −ct, t > 0}. Equation (3.5) becomes

∂tv = ∆ξv + cvξ + f (v). (4.1)

Note that both Lemmas 1 and 2 can be extended to this equation. In particular Lemma 2 is extended as follows.

Lemma 4 Let q : R+ −→ [0, b] be a solution of the equation q′′ + cq + f (q) = 0 in (ξ1, ξ2) with ξ1 > 0, and let
q(ξ1) = q(ξ2) = 0. Let v(ξ, t) denote the solution of the initial–boundary value problem

∂tv = ∆v + cvξ + f (v) in {(ξ, t) : ξ > −ct, t > 0} ,

v(ξ, 0) =

{

q(ξ) in (ξ1, ξ2)
0 in {(ξ, t) : ξ > −ct, t > 0} \(ξ1, ξ2)

v(−ct, t) = 0 in R
+.

Then v is nondecreasing in t and

lim
t→∞

v(ξ, t) = τ(ξ)

where τ is the smallest nonnegative solution of

τ′′ + cτ′ + f (τ) = 0 in R
+

which satisfies the inequalities

τ(ξ) ≥ q(ξ) in (ξ1, ξ2)

We are interested in the steady–state equation corresponding to equation (4.1), which is

q′′ + cq′ + f (q) = 0, (4.2)

that can be written as a first order system

q′ = p
p′ = −cp − f (q).

(4.3)

The functions p and q corresponding to a solution of (4.3) give a trajectory in the phase plane. Such a trajectory
satisfies

dp

dq
= −c −

f (q)

p
, for p , 0. (4.4)
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p

qbη

(a) Small values of c

p

q

∆

↑
ε

b

Tc

(b,−υ)

(b) Large values of c

Fig. 4 Trajectories for two ranges of values of c. In (b), ∆ is given by (4.5)

In the case c = 0. Each trajectory in the phase plane satisfies an equation of the form

1

2
p2 + F(q) = C.

Let fix η, κ < η < b. We have F(η) > 0. Then for any ε, 0 < ε <
√

2F(η) the trajectory through (0,−ε) satisfies

F(η) >
1

2
ε2 + F(0) =

1

2
p2 + F(q),

which implies that the trajectory is confined to the strip 0 ≤ q < η. Hence by symmetry the trajectory crosses
the p = 0 axis at (α, 0) and the q = 0 axis at (0, ε). By continuity this holds true for small velocities: there exists
c̃(ε) such that for all c ∈ [0, c̃(ε)) the trajectory crosses the p = 0 axis at (α, 0) and the q = 0 axis at (0, ε̄) with
ε̄ > 0. See Figure 4.

The case c > 0. Since in our case we always have c2 > 4 f ′(0) the eigenvalues of the Jacobian matrix of
System (4.3) are real, there is no spiral point in (0, 0) and there exists a non trivial trajectory through (0, 0). In
fact, if we seek a linear solution around the origin p = αq we find out that α should satisfy α2 + cα + f ′(0) = 0
which has a real solution if c2 > 4 f ′(0). This holds here since f ′(0) < 0. The unique trajectory through (0,−ε)
with ε > 0, cannot cross the trajectory that goes to the origin (Cauchy property). Hence if we take the limit
trajectory as ε decreases to 0 we obtain a non trivial trajectory going to the origin. We denote by Tc this extremal
trajectory.

We define

σ := sup
u∈[0,b]

f (u)

u
.

Note that σ ≥ f ′(0) and f (u) ≤ σu for u ∈ [0, b]. It follows that for any trajectory T,

dp

dq
≤ −c − σ

q

p

at any point of T where q ∈ [0, b] and p < 0. Furthermore

∆ : p = −1

2

(

c +
√

c2 − 4σ
)

q (4.5)

is a solution of
dp

dq
= −c − σ

q

p
,
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p

q

(η, 0) (η1 , 0)

T

Tc∗

Tc, c > c∗

b

Fig. 5 Case f (η) , 0

and thus the trajectory through (0,−ε), with ε > 0, lies under the line defined by (4.5). As ε tends to 0 we note
that Tc is bounded from above by the line defined by (4.5) and in particular connects the origin to a point of
the form (b,−υ) with υ > 0. (See Figure 4-b).) Thus,

c∗ := inf {c ≥ 0 : ∃υ > 0 s.t. (b,−υ) ∈ Tc} (4.6)

is well-defined. In what follows, we show that c∗ is the asymptotic speed of propagation associated to the
equation (2.1) and that the limit trajectory Tc∗ connects the origin to (b, 0).

Theorem 5 The trajectory corresponding to the asymptotic speed of propagation, Tc∗ , goes from (b, 0) to (0, 0) in the
lower phase plane.

Proof We have already shown that the trajectory Tc∗ exists and lies in the half–strip q ∈ [0, b], p ≤ 0 at least in
a neighbourhood of the origin. Tc∗ is minimal in the sense that there is no other trajectory which reaches the
origin and lies below Tc∗ .

Step 1: We first show that Tc∗ must cross the (p = 0) axis at some point η with f (η) = 0. Suppose that Tc∗

does not cross the (p = 0) axis, then it holds true for slightly smaller values of c which contradicts the definition
of c∗. Hence Tc∗ crosses the (p = 0) axis at some point (η, 0) with η ∈ (0, b]. Suppose f (η) , 0 then necessarily

f (η) > 0 : in fact Tc∗ must go in the negative q–direction as p < 0 (see (4.3)) which implies that −c−
f (q)

p
should

be positive as (q, p) tends to (η, 0) which is true only if f (η) > 0. Then there exists η1 such that f (η1) > 0 and
η1 > η. The part of the trajectory T, that goes through (η1, 0) lies below Tc∗ and crosses the (q = 0) axis at (0,−υ)
with υ > 0. By continuity, Tc for c slightly greater than c∗, will be bounded from below by T and can not cross
the half line q = b, p < 0 which contradicts the definition of c∗. (See Figure 5.) We conclude that Tc∗ hits the axis
(p = 0) at a point (η, 0) where f (η) = 0.

Step 2: Let us show now that η = b. Since the trajectory nearby the origin lies in the half–plane p < 0 and,

according to (4.4), if f (q) < 0 then the slope of Tc∗ is negative and the trajectory can not cross the (p = 0) axis at
a zero of f which is the right end point of an interval where f is negative. Thus Tc∗ must hit the (p = 0) axis at
(b, 0).

⊓⊔

Theorem 6 Let m(x, t) : R+ ×R+ 7→ [0, b] be the solution of (3.5). The asymptotic velocity c∗ is defined as in (4.6).
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a) If for some x0 > 0, m0(x) = 0 holds for x ≥ x0, then for any c > c∗ and any real ξ

lim
t→∞

m(ξ + ct, t) = 0.

b) If lim
x→∞

lim inf
t→∞

m(x, t) = b, then for any c ∈ (0, c∗) and any real ξ

lim
t→∞

m(ξ + ct, t) = b.

Proof Let us prove point a).
Step 1: Let qc(x) denote the solution of the steady state equation (4.2) inR+ which corresponds to the trajectory

Tc. Since q′c = p (see (4.3)) and p is nonpositive along Tc, qc is decreasing and has a limit as x tends to zero
which is necessarily 0. Let us define w = b −m. To prove the result we are going to show that the limit of w as
t tends to infinity is larger than b. The function w satisfies

∂tw = ∆w − f (b − w).

We apply the extension of Lemma 1 and 2 with q = b − qc(x − x0) in (x0,∞). First Lemma 1 shows that

b − qc(ξ − x0) ≤ w(ξ + ct, t) in (x0,∞) ×R+.

Let us define then the function v such that

∂tv = ∆ξv + cvξ + f (v) in {(ξ, t) : ξ > −ct, t > 0}

and

b − v(ξ, 0) =

{

b − qc(ξ − x0) in (x0,∞)
0 in R\(x0,∞)

Again using Lemma 1, we get

b − v(ξ, t) ≤ w(ξ + ct, t) in (x0,∞) ×R+.

Futhermore, Lemma 4 shows that
lim
t→∞

v(ξ, t) = τ(ξ),

where b − τ(ξ) is the smallest nonnegative function of

τ′′ + cτ′ + f (τ) = 0 in R,

which satifies the inequality
b − τ(ξ) ≥ b − qc(ξ − x0) in (x0,∞). (4.7)

Finally, it proves that
lim inf

t→∞
(b −m(ξ + ct, t)) ≥ b − τ(ξ). (4.8)

Step 2: We must show now that τ(ξ) ≡ 0. For any c > 0 the slope of trajectory Tc is s− at the origin, where

s− =
1

2

(

−c −
√

c2 − 4 f ′(0)
)

.

Moreover, Tc is the unique trajectory with this slope at the origin and any other trajectory which approaches
the origin with q > 0 must have the slope

s+ =
1

2

(

−c +
√

c2 − 4 f ′(0)
)
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at the origin.
Since c > c∗, the trajectory Tc stays in the half–plane p < 0 for q ∈ (0, b] and contains a point (b,−υ) with

υ > 0. Suppose that τ(ξ) . 0. Then the corresponding trajectory has either the slope s+ or s− at the origin. But
it follows from (4.7) that the trajectory T should stay on the left of Tc in particular at the origin. Since Tc has
the slope s−, we deduce that necessarily T has also the slope s− at (0, 0) and by uniqueness T ≡ Tc. This leads
us to a contradiction because there exists ζ ∈ R such that τ(ζ) = b and τ′(ζ) = −υ < 0. Hence τ(ξ) > b for some
ξ < ζ and this contradicts the nonnegativeness of the function b − τ. We conclude that τ ≡ 0.

Step 3: The equation (4.8) and the positiveness of m prove the first part of the theorem.

Let us now prove point b).
Step 1: There exists a trajectory T that goes from a point on the positive p–axis to a point (β, 0) and from there

to a point on the negative p–axis.
The proof of theorem 5 shows that Tc∗ goes from (b, 0) to (0, 0) in the lower phase plane. Consider any

c < c∗. Because of equation (4.4), the trajectory Tc lies above Tc∗ and crosses the q–axis at a point (η, 0), with

η ∈ (0, b). Then if β ∈ (κ, b) (thus

∫ β

0

f > 0), with κ defined in (3.4), the lower part of the trajectory T through

(β, 0) stays below Tc. Therefore, T goes to the negative p–axis. Since f is postive nearby u = β, the slope of T
is negative in the upper half–plane in a neighborhood of (β, 0). Moreover, the slope is bounded from below
when p is bounded away from zero. Therefore the trajectory does not go to infinity. From equation (4.4), we
get:

dp

dq
≤ −

f (q)

p

which leads to the following inequality:

∫ β

q0

f (q) dq ≤ p2(q0), ∀q0 ∈ (0, β), p > 0.

As a consequence the trajectory T cannot cross again the q–axis and necessarily it crosses the positive p–axis.
Step 2 : We have shown that for each c ∈ (0, c∗) there is a trajectory T which connects the positive p–axis

to the negative p–axis. T crosses the q–axis at a point (β, 0) with β ∈ (κ, b), and lies in the strip q ∈ [0, β]. Let
qβ be the corresponding solution of q′′ + cq′ + f (q) = 0 for which qβ(0) = 0, q′β(0) > 0. This solution is positive

on a finite interval (0, δ) and qβ(δ) = 0. Moreover, qβ(x) ≤ β < b. Since we suppose that lim
x→∞

lim inf
t→∞

m(x, t) = b,

uniformly on each interval, there is a time θ and a constant A so that

m(x, θ) ≥ β ≥ qβ(x) on [A,A + δ].

Recalling that v(ξ, t) = m(ξ + ct, t), the previous property can be writen as follows:

v(ξ, θ) ≥ β ≥ qβ(ξ) on [A − cθ,A + δ − cθ].

We apply Lemma 4 with q(ξ) = qβ(ξ) : let define

∂tv̄ = ∆v̄ + cv̄ξ + f (v̄), in {(ξ, t) : ξ > −ct, t > 0}

v̄(ξ, θ) =

{

qβ(ξ) on (A − cθ,A + δ − cθ)
0 on R\(A − cθ,A + δ − cθ).

Then

lim
t→∞

v̄(ξ, t) = τ(ξ),
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uniformly on each bounded interval, where τ is the smallest nonnegative function of

τ′′ + cτ′ + f (τ) = 0

on R which satisfies τ(ξ) ≥ qβ(ξ) on (A − cθ,A + δ − cθ). Furthermore, note that according to the extension of
Lemma 1 we have

v(ξ, t) ≥ v̄(ξ, t).

Step 3 : We show now that τ ≡ b. Suppose that the trajectory corresponding to τ, denoted by Tτ, crosses the

q–axis at one point (ητ, 0), with β ≤ ητ ≤ b. Then similar arguments as in Step 1 show that Tτ connects the
positive p–axis to the negative p–axis. Thus there exists ξ0 such that τ(ξ0) = 0 and τ′(ξ0) > 0 which is in
contradiction with τ being nonnegative. Thus, τ ≡ b, and since we suppose m(x, t) ≤ b, we end up with:

lim
t→∞

m(ξ + ct, t) = lim
t→∞

v(ξ, t) = b.

⊓⊔

5 Numerical Study of the Wave Propagation

In this last part of the paper we show numerical simulations of the system in Section 5.1 exploring the
behavior of the solution for several boundary and initial conditions. In Section 5.2 we compute numerically
the asymptotic velocity c∗, and describe its dependence with respect to the parameter α and the exponent h.

5.1 Approximation of the solution

We compute the solution using a Crank–Nicolson scheme. It is an unconditionally stable scheme of order 2 in
space and time. Throughout this Section, we set α = 4 > αc defined at (3.2).

Following Theorem 1 the appearance of a front should depend on the value of supt ψ(t). The value of
κ, which itself depends on α as defined in (3.4), has a significant influence on the behavior of the system.
In Figure 8, we plot the graph of the function κ : α 7→ κ(α) for several values of the Hill exponent, and in
particular for h = 4. We observe that this function is decreasing: κ increases with the degradation term (which
is proportional to 1/α). This is relevant biologically : the amount of mass needed to observe a wave front is
reduced when the degradation rate goes down. For the simulation of the wave front formation, we choose
α = 4, which leads to κ = 1.24. In Figure 9, we illustrate the threshold phenomena stated in Theorem 1. For
these simulations the shape of the boundary data are the same but we make the sup-norm ψmax vary. The
critical value is slightly above 1.2: for ψmax = 1.3 we indeed observe the formation of the front propagating
faster for larger ψmax, see Figure 9-(c). On the contrary for ψmax = 1.2 the solution looks stationary and does
not propagate into the domain, even when continuing the simulation for long times, Figure 9-(b).

Now Theorem 4 suggests that even when the hypothesis supt ψ(t) > κ is fulfilled, the support of ψ must
be long enough. This is confirmed numerically : see Figure 10, where, by contrast to the previous example, we
consider compactly supported data. Reducing the size of the support, the signal can be completely damped,
as shown in Figure 10-b), by contrast to Figure 10-c) where the support of the data is larger.

Theorem 3 states that in case of an homogeneous Dirichlet boundary condition, the initial condition has
to be large enough to ensure the appearance of a wave front. This is confirmed by the results in Figure 11.
Note that we chose a Gaussian initial profile, because from our point of view it is biologically relevant. We
observe that the output, i.e. the existence of a wave front or not, depends on the initial mass. However a single
criterion, like the L∞-norm or the total mass, does not contain all the necessary information to decide whether
or not the signal propagates. We consider data with the same mass but having different shapes and we observe
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different behaviors. The shape of the initial condition has an influence on the output of the cascade, as revealed
by Figures 12.

Next, we combine both positive boundary and initial conditions (see Figure 13). The reader has to note
that there is a delay due to the time needed by the mass located in the boundary to reach the initial condition
(compare for instance the first two curves of Figure 13). This illustrates in particular our comment on the idea
to be ’close enough’ at the end of Section 3, page 15.

For the sake of grouping the numerical experiments, we present them at the very end of this paper.

5.2 Asymptotic velocity

5.2.1 Estimation of the asymptotic velocity

In this section we wish to evaluate numerically the asymptotic velocity defined by (4.6). The method we use
is a finite–difference discretization combined to Newton’s method.

At first, the trajectories in the phase plane are given by Equation (4.4), but one should note that the right–
hand side of (4.4) is not defined in (0, 0). Nevertheless, we know the slope of the trajectory at the origin (see
the proof of Theorem 6 a), Step 2). This is why we choose to solve numerically:





dp

dq
= −c∗ −

f (q)

p
if p , 0,

dp

dq
(0) =

1

2

(

−c∗ −
√

c∗2 − 4 f ′(0)
)

p(0) = p(b) = 0

(5.1)

We discretize (5.1) by introducing a regular grid

0 = q0 < q1 < · · · < qN < qN+1 = b, with qi+1 − qi = ∆q =
b

N + 1
, N ∈N.

We use the following forward 1st–order discretization of (5.1) :

p1

∆q
=

dp

dq
(p0) =

1

2

(

−c −
√

c2 − 4 f ′(0)
)

,

pi+1 − pi

∆q
=

dp

dq
(pi) = −c −

f (qi)

pi
for i = 1 . . .N − 1,

−pN

∆q
=

dp

dq
(pN) = −c −

f (qN)

pN
.

This leads to the following non linear system:

AP = B, (5.2)
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Fig. 6 Convergence to the asymptotic velocity with respect to the size of the grid (left) and behavior of the asymptotic velocity c⋆

with respect to the parameter α for several values of the Hill exponent h = 2, 3, 4, 6 (right)

where

A =
1

∆q





1 0 . . . 0

−1 1
. . .

0
. . .

. . .
. . .

...
...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

. . . −1 1
0 . . . 0 1





∈MN+1,N , P =





p1

p2

...

...

...
pN





∈ MN,1 and B(P, c∗) =





1

2

(

−c∗ −
√

c∗2 − 4 f ′(0)
)

−c∗ −
f (q1)

p1

−c∗ −
f (q2)

p2
...
...

...

−c∗ −
f (qN)

pN





∈ MN+1,1.

Note this system is not square. To compute the solution (c∗,P) solution of (5.1) we use a Newton procedure
combined with a dichotomy procedure to initialize reasonably well. Because the finite–difference discretization
we use is of order 1, at the convergence of the Newton method, which is quadratic by the way, we get an error
of order ∆q. To confirm this convergence rate, we plot in Figure 6-a) the logarithm of the error as a function of
the logarithm of the size of the mesh. Using a linear regression, we find out a numerical order of convergence
of rnum = 1.22.

5.2.2 Dependency of the asymptotic velocity on the parameter α

In Figure 6-b), we plot the asymptotic velocity as a function of α, for various values of the Hill exponent h.
The velocity is increasing with α, this is relevant from a biological viewpoint: the asymptotic velocity goes up
when the degradation is reduced.
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5.3 Influence of the Hill exponent

We want now to compare the results for several values of the Hill exponent h. We refer in particular to the
discussions about the Hill exponent in [11]. Recall that until now, we have been working with h = 4, considered
as the typical Hill exponent for the MAPK cascade. For h = 2 the non–linearity (see (2.2)) reads as follows:

zα(m) =
αm2

m2 + 1
.

Values of the Hill coefficient between 2 and 6 have been reported for the MAPK cascade in Xenopus oocytes,
see the discussion the introduction [10,14,27]. Note that h = 2 appears in other biological models such as
the calcium–stimulated–calcium–release mechanism which happens from calcium sites on the membrane
enclosing certain fertilized amphibian eggs [24]. It makes sense to consider the case where the Hill coefficient
is 3, since MEK can be activated by Raf in a single step within scaffold protein KSR (the so-called processive
phosphorylation) but Erk is activated by activated MEK in the cytosol in a process of two phosphorylations
(the so-called distributive phosphorylation). Then we set for this case

zα(m) =
αm3

m3 +m + 1
.

Cases h = 2, h = 3 and h = 4 are thus biologically relevant. To complete our simulations we choose to test the
case h = 6 with the non–linearity defined as follows:

zα(m) =
αm6

m6 +m3 + 1
.

Figure 7-a) displays the shape of the functions m 7→ zα(m) for the four values of the Hill exponent h = 2, h = 3,
h = 4 and h = 6. For h = 2, 4, 6, the slope becomes steeper as h increases. It would be tempting to correlate the
steepness of these curves to the properties of the wave front: velocity of the wave front and speed of the change
of state can be expected to vary monotonically with h (typically, the smaller h, that is when the slope is less
steep, the slower the wave front would be the naive belief). We shall see that such a deduction is erroneous.
Observe furthermore that the steepness of the slope does certainly not vary monotonically with respect to h,
as revealed by considering the case h = 3. Monotonicity properties would indeed require some conditions on
the reactions of lower degree involved in the denominator of the function zα(m).

Firstly, we plot the behavior of κ as a function of α for h = 2, h = 3, h = 4 and h = 6 (Figure 8). As one can
see, the value of κ is lower for h = 2 than for h = 3 and h = 4. This means that the amount of mass needed to
trigger the wave front is lower for h = 2 than for h = 3 and h = 4. Isolating this property is important since
checking this consequence of the modeling could be accessible to experiments and the comparison would
help in validating the proposed equation. The results obtained with h = 6 however indicate that κ is not
a monotone function of h. Similarly, the variation of the speed cannot be related to compared steepness of
m 7→ zα(m).

Secondly, we plot the asymptotic velocity as a function of α for h = 2, h = 3, h = 4 and h = 6 (Figure 6-b)).
What could be surprising is that the asymptotic velocity c∗, which is the speed of signal propagation, is lower
for h = 4 than for h = 2. The asymptotic velocity is not monotone with respect to h, nor with the steepness of
zα.

Thirdly, to precise the comparison for different Hill exponents we plot in Figure 7-b) the time it takes,
when the asymptotic velocity is reached, to switch from the stationary state m ≡ 0 to m ≡ b. To this end we
define the quantity ∆ as follows:

∆ = z−1
α (0.99 · α) − z−1

α (0.01 · α).

We plot in Figure 7-b) the quantity

t =
∆

c∗
, (5.3)
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which is expected to be proportional to the switch time. It should at least be a function of the Hill exponent h,
characteristic of the state transition. Again we note that this quantity is not monotone with respect to h.

(a) zα (b) Switch time

Fig. 7 Behavior of the switch time ∆/c⋆ (see (5.3)) with respect to α (left) and function m 7→ zα(m) (right) for several values of the
Hill exponent h = 2, 3, 4, 6 (left).

Fig. 8 Behavior of κ (see (3.4)) with respect to α for several values of the Hill exponent h = 2, 3, 4, 6.

6 Conclusion and perspectives

In this work, we proposed a simplified model for signal propagation in the MAPK cascade. It reduces the
problem to a reaction-diffusion equation for the molecule Mos in the case of Xenopus oocytes. In this approach,
the propagation of the downstream molecules of the cascade is slaved to the diffusion of Mos.

While certainly a strong simplification of the dynamics of the cascade, our model has allowed us to study
a number of questions by analytic means and numerical approaches. While the model is too simplified to



26

allow a direct comparison with experiment, its study has provided us with a number of key insights that
merit further investigation in more elaborate models. Two results deserve special mention in this context.
Firstly, the role of the nonlinearity in the reaction term, hence the ultrasensitive response. The propagation
speed depends on this nonlinearity, but in an non-intuitive way. There is no direct correlation between the Hill
exponent h and the asymptotic speed of propagation. Definitely the speed of propagation is not monotone
with respect to h (and the propagation speed is less for h = 4 than for h = 2). We do not wish to speculate too
far about the possible biological consequences this fact might have. In any case it can be taken as an indication
that optimization of the speed of the propagating front is not a design criterion for the signalling chain.

Secondly, and in our view even more intruiging, is the role played by the boundary and initial conditions.
We have found that the propagation depends quite sensitively on the details of these conditions. In particular,
deciding whether or not the signal propagates cannot be embodied in a single parameter (say the L∞ or the L1

norm of the signal).
In our view, those findings point to an important feature that has so far not been present in the discussion

of the functioning of the MAPK cascade in Xenopus oocytes. These discussions have largely been focused
around bistability —– indeed, a precondition for all our discussion —– and ultrasensitivity. Our result hints
at another dimension of the signaling process : how the molecular concentration at signal input is distributed
has an effect on signal propagation. Since the MAPK cascade can be initiated by progesterone in the oocyte,
it might be an interesting suggestion to see whether and how spatial variations in the initial or boundary
conditions might be realised and studied experimentally, and what effects they entail.

The question of the possible role of different initial or boundary conditions is of obvious biological
importance. The decision of an oocyte cell to proceed into M-phase entry may indeed be triggered by different
spatial distributions of activating factors, as well as their concentrations. Thus, two alternative scenarios are
possible: either the cell makes use of its sensitivity to the initial conditions and therefore can tune its reponse
accordingly, or, in the opposite case, molecular architectures inside the cell should be capable of buffering
concentration variations in order to control signal propagation. On the theoretical side, how the scenario
delivered by our one-dimensional model will be modified in more realistic cellular geometries is, of course,
an interesting open question.

A Derivation of the expression of the reaction term Σ[m(x, t)].

The expression of the reaction term depends on the kinetics chosen for the signaling cascade. Typically, the cascade has two
phosphorylation states so that for a two-level cascade with molecules y0 and z0, two respective phosphorylated states exist, for y0

these are called y1 and y2, and for z0 , respectively, z1 and z2 . Recall that m denote the concentration of the molecule at the cascade
entry. Two particular types of kinetics are linear and saturated, Michaelis-Menten kinetics. In the latter case, the equations read as,
following [2] :

ẏ0 =
V6y1

K6 + y1
−

V3my0

K3 + y0
(A.1)

ẏ1 = −(ẏ0 + ẏ2) (A.2)

ẏ2 =
V4my1

K4 + y1
−

V5y2

K5 + y2
(A.3)

ż0 =
V10z1

K10 + z1
−

V7y2z0

K7 + z0
(A.4)

ż1 = −(ż0 + ż2) (A.5)

ż2 =
V8y2z1

K8 + z1
− V9z2

K9 + z2
(A.6)
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where the Vi and Ki are reaction speeds and equilibrium constants, respectively, and where the numbering of the reactions follows
the scheme by [16] which is also used in ref. [2]. This scheme simply numbers the reactions sequentially layer by layer, first
all phosphorylations, and then all dephosphorylations. Note that if equilibrium constants are much larger than the molecular
concentrations, the linear regime is recovered.

As shown in [27], for a particular symmetric choice of the parameters, the system can be rendered non-dimensional. For this
parameter-symmetric case, the introduction of the functions

wi ≡
yi

1 + yi
, qi ≡

zi

1 + zi
. (A.7)

allows to rewrite the rhs of the equations in a simple polynomial form, from which the fixed-point value conditions are easy to

read off. For the variable wi, they are given by w2 = mw1 = m2w0.

Exploiting the conservation of molecules yi as expressed by the condition
∑

i=0,1,2 yi = yT , one finds after suitable normalization
the condition

w0

1 − w0
+

w1

1 − w1
+

w2

1 − w2
= 1 . (A.8)

which at the fixed-point reduces to a cubic equation, e.g. for w0,

4m3w3
0 − 3m(1 + m +m2)w2

0 + 2(1 + m +m2)w0 − 1 = 0 . (A.9)

which can be solved exactly. The case of linear kinetics can, however, also be recovered by ignoring the highest order terms of this
equation. One then finds

w0 =
1

2

1

1 +m +m2
.

Although the full final expression for w0 from the cubic equation does have a more involved form, the degree of the polynomial
remains two as for the linear kinetics. From the fixed-point relation, we have

w2 =
1

2

m2

1 +m +m2
. (A.10)

The same calculation can be repeated for the variable qi. One obtains an equation of the same form as (A.9) in the variable q1, only
with m replaced by

s = v
w2

1 − w2
(A.11)

where v ≡ V7/V10. The same argument can then be repeated leading to

q2 =
1

2

s2

1 + s + s2
. (A.12)

Putting the equations (A.10) and (A.12) together then leads already for the approximate linear kinetics to an involved expression,
however with a polynomial of maximal degree four in the variable m in both denominator and numerator. This remains the case
also after the required transforms back from wi and qi to the original variables yi and zi. While the full expression obtained from the
two cubic equations can still be written down analytically, it turns out to be yet more involved and less illuminating. For both types
of kinetics the Hill exponent is given by the product of the number of phosphorylation levels times cascade levels, hence four. For
convenience in our mathematical treatment, we replace both involved expressions by the simple expression for Σ[m(x, t)] used in
the text since we are interested chiefly in the role of ultrasensitivity, i.e. on the value of the Hill coefficient, on wave propagation.
In order to formulate the feedback loop in which MAPK acts back on Mos, m, we follow Angeli et al. [2] and write

ṁ = −γm + z2 + S (A.13)

in which z2 = Σ[m] acts as a feedback source term, and S as a source for Mos. In this work, this source is simply disregarded,
focusing on the effect of the feedback loop.

In our derivation we have assumed a symmetry relation between equilibrium constants. This choice is judicious in order to
derive the analytic formulae, however it does not influence the form of the Hill functions (i.e., the order of the exponents). It is easy
to see that this is indeed the case, e.g. by a systematic perturbation theory around the symmetric solution, see also the discussion
in [27].
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B Properties of qβ defined at (3.10)

Let us recall the definitions. For any β ∈ (κ, b), where κ is defined at (3.4), the length ℓβ is defined as follows

ℓβ = 2

∫ β

0

1
√

2(F(β) − F(u))
du,

where F is defined at (3.1). Let qβ be the solution of

q′′β + f (qβ) = 0 inR+,

with

qβ(0) = 0 and
1

2
q′β

2
+ F(qβ) = F(β). (B.1)

Let us now show that these conditions imply

qβ > 0, qβ(0) = qβ(ℓβ) = 0 and qβ(x) ≤ qβ

(
ℓβ

2

)

= β on (0, ℓβ)

qβ

(
ℓβ

2

)

= β: 1. First, we determine the zeros of the first derivative of qβ, q′
β
. Thanks to the first integral (B.1), if there exists x0 such that

q′β(x0) = 0 then necessarily F(qβ(x)) = F(β). Since F is a bijection from [κ, b] to [0, F(b)] and non positive on [0, κ] , this implies

q(x0) = β.
2. From the definition,

ℓβ

2
=

∫ β

0

1
√

2(F(qβ(x0)) − F(u))
du.

Since q′
β
> 0 if qβ ∈ (0, β), we can set the change of variable u = qβ(y). On (0, β), we have q′(y) =

√

2(F(qβ(x0)) − F(qβ(y))),

thus we obtain
ℓβ

2
=

∫ x0

0
dy = x0 and qβ

(
ℓβ

2

)

= β.

qβ(ℓβ) = 0: We showed that q′
β
> 0 on

(

0,
ℓβ

2

)

, and q′
β

vanishes and changes of sign at
ℓβ

2
. In fact qβ(x) ≤ β for x ≥

ℓβ

2
and we proved

previously that q′ vanishes in x0 if and only if qβ(x0) = β. Finally, q′
β
< 0 on

(
ℓβ

2
, β

)

. Let us define now r(u) = qβ

(
ℓβ

2
− u

)

and

s(u) = qβ

(
ℓβ

2
+ u

)

. They are both solution of the following Cauchy problem:

y′′ + f (y) = 0
y(0) = β,

y′(0) = 0.

As a consequence, r(u) = s(u) on

[

0,
ℓβ

2

]

. Thus,

qβ(ℓβ) =

∫ ℓβ

0
q′β(t) dt =

∫
ℓβ
2

0
q′β(t) dt+

∫ β

ℓβ
2

q′β(t) dt,=

∫
ℓβ
2

0
q′β

(
ℓβ

2
+ u

)

du+

∫
ℓβ
2

0
q′β

(
ℓβ

2
+ u

)

du =

∫
ℓβ
2

0
r′(u) du−

∫
ℓβ
2

0
s′(u) du = 0.
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301. Influence of the Boundary Condition ψ (BC)

(a) Shape of the BC (b) x 7→ m(T, x) for ψmax = 1.2 (c) x 7→ m(T, x) for ψmax = 1.3

Fig. 9 Influence of sup
t
ψ(t) ; here ψ(t) = ψmax

(0.5t)4

1 + (0.5t)2 + (0.5t)4
. The initial data is m0(x) = 0 and κ = 1.24.
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(a) Shape of the BC (b) x 7→ m(T, x) for ψ = 2χ[0,3.5] (c) x 7→ m(T, x) for ψ = 2χ[0,4]

Fig. 10 Influence of the length of the support of ψ = 2χI , χI being the characteristic function of the set I. The initial data is m0(x) = 0 and κ = 1.24.
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2. Influence of the Initial Condition m0 (IC)

(a) Shape of the IC (b) x 7→ m(T, x) for mmax = 1.0 (c) x 7→ m(T, x) for mmax = 1.05

Fig. 11 Influence of the IC: m0(x) = mmaxe−|x−5|2/10. The BC is ψ(t) ≡ 0 and κ = 1.24.

(a) IC
∫

m0 =M0 (b) x 7→ m(T, x) (c) IC x 7→ m0(x),
∫

m0 =M0 (d) x 7→ m(T, x)

(e) IC
∫

m0 =M0 (f) x 7→ m(T, x) (g) IC x 7→ m0(x),
∫

m0 =M0 (h) x 7→ m(T, x)

Fig. 12 Influence of the shape of the IC for a given initial total amount of mass M0 =
∫

m0: m0(x) = 1.05e−|x−5|2/10 (a), m0(x) = 1.05(e−4|x−15|2/10 + e−4|x−20|2/10) (c),
m0(x) = (M0/5)χ[2.5,7.5] (e); m0(x) = (M0/10)χ[2.5,12.5] (g); The BC is ψ(t) ≡ 0, κ = 1.24.
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3. Influence of both the Boundary and Initial conditions

(a) BC, supt ψ(t) = 1.23 (b) IC, ||m0|| = 1.0 (c) x 7→ m(T, x)

(d) BC, supt ψ(t) = 1.23 (e) IC, ||m0|| = 1.0 (f) x 7→ m(T, x)

(g) BC, supt ψ(t) = 1.23 (h) IC, ||m0|| = 1.0 (i) x 7→ m(T, x)

Fig. 13 Influence of both initial condition and boundary condition. κ = 1.24.


