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Abstract

We propose and analyze non-overlapping Schwarz algorithms for the domain decomposition of
the unsteady incompressible Navier-Stokes problem with Discrete Duality Finite Volume (DDFV)
discretization. The design of suitable transmission conditions for the velocity and the pressure is a
crucial issue. We establish the well-posedness of the method and the convergence of the iterative
process, pointing out how the numerical fluxes influence the asymptotic problem which is intended
to be a discretization of the Navier-Stokes equations on the entire computational domain. Finally
we numerically illustrate the behavior and performances of the algorithm. We discuss on numerical
grounds the impact of the parameters for several mesh geometries and we perform simulations of the
flow past an obstacle with several domains.

1 Introduction

The aim of this paper is to develop a non-overlapping iterative Schwarz algorithm for the incompressible
Navier-Stokes problem with DDFV schemes. The problem we are interested in reads

du+ (u- V)u —div(e(u,p))
div(u)

u

f in Qx[0,7],
0 in Qx[0,7T],
on 90 x [0,T],

u(0) = ugpir in Q,

(1)

where  is an open connected bounded polygonal domain of R?, f € (L?(£2))? is a given force field,

Winit € (L°°(Q))%. The unknowns u : Q x [0,7] — R? and p : Q x [0,T] — R are respectively the

velocity and the pressure; o(u,p) = %Du — pld stands for the stress tensor, and Re > 0 is the Reynolds

number. Here and below, the strain rate tensor is defined by the symmetric part of the velocity gradient
1 t

Du = §(Vu + ‘Vu).

Non-overlapping Schwarz algorithms enter the class of domain decomposition methods, in which a
domain is decomposed into smaller subdomains. The main advantage is that, contrarily to direct meth-
ods, decomposition methods are naturally parallel; in fact, subdomain problems are connected by some
transmission conditions on the interface, but they are uncoupled by an iterative procedure. This makes
those methods interesting for high performance computing perspectives. The classical Schwarz algorithm,
proposed in 1870 by H. A. Schwarz [Sch70] for the Laplace problem, is an iterative method that consists in
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transmitting the solution, or its normal derivative, from a subdomain to the others, in order to deal with
complex domains. This method converges only if the subdomains overlap. Moreover, this convergence be-
comes slower as the overlap between the subdomains is smaller. In non-overlapping Schwarz algorithms,
the subdomains intersect only on their interfaces and in order to obtain convergence, more elaborated
transmission conditions should be defined on the interfaces. In 1990, P.-L. Lions [Lio90] showed that, with
Fourier-Robin transmission conditions, the Schwarz algorithm for the Laplace operator converges even
without overlap. This method has been adapted to the discrete setting for many problems of isotropic
diffusion, [AJNM02, CHH04, GIJMNO05], and for advection-diffusion-reaction problems, [GH07, HH14].
For the Navier-Stokes problem, different approaches have been proposed, with different design of the
interface conditions, that depend also on the discretization framework. In the spirit of [HS89], [BCR16]
derives optimal transparent boundary conditions for the Stokes equation; these conditions are tested
with finite difference methods. In the finite element setting, it is proposed in [LMOO01] a non-overlapping
domain decomposition algorithm of Robin-Robin type for the discretized Oseen equations (i.e. linearized
Navier-Stokes). In [XCLO05], still in the finite element setting, the authors build a Dirichlet-Neumann do-
main decomposition method for the nonlinear steady Navier-Stokes equations, under the hypothesis that
the Reynolds number is sufficiently small and [GRWO05] studies a family of discontinuous Galerkin finite
element methods for Stokes and Navier-Stokes problems on triangular meshes. The Inf-Sup condition,
which is a crucial ingredient of the stability analysis of numerical methods for Incompressible Navier-
Stokes equations, has to be adapted to the domain decomposition formulation, in particular to satisfy
the incompressibility constraint, and it might depend on the Reynolds number, see [GRW05, LMOO01].
Therefore, our objective is to decompose the domain §2 of problem (1) into smaller subdomains, to solve
the incompressible Navier-Stokes problem on those subdomains by imposing some transmission condi-
tions on the interfaces, and to recover by an iterative Schwarz algorithm the discrete solution of (1) on
the entire computational domain 2. Since we are interested in the unsteady problem, we shall apply this
iterative algorithm at each time iteration. Moreover, we want the interface conditions to be local and we
wish the method to remain free of any restrictive condition on the Reynolds number. We address these
issues in the framework of finite volume methods, and more specifically by using Discrete Duality Finite
Volume discretizations.

The introduction of the DDFV formalism dates back to [CVV99, Her00, Her03, DOO05], in order to
approximate anisotropic diffusion problems on general meshes, including non-conformal and distorted
meshes. Such schemes require unknowns on both the vertices and centers of primal control volumes and
allow us to build two-dimensional discrete gradient and divergence operators that satisfy discrete dual-
ity relations analogous to the standard integration by parts formula. The DDFV scheme is extended in
[ABHO7] to general linear and nonlinear elliptic problems with non homogeneous Dirichlet boundary con-
ditions, including the case of anisotropic elliptic problems. Applying the DDFV method for Stokes and
Navier-Stokes problems leads naturally to locate the unknowns of velocity and pressure in different points;
the velocity unknowns are associated to the vertices and centers of primal control volumes, while the
pressure unknowns are located on the edges of the mesh [BKN15, Del07, DO15, GKL19, Krel0, Krellal.
Hence, DDFV enters the class of staggered methods, reminiscent of the MAC scheme [HW65] constructed
on Cartesian meshes for incompressible flows. The DDFV approach has, at least, two important advan-
tages. First of all, it applies to very general meshes. It is useful, for instance, in the domain decomposition
setting where the subdomains can be meshed separately and non-conformal edges appear on the inter-
face, or simply if one wants to locally refine the mesh with cells adapted to complex geometries. Second
of all, DDFV operators mimic at the discrete level the duality properties of the continuous differential
operators, which leads to important properties for the numerical analysis of the schemes.

As a starting point of this study, we refer the reader to [GHHK18] and [HH14]: they both build a
non-overlapping Schwarz algorithm in a finite volume framework with Fourier-like transmission conditions
between subdomains, respectively for anisotropic diffusion with a DDFV discretization, see also [BHK10],
and for advection-diffusion-reaction in a TPFA discretization. The case of the Navier-Stokes equations
(1) is more demanding, since it combines further difficulties: the vectorial nature of the unknowns, the
non-linear convection terms and the incompressibility constraint. Of course, there are no explicit interface
conditions, and one should construct suitable transmission conditions between the subdomains, which
have the shape of Fourier-like conditions on the velocity and account for the constraint by involving the



divergence of the velocity and the pressure. Let us split the computational domain  into two smaller
subdomains 2 = Q; U Q5. We denote by I' the interface €27 N Q. The Schwarz algorithm defines a

of the Navier-Stokes problem in €;, with j € {1,2}, endowed with the

sequence of solutions (ug) LeN s

following two-fold transmission condition
L1 - T R N A Bt - -
o(uf,pj) - 8 — 5 (u) - 8y) (ug) + g =o(utp ) - Hi - 5(112 b (a7t g

-1
3 9

(2)

div(ué-) + apé- = —div(uifl) + ap

where ¢ # j and ii; is the outward normal to ©;. The former condition, which involves the parameters
a > 0, A > 0, is inspired by the classical Fourier condition; it linearly combines the values of the un-
known and the values of its derivative; here, also the convection is included. The latter, which depends
only on «, combines the divergence of the velocity with the pressure; it will be useful to satisfy the
incompressibility constraint at the convergence of the algorithm. The first condition is comparable to the
transmission conditions in [LMOO01]. However they need to justify a modified Inf-Sup condition which
induces Reynolds-dependent stability constraints. This can be relaxed by imposing the new condition for
the pressure on the interface. Once the transmission condition is fixed — which in practice will be solved
in an approximated form — it remains to establish the convergence of the iterative process: as | — oo,
one expects to recover the solution of a discrete version of the Navier-Stokes equations on the entire
domain 2. We shall see that the asymptotic scheme depends on the details of the numerical fluxes of the
domain decomposition method. To analyze this issue, it is convenient to discuss general discretizations
of the convection terms, inspired by [CHD11, HH14].

Outline. This paper is organized as follows. In Section 2, we introduce the main elements of the DDFV
framework. This Section does not contain original material, but it collects the necessary definitions and
notations. It can be safely skipped by the reader familiar to the DDFV methods. In Section 3, we set
up the reference scheme for the Navier-Stokes problem on the entire domain €. The convection fluxes
are seen as a centered discretization plus a diffusive perturbation, defined through a certain function
B, as it appeared in [CHD11] when designing finite volume schemes for non-coercive elliptic problems
with Neumann boundary conditions. We establish the well-posedness of such schemes, see Theorem 3.3,
which generalize the mere upwind or centered discretizations. It turns out that this notion of B-schemes,
which encompasses quite general diffusion fluxes, is crucial when studying the convergence of iterative
domain decomposition methods. In Section 4, we introduce the composite meshes, i.e. the meshes on
the subdomains, and we construct the DDFV Schwarz algorithm. The convergence issue is investigated
in Sections 5 and 6, corresponding to the following discussion:

e starting with the “natural” domain decomposition approach, the limit problem — which can be
proved to be well-posed — does not coincide with the reference scheme. Instead, some fluxes near
the interface need to be modified.

e nevertheless, it is possible to recover the reference scheme, having unified fluxes over the entire
domain 2, at the price of modifying the fluxes in the original domain decomposition method.

This discussion motivates the need of a general analysis of B-schemes for Navier-Stokes equations. Finally,
in Section 7 we illustrate the theoretical results with numerical simulations. In particular, we discuss
the influence of the parameters A\, a of (2) and we apply the method to the simulation of flows past an
obstacle, with a multi-domain approach.

2 DDFV framework

Here and below, we adopt the main definitions and notation introduced in [ABHO07] and [Krel0].

2.1 Meshes

The DDFV method requires unknowns on vertices, centers and edges of control volumes; for this reason,
it works on (three) staggered meshes. From an initial mesh, called the “primal mesh” (denoted with
MUIM), we construct the “dual mesh” (denoted with 9* UIM*), centered on the vertices of the primal



mesh, and the “diamond mesh” (denoted with D), centered on the edges of the primal mesh; see Fig. 1.
The union of the primal and dual meshes will be denoted by ¥.

Fig. 1 DDFV meshes on a non conformal mesh: primal mesh 9tU 991 (blue), dual mesh M* UOM* (red)
and diamond mesh © (green).

More precisely, we consider a primal mesh 90 consisting of open disjoints polygons x such that
Ukem € = Q). We denote O the set of edges of the primal mesh included in 9, considered as degener-
ated primal cells. We associate to each x a point z, called center. For the volumes of the boundary, x; is
situated at the mid point of the edge. When & and 1 are neighboring volumes, dxN oL is always interpreted
as a segment that we denote o = k|1, edge of the primal mesh 9%. (In the framework adopted here this is
an interpretation and not a restrictive assumption; in particular, it is possible to consider non-conformal
meshes. For instance, this is meaningful for the shadowed cell in Fig. 1-left since it is actually considered
as a pentagon, not as a rectangle.) Let £ be the set of all edges and &;,,; = £\ {o € £ such that ¢ C IN}.
The DDFV framework is free of “admissibility constraint”, in particular we do not need to assume the
orthogonality of the segment x,, z, with o = k. Here we suppose:

Hp 2.1 All control volumes x are star-shaped with respect to xy.

From the primal mesh, we build the associated dual mesh. A dual cell k* is associated to a vertex z of
the primal mesh. The dual cells are obtained by joining the centers of the primal control volumes that
have x« as vertex. We distinguish interior dual mesh, for which z, does not belong to 0f2, denoted
by 9t* and the boundary dual mesh, for which x,« belongs to 912, denoted by 99t*. We denote with

o* = x*|v* the edges of the dual mesh 9 U 09" and £* the set of those edges. In what follows, we

assume:
Hp 2.2 All control volumes x* are star-shaped with respect to xy-.

There are several possible constructions of the dual mesh, and it can happen that dual cells overlap. To
avoid this inconvenience, we can either suppose that the diamonds are convex or consider the barycentric
dual mesh, obtained by joining the centers x, of the primal control volumes to the middle point of the
edges that have x« as a vertex. Thanks to Hypothesis 2.1, barycentric dual cells have disjoint interiors.
Throughout the paper, we restrict to the case where all diamond cells are conver. The diamond mesh ©
is made of quadrilaterals with disjoint interiors (thanks to Hp 2.1), such that their principal diagonals
are a primal edge o = k|L = [z, 2,+] and the dual edge o* = |2y, 2,]. Hence, a diamond is a quadrilateral
with vertices xy, 2., x» and z,+, denoted with o or o, ,~. The diagonal ¢ and ¢* intersect at the center
of the diamond, xp € b and every diamond is star-shaped with respect to xp. As a consequence of this
setting, all segments o* belong to the physical domain €.
We distinguish the diamonds on the interior and of the boundary:

Deat = {0, .+ €D, such that o C IO}, Dint = D\Dext-

2.2 Notations

The following notation will be used throughout the paper. The reader familiar with DDFV may skip this
section.
For a volume v € 9t U 9 U M* U 9IM* we define:
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Fig. 2 A diamond b = b, ,+, on the interior (left) and on the boundary (right).

my the measure of the cell v,

&y the set of edges of v € MU M* U IM* and the edge o = v for v € M,

e Oy ={p,,~ €D,0 € &},

Dint = {DW,* €Dy N @mt}, Dert = {DU,U* €Dy N C‘Dezt},
e dy the diameter of v.

For a diamond b, .~ whose vertices are (zy, Ty, 2y, T.x ), we denote:
e 1 the center of the diamond b: xp = o No*,
e m, the length of the edge o,

e m, -« the length of o*,

m, the measure of the diamond o, -,

dp the diameter of the diamond b, -,
e «ap the angle between ¢ and o*.
We introduce for every diamond two orthonormal basis (Fysx, fyg) and (f,«gx, Ty ), Where:
e i1, the unit normal to o going out from k,
e T« the unit tangent vector to o oriented from x* to r*,
e i« the unit normal vector to o* going out from x*,
e 7, the unit tangent vector to ¢* oriented from x to L.
We denote for each diamond:

e its edges s (for example s = [, 2+]), such segments are interfaces between diamond cells, and when
necessary we will write s = oo’ to emphasize that s separates the diamonds b and o/,

& = {s,5 C Op and s ¢ 9N} the set of all interior sides of the diamond,

myg the length of s,

5, the unit normal to s going out from b,

S ={s € &,Vp € D} the set of interior edges of all diamond cells b € D,

Sk = {5 € G, such that s Cx} and Gy~ = {s € &, such that s Cx*}.



Let size(T) be the maximum of the diameters of the diamond cells in ®. The flattening of the triangles
is measured by the angle o €]0, 7] such that sin(ag) := mi%l |sin(ap)|. We introduce a positive number
DE

reg(T) that measures the regularity of the mesh:

reg(T) =

d d dy~
x(_i,NN max max —-, max —— max S ;
sin(ag) DED s€Ep My KEM /My K*€M*UOM*

dK dK
max max max max .
KEM DED dD "k* eam=Uom= DeDyx \ dp

where AV and N'* are the maximal number of edges of each primal cell and the maximal number of edges
incident to any vertex.

Hp 2.3 The number reg(%) is uniformly bounded from above and below as size(T) — 0.

Accordingly, there exist two constants C; and Cy, which both depend on reg(%¥), such that Vk € 9, Vx* €
M U OM™* and Vb € © such that Nk # 0 and o Nk* # 0 we have:

ClmK < my < CZmK> ClmK* < my < CQmK*
Crdg <dp < Cadg, Crdgr <dp < Cody.

2.3 Unknowns and meshes

The DDFV method for Navier-Stokes problem uses staggered unknowns. We associate to each primal
volume x € 9 U 09 an unknown u, € R? for the velocity, to every dual volume k* € 9* U 99* an
unknown u € R? for the velocity and to each diamond p € ® an unknown pp € R for the pressure.
Those unknowns are collected in the families:

Uz = ((ux)xe(imuaim), (ux*)x*e(m*uam*)) € (RQ)(I and  po = ((po)oed) € R?.
We define now two discrete average projections, for all functions v in (H*(2))*:

e one on the interior:

PPy = <<;LK/Kv(x)dx)Kem) Py = (<ml /K v(x)dx)K*@W) ,
POy — ((Ti /K v(m)dm>Kem, <ml /K * V(x)dx)K*eam*>.

We can collect them in a shorthand notation PEv = (P2v, PPV v, P%2y). We introduce also a centered
projection on the mesh ¥:

PEv = ((v(z)xe(muom): (V(Ze e c@mn-vom=)), Vv € (H? (€))%,

(This projection makes sense owing to the regularity assumption H?(Q) C C(f).) Next, we define
subspaces of (R?)*, which take in account Dirichlet boundary conditions. Let I'p;; C 952, the boundary
on which homogeneous Dirichlet conditions will be imposed. When I'p;, # 02, we need to distinguish
the subsets of the boundary mesh

8E)j‘tDir = {K € 0M: Ty € FDir}? aml*)ir = {K* €OM": Ty € FDiY}7
and we set
EgP* = {us € (R*),s. t. Vk € IMpyr, v, = 0 and Ve* € My, v = 0}

When I'p;, = 092, we simply denote Eq the discrete space satisfying the Dirichlet condition.



2.4 Discrete operators

In this section we define the discrete operators of the DDFV scheme.

Definition 2.4 We define the discrete gradient of a vector field of (R?)* as the operator
V® i us € (R v (VPus)pen € (Ma2(R))?,

with M2 (R) the space of 2 X 2 matrices with real entries, such that forp € ® :

1 L~ Uk —
VDug: 4 U Q@ Ny +

sin(ap) | Mg~ m,

Uy« — Uy~ —
— QR Ngwyx |

where & represents the tensor product. It can equivalently be written as

1
VPu, = T [Me(u, — ) @ Aoy + Ms (Wx — Wer ) @ Ty -
The discrete strain rate tensor D® : us € (R?)% = (DPus)pen € (M2(R))® is defined by:

Vius + H(VPug)

DPu. = 5 ,

forpe®.
We define the discrete divergence of a vector field of (R2)* as the operator
div® :ux € (RQ)T — (ditPus)pen € R®
with dil’us = Tr(VPus) for any o € D.
Definition 2.5 We define the discrete divergence of a tensor field of (Mz(R))® as the operator
div* : & € (M2(R))® — div*éo € (RP)T,

where div én = (div" o, div” e, div’™ Lo, di®™ &o) with div™ o = (divi&p ke, div? o = 0,
div” o = (div Ep ke and din?™ &o = (divF En )i oo and we have set

. 1 .
divi{o = — E Meépliyg, Ve €M
My
D, o+ €Dk
. g* 1 . .
div' f@ = g mo’*gDncr*K*a Ve € M
TNy
D, ,xEDy»
" 1 . My, .
divt & = — d Mo &g + » = ooy | Vi € 0",
“ D, o €Dy Dy o+ €D+ NDeat

For the boundary dual cells xk* € 99", we have in the definition two sums corresponding to two
differents parts of the boundary of k. Indeed, we can express dk* (see Fig. 2) as an union over o™ = [y, x,]
and an union over a part [z, 2;] of 0 = [T, 2+ ]:

ok* = U [z, 2] U [, 2]
D, ,* €Dy D, ,*EDypxNDeyt

Since we only have [x,«, 2., we have the factor 1/2 when considering the edges o.

2.5 Scalar products and norms



Now we define the scalar products on the approximation spaces:

1
[[vs,uz]]s = 3 (Z My Uy - Vi + Z Myr Uy .vK*) Yus, vy € (RQ)T’
KeM K*eMm*uom*
o :Po)o= D my(&:Pp) Véo, Do € (Ma(R))?,
D, o+ €D
(po,0)o = Y muppip Vpo,gqo € R?,
DG,U*ED

where (¢ : §) = Z fq;,j,gi’j = Tr(*€€) for all £,€ € My(R). They define respectively the norms [|us |2,
1<i,j<2
l€ollz and ||poll2. We also set

((I)Q,Vagn)ag = Z m,Pp - v, V(I)g S (RQ)Q”“’,Vagm € (RQ)BS)T.
D *EDeqt

o,0

We next define the trace operators. Let v* : us € (IRQ)I oyt (us) = (Yo (us))ocom € (R?)P™ be
given by
U+ + 2u; + ug-

Yo (ug) = - Vo = [z, x| € OM.

On the diamond mesh we set 7° : @5 € R® — (®p)peo.,, € (R?)Pewt, which is the operator of restriction
to the boundary diamonds.

The discrete gradient and divergence operators are linked by a discrete Stokes formula. This is
precisely the duality property that gives its name to the method [DO05], see for instance [Krel0O, Thm
1v.9].

Theorem 2.6 (Discrete Green’s formula) For all {5 € (M2(R))®,us € (R?)*, we have:

([divién, ucls = —(Eo : Vous)o + (72 (60) 7, 7™ (us)) o,

where T is the unitary outward normal.

2.6 Brezzi-Pitkaranta stabilization

The Inf-Sup condition is a crucial structure property for the stability of a scheme for the simulation of
incompressible viscous flows. A stabilization term involving the pressure can be added to enforce this
condition. This idea dates back to [BP84] for finite element methods. It has been adapted to the finite
volume framework too [EHL06, EHL07] and we refer the reader to [Krella] for the specific case of DDFV
schemes. Note that the Inf-Sup condition actually holds for a large class of meshes, which do not require
any stabilization [BKN15].

The stabilization term involves the second order discrete operator, denoted by A® : py € R® —
A®py € R?, defined by

1 dZ +dZ,
APpy = — Z 2 2 (py —pp), WED.

m
® s=D|D’€&p D

It resembles an approximation of the Laplace’s operator (endowed with the homogeneous Neumann
boundary condition), however it is consistent only under orthogonality condition (as in the case of ad-
missible meshes, see [EGHO00, Drol4]); that is not true in general for diamond meshes obtained from 9.
In relation with this operator we define a semi-norm | - | on R® that depends on the mesh:

pol® = Z (d5 +d3)(po —pp)?,  Vpo € R®.

s=D|D'€®



Observe that

—(d5A%po,po)o = Y. >, (A3 +d3)(m—py)
DED  s=D|D'€&p (3)
= Y (A3 +d3)(py — ) = lpol®.
s=D|D'€®

This operator is just needed to introduce a stabilisation, which is necessary in a few very specific sit-
uations, like when working with Cartesian meshes where the stabilisation prevents oscillations due to
spurious modes associated to the chessboard pressure lying in the kernel of the Stokes operator. Other
constructions can be considered as well, with similar purposes.

3 DDFYV scheme for the Navier-Stokes problem on ¢

This Section is concerned by the analysis of DDFV schemes for the Navier-Stokes problem with Dirichlet
boundary conditions on the entire domain 2. The choice of the Dirichlet boundary conditions is adopted
on 0 for the sake of simplicity; the discussion can be readlily adapted to handle more general boundary
conditions on 9f2, see [GKL17, Lis19]. As far as the convection is treated by upwind discretization, the
analysis has been performed in [Krel0]. As mentioned above, it is convenient to extend this analysis to
general B-schemes where the convection term is approximated by a centered discretization plus a diffusive
perturbation, which depends on a certain function B, see [CHD11, HH14]. In what follows, o, .« will be
denoted by b, to simplify the notations.

3.1 The scheme (P)

Let N € N* and 0 < T < oo. We note 0t = % and t,, = ndt for n € {0,..., N}. We use an implicit Euler
time-discretization, except for the nonlinear convection term, which is linearized by using a semi-implicit
approximation. Here and below, the time step is supposed to be constant; of course the discussion can
be directly adapted to handle variable time steps. At each time step, we shall enforce the equality

div® (u") — BAAA®p" =0 (4)
which takes into account the Brezzi-Pitkdranta stabilization, with a parameter 8 > 0.
N . . .
We look for u® 071 = (U")neqo,..n1 € (Eo) H, where, as stated in Section 2.3, Eq is the space
of discrete velocities satisfying the homogeneous Dirichlet condition, and p®: 0T = (P")neqo,..N} €

(R®)N+1 The sequence is initialized with:
u’ = Pguo € Eg,

1
p° € R® such that A®p° = —Qdivg(uo) with Z myp) = 0.
Adp DED

The vector p® is well defined since it is solution of a square system, whose matrix is invertible (owing to
the fact that ug is supposed to belong to Eg, and because in the formulation of the problem we take into
account the constraint of null average on the pressure). With those choices of (u’, p°) we guarantee the
property (4) at the initial time step and it will be propagated at each time step. The discrete force term
is also defined by a projection over T, with P?'f and IP’?%t*f . From now on, to simplify the notations we
will denote (u™*1,p"*1) with (us,po) and (U™, p") with (s, po)-

Given (g, pp) satisfying (4) the update us € Eg and pp € R® is such that:

Uy uy

My 5t + Z My Fox = muf + my 5 Vk € M
DEDk
e e + Z My Fgrgr = Mygr Fexe = My e Vk* € M*
ot ot
DED (P)

div® (ug) — Bdp?A®pn =0

Z mypp = 0.

DED




The fluxes are defined as a sum of a “diffusion” term and a “convection” term:

My Foi = my (FL + FC), Mg Fege = Mg (Fl w4+ Flun).

The diffusion flures are defined as:
d 2 o ~
myFo, =—m, ReD u; — ppld | Ny,
d 2 o =
Mo Fgun = — M ﬁD Uz — ppld | A wye.

that can be naturally denoted —m,oP(us, po) Mo and —m,«o® (s, pp) Dexyx, respectively. The con-
vection fluxes are expressed as the sum of a centered discretization and a diffusive perturbation

u + u, m? 2m,Re
¢ — F " <z B FgK k — UL )»
Mo F o =M F < 2 ) * 2Rem, ( m, > (- w)

U + U= mz* B 2m,Re
2 2Rem,

Mr Fnyne =Mgr Fpnyr ( FE,*K*> (W — up=).

m =

The diffusive part depends on the function B, which describes the different schemes that we can work
with. The centered scheme corresponds to B(s) = 0 and the upwind scheme corresponds to B(s) = 3|s|.
However, for further purposes and the analysis of the domain decomposition method, it is relevant to con-

sider a quite general framework where B can be matrix-valued. In what follows, we denote B (22“”7'31{6 F,K)

with B, and B (2’”7"1}'3 FL,*K*) with Bg«c. The total fluxes then become:

m,

u, + u, m2
]:UK:_ aD P _’o'K UFGK = BO’K xk — U
T = 1,0, ) i 1, o (S5 ) B - w)
U+ + W m? (5)
M« Fgrgr = _ma*UD(ug7p©> 0w + Mg By ( K : L ) 2Rgmb By (UK* B U-L*)

The definition of F,, F,«+ comes from [Krel0, Krellb], up to the boundary terms. They are approxi-
mations of the fluxes: /(ﬁ “Wgy) ~ My F(TWT) and / (W Ayngr ) ~ Mg+ o« (@F). Note that this part

o o*
of the scheme is explicit: the velocity-pressure pair is updated by solving a linear system corresponding
to a semi-explicit time discretisation.
For o € ©;,,;, we can rewrite the discrete divergence div® as follows

. D/— ﬁK + ﬁK* —
delV (uf) = Z msT * Ngp,
s=[xg,zex |€ED
and deduce that
- D/— _ ﬁK + ﬁK* — — —
mydiv’ (i) — Bmydp® APpo = > g~ - fay — H(dy + o) (B0 — )

s=[xg,zgx |=D|D’ €Ep

We introduce the flux msGs, to approximate /fl:g - Tgyds for § = [xy, 2] = p|p’ € &, noting that this
5
flux must be perturbed by the stabilisation term imposed in (4), so that we have

ﬁK + ﬁk*

2 'ﬁSD_/B(dD+dD/)(ﬁD_]§D/)'

msGs,n =Ms
Thanks to (4), it implies

mydiv’(iis) — Bmydp’A%pp = > msG, = 0.

s=D|D’'€&p

10



For b € D.,4, (see Fig. 3), a similar reasoning leads to

mydiv(is) — Amydp® AP = > MGy + My (lic) - fe.
s=D|D’€&p

Based on these considerations, we define the convections fluxes as follows:
» For the primal edges that is for a primal cell k € 97 and b € D,:

My, = — E msGs,D'

s€GgNE

This sum contains two terms s = [x, 2= | and § = [xy, 2,+].
» For the dual edges, we have two differents cases (see Fig. 3):

o forx* € M*UIM* and b € Dy N Djns

Mo Froee == Y MGy

EGGK* Nép

This sum contains two terms § = [z, 2| and § =[xy, T].

o forx* € OM* and p € Dy N Dy

Mgr Fpre = _m5G5,D - imasmax* Hy,

where § = [2y, T« ] and Mmyonae indicates the measure of the intersection between dx* N 9N and

— — * *
Maanacs Hyx = g Mynok* Uy * Mgy, Ve € 0",

DEDY!

That the scheme preserves the conservation laws of the continuous problem is a remarkable property
of the construction. It means that mass exchanges between the cells are well reproduced by the scheme.

Proposition 3.1 Let (4) be satisfied. Then the flures F,, and F,«» are conservative, that is to say

F,.=-F,, Yo=xl. and F,w =—F,x, Yo'=x"r".
L= Ly
5= [xmxx*] ,m‘ 5= [xxvxx*] ,@
* *
’ S \ ’
TN : i’ |
sD \‘ sD n y
R4 — \ R4 —
U4 * < 1 . 4 oF =x*|L
.’[K(@‘\g =K*|L oK \‘ ‘TK@_“_\
\0 Tte. \ \‘ TR T
\ R \
N \\:®x N
* — L * —
. O’—K|L‘,‘ ., o=x[L
s S,
N \
g X
Ly * Ly *

Fig. 3 Left: A diamond o =b, ,~ with o € &;,;. Right: A diamond o =bp, ,~ with o C 9%2.

Proposition 3.2 Let T be a DDFV mesh associated to Q. For all (uz,pn) € Eg x R®, 8 € R* we have

Zm”F"K:O Vk € M,
DEDx

Z Mgs Foae =0 i+ € I,
DED,

Z Mg Fpvge = —Mpgrops Hyr V= € O™
DE’DK*

11



Proof. For the interior mesh, we proceed as in [Krel0Q]. If x € 91, by reorganizing the sum on the sides
5 € B belonging to the primal cell k, we obtain:

I P P I

DEDk 5€®KﬂgD 5€®K

since fig, = —1i,,, where o and o’ denote the two neighboring diamonds which share the edge s, of vertices

Ty, T+ . In the same way,

*Z Z (dZ +d3) PD/*pD):*Z(derdg/)(pD’*pDJrPD*pD'):Q (7)

DeEDk EGQSKﬂSD 56@}(

We deduce that Z m,F,. = 0. The proof is similar for Z Mo+ F o« = 0 if x* € M*.
DEDy DED
We now focus on the case in which k* € 0901*. By definition of m,« F, ., we have

Uy + Uy — 1
- Z Z {m52 ‘Mg + (dr? + dg’)(pD’ - pD)} - Z imasmax*Hx*

DEDyx SEGyxNED DED,+NAN

=0— Moqnex* HK* .

where the first sum vanishes thanks to (6),(7), and for the second term we use the fact that each vertex
k* is shared by two boundary diamonds. ]

3.2 Well-posedness of problem (P)

The well-posedness of the scheme (P), which is known when the centered or upwind discretization is
used, generalizes to a wide class of functions B. In what follows, for a N x N matrix A, we write A > 0
when the symmetric part of A is positive semi-definite, which means that Az -z > 0 holds for any vector
z € RN,

Theorem 3.3 Let 0 = kL € &, 0* = x*|L* € £*. Let By, Bo+x be the (possibly matriz valued)
coefficients arising in the definition of the fluzes (5), as the diffusive correction with respect to the centered
approximation. Assume that

By = By, By >0

H
Byeye = Boere, Boep > 0. ()
Then the problem (P) is well-posed.

Proof. The scheme (P) is a linear system in (us,po) € (IRQ)‘I x R®. It corresponds to the specific
case where ggop = 8om- =0 = ¢ =0, in

u u
mK(S—;—FZmﬁfﬂ:meK—!—mK(s—; Vk € M
DEDy
Uy * 1_1}(* *
5t S M Foee = e fie + e S5 Ve em
DED+
u?M = o (P)
u? = o=

div® (ug) — Bdp?A®po = o

Z MyPp = QS

DED

Let us denote by N the dimension of (R?)” x R®. Equation (P) is a linear system Av = b with a
rectangular matrix A € Myy1 n(R), v € RY and b € RV*L. Let X be the following set:

X = {(fm7fm*,gamvgam*,QD7¢) € RN+1a Z m,%Ye g‘f Z meD}
DEDcqxt DED

12



We have dim(X) = N, !(fon, fan+,0,0,0) belongs to X and Im(A4) C X as a consequence of the Green
formula in Theorem 2.6. If we show that the matrix is injective, we conclude that dim(Im(4)) = N and
that Im(A) = X. We are going to show that if fon = fop« = 0, then uz = 0 and pp = 0.

We multiply the equations on the primal and dual mesh of (P) by us and we sum over all the control
volumes:

(S e 3 me

KeM Kem*

e Y st X we X o] <o

KEM DEDy K* e+ DED,

1
By definition of the scalar products we have — [ ( Z my [ + Z TNer

1
L )| = 5 el and,
Kem*

replacing the definition of the fluxes, we get

Sl =5 3w Y mo®(ue pe)ii 5
Keim DEDy cm~ DED
5 D

K*
]- u, + u, ]. U= + u, =
+§ E Uy - § mo'FoK K2 - a Uy * § m *FG*K*¥
KeMm DEDy K S DED

—|—12u-z m, B(u—u)—&—lZu Z mz*B (e —ux) =0. (8)
2 K QRemD ok \ Yk L 2 K* QRemD o*k* K* *) — Y.

Kem DEDg K*em* DED =

D -
Uy * my«o (u‘rapg)na*x*

We can consider separately the terms. By replacing the definition of the divergence operator and then
by appying Green’s formula (Theorem 2.6) for uz € Eg, we obtain

—quK > mo® (s, po )i — 5 Z Ue o Y my-0”(us, po)il,

KeM DEDk K eMN* DED =
e T 2 D 2 D 2 D 2 D 2 2
— | |div %D Uz —pp |, Ux = QIHD ull; — (po,div-us)p = ﬁlllD uzll5 + Blpol°s
<

where for the last equality we use that div® (ug) — Bd% A®py =0 and we apply (3).
For the convection terms, we sum over diamonds recalling that us € Eg, so we do not have boundary
terms. For the centered part, we apply Proposition 3.2 and Proposition 3.1, to conclude that

%ZUK'ZWU uK+uL ZUK ZWU*FG*K*W

Kem  DEDx 2 e DE@K*
— Z M Fog |UK|2 |uL| Z Mgr By | _ |uL*|2)
DG@ DGZD
1 9 1 )
=7 Z || Z m,F,, +Z Z [ | Z Mgw B e = 0.
KeMm DEDy K* €= DEDy
N———
=0 -0

For the diffusive perturbation, (Hp) implies

1 2
IR S SRS DORTED o

KEM  DEDx 2 e DED, =
1 m?2 1 m2.
=35 Z 7030’1{(111( - uL) ) (uK - uL) + = Z 70B0’*K* (uK* - uL*) . (uK* - U—L*) > 0.
2 2 byt 2Rem,
Putting all together, (8) becomes:

1 2
silusll3 + £ ID us 3 + Blpo|* <0,

from which we deduce that uz = 0 and pp is a constant (we recall that 8 > 0). Since pp verifies

13



Z mypp = 0, we have pp = 0. ]
DED

4 DDFV domain decomposition

We start by defining a discretization for the problem set on the subdomain €;. As in Section 3, the
nonlinear convection term will be approximated through B-schemes; we will see that the coefficients
Boy, Bo+¢= play an important role in the convergence of the Schwarz algorithm. We start by defining
the meshes, and we analyse the scheme on each subdomain, denoted by (P;), and we introduce the
Schwarz algorithm for the domain decomposition. We present the study for two subdomains for the
sake of simplicity, but it could be extended to an arbitrary number of adjacent subdomains. (Difficulties
arise when more than two domains have common points on their interfaces, a situation which deserves a
specific analysis see e. g. [GSR16].)

4.1 DDFYV on composite meshes

For each subdomain Q; of Q, j = 1,2, we consider a DDFV mesh T; = (91; U OM;, MM U 893?7) and
the associated diamond mesh ©;. Note that the DDFV approach allows us to work with non conformal
meshes, and the two subdomains can be meshed differently. Letting I" be the interface between the two
subdomains and F{Dir the boundary of 0); intersecting 02 , we denote:

o the diamond cells intersecting T : @; ={pe®;,0NT #0};

o the boundary primal cells intersecting T : OMr:={xk€ dM;,xNT #0};

¢ the boundary dual cells intersecting T : OM 1= {x= € OMG, e NT # 0}

¢ the boundary primal cells intersecting F%ir : OMpir = {k € OM;,xN F]j)ir # 0};

o the boundary dual cells intersecting T : OM by = {x* € OMT,x* N T #0);

see Fig. 4 for an example.

Primal mesh 9t

\
@-----

e d-__&--""17. v | ol __e--" ¥ o« | T Dual mesh 9" U 09t

&

i
4

Fig. 4 DDFV meshes.

Definition 4.1 (Composite mesh) We say that T, and %5 are compatible, if the following conditions
are satisfied:

1. the two meshes share the same vertices on I'. This, in particular, implies that the two meshes have
the same degenerate volumes on I, i.e. 09 r = OMar.

2. The center . of the degenerate volumes of the interface L = [, zx] € Oy p = OMar is the
intersection between (Ty+,x) and (xg,,xx,), where k1 € My and ke € My are the two primal cells
such that L € Ok; and L € Ok (see Fig. 4).

In order to build a composite mesh, it is equivalent to either build a global mesh by gluing two subdomain
meshes, or to build the subdomain meshes starting from a global mesh (which has edges along T') .

14



Consider the composite mesh of Fig. 4; remark that:

e a diamond b, of vertices @y, , Ty, T, Ty, that intersects I' in the domain ) can be written as the
union of diamonds by, of vertices a, , Ty, .=, &, , and pa, of vertices @y, , T+, T.~, T, respectively in
Q4, Q5. Moreover, on the subdomain meshes we have additional unknowns on x, on I with respect
to the mesh on £;

e equivalently, a volume x* that intersects I' in € is the union of kj,x5 in €1,Qs. In particular, an
edge 0* = [k, , Tk,] can be split into o* = o] U o} = [ag,, 2] U [2, 2k, ];

e an edge 0 = [+, x| on the interface I is shared by all the meshes.

Due to the fact that each dual cell on the global mesh that intersects I' is split in two between the
subdomains, it is necessary to introduce some additional unknowns fluxes \IJK;, for all ky € 893?;‘?7F, as in
[GHHK18]. Those unknowns are intended to approximate the dual fluxes Fy«+ on the interface. For a
diamond b € ’Dg, the unknowns are illustrated in Fig. 5.

Uy,

Fig. 5 The unknowns on a diamond on the interface for the subdomain ;.

4.2 The subdomain problem: transmission conditions

On each subdomain €; of 2, we want to solve a Navier-Stokes system with mixed boundary conditions.
On the fraction of the boundary that intersects 0f2, we impose Dirichlet boundary conditions. On the the
interface I between the two subdomains, we impose the discretized version of the transmission conditions
(2).

To construct the scheme, we integrate the momentum equation over 90; U 9% U azm;.,r, we impose
Dirichlet boundary conditions on 99; piy U Gﬂﬁjpir and transmission conditions on 0M; r U Gim;f)r. The
transmission conditions involve three positive parameters:

e )\ which arises in the Fourier-like transmission condition for the velocity,
e « which arises in the Fourier-like transmission condition for the pressure,
e (3 that relies on the Brezzi-Pitkdranta stabilization.

Precisely, the solenoidal constraint is approximated on the diamond mesh ®; and for the diamonds in @?
a transmission term is added, controlled by the parameter a. We give now, formally, an hint of why it is
necessary to add this condition on the interface diamonds @g: our goal is to recover, at convergence of
the Schwarz algorithm, the solenoidal constraint div’(u<) = 0 for all o that intersect I' in §2 (that we write
here for sake of simplicity without the stabilization term). As described in Definition 4.1, a diamond b in
Q) that intersects I' can be written as the union of diamonds p1,ps in Q1,s. By definition of the discrete
divergence, see Section 2.4, we wish to decompose m,divius = ledileucIl + mDQdiVD2 Us,. Therefore,
we expect on I an expression which would look like

.. D . D-
My, div- ' ue, = —my,,div > Ug,. (9)

However, (9) does not make sense and a detailed construction of the u, € (R?)%i’s is needed, where
(R%)* C (R?)*t x (R?)*2. This can be understood by a dimensional argument. Of course, we naturally

15



identify the values of ux and ux, when they are evaluated on common points of the grids ¥ and ¥;. But,
we should bear in mind that 9t; U 9%y = 9N, while 9" is strictly included in 97 U 9M15: what happens
is (97 UIMMS) U (OM] p UOM; 1) = M*. Similarly, 9M is strictly included in M U 9My: we have
OMU (0Mq 1 UIMa ) = 0Ny U OM,. Moreover, imposing a condition of this kind along the iterations
of the Schwarz algorithm is not sufficient to prove convergence of the algorithm, as we will show later in
Theorem 5.8; in order to apply the analytical tools of the proof, it is necessary to add to (9) a Fourier-like
term for the pressure, controlled by a.

The DDFV discretization leads to the following system on €2;:

Find (ug,,po,,¥s,) € Egg“ x R®i x (RQ)‘?M;F such that

Uy ﬁK
mxﬁ+zma]:o'x:mxfx+ml(ﬁ VKEm]‘
DEDg
Uy* ﬁK* N *
Ty 524: + Z ma*fa_*x* = M~ fK* —|— My ﬁ VK S m]
DED
Uy ﬁK* *
Mg« + Z Mo Forer + Mogna Pr = My fK* +my— Yk € oM r
6t 6t s
DED (7)])
1
—Fox + §FgKuL +Au, =h, Vo € 893@"1“
1 .
—W, + EHK* W + Aues = hys Vk* € Biij
m,div’(us,) — Bm,dp® Alpgp, =0 WweD;\ D
mydiv®(ug;) — ﬁdeDzAngj + amypp = gp Vo € 33;,

where g, the solution computed at the previous time step ¢,y = (n — 1)dt for n € {1,... N — 1},

and h, g are certain boundary data in (R2?)%r x (RQ)am;I and RQJF’, respectively. Here, we denote
fz, = Phi f. We will refer to the system (P;) in the shorthand form:

T; _
EQ;’F(U‘IJ yPD;, \I"Ij ) f‘Ij , Uz, h‘Zj ’ g’Dj) =0.
Remark 4.2 When we impose transmission conditions in Schwarz’ algorithm, we are led to approximate

1
the boundary term / (U(u,p) ST — E(u . ﬁ)u), which keeps track of the anti-symmetrization of the

convection term. Formally, at the continuous level, if ¢ is a test function inV = {¢ € (H'(2))?, ¥|pp,, =
0, div(p) = 0}, the variational formulation of (1) reads:

[ oot [ @ Vu-p— [ aivtotwpe-o (10)

The convection term can be written as
1 1
(u-V)u-gpzi (u~V)u-<p+§ (u-Viu-o
Q Q Q

5 [T [ @ veus [ S

by integration by parts, since u is divergence free. Coming back to (10), we integrate by parts also the
diffusion terms, and we end up with:

1 1 1
8tu-g0+f/(u~V)u-go—f/(u-V)w-u+/a(u,p):Vgp—/ (a(u,p)ﬁ—(u-ﬁ)u)~cp:0.
Q 2 Jo 2 Ja Q 1) 2

This is the reason why, when working with transmission conditions, we impose a condition on o(u,p)i —
%(u -m)u, that contains just “half of the convection”. Besides, the numerical flur Fqy is constructed to

approzimate the term

[ ot ).
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This is why in the approximation it gives:

1 1
(u-Mu=o0c(u,p)id — (u-d)u+ §(u -Mur —Fyy + EFaKuL.

DN | =

0(“7 p)ﬁ -
Theorem 4.3 (Well-posedness of the DDFV subdomain problem) Under the hypothesis (Hp) and

A, B, > 0, the problem (P;) is well-posed.

The proof relies on the following energy estimate (where we bear in mind that By, and By« can be

matrix-valued).

Theorem 4.4 (Energy estimate on (P;)) Under the hypothesis (Hp), the scheme (P;) satisfies the
following relation

1 2 2 O ; 2 s D

EHUTJ-”Q + *|||D us, Iz — (psajale ux,)o,

1 1
+ = Z — ,,KUL) u, + 5 Z Mognoxs (Ter — §HK* U ) - Uy

De©F K*€oms

1 mz B 1 mg* B
T3 Z 2Rem, UK(uK - uL) : (uK - uL) + 5 Dez@: 9Rem, o*K* (ux* - uy_*) . (uK* — uL*)
J

= [[fs,. me JJe, + . [me, ue Jlx,. (1)

Proof of Theorem 4.3. Let us explain how Theorem 4.4 can be used to justify the well-posedness of
the equation with mixed conditions. We are going to prove that if all quantities fz , hs,,go,, and ug,
vanish, then us, = 0= Vg, and pp; = 0. Starting from (11), we apply:

e the transmission conditions on the sums over CD? and 893?;“- o

1
_]:(TK + §F0KuL + )\uL = h]_ Yo € 89:)’9"1"7

1

—\I/K* + §HK* Uy + Aux* = hK* Vk* € 393?;1“,
e the conditions on the equation of mass conservation:

div’(us,) — Smydy®APpp, =0 Vo € D; \ DY,

divD(uTj) - BdeDQADp@j +amupp =gp Wb E ’DE.
This implies:

1 2, 2 D; 2 2
gty 12+ g D™ usy Iz + Blpo, |

+ a Z mn‘pD‘Q +% Z m(,‘u,_|2 +% Z Maanax*

Uy |2

DEDY DEDY K" €0M 1
P (e m )+ ST T B e — ) )
U — ) - (Ug — 5 orgr (Ugx — Up* )+ (Ugx — Ugx
=, ZRemD 2 bem, 2Rem,
1. 1 1
= Hf‘}:j ’ u‘zj]]:i—’_a[[u‘:i’u‘IjHKIj + (pﬁj ) g@j)CDl; + 5 Z mahL su + 5 Z Maanox* hK* - Ugx . (12)
' De’;DJF. K" €oms .
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If now we impose that all data fs,, hs,, g0, and Ug, in (12) vanish, we have:

1 2 )
sl 13 4+ R ND™ s, 5 + Blpo,

A A
+a Z mn|pD|2 + 5 Z ma|uL|2 + 5 Z manBK*|uK*|2

DEDT DEDY K™ €oM 1
>0
1 m?2 1 m2.
+ - “— Bog(ugy —up) - (uy — u —i—fg — T — B (Uer —ux) - (e —u») =0
2 2RemD G‘K( K L) ( K L) 2 2RemD o*K ( K L ) ( K L ) )
DED; DED;
>0

that leads to: L 5
s7llus [13 4+ 2o ID¥7us 113 + Blpo, 2 < 0,

from which we deduce that u-, = 0 and pp, is a constant (since 3 > 0). Thanks to the transmission
conditions on CD;, since a > 0 and us, =0, we obtain pp, = 0. Finally, thanks to the transmission
condition on M 1 and ux, = 0, we also have ¥z, = 0. |

Proof of Theorem 4.4. We multiply the equations on the primal and dual mesh of (P;) by us, and
we sum over all the control volumes:

% |:(;lt< z my |uK|2 + Z My ‘uK* |2) + Z Mognox Yir + Uyr

KeM ; KGDﬂ;UBDﬂ;‘ K*Gam;lr
1,
+ E Uy - E My Foe + E Uy - § Mg» Fougr | = [[f:j,u‘sz‘Ij"'&[[uzj,U‘I_J]i_j~
KeM; DEDg K* €M uom DED=

By definition of the scalar products we have
11 1
2|:6t< Z mK|uK|2+ Z My uK*|2):| = EHU“:JHg
KEM; KEM UM

and, by rewriting the fluxes as a sum of the diffusive and convective contribution we obtain:

%HU%HS —|—% Z Moonor* Yrr * Ugs + Z u - Z mg]:gK + Z Uy - Z ma*]—"g*x*

K" €oms . KeM; DEDk K™ €M UM DEDy*
C C 1 =
> we > m TG Y e > M Fle | = (s, v, s, + 5 ([0, ue J)s,

KEM; DEDK K* €M UIM* DEDx

We consider separately the two contributions. For the diffusion terms, we have, by the definition of the
divergence operator

% Z uy - Z m, Fe + Z Uy - Z Mg Fla

Kem; DEDx K* €9 UM, DEDy~

L f 2 v 1
= — HdlvtzJ <ReD®JuTj —p@de> 7u{j”fz 1 Z U= - Z mcrfc(rjx‘

* * ext
g K*€om* DEDL:

We can now apply Green’s formula to the RHS, and remark that

Z Uy Z mo"/_-;(]iK = Z mafgk ’ (uK* +uL*)'

K*€om | DEDEF! DeDT
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We thus find:

% ZuK-Zm,,]—";lK+ Z Zm ]-'H

KeM; DEDk K" e uazm; DEDy+

2 ) U+ + U=
= RlID s, I3 = (o, divus )o, + 3 moFg o (us,) = 3 moFp - =

OK 4
DEDY DeD!

By the definition of the trace operator, we obtain:

ZuK-Zma}"gK+ Z Zm ]-'**

KeM; DEDg K" e uazm; DEDy+

2 o - », 1 .
= oD% ug 3 — (o, div®us, ), + %:Fmofmup (13)
DeD;

For the convection terms, we get

S > mFL A Y e > e Fl | = %(T1+T2)

KeM; DEDg K" €ty Uomty DED =

We estimate the term T}; we first integrate by parts thanks to Proposition 3.1 and (Hp):

T1: Z uK~ZmU.7'—C

KEM; DEDy
C C
= E My F oy - (uK - u]_) + E My Fg Uy
DED; DeDY

We replace the definition of 7y, for allp € ©;:

u, +u m?2
Tl = E maFo'K - 2 o (uK_uL)+ g MBUK(UK_L[L) . _uL E m, K'uL
DED; DED; P peDY
2
m
= - g m, Fo(Jug? — [u ) + g *— Box(uy — 1) - (ue — 1) E m,
2Rem,
DG@ DED; DeDT

Passing to the sum over primal cells k for the first term and applying Proposition 3.2 we get:

T, :% Z |11K|2 Z mﬁFax_% Z m, ‘uL + Z 2Re —u,) - (u — ) Z m,

KeM; DeDy pe®l DED; pe®DL
\ / J J
=0
It can be rewritten as:
1 2
T, = Z o(Foe — s F ) -u, + Z 2Re BUK(uK —u) - (u —uy). (14)

DEDT DED;

We estimate the term T5; we first integrate by parts, by using Proposition 3.1 and (Hp):

C
T = E Uy - g My T

K*ezm;fuaim;f DED
= g Mg Fgngr * (Ugw — Upw ).
DED;
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We replace the definition of F¢, for all o € ©;:

Wer + U, m2.
T = Z Mg B —————— (W — Uy ) + Z —— B (Ugr — Wy )+ (U — upx)

DED; 2 DED; 2Rerm,
1 9 9 m2.
=3 > M P (Jue [ = [ue ) + > Rem, B (Wer — U ) - (Ue — 1),
DED; DED;

Passing to the sum over dual cells k* for the first term we get:

Loy 3 P X meFee t 3 G B (e —ue)- (e —w) (1)

K*ef.m;uamt; DED DED;
From the definition of F,. and by Prop. 3.2 we have that ZDEQK* My» Fvee = 0 for all k* € M7 and
ZDEQK* Mg Fwye = —Mponoxs He+ for all x* € 89)?;%, that gives:

Z Maanoxs Hyx ux* + Z 2Re By (uK* - uL*) ’ (uK* - uL*)'
K Eam* DE’}D

Gathering (13),(14) and (15) together, we find:

2 _ Y
—Ilufs. 12 + 7|||D91u:j I3 = (po,, diviius,)o,

1 1 1 E H
. 2
—|- E o (Foy + F5 — 3 F,u)-u, + 5 E Moanor* Yir + Ugr 1 Moqnocs Hir Uy |
DE@F k* com: | K*€omtr

1 1 m2.
a o’ ug —u,) - k — Yo a = BU*K* g* — Up*x ) * g* — Ur*
2 z@: 2Rem,J ) - (- w) + 2 Z 2Rem, (u u.-) - (u u.r)

= [lfz, el [, g,

Since F& + FS, = Foy, it leads to (11). ]

4.3 DDFYV Schwarz algorithm

We can now introduce the iterative process that defines the Schwarz algorithm. Let N € N*. We note
ot = % and t, = ndt for n € {0,...N}. At each time step ¢, we apply the following parallel DDFV
Schwarz algorithm: for arbitrary initial guesses h0 (R2)3m7 rUOMir and gg € R®i, at each iteration
1=1,2,... and i, 5, € {1,2}, j # i we proceed with the following two steps:

1. Compute (uflzj,pl@j, \I!fzj) € (R?)% x R®i x (R?)?™ir solution to

T l ) l — -1 1-1y _
LQj,F(uTjapﬁja\Ilfjaffjau‘fjahfj 7991_“) = 0. (Sl)
J

2. Compute the new values of hng and of gé)r by:
j

1
h .7:}”1 5 UK?U + /\uL R VL]' =1; € 89ﬁj7r
hy. = V. 2H u + )\u Vk; € OO 1 such that g = ag: (S2)
j K3 s 3 i
géj = — (mp,div® 1(u¢i) — ﬁmDideAD"pl@i) + oszip,l)i, Vo; € QJF- such that xp, = xp,.
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5 Convergence analysis of the DDFV Schwarz algorithm

Bearing in mind the properties of the mesh discussed after Definition 4.1, we infer that the asymptotic
fluxes as [ — oo should satisfy

My Fox = My Fa, = =My Foyy, VoeEDY (16)

_ * % * - *
Mo Forge = Myx Forer + Moz Fozer, Vo' =07 Uoy, k* € OM. (17)

In order to obtain these relations, it will become necessary to modify the fluxes on the interface, either
for the limit or for the subdomain problem. For this reason, the convergence will be studied in two steps.
In this Section, we shall identify the limit of the Schwarz algorithm defined in Section 4.3. We focus
here on the natural situation where By, By« take scalar values, like with the upwind and centered
discretizations. We will show that this limit is still a DDFV scheme for the problem (1), but with
modified fluxes on I'. We will then prove convergence to this limit scheme, to which we will refer to as
(ﬁ) In the next Section 6, we will show that it is possible to obtain (P) asymptotically, at the price of
modifying the fluxes of the Schwarz algorithm (S ), dealing with matrix coefficients Byy, By++. That (P)
provides a consistent approximation of the Navier-Stokes equation is justified, with error estimates, in

[Krella, Krellb]; the arguments can be adapted for (P) and numerical tests of convergence are presented
in [GKL20]. Here, we focus on the convergence of the Schwarz iterations.

5.1 The limit problem (73)

We consider the following DDFV scheme for (1), on the domain Q: given (us,pop), satisfying (4), we
look for uz € Ey and pp € R® such that:

uy Uy

M (5t+ Z mo'fO'K+ Zmo‘fO'K:meK_FmK 5t vk € M
DED\ D} DED}
Ug* ~ Uy
Ty« (SKt + Z ma*.}—a*x* + Z ma*fa*l(* = mK*fK* +mK* 57; VK* S EDI* ~
DED i+ \@KF* De@KZ (P)
mpdiv’(ug) — Bmydp*APpy = 0 Vo €D
Z mypp = 0.
DeED

In the interior of the domain, the fluxes coincide with the fluxes in (P), see (5). On the interface, they
are defined as:

~ R u +u mf ~
My Fox = —m‘,O'D(uT7p©) O, +m,Fly < - B L) + YRem. B(TK(uK - uL)7
D

2
~ U + U= m-. -~
D — K L o
Mor Fgrgr = —M 0 (utapﬁ) 1T P (P + By (uK* - uL*)?
2 2Rem,

where EJK and ggw are matrix-valued quantities that come from the transmission condition of the
iterative process. Their expressions are established in Proposition 5.4 and 5.5.

5.2 Definition of EUK and EU*K*
Let us start with some preliminary definition, bearing in mind that By, By« are supposed to be scalars.
Definition 5.1 Fori=1,2, and o € 09, r, we set P =1d 4+ i ® @i« and

2

m
.= " _(P+B,.Id),
QRGmDi ( + ¢ )

2mp, Re
me

where we recall that By, = B ( Fmi>. Next, we set A = Ay + As.
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Remark 5.2 The matriz A = Ay + As is symmetric and definite positive, thus invertible, since it is the

sum of two symmetric and definite positive matrices. In fact, with 0, = (x) , we have:
Y

14+ Boy, + 22 Ty
A'L = 2 />
Y 14 Box, +y

Ul) it holds:

which is symmetric and for any v = (
V2

(Aiv,0) = (14 By, ) (03 +v3) + (zv1 +yv2)*> >0 and (Aw,v) =0 <= v =0,

owing to Hypothesis (Hp). For i,j = 1,2, i # j, since A; and A; are polynomial in P, the following
properties hold:
AA; = AjA;,
AjATE = AT A,

since from Hypothesis (Hp) we have Byy, = By, for o € 0M;r.

The fluxes Foy, Foeye are constructed in order to satisfy the properties (16)-(17). The system (P) is a
scheme defined on the mesh ¥ on 2; in particular, this means that there are no additional unknowns u,
on the interface I, see Fig. 4. The following results apply for a general diamond:

Proposition 5.3 Letp € D be a diamond and let b1,po be the two semi-diamonds such that o = by Ubs,
see Fig. 6 . We denote by (xy, Tyx, T, x,) the vertices of b and by (Xy,, Tyx, T, Ty), (Tgy, Tyx, Tux, T,) the
vertices of by and pg. Let 0 = x1|ka, and let A, A1, Ay be as in Definition 5.1. Then, there exists a unique
u,, given by

1
u, =A""! Ay, + Aouy, + im”FaKl (uy, —uy,)|, (18)

which satisfies
Foxy, = —Foxg- (19)

Fig. 6 A diamond o, of vertices xy, T+, z.+, 2, as a union of two semi-diamonds: by of vertices z, , T+, T, , T,
and by of vertices xy,, Ty+, T,, T+ In particular, of = [z, 2] and o3 = [z, 2, ]

Proof. Condition (19) is a linear equation in u,, where F,y, is a flux on by, and Fyy, is a flux on
p2. Inserting the definitions of the fluxes, (19) becomes:

uK1 + uo'
2

2
m
) + ~— By, (U, — 1)

D -
ma]:mq = —m,0o 1(11:71033) Ngxy + moFoxl ( 2Rem
D1

5 = Bog, (U, — u,).  (20)

u, +u, _ m?
2Rem,,

D —
= _]:UKQ =m,o 2(113710’)3)1101(2 - muFaxg (
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The strain rate tensors can be written by using the matrix P as:

- maaDl (u‘va@) : ﬁrrKl

m?2 MeMee . . .
~ 2Remy, P(ug —u.)+ 2Rem,, (Tgry * Momerld + e @ oy ) (Wer — W) + M ppi,  (21)
maJDz (UT,PQ) : ﬁaK2
m?2 meMes . . . .
~ " 2Rems, Plw, —u.) - 2Rem,, (Tory - HpmpeId 4 Tpmen @ oy ) (Wer — Wer ) — M pplige,.  (22)

oMoy 1 ™™ the contributions of th
= = s € contriputions o (7
2Rem,,  sin(ap) 2Rem,,

pressure pp and of the velocity ue, u.» on the vertices cancel out. So (20) becomes:

Using (21), (22) in (20), since iy = —lq, and

m? u, +u m>
~—P k1 — Ug aFoK L Z = BO’K k1 — Ug) =
2Remy, (W = o) 1, Fogy < 2 ) * 2Remy, (8 —u.)
m? u, +u m?
- = P kg = Wo ) T chO'K =2 Z - = BO’K Ko ~ HWo )-
2Rem,, (W = 10) = Fo, ( 2 ) 2Rem,), (U — 1)
We group the terms in u, thanks to Fyy, = —Fyy,, and we obtain:
m? 2 1
ZRe;”LDl (P4 By Id) uy, + m (P 4 By, Id) uy, + §maFm(1 (uy, —uy,) =

m2 m2
z P + By, 1d - P+ B, 1d - (23
<2Remm< + o) + 5 (P4 B ))u (23)

By Definition 5.1, (23) becomes:

1
Ay, + Aouy, + §mUF[,K1(uK1 —u,) = Au,. (24)

Tt is sufficient to show that this expression is injective; if (us,po) is equal to zero, we are going to show
that u, is zero. This is true because, if (uz,po) vanishes, this means in particular u,, = vy, = 0 and
(24) becomes Au, = 0. Since A is definite positive, see Remark 5.2, we deduce u, = 0. ]

Tt is possible to obtain property (16), by adapting the fluxes on the interface.

Proposition 5.4 Let o be a diamond and let p1,po be the two semi-diamonds such that b = p; U g, see
Fig. 6 . Then there exists a unique flur Fox on o = k1|ka such that

My Fo = Mo Fox, = —MoFoxys
given by )
My Foy = —m, o> (Us, po ) Bor + M, Fy (uKl —gul‘2> + 21:2;% E(,.K(uKl —uy,), (25)
B,, = QRG;”" <A1A2 T <1mUFnK)2 Id) Al_p (26)
m? 2

Proof. We consider F,, and we refer the reader to Fig. 6: we recall that it is a flux on the semi-diamond
py of vertices xy, , Ty, Tpx, &,. Thanks to (21), it can be written as:

ma]:mq = Al(“lq - ua) + maqu (11}(12—’_ua>

m,mys . . . )
M(ngxl e Id A Tgegr ® Ty ) (Wer — Wyx ) + M, Ppli gy, -
Definition (18) of u, ensures (19), i.e. m,Fy, = —m,Fsy,. By grouping the terms in u,, and u, in
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m,Foe , we are thus led to

1 1 1
My Fox, = (A1 + 2mC,F(,KlId> uy, + (—A1 + 2mc,FL,KlId) A1 [AluKl + Asuy, + §maFaK1 (ug, — uy,)
mamaf

— — — — —
(naKl * X gowgx Id + T gxyx ® nch]_)(uK* - uL*) + mo'pDnch]_
2Rem,,

that can be written as:
1 1 -1 1
Mo Foe, = || A1 + imaFaKlld + | —A; + im,,Fm(lId A A+ §mdFUK11d Uy,

1 1
+ <—A1 + QmaFoklId> A_l <A2 - 2mUFUK1) Uy,
mamor

— — — — —
+ m(naxl c gy Id T+ N ® na’Kl)(uK* - uL*) + MsPpNgy, -
D1

According to Remark 5.2, the matrices A and A; commute, for ¢ = 1,2. Hence, we can write

=A
1 /_/; 1 o
M, Foe, = | A1 + im{,FoklId A— A —|—§maFaklld A" uy,
1 1 .
+ —A1 + §maFoKlId A2 — im,,Fm(l Id) A Uy,

MMy
Jr
2Remy,,

— — — — —
(nchl B Id + ) P & na’Kl)(uK* - uL*) + mopDnaxl .

We develop the computations and we find:

2
1
mo]:mq = <A1A2 + <2mﬂFﬂK> Id) Ail (uKl - uK2)
meMex | o i o o Uy, + Uy
+ M(HUKI i 4 BEEREH Id =+ ) 1 S X n,Kl)(uK* — uL*) —+ mUpDnc,Kl —+ mgFa'Kl (122> .
Let B, be the matrix defined in (26). We get:
m?2 1 ? 1
P+ By = [ 414 -m,F,| Id] A™".
2RemD( * ) ! 2+<2m >
Since m, Fx = m,Fpyy = —m,Foy,, Mg = Nx, and % = Z2* (see Fig. 6), we end up with:
D1 mp

m, 0‘K1 = QRemD ( + ) Uy, — uK2)
m,m,

( 6 P na*K*Id + no-*x* ® naK)(uK* - uL*) + mapDﬁaK + maFaK (

uK1 + uK2 )

2Rem, 2

We remark that now the expression of m,F,y, depends only on the unknowns u,, Uy, , Ugx, U=; S0 it is a
flux defined on the entire diamond o (see Fig. 6). It can be rewritten as:

Uy, + Uy m2 < ~
ma‘FO'Kl = —m,o (utapi)) 0, +m,F ( - D) Kz) + SRem Ba’K(ukl - uKz) =M, Fox.
D

so that we find (25). n

We proceed similarly to obtain (17):

Proposition 5.5 Let o be a diamond and let by,po be the two semi-diamonds such that b = by Uy, see
Fig. 6 . Then, forx* € O}, there exists a unique flur Forex on 0* = of U ok = [xk,, 2] U [T, Tk, ] such
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that

me= NU*K* =m, ]:a e Mg 3/ o5k (27)
given by
~ * * 2* ~
]:O'*K* = _ma*UD(uT7p@) ﬁo-*K* + M, * F"*K* (ux ;UL ) + 2ggmb BU*K* (uK* _ uL*)7 (28)
~ m,
Bo’*K* = i Bo’*K* + 2 BU;K . (29)
m, m,

Proof. This is a direct consequence of the computation of (27). By definition,

2

m m O'D(u p )n m F, “ L mf’f B (u u, )
w Fore = — * + * — + * —
oy ol of Ty VD o *K* oy ok} 9 2Rem,,1 oyr* \Ug* * )5

2
o5 B

sk | Ugx — Up* ).
2RemD2 021((1( L)

— U= + U, *
mnsfagx* = _ma;UD(u‘Iap@) 1y +mU;FO'*K; ( K 2 L > +
* ’I’TLU*
= —2L. By definition, it holds m« F,«x~ =
Dy
mo;Fa*K; +m,; F- s - So if we take the sum of the two ﬂuxes we get:

Since 0* = o7 U 03, we have m,- = m = + m,

Uy * + u, =
D — K L
maffafx* + ma;FU;K* = —Ms+x0 (u‘tvp’)D) N e + ma*Fa*K* <2>
2
m’x«
- 2
+ i BU*K* + BO’;K* (uK* - uL*)u
2Remy,, | m,» m,
=By
which ends the proof. [

5.3 Well-posedness of the limit problem (P)
The expression of the new fluxes .7?0,(, Foge permits us to justify the well-posedness of (ﬁ)
Theorem 5.6 Under Hypothesis (Hp) for Boy, Bory+, problem (73) is well-posed.

Proof. By Theorem 3.3, we need to verify that Hypothesis (Hp) holds. Since we are supposing it
for By, Bo+y+, we just need to check it for By, By+y+, the modified fluxes on the interface. As a direct
consequence of (26) and (29), we have:

BG‘K = BO'L) Bo’*K* = BO’*L*‘

In fact, if we consider a diamond on the interface between the two subdomains €21, €25, it can be seen as
the one in Fig. 6. For x = k1 and L = ky, (26) reads

2
EO’K = éa‘xl = 2Regnb <A1A2 + <;maFG’K1> Id) Ail —

m
I

o

~ - 2Rem, 1 2
By, = Boy, = M <A2A1 + (maFm) Id> A1
m?2 2

Observe that A, P do not depend on the index of the subdomain; moreover, we have m(,ngl = —Nm(,FUKz,
so that (m, F,,)? = (m,F,,)? and A; Ay = A A; from Remark 5.2. We conclude that B,, = Bo,.
For the dual flux, (29) becomes

BU*K* = i Ba’*K* + 7 BUEK*a
m,= =

~ m,» m,*

Bo’*L* = 1 BU*L* + 2 BU*L*
My ' Myx 2



Thanks to (Hp), we have Bgigs = Bgzir and Bogzer = Byzis. So we get ggw = Bgspx.
We are left with the task of proving that Eﬂ, EU*K* are semi-definite positive. If fi,, = <x)7 then
Y

1+ 22 Ty

P=Id+n,®n,,= 5
xy 14y

). Let us introduce the quantities

den = 4m?(2 + 3By, + B2,),

and
a = (myReF,)*(1 + Byy) + 8m2 By, + 12m2 B2, + 4m?B3..

Coming back to (26), we have

_ 1 2 y2 -y
BUK_den ald + (m,ReFy) (—xy 22 .

Let v = <vl>; then:
V2

~ 1 »ReF 4
(Boxv, v) ﬁa@, v) + (m djn ) (y*v] — 2zyvivg + 2703)
1 5 (myReF,,)?
- — >
o2 4 PO 2 0

thanks to Hypothesis (Hp) on By, that ensures a > 0 and den > 0. So BUK is semi-definite positive.
For what concerns the dual flux, by (29) we obtain directly that By« is semi-definite positive since
it is the sum of the two semi-definite positive matrices By« and Bogys. [ |

Further comments on problem (P) can be found in [GKL20].

5.4 Identification of the limit

In order to prove the convergence of the Schwarz algorithm towards the solution of (P), it is necessary
to project this solution, that is defined on €2, on the subdomains €;, j =1, 2.

Theorem 5.7 Let ¥ be the composite mesh T = T3 U Ty and (us,po) be the solution of the DDFV
scheme (P) on the domain Q. For j € {1,2}, there exists a projection (u%oj,p%oj,\ll%‘;,h%oj,g%oj) €
(R2)T x R®5 x (R2)?r x (R2)T x R®9 of (ux, po), such that:

T, _ ~
Eszi,r(u%vp%ojaqj‘%j’ffjvuijvh‘%;ﬂg%oj) = 0. (P>)

Proof. On the primal cells 9t; U 09, pir and on the dual cells Dﬁ; U ot

% pir U O 11 we can simply
define the values of u%; as the values of us:
e for all x € M; and k* € M} UM 1, we set 0y = uy and uf;? = Uy,

o for all x € M pir and k* € IM}

we set u” = 0 and uf;_? =0.

e for all p € ®; such that z, ¢ T, we set pp; = Pp-

e for all b € ®; such that =, € I', ; € CD? and p; € D} | we set Pp, = Pp, = Pp-
We then need to introduce new unknowns near the boundary I':

e for all L € OM; r, we impose (see Proposition 5.3):

1

u>* = u_OO = U.OO = A_l Ajqu + Aiuxi + 2

m, Foy, (U, —uy,)| (30)
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0o
Uy

e for all x* € M* such that z,- € I', x* = x; Uk; with k; € 99 ., we impose:
Mgx f 3
x +
¢ 5t

Mg+
3 i
m *
HQNOK DEQK&
3

WS = P = =
J Moana Ol

* * o .
K; € 09N} 1, we impose:
oo o'
th — Yook 5

o for all L = 1; € O, and for all x* € 9M* such that z € I, x*

1
g FiRer +
7 Moanex*

ﬁxf‘

MMy
i

3
J Moanaox*

= x; Ux; with k; € OO .,

1
Foe,u® + Au™,

1

e for all o € D such that z, € T', p; € D} and p; € D}, we set

oo
gD]‘ -

Consequence on the equations.

We now show that from a solution (us,pgp) of the DDFV scheme (P) we built a solution to (P>):

o Yk €M, (us,pop) satisfies:
u ~
My (57; + Z moFaK + Z moFaK = meK + my

DEDK\ Dy

If we look at the composite mesh (see Fig. 4), we remark that the primal cells k € 9t correspond

to k; € My (or to k, € M;). This implies that m, = my, mf = [ f(z)dz = m, £,

uy,
My, 5

coincide with ug, uex, pp on T; so if

00
mcf]:m(j -

Moreover, for a diamond o € D, \ D!, remark that the limit unknowns u2®, ug°, Pp, on Tiforj=1,2
J
(oo} )7

D —
= _m"o (u%.;7p%oj)no'l(j +mUFaK <

— (m,,l. div?® (ug) — meideAD'ipgf) + amy, ;-

uy
ot

DeD]
u
and m, 5—; =

oo
—u>
J

ufjoJrufjo N m?2 Bon(u
2Rem, % %

2

2

(e o]
E Mo F oy -

§ ma‘FO'K =
DE@Kj \@II(“J

we have:
DEDK\ DL
oo
)s

For a diamond o € DL, if

D —
M 2 = =, 02U P, ) iy + 1, Fn (

u” +u>* mz
j 5 + SRem. Boy, (uKOJo —uf

r 0o
Mo Fox = Mo Fop

thanks to the choice (30) of u® for all L € 991, r and thanks to Prop. 5.4, we have

that implies:
S T X m,
DeDL De@{j
So in the end (u«ofj DD, \If%i) satisfies:
u“o; 00 lTl"j
g Y M Foy = by 2 Ve €M (31)
DE’}DKJ-
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o Vk* € M*, (us,po) satisfies:

Uy * ~
M + E M+ Forgr + g T x Foegr = Myex Bex + 1120

32
50 (32)
DED,- \ DL, peD,

We need to distinguish two cases.
1. If 9x* N T = 0, equation (32) reduces to:

Uy *

ot

Uy

ot

+ E Mg Forge = My fir 4+ My
DED

TNy

and the cells x* € 9" correspond to k; € 9N (or to k, € MF). This implies that me = My

_ o
Uy «
My fie = [oo £(2)da = s ij*7 Mye = = My - and m, - = M.

Moreover, for a diamond p € D, \DL, (that is the case here since we are supposing dx*NI" = ()
remark that the limit unknowns uf;’, u.y, pgj on T; for j = 1,2 coincide with u, u,pp on <.
J

So if
ux 4+ uy m2
mx}"oo*—ma uy Mgx Fipr g 2 2 — Bgyrer (U — u>
o U;K ( T ’pg ) *g* + o} O';K 2 + 2Remn7 O';K ( X L )7
we have:

(o)
E Myr Forgr = E m,*]-'[,;K*

DED DED
3

So (u%‘;_, P35, VT, ) satisfies on the interior dual mesh:

lll?*o Uy
(o) _ J * *
My 5 + Z mg]:o_;K* = 1y, ij* + M 5 Vi € . (33)

DE@K’.‘
j

2. If ox* NT # 0, the cell x* can be written as the union of x; € 89)I*F and k; € OO . This

implies that me = My + Myx, Mo+ = My« + My o = fK x)da = M £ + mef and
_ J 1 J K2 J i i
1_1}(* uK UK;«
s = Myrx — + My
ot i 5t 1ot

Moreover, for a diamond b € ®,- \ DL, remark that the limit unknowns uff, u.y, pgj, on T; for
J
j = 1,2 coincide with uy, ug«,pp on T. So if

5 . ux 4+ uy m2
T = e ) B s P (S5 ) e B ),
and
00 D, oo (ee} — 11;(); + uLOif mg oo [ee)
Ms P = =M 0% (0S5, PF,) Bomer + e Forze ( 2 ) + Rom. Do (W —u),
7
we have:

o0 (o]
E ma*fo—*](* = E ma;]:U;K* + E m(,;}_a;K*.

DED+ \ D} DEDx \ DL DEDx \ DL
J j 1 i
For a diamond b € DL, thanks to (27), we have

o0 (o)
Myx Forge = Mg o + mdj}:ﬁk*,
p J g z

that implies:

Y M Fore = Y m,e K*+Zm

DE@F Dei)r DE@IE*
i
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We deduce from (32):

UKO,_? uf(’f
mK; (5; +mKr 752 =+ ma;fsi_’,(* + m(,i*f;fx*
Z 7 Z i
DEDyx DED
: i
ﬁKT Uy
— 5 K
By definition, ¥ satisfies:
i
o _
My Ugs 1 M My Uy
Uy =—-vr =— = i E Mg Fog e + : f,(;—i— ! (51’
i i Mognox= Ot Maanox* DEDo vt Maanox* Mognoxr O
K7
i
SO (u%‘; 3, VS, ) satisfies on the boundary dual mesh:
uly Uy
My —— + E Mo Foope + Magnoxs Wer = My fix + My —=, Vk; € 3m;r (34)
i Ot i 9 j 3 i ot )
DED
J

Ve € M, with Ox N T # O, if we look at the composite mesh, the diamond b € DI' can be written as

the union of p; € @fj and p; € @f By definition, we have F,y; = —Fyy,; moreover, thanks to the
choice (30) of up® for all L € 9M; 1 and thanks to Prop. 5.4, we have m,F2¢ = —m,Fgy, .
From the definition of h¥’, we get the relation:
1 (oo} oo (oo} 1 oo oo
h* =F0 — —Fo,u° + A = —F0 + - Fo, w° + Au°.
i 2 T J 2 J
So (ug,py,, V) satisfies:
1 o0 o0 o0 1 o0 o0
Foe — §F[,KiuL + A = -F5 + iFGKj u™ + Au. (35)

Ve € I*, with gk~ N T # (), the cell x* can be written as the union of x; € 99 . and x; € O .
By definition, we have HKJ_* = —H- and V¥ = —¥2° . This leads, from the definition of hg, to the

y H ; i
relation:

1 1

oo o0 - oo oo oo - oo oo

hy =97 — e U +Auy = —UF + —He-uY + Augy.
J i 2 i i i 3 2 9 3 3§

So (u%"7 P \IJ%;) satisfies:

1 1
i i i i 3 i 3 j

for all p € @, (us, po) satisfies:
mydiv’ (us) — fmydp?APpp =0, Vo €D. (37)
We need to distinguish two cases:

1. If oNT = @, the diamond o coincides with a diamond b; € ®; (or with a diamond b; € ©;). For
a diamond p € ®\ D', remark that the limit unknowns ufjo, uXx, pﬁj’ on T; for j = 1,2 coincide
J

with u,, U=, pp on T. Thus we can directly deduce that (u%; ,p%i , \If%oj) satisfies Vb; € D \@g:

My, div® (uz)) — Bmy, dD].2ADJ'p§j =0. (38)

2. If oNT # 0, the diamond b can be written as the union of p; € ’D? and p; € D! . This implies
that the divergence can be split as : m,div®(uz) = m,,div> (ug) +my, div® (ug?). From (37),
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the choice of unknowns p and from the definition of 9gp; we obtain:

Goy = — (M, div® (ug) — ﬂmpidpizADipgf) + amy, pp?

= (mnj div® (ug?) — By, dp, AP pge ) + amy, pg,

that implies for (u%‘;,p%ow\ll%i) that Vp; € CD?:

—(my, div® (u%‘i)fﬁmbi dDIZADipSf) + amy, pp; =
(1, div® (uz)) — By, dDJ,?ADJ'pSf) + ams,, pp; (39)

To recapitulate, (31), (33), (34), (35), (36),(38), (39) show that (ug’,pg , V) is a solution to (P®). m

5.5 Convergence of the DDFV Schwarz algorithm towards (75)

Theorem 5.8 (Convergence of the discrete Schwarz algorithm) Under the hypothesis that m - =
2m,. = 2ma; fori,j =1,2,i+# j, the iterates of the Schwarz algorithm (S1)-(S2) converge as 1 tends to
infinity to the solution of the DDFV scheme (75) (up to a constant for the pressure).

The relation imposed on the m_»’s — which also appears in Theorem 6.1 below — is not a restriction
in practice. Given a mesh of the entire domain and the interface I', we can adjust the centers z, neigh-
boring the interface so that the condition is fulfilled. It ensures that the diamonds of the global mesh are
split into two half-diamonds with equal area, see Fig. 4. All meshes used for the simulations satisfy this
condition.

Proof. The iterates of (S1)-(S2) satisfy:

T l ! l = -1 1-1\ _
EQ;’F(U‘IjapDJwlIJ‘IwaT?uTth‘Ij 7933]. ) - 0)

and (uf%‘_’]_7 e ,P% ), constructed from the solution of (P) is solution to:

<y e s} 0 [e%e) — %) 0o\
EijF(u‘Ij7p©j’ \IITj’f‘Zquj’h‘Zj’g@j) =0.

We define the errors

| oo I _ gl oo 1 (%]
ey, =ug, —ug, P =¥y -V, Iy =py, —po,- (40)

By linearity, they satisfy:

T; l l l -1 ~i-1
CQ;,F(GE]‘7H®]‘7©Sj70’07H¢j 5 G@J ) = 0, (41)
with

-1 -1 1 -1 -1

HLj = ‘/_:O'Kq, — §F0-KieLi + )\eLi 3 VLJ =1L € 89}1‘]'71"
1

H ' =01 - §HK_* el7t 4 el Vk; € O p such that zy: = @y

j i i i i 5 5

Gi 7t = —(my,div® (el ") — By, dp, AP TIL ") 4 amy, IT51 W; € DY such that zp, = p,.

To prove the convergence of the iterates of Schwarz algorithm, it is sufficient to prove the convergence to
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0 of the solution of (41). In the expanded form, (41) is written as:

e
Kq l
mx(sitj_“i’szakj VKJGMJ
DED
el
K ' B ) )
Mg~ 52 + Z mﬁ*./—"g;l(* =0 VKJ. c mj
DED
€
Mg 5; + Z mn*F K —|—mamdx*¢) =0 VKJ* c 6931}(71—‘
DEDy
~ by + 5Fogel +el, =HI"! Vo eom,
(TK] 9o Sy =H,, T
1
_(I)l + 2H e +Ae :Hll(*—l VKJ* c 8”{;‘1_‘
J k)
o, div™ (et ) — fmo, o, 2ADJHZ = Vo € D;\ D}

m,, div® (efy ) — ﬂmDJdDJQADJHl + amy, Hg =Gl oy €D].

Thanks to the hypothesis m,« = 2m,« = 2m,+, we have m,, = m,,; so, in the equation on p; € @;, we
i J
can simplify the measures and it becomes:

div® (efy,) — Bdp, AL + all, = —(div™ (el ') — Bdp, *A%TIL ") + oIIf "

We multiply the equations by efzj and we sum over all the control volumes, as in the proof of Theorem. 4.4.
We obtain, analogously to (11), the following:

1 2 D D
Elleéjll%—mD refs lI5 — (I, div (ef)))o,

1 1
1 1 1 l
-|- E UKJ FUK] eLJ = + 5 E Moqnox* (‘I)K; - §HKJ* eKJT‘) : exj*
De©F K" €M |,
1 m?2 1 m?2
o 1 2 o* ! ! 2
—1—72 B e_—e E Bwe*—e*_ =0 42
2 2Rem, oxles, | 9Rem. ° 1M L (42)
DED, De@
>0

By the equations on ’D , we can split the scalar product into interior diamonds © \ ZD? and boundary
diamonds @;.

—(Iy,, div®i (e ))o, == Y my Ih divPi(ek ) — > my TT div™ (ek,);

D,€ED; \BD]F D, e@JF

for the diamonds n; € D, \ 33? we apply the equation of conservation of mass, for the diamonds p; € @;
we add and subtract the term EDje©j My, ﬁdDJQADJ‘ Hl@JF . ngr

J

— (I, div®i(ek o, =B Y mydpy PAYITr T — B8 my dp 2AM Ty - Ir
D;€D;\DY ’ ’ D;€DY ! ’
> o, T, (div® (k) — By, 2A Tl ).
DjG@? !

We apply Remark 3 to the term —8 37, co my, dp,2APs HfD]r Hl@f =-8 (d@_]2A©J‘ Hl@j , H%j) : we then
multiply and divide Y or my, Héj (divDJ' (ek ) — Bdp,2APs HE}DF) by « to finally obtain:
] j j j

1 ) .
—(y,, div®i (ek ))o, = BT \Q—a > mujangj(divDa(egj)—5dDj2ADJHl©§_).
DJ'E@E
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So (42) becomes:

1 . D, )
|| ||2+—|||D©Jez I+ B, [ = — > mo,aTly (div™ (efy,) — fdp, *AP Ty )

. T
D, €D!

1 1 1 l 1 l 1 l l
oy D Me(Foy — gFogel) del +on D Monnoe (B — S Hiel) e <0, (43)
DeDl K" €oMms

where we multiplied and divided by A > 0 the terms on the second line.

1 1
We start by considering o Z (}"fﬂj — Fm(J eL ) /\e . By applying now the equality —ab = Z((—aJr
DeDT
b)? — (a+ b)?) we can write:

1 1 1
. > m,(FL,, 5 Fo, el ) xel =53 m, |7, - gFgK].eij + el |°
DEDY DEDY

1
I ! L2
m,| =Fo, + iFngeLj + ey, %

-1
=H
Lj

Owing to the transmission conditions it becomes:

1 1
1 l l
hd Z (‘FO'KJ - 5 UKjeLj) ')‘eLj = 1 Z U| oK

1

1 12
= 5Foe, + /\eLj|
De@? De@?

2

1, -
- = Z Aot = G Fael 4 del .
De’DF

1 1
Equivalently for 2 Z mamaK*(@ij* —§H e ) )\e , we obtain:

E

K" €0M 1
ol — Lp.el <1> H Ael, |2
L4 masmax*( ke T 5 i« eKJf) masmax*| - K eK* + Aeg. |
K*GBDJT;,F K €M |,
1 1
-1 -1 1—1|2
- = E Maonox* (I)Kf — —Hy- €. + >\e ‘
4 . . i 2 5 h
K Eamjyr

If now we consider m,, a Il (div™ (e,) — Bdp, 2APTI, ), thanks to the presence of the parameter a in
the transmission conditions for the 1ncomprebblb1hty conbtramt we can treat it as the previous terms. In

1
fact, with the equality —ab = 1((—a +b)2 — (a+b)?), we can write:

1
1 (3505 (ol 2 AD; T L Dl 2 AD; 7T L2
. - E my;allp (div (eg,) — Bdp,~A JHZ)JF_) =1 E My, |div- (es) — Bdp, " A JHQJF_ —allp |
D;€DY DeDT
1 . D, .
~1 my, | div® (elgj) — Bdp, > AP ngg + ozl_[éj %
:ij D;

The hypothesis m,~ = 2m,» = 2m,~ implies m,, = My, , SO that this expression becomes:
i J

1
o= D mall (div(er,) - By, "AMTTgr) = 1 3y, |div® (e, ) — Bdp, *APTIgr — ol

. r r
;D! DeD}

1 . Dy l— e _
~1 Z My, |div™ (elgil) - BdDizAD”HfDrl — ol 2
peor '
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Replacing those results into (43), we have:

1 2 o
gilles, I3 + Ro D™ el i3 + 8|05, |2

1 . D, _ 1 . D R —
+ > maldiv® (ef)) — B, 2AP e — a Tl |2 — 1o D meldiv (e ) — By PAMTIG! — Tl
peo? peo? '
+ 87)\ | ok T FUKJe + )‘el |2 Z m, ‘]:clml - ’Fameﬁ L )\eﬁ:1|2
DeDY DeLDF

_ 1 _ _
ot - 5 e '+ e P <0,

1
E Maanaors | P QHK* eK* + >\e E Maanox*
K €OM 1 K" €M |,

Summing over [ = 0,.. .14, and j = 1,2 we obtain:

lmax lmaz lmaz

Do sllek B4 Y. T o upek i34 Y Y 6l P
10312 lO]12 1=0 j=1,2
maz 2 AD; T1lmax lmaz |2
Z Z my|div® )—ﬁdDj A «7H®5 — allyre|
a .= 12peor ’
1 I, 1 Lmas a2
Y Z Z ]:OVK,L]M ) dej eL;mu + )\eL;na.L|
j:1~,2D€©£

lmae _ L7 olmas Loz |2
*(I'KT* — 5 He €y + )‘ex’.‘ |
il 2 | hl

+ 8% Z Z Moonax*

J=12K"€omx

< - Z > my|divPi(ef) — Bdp, *APTIY — o TI) |?

] 1, ZDE’DF

1 0 1 0 o, 1 o 1 0 02
3\ Z Z M| Foy, — §FUK-7 e, + )\eLj| + 3\ Z Z |Mognoxs <I>K;f — §HK;eK; + )\eK;

= r = * *
J=1.2pe®] J=1,2K" €0

that bhOWb how the total energy stays bounded as the iteration index l,,,, goes to infinity. The series

Z Z ||e3 |2 and Z Z Ié; |H 2 converge, so their general term tends to zero, that implies the
1=0 j=1 2 1=0 j=1,2
convergence to zero of the errors [lef;_|[3, |Hl©j |2, defined in (40). Thus the algorithm converges.

The limit is the solution of problem (ﬁ), that is problem (P) with an appropriate choice of the flux
on I'; in fact, we can deduce that, as l,,q; goes to infinity:

o |le%, |3 tends to zero implies uf, — ug® for j = 1,2.

. |Hf©j |2 tends to zero implies (since |- | is a semi-norm): pr]_ + const! (Q;) — p3, for j =1,2. Thus
the pressure converges up to a constant that depends on the subdomain. In some cases we are able
to determine const!(Q;).

Remark 5.9 We can determine the constant constl(Qj) if we suppose that the mesh satisfies the Inf-Sup
inequality ([BKN15]). In fact this implies that the norm HHl@j - m(Hli,j)Hg < C\|el¢j||2 — 0 holds as

I — oo, where m(l'[fD |Q | Z m,II1°7 . This means that ||pl®j -3, - (m(pégj) —-m(p3),)) l2 = 0,
DED

constt (£2;)
from which we deduce that péaj — m(pl@j) =Py, m(p%’j) forj=1,2.

6 A modified DDFV Schwarz algorithm

We now investigate whether it is possible to construct a discrete Schwarz algorithm with modified fluxes
that converges to the solution of (P). We show that this is possible if we suppose an asymmetric
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discretization of (1), in the sense that we need to consider an upwind discretization of the convection
term on the primal mesh and a centered scheme on the dual mesh, that corresponds to the choice

By(s) = %|s| and By (s) =0
in (P). We remind the reader that the convergence to (P) holds if and only if both (26) and (29) hold,
which can be seen as a definition of By, (resp. EU*K*) as a function of Boy,, By, (resp. Byre, Bozer).
The idea is to modify the Schwarz algorithm, so that it converges to the solution of (P); this relies on the
ability to invert these relations. Accordingly, the fluxes of the limit equation depend only on By, By
and a different definition of the fluxes is not required on the interface I'.

Theorem 6.1 Let (uz,po) be a solution of (P) for convective fluzes defined by a constant upwind flux
Bo(s) = &|s| for all o € &, and by the centered fluz By« (s) = 0 for all * € £*. Define (S) the Schwarz
algorithm where

e On the primal mesh, the discrete convective fluzes are defined as:

By (s)Id if o ¢ &r, Byy(s) if o € &p,

with:
_ 1 s|—242y/1+]|s 0 _
Boals) = 5@ (I¥72F2VIHD Q. (44)
2 0 |s| =14 /14 2|s]
x Yy o T\ . )
and Q = (y —x)’ where N, = (y) 1s the outward normal to the interface I.

e On the dual mesh, Bysy(s) = 0.

Assuming mg« = 2m« = 2m,~, for j,i = 1,2, j # i, (P) is the limit of the Schwarz algorithm (S).
; ;

Proof. The assumption m, - = 2ma; = 2m0; implies that m,, = m,, = %mn and Byy, = Byy, = Box.
This means that )

A=Ay = e (P4 B, Id)

Rem,

and )
2m
A=A Ay = <

1+ A2 Re

(P + By Id) = 24, = 24,.

Rem,
2m?2

o

(P + BgId)~!. Therefore, we get

2
B, = 2Rems <iA2 + (1maF6K> Id) Al_p

m?2 2

Moreover, A~! =

Expanding this expression, we get:

~ Rem,
Boy ( S ) A+ B (L F)° A7 - P

2
P+ B, Id + (R;T) (Am, F,)? (P + Byld)~! — P,

Rem, Rem,\> (1 2
by using the definition of A and A~!. Let us set s = om F,., We have ( er;z > (m(,F(,K) = 182,
m

o

so we end up with:
~ 1
By = By Id + 152(P + B d)~ L

If we make explicit the dependences of E(,K, B, as a function of s, since B, is a function of mﬂiRe F . and

EUK a function of %Fw we are led to
~ 1 _
B,(25) = Bgy(s)Id + 152 (P + By(s)Id)™", forl=1,2.
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We can rewrite this condition as:
Byy = T(Boy).

This relation implies that the Schwarz algorithm (S1)-(S2), whose convection fluxes depend on B,
converges towards the solution of (ﬁ)7 whose convection fluxes depend on Em( for o € &r.
We want to build a new Schwarz algorithm (S) that converges toward (P), whose fluxes are defined by
Boy; so we need to build B,, such that:

By = Y(B,,),
where B, can be a full matrix. Since our goal is to converge towards the fluxes that define an upwind
scheme, i.e. defined by B(s) = %|s|, B, is actually a diagonal matrix, that will be denoted by B,Id to
make its matrix nature clear.
Thus we need to invert the function Y defined above to find the new coefficients B,,. The inverse of T

does not exist for every B,,. Given s and By,(2s), we have a second-degree equation for B,,(s):

BO‘K(S)2 + BO’K(S) (P — BG'K(2S)Id) + iszId o PBO-K(2S)Id _ <8 8) 7
N
T

%

that is:
BC,K(S)2 + BGK(S)T +V =0.

Since the matrices T,V are symmetric and they commute (because they are polynomials in P), they can

be diagonalized using the same basis of eigenvectors. The matrix @ = (m y

) is an orthogonal matrix,
y —x

and we can write:
T=QTQ", V=QVQ,

with 7" and V' diagonal matrices, whose expressions are:

~ 2-B 0 ~ 1s2_9pB 0
T = oK _ 4 oK )
< 0 ]. - Bm(> ’ V < 0 isz - BO‘K)

We then look for B,,(s) of the form B,,(s) = Q M Q~!, with M a diagonal matrix such that
M?>+MT+V =0.
Since we are supposing By(s) = 3|s|, the solution exists and is given by

7= L(lsl=2+2V/1+]s 0
2 0 ls| =14 +/1+2]s])’

that leads to our result (44).
For what concerns property (29), we would like to define a unique By« (s*) for o* € £* in the limit

Rem,
scheme (P). With the assumption m, = 2m,« = 2m,;, we can define s* = Foup and s} =
m,«
Remy,, . . . .
FU;K* for j = 1,2: remark that there is no relation between the s7. We have s* = s7 + s}, since
M,
J

M= FU;K* + Mgx Forer = my= Fv-. This leads to the new expression for (29):

Boe (55 + 57) = 5 (Bowi= (5]) + Bowie (s7)) -

N |

This is true only if Byxex = EU*K* = 0; in this way, property (28) is verified. So the dual flux for the
algorithm (S) and for the limit () correspond to a centered discretization of the convection flux on the
dual mesh.

The Schwarz algorithm (S) is well posed, since (Hp) is verified by its fluxes, and it converges towards

(P) with the choice of Byy(s) = 3|s| for all 0 € £ and By« (s) = 0 for all o* € €. |
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7 Numerical results

In this section, the objectives are the following:

e to show and compare the convergence properties of the Schwarz algorithms (S1)-(S2) (presented in

Sec. 4.3)) and (S) (presented in Sec. 6);
e to study on numerical grounds the influence of the parameters A, «, 5 of (2) on the convergence;

e to further validate the method with the simulation of a benchmark of a flow past an obstacle.

We will refer to (S1)-(Sz2) as “first Schwarz algorithm”; and to (S) as “second Schwarz algorithm”.
We recall that the difference between the two algorithms relies in the definition of the fluxes at the
interface; the former converges towards the solution of (P) (see Theorem 5.8), the latter towards the
solution of (P) (see Theorem. 6.1). For the first Schwarz algorithm, in all the following test cases, we
will consider an upwind discretization of the convection flux, i.e. we set B(s) = %\s\

The scheme needs the resolution of large linear systems; for the simulations discussed below, the linear
systems — possibly non symmetric due to the interface — are treated by a direct method, appealing to

Unfpack libraries.

7.1 Numerical study of the convergence

We recall that the domain decomposition algorithm is an iterative algorithm that is employed at each
time step; this, in particular, implies that at each iteration of the Schwarz algorithm we solve a steady
problem. In the following tests, we fix the time step (6¢ = 10~%), and we apply the iterative method on
the time interval [0, 6t]. The time step is voluntary picked quite small here in order to focus the discussion
on the spacial error and the effects of the interface; its influence is also discussed below (see Fig. 14). In
all the test cases, the domain = [—1, 1] x [0, 1] will be divided into two subdomains Q = Q; UQs. The
meshes we will consider are illustrated, in their first level of refinement, in Fig. 7.

(a) Mesh] (b) Mesh?

(c) Mesh$.

Fig. 7 Coarse level of refinement of the composite meshes on 2, Meshf.
The subscript in the name of the mesh (see Fig. 7) denotes the level of refinement, i.e. Mesh! represents

the coarse mesh of a family of refined meshes (Mesh¥,),,,. More precisely, Mesh¥, is obtained by dividing
by two all the edges of Mesh”, ;. We consider the following exact solution to (1):
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Test 1: )
—2m cos(mx) sin(27y) exp(—bntn=),
ulz,y, ) = cos(mz) sin(2my) exp 772) ,
7 sin(mx) cos(2my) exp(—bntm?)
2
p(z,y,t) = —%(4 cos(2mz) + cos(4my)) exp(—10tnm?).

The algorithms, in all the following simulations, are initialized with initial random guesses h%j and g%j

for 7 =1,2. As a stopping criterion, we impose:
e, ll2, 1Ty, [l2 ) < 107°
max e(l'j 2, @j 2 5
where the errors are defined in (40).

7.1.1 Error on the interface

In this first test case, we consider the first Schwarz algorithm; our goal is to point out that the error
computed with respect to the solution of (75), along the iterations of the algorithm, stays localized at the
interface between the two subdomains.

The domain (2 is meshed with Mesh2, we fix the parameters A\ = 100, = 1,8 = 1072. Since the
initialization assigns random values, the initial error is [[u% — ug||oc = 100. for both primal and dual
mesh.

As we pass to the 15¢ iteration, we observe in Fig. 8 how it immediately locates on the interface between
the subdomains; it decreases, passing from 100 to 1.9 on the primal mesh and to 6.9 on the dual mesh.
Already at the 10" iteration we see in Fig. 9 how it has diminished, staying localized on the interface,
passing from 1.9 to 0.52 on the primal mesh and from to 6.9 to 0.05 on the dual mesh.

Fig. 8 Error ut — ug at the 15¢ iteration. Left: Primal mesh, ||uj; — uo|l = 1.9. Right: Dual mesh,
||u§31*uam* — Umm*uom= ||oo =6.9.

Fig. 9 Error ul’ — ug at the 10" iteration. Left: Primal mesh, ||u;, — uo||cc = 0.52. Right: Dual mesh,
U3y Uoons — Umm=uomm || = 0.05.

7.1.2 Study of the parameters

In this section our goal is to study the influence of the parameters A, o, 5 and of the mesh on the conver-
gence of the first and second Schwarz algorithms. We recall that g is associated to the Brezzi-Pitkdranta
stabilization (see Section 2.6) while the parameters A and « are associated to the transmission conditions
between subdomains. In each test case we fix all parameters, but one. First, the value of § associated to
the stabilization is set to 1072. In Fig. 10-11 we represent on the x-axis the number of iterations, on the
y-axis the error.
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We start by considering the first Schwarz algorithm; we can observe in Fig. 10 the convergence of the
algorithm to the solution of Test 1 on Mesh].

108 : T f 10% ! !
K — =5, a=1 |{ N —— =100, a=0.01
5 [\ —— =10, a=1 S —— =100, a=0.25
10 _ 1 lH 10 _ —05 |7
A=100, a=1 | A=100, a=0.5
\ ——A=200, a=1 |[| — A=100, a=1
0\ —— A=400, a=1 ||| 10t —— =100, a=10
| A=600, a=1 || F A=100, a=50
10° . 4
f AN
1071 AN g
1072 AN |
AN N
1072 AN e
N
\‘\
10 \ NN E
| O\
‘ I Lo O\
10-5 T I | I I I | | 10-5 L | | I NI I I I
0 100 200 300 400 500 600 700 800 900 1,00 0 100 200 300 400 500 60O 700 800 900 1,000

Fig. 10 Test 1, Meshi, first Schwarz algorithm. Left: optimization of \, with a = 1, 8 = 1072, Right:
optimization of a, with A = 100, 8 = 1072,

In particular, on the left of Fig. 10, « is fixed to 1, and we observe how, as ) increases, the number
of iterations necessary to converge decreases until A = 200; passed this critical value, the number of
iterations starts to increase again. This suggests that on Meshi, for « = 1 and 8 = 1072, A = 200 is a
good choice to have a better convergence. On the right of Fig. 10, we set A = 100 and we let « vary:
we observe the same kind of behavior as the one of \. We consider now the second Schwarz algorithm
on the same test case, i.e. Test 1 on Meshi. We show its convergence in Fig. 11. This indicates that on
Mesh}, for A = 100 and 3 = 1072, a = 0.25 is a good choice to have a better convergence.

103 T T g 10% T T
;ﬁ‘ —A=ba=1 || iy —— =100, a=0.01
Loz h\ ——A=10,a=1 || SN —+—A=100, a=0.25
\ A=100, a=1 |7 07 N A=100, =05 |7
—— =200, a=1 | N —— =100, a=1
10! - A=400, a=1 | 100 ——A=100, a=10 |
A=600, a=1 | E A=100, a=50
10° 100 N\, d
10! 107! ! E
F NN
1072 102 | \ ‘\\ i
10-3 103 NN E
E SN
AN
10 104 \ N\ E
\ \
10-5 T W 1 1 1 1 L L L 105 L \ | | | | N | | |
0 100 200 300 400 500 600 700 800 900 1,000 0 100 200 300 400 500 600 700 800 900 1,000

Fig. 11 Test 1, Meshi, second Schwarz algorithm. Left: optimization of \, with a = 1, 3 = 1072, Right:
optimization of a, with A = 100, 8 = 1072,

We remark that the second Schwarz algorithm behaves similarly to the first one, if we compare Fig. 10
and Fig. 11; thus, both algorithms converge and the speed of convergence is influenced by the choice of
A or a, once fixed the value of § and the mesh. Since the parameters have the same behavior and the
number of iterations necessary to the convergence is almost identical between the two algorithms, from
now on we will only focus on the first one.

In the following, in Fig. 12-16 we represent on the x-axis the value of the parameter under study, and on
the y-axis the number of iterations.

In the first test case of Fig. 12, our goal is to show how the level of refinement of the mesh can
influence the choice of the optimal parameter; we consider Test 1 on the family (Meshl ), m = 1,2, 3, 4.
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As before, we set the value of 3, we fix one of the two parameters between \ and « and we let the other
vary; we represent on the x-axis the value of the parameter that changes, on the y-axis the number of
iterations required to obtain an error of order 107°.
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Fig. 12 Test 1, (Mesh? ),,, m = 1,2,3,4. Left: optimization of A to obtain an error of order 10~°, with
a=1,8=10"'. Right: optimization of a to obtain an error of order 10~°, with A = 100,38 = 10~'.

Table 1 Test 1 on (Meshl )., m = 1,2,3. First line: Optimal value of A for « = 1,3 = 10~!. Second
line: Optimal value of o for A = 100, 3 = 10~1.

Mesh! Mesh! Mesh! Mesh}

A 156236 293.36  404.63  929.36
o 0.5 0.5 0.5 0.6

As illustrated in Fig. 12 and summarized in Table 1, we observe different results for the two parameters;
the mesh refinement has an impact on A but not really on . The mesh size h is divided by two at
each level of refinement, and we see that it has an influence on the value of \; unfortunately, we can not
conclude by defining a relation between the two.
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I —— Mesh}

woll]| | Table 2 Test 1 on (Mesh?),,, m = 1,2,3,4. Opti-
il mal value of A for « = 1,3 = 1071,
300 J‘“‘f \ N

|11 Mesh? Mesh Meshi Mesh}
A 122 253.27  384.45  667.51
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Fig. 13 Test 1, (Mesh?,),,, m = 1,2,3. Left: optimization of A to obtain an error of order 10~°, with
a=1,8=10"". Right: Summary table of the optimal values of \.

In Fig. 13 (left) and Table 2 we want to confirm the results obtained for A on Fig. 12 (left) and Table 1,
by considering the same test case (Test 1) on a different family of meshes, (Mesh?)),,, m = 1,2,3,4. As
before, A is influenced by the mesh discretization step but we can not conclude by defining a relation
between the two; moreover, we remark that its optimal values change with respect to Table 1, due to the
different meshes.
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Fig. 14 Left: Testl, optimization of A for different time steps to obtain an error of order 107°, a = 1 and

B =10""1 . Right: Summary table of the optimal values of \.

In Fig. 14 (left) and Table 3 we want to point out that also the choice of the time step influences
the optimal A. In fact, we can see that for a bigger 6¢ (such as 6t = 1072), the optimal \ is smaller
(A = 21.18), and the more the dt decreases, the bigger becomes the value of \.

1,200 ;
—pB=102
——B=10"
1,()oul ?:1 0_4
| — 7= Table 4 Test 1 on Mesh3. Optimal value of A and
800 | the number of iterations for different values of /3
‘ and for a = 1.
600 [ b
L B 107 1072 107t 1
"“‘H‘j“ ) A 436.81 122 122 25.2
L # iter 818 53 40 246
200 |- *;
UU 160 260 360 460 560 660 700

Fig. 15 Test 1, Mesh$. Left: optimization of X\ with different values of 8 on Mesh}; a = 1 . Right:
Summary table of the optimal values of .

In Fig. 15 and in Table 4 we study the influence of the parameter /3, associated to the Brezzi-Pitkdranta
stabilization. We see how the choice of this parameter affects the convergence of the algorithm and how
it affects the optimal value of \: we pass from 818 iterations with A = 436.81 (for 8 = 107%) to 40
iterations with A = 122 (for 3 = 107!). There is then an optimal choice even for this parameter.

As last simulation, on Fig. 16 and Table 5 we compare the optimal values of A for Test 1 on differ-

ent meshes. We see that even the choice of the mesh influences the optimal choice of the parameter: for
a Cartesian mesh, A = 105.91 while for Mesh? \ = 154.3.

For every test case, we have observed that the following four parameters — the parameters A and
« associated to the transmission conditions, the parameter 3 of the Brezzi-Pitkédranta stabilization and
the mesh choice (its geometry and its level of refinement) — impact the convergence of the algorithm.
Considering three of these parameters as fixed, it is possible to optimize the remaining one in order to
reach a faster convergence. This preliminary study also confirms the high interdependence between the
parameters: a conclusion can be substantially changed by modifying the conditions, like the geometry of

the mesh. The understanding of the elliptic equation, which is still in its infancy, can give relevant hints
[GHHK18, GHHK20], as well as a further analysis of the continuous system.
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Fig. 16 Left: Testl, optimization of A for different meshes to obtain an error of order 1075, o = 1 and
B =10"'. Right: Summary table of the optimal values of \.

7.2 Cylinder test case

In this section, we test the first Schwarz algorithm (S1)-(Sz2), on a test case inspired by the benchmark
of [STD196] (we precisely use the detailed results in [Joh04]). In both [STD*96], [Joh04] the drag and
lift coefficients of the flow past an obstacle are computed from simulations on a domain €2, with Dirichlet
boundary conditions. Our goal is to measure the quality of the DDFV solution obtained on {2 with a
domain decomposition algorithm.

The benchmark is defined with dimensional equations, so we adopt the same framework, see Fig. 17.
References [STD'96] and [Joh04] consider a long channel Q = [0,2.2m] x[0,0.41m] with a cylindrical
obstacle S whose center is at (0.2m, 0.2m); we decompose the domain € into two subdomains €1, 25 and
we place the interface I' at = 0.56m. On 99 we impose Dirichlet boundary conditions, as in [Joh04].

0.56m

10.16111 & 2

S

10.15m

r 0.41m

2.2m

Fig. 17 Domain © = [0,2.2] x [0,0.41] , decomposed in ©; = [0,0.56] x [0,0.41] and Qo = [0.56,2.2] x
[0,0.41].

The mesh that we consider on € is represented in Fig. 18; it is obtained with GMSH, it has 34634 cells
and it is locally refined around the cylinder. Remark that on the left domain € (the one with triangles)
there are 18250 cells and on the right domain Q5 (the one with rectangles) there are 16384 cells.

[
[
b

Fig. 18 Mesh on the domain Q2 of Fig. 17. The number of primal cells is 34634; 18250 in the left domain,
16384 in the right one.
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The viscosity of the fluid is set to n = 1073m?s~! and the final time is 7 = 8s. The time-dependent
inflow on « = 0 and outflow on = = 2.2 is:

g, (z,y,t) = 0.417 2 sin(nt/8)(6y(0.41 — y),0).

The initial condition is w;ni(z,y) = (0,0). The density of the fluid is given by p = 1kgm ™3, and the
reference velocity is U = 1ms™! (note that the maximum velocity is %U) The diameter of the cylinder
is L = 0.1m, so that the Reynold’s number is 0 < Re(t) < 100. The time step is ¢t = 0.00166s.

We use the limit scheme (’ﬁ), but at some fixed times, we use instead the iterative Schwarz algorithm
(81)-(S2), with the initial guesses h%j and g%j, for 7 = 1,2, given by (75) at the previous time step. The
stopping criterion is

max ((lek, [z, [Ty, [12) < 1072 (45)

and the values of the parameters are set to A = 200, a = 1 and 8 = 0.01. To discretize the convection
term, we choose B = 0 which gives a second order accurate method.

To start with, we consider the profile of the first component of the velocity. The iterative algorithm is
applied at cach time step. We compare the solution of the limit problem (P) (Fig. 19,21) to the solution
obtained by the iterative algorithm (S1)-(S2) (Fig. 20,22) at times T' = 2s and T' = 6s. As we can see, the
profile is the same and the domain decomposition does not introduce any spurious modes to the solution;
the stopping criterion (45) is sufficient to obtain a fair approximation of the expected solution. The
convergence of the algorithm is obtained in 559 iterations at T' = 2s and in 689 iterations at T = 6s; the
number of iterations, as remarked in Sec. 7.1.2, can be optimized through the choice of the parameters
A, «, B (the parameters are fixed once for all and do not evolve in time). For instance, with the choice
of A = 50 and o = 0.5, the convergence of the algorithm can be speed up, obtaining 102 iterations at
T = 2s and 178 iterations at T" = 6s.

Fig. 19 First component of the velocity solution to the Navier-Stokes problem on € at T = 2s.

Fig. 20 First component of the velocity solution to the Navier-Stokes problem on (2, obtained at the 559"
iteration of the Schwarz algorithm, at T" = 2s.



Fig. 22 First component of the velocity solution to the Navier-Stokes problem on €, obtained at the 689"
iteration of the Schwarz algorithm, at 7' = 6s.

Drag and lift coefficients. In order to measure the quality of the obtained results, we focus on the
computation of the drag and lift coefficients for the limit problem (P) and for the solution of (S)-(S2).
We define the drag coefficient c4(t) and the lift coefficient ¢;(t) as

ca(t) = p;m /S <pnau5—;(t)ny —p(t)nz>,

alt) = s [ (m ™5+ st )

where S stands for the boundary of the obstacle, fig = (ng, n,) is the normal vector on S pointing to €,
ts = (ny, —n,) the tangential vector and us, the tangential velocity. In the DDFV setting,

2 > - .
= 3 (VW Foe) f )
p DED e NS
2 5 - .
= _L—U2 Z m, (VP (0" - Fopx) - gy Mg +pnny) :
p DED 0eNS

We study the evolution of the coefficients in Fig. 23 and their maximum value in Table 6, defined as:

n 7
Cdmaz = Max Climaz = max__ .
nef{0..N} & ne{0..N}

The results shown in Table 6 and in Fig. 23 prove that the approximation given by the limit problem (P)
and the results obtained with the Schwarz algorithm (S1)-(Sz2) are robust and quantitatively correct. The
behavior of the drag and lift coefficients of (P) is coherent with the reference values from [Joh04], and
the extreme values of both coefficients are similar, see Table 6. The slight discrepancy in the maximum
value of the coeflicients is due to level of refinement of the mesh and to the order of the scheme: we
work with approximately 90 000 unknowns, for all velocity components and pressure, compared to the
approximately 500 000 unknowns used in [Joh04]. Figure 23 shows that the lift coefficient is sensitive
to the choice of the time discretization: the time step in [Joh04] is 0t = 0.00125s with a second order
scheme in time. Our scheme is first order in time, and we work with d¢ = 0.00166s.

We have implemented a second order backward difference formula in time, as in [GKL17]: the first
iteration in time remains unchanged, while for n € {1,... N} the term d;u is discretized by & (Su"*! —
2u"+1u""1) instead of & (u" ™! —u") and the convection fluxes F, depend on (2u”—u"~1)
This approach indeed improves the quality of the approximation of the lift coefficient, see Fig. 23. The
drag and lift coefficients associated to the domain decomposition method (S;)-(S2) have been computed

instead of u™.
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with the second order scheme. The iterative process is applied at each time step; we then compute the
coeflicients associated to the solution given by the algorithm. The results are illustrated in Fig. 23, where
we can observe that the values of the coefficients associated to the Schwarz algorithm reproduce the
curves given by the solution of (75)7 since we established that they are a coherent reproduction of the
reference values in [Joh04], we can conclude that the algorithm produces a good approximation of the

solution of the Navier-Stokes problem on the entire domain.

Schwarz (P) order 2 (P) order 2 Reference

Cd,max 2.9999 2.9985 2.9987 2.9509
Clmax 0.5100 0.5183 0.53246 0.4779

Table 6 Comparison between the values of ¢q maz, C1,mas Obtained with DDFV scheme (P) of order 1 and
2 in time, with the Schwarz algorithm and and the reference values of [Joh04].

3.5 T T 3
(P) order 1
3 —(P) order 2 | o5k
—— Schwarz

05
05
0 { or
B R R T R S S “%TTT 2 3 4 s & 7 e
(a) DDFV. (b) Reference values.
Evolution in time of the drag coefficient
0.6 ‘ ‘
(P) order 1 0.5 T T T T T .
— (P) order 2 ‘| i
04y —— Schwarz b 0.4 |1‘ |‘ i
03} NI
2/ ) 02} |” || ‘| H |'I".I
01 |"| | ‘ ‘ | |‘ I\
0 ’ A l\l |‘ \ ‘ | | IIJ
of—————srf|[[ 1111 77
02| i 04 | V ‘|| ‘ ‘ | | I‘ | /
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04| i oal ||| |‘ ||
| LY
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(c) DDFV. (d) Reference values.

Evolution in time of the lift coefficient

Fig. 23 Comparison between the evolution of ¢}, ¢j* on the time interval [0, 8] obtained with the DDFV

scheme (P), of order 1 and 2 in time, and with the Schwarz algorithm (S1)-(Sz2) of order 2 (left) and the
reference values of [Joh04] (right).
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Multi-domains. We study now the convergence of the Schwarz algorithm in the case of more than
two subdomains; in particular, we decompose the domain €2 into four and five subdomains.
We consider the mesh of Fig. 18 on 2. We first decompose €2 into four subdomains 2 = U?:l Q;, with
three interfaces: I'y at £ = 0.56m, I's at x = 1.11m and I's at £ = 1.66m. The subdomain €; has 18250
cells, and ;, ¢ = 2, 3,4, have 5440 cells.

Then, we decompose €2 into five subdomains 0 = Ule Q;, with four interfaces: I'; at = = 0.56m,
I's at © = 0.97m, I's at x = 1.38m and I'y at = 1.79m. The subdomain 7 has 18250 cells, and €;,
i=2,3,4,5, have 4096 cells. We consider as a stopping criterion:

max (|lel, 2, [Ty, [12) < 5 x 10~

and the values of the parameters are set, as for the two-subdomains case, to A = 200, « = 1, 8 = 0.01,
B =0.

f subdomains 2 4 5
f iterations 388 484 663

Table 7 At T = 6s, we compare the number of iterations at convergence between the case of 2, 4 and 5
subdomains.

We compare the results at T = 6s, when the flow is more turbulent and with sensitive variations of the
flow in all subdomains; we take as a reference the solution shown in Fig. 21. As we can see in Fig. 24,
25, 26, the profiles are similar and the introduction of more subdomains does not affect the solution. As
resumed in Table 7, we see that by increasing the number of subdomains, we increase the number of
iterations necessary to the convergence; this is due to the fact that the subdomains have to share the
information between an increasing number of interfaces. Nevertheless, we gain computational time since,
as we decompose the domain, we have to solve smaller linear systems.

Fig. 24 First component of the velocity solution to the Navier-Stokes problem on 2, obtained at the 388"
iteration of the Schwarz algorithm, at T' = 6s, in the case of 2 subdomains.

Fig. 25 First component of the velocity solution to the Navier-Stokes problem on 2, obtained at the 484"
iteration of the Schwarz algorithm, at T' = 6s, in the case of 4 subdomains.
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Fig. 26 First component of the velocity solution to the Navier-Stokes problem on 2, obtained at the 663"
iteration of the Schwarz algorithm, at T' = 6s, in the case of 5 subdomains.

8 Conclusion

This paper establishes the well-posedness of DDFV schemes for solving the incompressible Navier-Stokes
system on the entire domain 2 with general convection fluxes defined by means of B-schemes, and it
proposes two non-overlapping DDFV Schwarz algorithms. DDFV discretizations are constructed with
suitable transmission conditions, which are equally well-posed. When using standard convection fluxes
in the domain decomposition method, the iterative process converges to a system with modified fluxes
at the interface. However, it is possible to modify the fluxes of the domain decomposition algorithm so
that it converges to the reference scheme on the entire domain. The algorithms are numerically tested on
classical benchmarks, and the numerical experiments also shed some light on the role of the parameters
of the method.
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