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Abstract. In this paper, we introduce a moment closure which is intended to provide
a macroscopic approximation of the evolution of a particle distribution function, solu-
tion of a kinetic equation. This closure is of non local type in the sense that it involves
convolution or pseudo-differential operators. We show it is consistent with the diffu-
sion limit and we propose numerical approximations to treat the non local terms. We
illustrate how this approach can be incorporated in complex models involving a cou-
pling with hydrodynamic equations, by treating examples arising in radiative transfer.
We pay a specific attention to the conservation of the total energy by the numerical
scheme.
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1 Introduction

We are interested in the derivation of “intermediate models”, intended to capture the
essential features of the solutions of the following kinetic equation

ε∂t fε+a(v)·∇x fε =
1
ε

Q( fε) (1.1)

for small values of the parameter ε>0. This equation arises when describing the evolution
of many “particles” described by their distribution function in phase space fε(t,x,v): t≥0,
x∈RN stand for the time and space variables, respectively while the variable v — which
lies in some measured space (V ,dv), V ⊂RM — represents some physical state of the
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particles. The word “particles” might refer to very different physical situations: they
could be gas molecules, neutrons, electrons or ions, photons, stars or planets or even
bacteria... In this paper, we shall be mainly concerned with the case where (1.1) models
the evolution of radiation energy (but our approach applies to a general framework). The
function a :V→RN associates to a state v the velocity a(v) and the left hand side in (1.1)
describes the transport of the particles whereas Q is a “collision operator” intended to
describe the interaction processes the particles are subject to. In most of the applications
this operator acts only on the variable v. The most common framework is a(v)=v∈RN ,
V=RN or V=SN−1 endowed with the Lebesgue measure, but more complicated models
can be dealt with. The equation (1.1) is written in dimensionless form and the parameter
ε is associated to the mean free path of the particles. As ε→ 0 the solution of (1.1) tends
towards an equilibrium state which makes the collision operator vanish fε' feq, Q( feq)=
0. Therefore, this fixes the dependence with respect to the variable v, and the dynamics
reduces to a diffusion equation satisfied by some macroscopic quantities, which means
some v−average of the unknown.

However for many applications, such a convergence statement is not sufficient; in-
stead, one would be interested in a model for intermediate regimes, for small, but non
zero ε’s. For instance, the diffusion equation propagates information with infinite speed,
while the speed of propagation of the original model is v/ε. There exists a huge litera-
ture on possible ways to derive a model “in-between” the fully microscopic description
and the limit diffusion equation. The question is particularly relevant for numerical pur-
poses since computing the solution of (1.1) for small ε’s becomes rapidly non affordable.
Very often these reduced models are constructed with a suitable closure of the equations
satisfied by moments with respect to v of fε. We refer for instance to [32, 33, 36] for pre-
sentation and comparison of such closures. Among others the closure based on entropy
minimization principle, which is referred to as the M1 model, received a lot of attention,
see [20,21,26,34,35]; it is used for numerical simulations in radiative transfer [8–10]. The
well-posedness and consistency with the diffusion asymptotics have been established
rigorously in [15] and for numerical experiments we refer to [13]. For recent progress on
moment closures, we refer also to [53].

This work is devoted to another class of reduced models which are of nonlocal or,
more precisely, of pseudo-differential nature. These nonlocal models have been intro-
duced for complex kinetic equations arising in plasma physics, and they are currently
used in numerical simulations of fusion plasmas. The introduction of such models dates
back to [42, 43], and we refer to further discussions and improvements to [1, 24, 25, 45, 47,
50, 51, 57]. The objectives of the present contribution can be summarized as follows:

• We wish to make clear the derivation of the nonlocal model starting from a kinetic
equation as simple as possible;

• Then, we analyze the main properties of the pseudo-differential equation, in par-
ticular the well-posedness and consistency to the diffusion approximation;
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• And we discuss the possible approximations of the nonlocal term amenable to
tractable numerical treatments.

Since in practice the kinetic equation is involved in a coupled system of PDEs, where
each equation induce its own numerical constraints, see e. g. [45, 51, 57], we illustrate
how the numerical treatment can be adapted to such a complex situation, by discussing a
coupling with hydrodynamics motivated by radiative transfer applications. Indeed, the
application to radiative transfer is well adapted to our purpose. The collision operator
describes both scattering and energy exchanges between photons and the material and
it usually has a quite simple expression. However, the kinetic equation for the radiative
intensity is coupled to the evolution of the properties of the surrounding gas, described
by the hydrodynamic system (Euler equations for instance). We discuss in details how
the coupling can be handled, paying particular attention to the conservation of the total
energy which prohibits a too naive splitting approach.
This work is organized as follows. In Section 2, we set up a few notations and we recall
the derivation of the diffusion regime for a simple linear operator Q, say relaxation or
Fokker-Planck operator. Then, we introduce the non local model. In Section 3 we discuss
some mathematical properties of the model. Section 4 is concerned with further appro-
ximations, having in mind numerical purposes. Finally, we describe how the modeling
adapts to more complex situations motivated by radiative transfer problems in Section 5.

2 Diffusion Regime and Non Local Model

Even if our approach can be adapted to treat general situations, we restrict the presen-
tation for the sake of clarity to linear collision operators. We first introduce the main
assumptions on which the diffusion asymptotics is based. Second, we recall the deriva-
tion of the limit equation. Finally, we modify the Hilbert expansion to derive the non
local model.

2.1 Collision Operator and Equilibrium; Examples

We recall that V is a subset of RM endowed with a measure dv and a is an application
RM→RN . In this paper, Q is a linear operator verifying the conservation property∫

V
Q( f )dv=0.

It means that the collision processes do not modify the total number of particles and
consequently the integration of (1.1) with respect to the variable v yields the conservation
equation

∂t

∫
V

fε dv+∇x ·
∫
V

a(v)
ε

fε dv=0
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(conservation of mass or conservation of charge or conservation of energy... depending
on the physical context). As ε goes to 0, we expect to obtain a closed (diffusion) equa-
tion for the macroscopic density of particles which relies on obtaining a relation between
the flux limε→0

∫
V

a(v)
ε fε dv and the macroscopic density limε→0

∫
V fε dv. This asymptotics

relies on several assumptions on Q and a that we list now. More assumptions will be
introduced for the derivation of useful formulae when discussing the non local models.
The relevance of these hypothesis will be illustrated through a couple of examples.

2.1.1 Requirements on the equilibrium and velocity function

As mentioned above, a crucial role is played by the elements of the kernel of Q; hence,
we start with

Assumption 2.1. There exists M :V→R verifying:

M(v)>0, M∈L1∩L∞(V),
∫
V
M(v)dv=1, Q(M)=0.

The collision processes have a relaxation effect which forces the solution of (1.1) to
resembles an equilibrium. This is related to dissipation mechanisms that we rephrase
here as a spectral gap property.

Assumption 2.2. We set H=L2(V , 1
M(v) dv). The kernel of Q is one-dimensional and more

precisely
Ker(Q)=Span(M)⊂H.

Furthermore, there exists a constant κ >0 such that

−
∫
V

Q( f )
f
Mdv=−(Q( f ), f )H≥κ

∫
V
| f−〈 f 〉M|2 dv

M(v)
=κ‖ f−〈 f 〉M‖2

H,

where 〈 f 〉=
∫
V f dv.

Remark 2.1. The space H = { f :V →R,
∫
V f 2/Mdv < ∞} embeds to L1(V) as a conse-

quence of the Cauchy-Schwarz inequality.

We also need the the following Fredholm alternative type property.

Assumption 2.3. Let h∈H. Then, the problem Q( f )= h has a solution f ∈H iff 〈h〉= 0.
The solution is unique in {g∈H, 〈g〉=0} and satisfies ‖ f ‖H≤κ−1‖h‖H.

Next, the diffusion regime requires some conditions involving the velocity function
v 7→ a(v).

Assumption 2.4. The following properties are fulfilled:

i) (1+|a(v)|3)M(v)∈L1(V),
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ii) We have ∫
V

a(v) M(v)dv=0,

iii) The matrix D0 =
∫
V a(v)⊗a(v)M(v)dv is positive definite.

Assumption i) is only an integrability property which justifies the finiteness of high
order moment of the equilibrium. The null flux assumption ii) is crucial, it makes the
scaling in (1.1) relevant. As a matter of fact, it allows to define χ∈H solution of

Q(χ)=−a(v)M(v), 〈χ〉=0 (2.1)

by using Assumption 2.3. The last assumption iii) leads to the positiveness of the coeffi-
cients of the limit equation (see (2.9) below).

Lemma 2.1. Let Assumptions 2.1–2.4 be satisfied. Let us set

D=
∫
V

a(v)⊗χdv.

There exists α>0 such that for any ξ∈RN , we have Dξ ·ξ≥α|ξ|2.

Proof. Definition (2.1) yields

Dξ ·ξ =−
∫
V

Q(χ·ξ) χ·ξ dv
M(v)

≥κ
∫
V
|χ·ξ|2 dv

M(v)
≥0.

Moreover, Dξ ·ξ = 0 implies that χ(v)·ξ = 0 for a. e v ∈ V , and accordingly, Q(χ·ξ) =
−a(v)M(v)·ξ = 0. It follows that D0ξ ·ξ =

∫
V |a(v)·ξ|2M(v)dv = 0. Assumption 2.4- iii)

then tells us that this happens for ξ =0 only. We conclude that ξ 7→Dξ ·ξ is a continuous
and positive function on the sphere SN−1 and we can define α>0 as to be its minimum.

Finally, our discussion on intermediate models will use further symmetry assump-
tions in order to derive tractable formulas.

Assumption 2.5. The following properties are fulfilled

i) If v∈V , so does −v; and v 7→ a(v) is odd,

ii) M(v)= M(|v|) depends only on |v|,

iii) There exists λ :R+→R bounded such that

Q
(
a(v)λ(|v|) M(v)

)
=−a(v) M(v),

that is χ(v)= a(v)λ(|v|) M(v).
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2.1.2 Examples

Let us describe now a few relevant situations in which the set of assumptions described
above is fulfilled. We can consider a linear integral operator that splits into a gain non
local operator and a loss term as follows

Q( f )(v)=
∫
V

b(v,v?) f (v?)dv?−B(v) f (v) (2.2)

where
b :V×V→R 0<b≤b(v,v?)≤b,
B :V→R 0<b≤B(v)≤b

are given (smooth) functions. The conservation property is equivalent to

B(v)=
∫
V

b(v?,v)dv?.

The verification of the dissipation property and the Fredholm alternative in Assumptions
2.2 and 2.3 can be found in [18] where a much more general functional framework is con-
sidered, with a complete analysis of the diffusion asymptotics.

In most of the applications, we simply have

V ⊂RN , a(v)=v

with one among the following definitions:

N =1 and V=(−1,+1) endowed with the (normalized) Lebesgue measure, (2.3)
N >1,V=SN−1 endowed with the (normalized) Lebesgue measure, (2.4)
V ⊂RN (possibly V=RN) endowed with the Lebesgue measure, (2.5)
V=R endowed with the discrete measure dv= 1

2 (δv=−1+δv=+1), (2.6)

V=RN endowed with the discrete measure dv=∑P
i=1 ωiδv=vi (2.7)

for a set {v1,. . .,vP} of given vectors in RM, and positive weights ωi >0.

The simplest example is given by the relaxation operator

Q( f )=σ
(
〈 f 〉M(v)− f

)
, (2.8)

where σ>0 (it means that in (2.2) we set b(v,v?)=σM(v)) and:

• For Examples (2.3), (2.4), (2.6) or (2.7), we set M(v)=1,

• For Example (2.5) with V = RN , the equilibrium is the normalized Maxwellian
M(v)=(2π)−N/2e−v2/2.

Note that for this specific operator we simply have χ(v)= v
σM(v).
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Remark 2.2. For Example (2.7), the conservation property recasts as ∑P
i=1 ωi = 1; then

Assumption 2.4-ii) implies that the a(vi)’s are linearly dependent whereas iii) means that
{a(v1),. . .,a(vP)} is generator in RN (and in particular P> N), see [29].

Another example is given by a differential operator: with the Lebesgue measure on
V=RN , and a(v)=v, we can consider the linear Fokker-Planck operator

Q( f )=σ∇v ·
(
v f +∇v f

)
=σ∇v ·

(
M∇v( f /M)

)
, M(v)=(2π)−N/2e−v2/2.

Again, we remark that χ(v)= v
σM(v).

The properties in Assumption 2.5 remain quite general and they can be checked under
simple symmetry assumptions on the coefficients, as shown in [19].

Lemma 2.2. Suppose that V ⊂RN . Assume that for any isometry R∈O(RN), we have

a(Rv)= Ra(v)

and
Q( f ◦R)=Q( f )◦R.

Then the properties in Assumption 2.5 hold.

Proof. The proof is due to [19] and we only sketch the arguments. First, we observe that
Q(M◦R)= Q(M)◦R = 0 so that M◦R =M and M is radially symmetric. Second, we
have Q(χ)(Rv)=−a(Rv)M(Rv)=Ra(v)M(|v|) which implies χ◦R=Rχ. Then, Lemma
3 in [19] proves that χ(v)=−a(v)λ(|v|)M(|v|).

Equation (1.1) with a(v) = v and Q given by (2.2) is a standard model in neutron
transport, V being some bounded domain in RN as in (2.5), see [17] (Vol. 3, Chap. XXI,
pp. 1075 and ff.) or [48]. With V = SN−1, see (2.4), it appears as a simplified model in
radiative transfer theory. Assumption 2.5 is therefore fulfilled when the kernel b(v,v?)
depends only on v·v? (isotropic medium). Then B(v)=

∫
SN−1 b(v·v?)dv? = β is constant

and M(v)=1. We define the mean scattering cosine

µ̄0 v=
∫

SN−1
v? σ0(v·v?)dv?,

where µ̄0 is a constant independent of v. We always have |µ̄0|< β and the auxiliary func-
tion χ(v) is given by (β−µ̄0)−1 v.

Lemma 2.2 allows to describe further examples. We suppose that the velocity function
derives from an energy function

a(v)=∇E (v), v∈RN
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with E : RN →R. The energy is usually a radially symmetric function. The case a(v)= v
simply corresponds to E (v)=v2/2. Relativistic models lead to

E (v)=
√

1+v2−1, a(v)=
v√

1+v2
.

A similar formula appears in semiconductor theory when using correction to the parabolic
band approximation based on the Kane dispersion relation, E (1+E )=v2/2, see [54]. An-
other possible correction is

E (v)=
v2

1+
√

1+2αv2

with α > 0, the so-called non parabolic parameter, see [12]. Within this framework, we
define the equilibrium by

M(v)=
exp(−E (v))∫

RN
exp(−E (v?))dv?

.

Then, we can work either with linear Boltzmann operators∫
σ(v,v?)

(
M(v) f (v?)− f (v)M(v?)

)
dv?

with σ a positive kernel verifying σ(Rv,Rv?) = σ(v,v?) = σ(v?,v) for any isometry R ∈
O(RN), or with the following Fokker-Planck operator

∇v ·(a(v) f +∇v f )=∇v ·
(
M∇v

f
M

)
.

However, for such examples motivated by the physics of charged particles, it would be
relevant to take into account in (1.1) the effects of some electric field. It induces additional
difficulties and these issues are addressed elsewhere [47].

2.2 Diffusion Asymptotics, Hilbert Expansion

Coming back to (1.1), the limit ε→0 leads to a diffusion equation; precisely fε converges
to ρ(t,x)M(v), where ρ satisfies the heat equation

∂tρ−∇x ·
(
D∇xρ

)
=0, D=

∫
V

a(v)⊗χdv, (2.9)

where the positivity of the diffusion matrix D has been established in Lemma 2.1. There
are various proofs of such a result, see for instance [6,18]; the analysis includes nonlinear
models [3–5, 29, 39],...
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Let us recall that we can guess the result by inserting the Hilbert expansion

fε = F(0)+εF(1)+ε2F(2)+ . . . (2.10)

into (1.1). Identifying terms with the same power of ε yields

O(1/ε) term: Q(F(0))=0, (2.11)
O(1) term: Q(F(1))= a(v)·∇xF(0), (2.12)
O(ε) term: Q(F(2))=∂tF(0)+a(v)·∇xF(1). (2.13)

Since Ker(Q) = Span{M}, (2.11) implies F(0)(t,x,v) = ρ(t,x)M(v). Then, solvability of
(2.12) and (2.13) relies on application of the Fredholm alternative for the operator Q. It
follows that F(1)(t,x,v) =−χ(v)·∇xρ(t,x) (up to an element of Ker(Q) which will be
irrelevant). Finally, the compatibility condition applied to (2.13) leads to

∂t

∫
V

F(0)dv+∇x ·
∫
V

a(v)F(1)dv=0. (2.14)

Coming back to the expression obtained above for F(0) and F(1), we end up with (2.9).
Specializing to Assumption 2.5, we obtain

D=
∫
V

a(v)⊗a(v) λ(|v|) M(|v|)dv.

For example, with a(v)=v, we have

• For the relaxation operator (2.8) with M(v)=1 on SN−1 , we find

D=
1
σ

∫
SN−1

v⊗vdv=
1

Nσ
,

• For the relaxation operator (2.8) with M(v)=1 on (−1,+1) we find

D=
1
σ

∫ 1

−1
v2dv=

1
3σ

(remind that dv is normalized),

• For the isotropic scattering in neutron transport, V = SN−1 and M(v)= 1, we find
(see notation in Section 2.1.2)

D=
1

N(β−µ̄0)
,

• For the relaxation operator or the Fokker-Planck operator on RN with M(v) =
(2π)−N/2 e−v2/2, we find

D=
1
σ

∫
RN

v⊗ve−v2/2 dv
(2π)N/2 =

1
σ

.
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2.3 Derivation of the Nonlocal Equation

The derivation is inspired by the Hilbert expansion. We slightly modify the conserva-
tion relation (2.14) by introducing a ε−dependent correction. To avoid confusion, let
us set up notation. Hereafter, we impose Assumptions 2.1–2.5 We define the following
ε−dependent functions

F(0)
ε (t,x,v)=$ε(t,x) M(v), F(1)

ε (t,x,v)=−χ(v)·∇x$ε(t,x).

We remind that F(1)
ε solves Q(F(1)

ε )=a(v)·∇xF(0)
ε . It remains to derive an evolution equa-

tion for $ε. To this end, we define G(1)
ε solution of

εa(v)·∇xG(1)
ε +G(1)

ε = F(1)
ε . (2.15)

Then, we obtain a closed equation for $ε by requiring the pair (F(0)
ε ,G(1)

ε ) to satisfy the
conservation relation

∂t

∫
V

F(0)
ε dv+∇x ·

∫
V

a(v)G(1)
ε dv=∂t$ε−∇x ·

∫
V

a(v) (I+εa(v)·∇x)−1[χ(v)·∇x$ε

]
dv=0.

(2.16)
In other words, instaed of using the P1 approximation ρ−χ(v)·∇xρ of fε, with ρ(t,x)

solution of (2.9), this approach defines an approximated distribution function by

$ε(t,x)+ε

(
G(1)

ε (t,x,v)−
∫
V

G(1)
ε (t,x,v?)dv?

)
.

When ε=0, the corrector becomes G(1)(t,x,v)=−χ(v)·∇xρ(t,x) and we recover (2.9) by
(2.16) which reads

∂t−∇x ·
∫
V

a(v) χ(v)·∇xρ(t,x)dv=0.

We have thus introduced a small correction which is intended to retain more microscopic
information.

3 A Few Properties of the Nonlocal Equation

3.1 Definition of the Nonlocal Operator

Equation (2.15) can be solved by integrating along the characteristics x+τεa(v). We get

G(1)
ε (t,x,v) =

∫ ∞

0
e−τ F(1)

ε (t,x−τεa(v),v)dτ

= −
∫ ∞

0
e−τχ(v)·∇x$ε(t,x−τεa(v))dτ.
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Based on this expression, we can derive convolution formulas for defining the flux: as-
suming for instance

a(v)=v, λ=1,

we obtain

• when V=(−1,+1) and M(v)=1:

∫ +1

−1
a(v)G(1)

ε dv=−
∫

R
∂x$ε(t,y)kε(x−y)dy

with

kε(z)=
z2

ε3

∫ ∞

|z|/ε

e−τ

τ3 dτ =
z2

ε

∫ ∞

|z|

e−τ/ε

τ3 dτ.

• when V=SN−1 and M(v)=1:∫
SN−1

a(v)G(1)
ε dv=−

∫
RN

kε(x−y) ∇x$ε(t,y)dy

with

kε(z)=
e−|z|/ε

ε

z⊗z
|z|N+1 .

• when V=RN and M(v)= e−v2/2:∫
RN

a(v)G(1)
ε dv=−

∫
RN

kε(x−y) ∇x$ε(t,y)dy

with

kε(z)=
z⊗z

ε

∫ ∞

0

exp(− τ
ε −

z2

2τ2 )
τN+2 dτ.

These expressions compare to the empirical formulae derived in [43].

3.2 Computation of the Symbol

We can also obtain interesting formula appealing from the Fourier transform

F (ξ)= f̂ (ξ)=
∫

RN
f (x)e−ix·ξ dx.

We are led to

Ĝ(1)
ε (t,ξ,v)=

F̂(1)
ε (t,ξ,v)

1+iεa(v)·ξ =
−iχ(v)·ξ

1+iεa(v)·ξ $̂ε(t,ξ).
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Therefore, we compute the associated flux

∫
V

a(v) Ĝ(1)
ε (t,ξ,v)dv=

∫
V

a(v)
−iχ(v)·ξ

1+iεa(v)·ξ dv $̂ε(t,ξ).

Finally, (2.16) can be interpreted as a pseudo-differential equation
∂t$ε =−F−1

(
Ψε(ξ) $̂ε(t,ξ)

)
,

Ψε(ξ)=−
∫
V

a(v)·ξ χ(v)·ξ
1+iεa(v)·ξ dv.

(3.1)

We write

Ψε(ξ)=−
∫
V

a(v)·ξ χ(v)·ξ
1+ε2|a(v)·ξ|2 dv+iε

∫
V

χ(v)·ξ |a(v)·ξ|2
1+ε2|a(v)·ξ|2 dv

and we remark that the imaginary part vanishes when Assumption 2.5-i), and ii) hold
(since χ is odd in such a case). Let us state the main properties of this Fourier operator.

Proposition 3.1. Suppose that Assumptions 2.1–2.5 are satisfied. Then, the following
assertions hold:
i) We have

Ψε(ξ) =
∫
V

|a(v)·ξ|2
1+ε2|a(v)·ξ|2 λ(|v|)M(|v|)dv

=
1
ε2

(∫
V

λ(|v|)M(|v|)dv−
∫
V

λ(|v|)M(|v|)
1+ε2|a(v)·ξ|2 dv

)
which is real and satisfies 0≤Ψε(ξ)≤‖λ(|v|)M‖L1(V)/ε2.
ii) For 0< ε′< ε, 0≤Ψε(ξ)≤Ψε′(ξ)≤Dξ ·ξ =

∫
V |a(v)·ξ|2 λ(|v|)M(|v|)dv.

iii) For any fixed ε>0, we have

|Ψε(ξ)−Dξ ·ξ|≤ ε2|ξ|4
∫
V
|a(v)|4λ(|v|)M(v)dv.

If, furthermore for any 0< R < ∞, and ω∈SN−1 we have meas{v∈V∩B(0,R), a(v)·ω =
0}=0, then

lim
|ξ|→∞

Ψε(ξ)=
1
ε2

∫
V

λ(|v|)M(v)dv.

iv) For any fixed ξ∈RN , we have

lim
ε→0

Ψε(ξ)=Dξ ·ξ.

In some circumstances, the function Ψε(ξ) can be computed explicitly:
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Proposition 3.2. Let us consider cases where a(v)=v, λ=1=σ.
i) When M(v)=1, and dv is the (normalized) Lebesgue measure we have

For V=(−1,+1) or V=S2 : Ψε(ξ)=
1
ε2

(
1− arctan(ε|ξ|)

ε|ξ|

)
,

For V=S1 : Ψε(ξ)=
1
ε2

(
1− 1√

1+ε2ξ2

)
.

ii) When V⊂RN is endowed with the Lebesgue measure and it can be recast as I×SN−1,
with I a measurable set of R, assuming M(v)= M(|v|), we get

For N =3 : Ψε(ξ)=
4π

ε2

∫
I

(
1− arctan(ε|ξ|r)

ε|ξ|r

)
M(r)rN−1dr,

For N =2 : Ψε(ξ)=
2π

ε2

∫
I

(
1− 1√

1+ε2|ξ|2r2

)
M(r)rdr,

For N =1 : Ψε(ξ)=
∫
I

r2ξ2

1+ε2ξ2r2 M(r)dr.

We shall discuss a more intricate example with a function v 7→ a(v) which takes into
account relativistic effects later on. It is worth discussing in details the two velocity model
(2.6), with a(v)= v. It is convenient to rewrite the problem by means of the distribution
function f±ε (t,x) of particles with velocity ±1. With this slight change of notation, we
obtain the following system

∂t f±ε ±
1
ε

∂x f±ε =
1
ε2

(
ρε− f±ε

)
=∓ f +

ε − f−ε
2ε2 (3.2)

with

ρε =
f +
ε + f−ε

2
.

We introduce the current

Jε =
f +
ε − f−ε

2ε
.

In this particular case the moment system satisfied by (ρε, Jε) is closed and completely
equivalent to (3.2). We get {

∂tρε+∂x Jε =0,
ε2∂t Jε+∂xρε =−Jε.

(3.3)

We can remark that

∂x Jε =−∂2
xxρε−ε2∂t∂x Jε =−∂2

xxρε+ε2∂2
ttρε

so that ρε satisfies the damped wave equation

ε2∂2
ttρε+∂tρε =∂2

xxρε.
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Writing the system (3.3) with ε=0, one obtains the Fick relation

J =−∂xρ

and thus the conservation law leads to the heat equation

∂tρ=−∂x J =∂2
xxρ.

The standard Chapman-Enskog expansion consists in writing

∂tρε = ∂x(−Jε)=∂x
(
∂xρε+ε2∂t Jε

)
= ∂2

xxρε−ε2∂x∂t
(
∂xρε+ε2∂t Jε

)
.

It could be tempting to get rid of the O(ε4) terms in this formula; it yields

∂t(1+ε2∂2
xx)ρε =∂2

xxρε

but we realize readily that this approximated model is not a well posed problem.
In our approach, we define

Ĝ±
ε =± 1±iεξ

1+ε2ξ2 iξ $̂ε

and then the approximated flux is given by

Ĵε =
1
2
(Ĝ+

ε −Ĝ−
ε )=

iξ $̂ε

1+ε2ξ2 .

In other words the Fick relation is replaced by the elliptic equation

(1−ε2∂2
xx)Jε =−∂x$ε.

The corresponding symbol reads Ψε(ξ) = ξ2/(1+ε2ξ2). The inverse Fourier transform
yields

F−1Ψε(x)=
1
ε2

(
δx=0−

1
2ε

e−|x|/ε
)

.

Accordingly, $ε satisfies the integro-differential equation

∂t$ε(t,x)=− 1
ε2 $ε(t,x)+

1
2ε3

∫
R

e−|x−y|/ε$ε(t,y)dy.

Of course, we can simply write

∂t$ε =∂x(1−ε2∂2
xx)

−1∂x$ε,

that is also
∂t(1−ε2∂2

xx)$ε =∂2
xx$ε.
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Proof of Proposition 3.1. The claims i) and ii) as well as iv) are obvious consequences of
the formula that defines Ψε. Next, we compute

0≤Dξ ·ξ−Ψε(ξ) =
∫
V
|a(v)·ξ|2 ε2|a(v)·ξ|2

1+ε2|a(v)·ξ|2 λ(|v|)M(v)dv

≤ ε2|ξ|4
∫
V
|a(v)|4λ(|v|)M(v)dv.

Now, let us set ξ = rω, r= |ξ|, ω∈SN−1. We check that

Ψε(rω)=
∫
V

|a(v)·ω|2
1/r2+ε2|a(v)·ω|2 λ(|v|)M(v)dv−−→

r→∞

1
ε2

∫
V

1|a(v)·ω|>0λ(|v|)M(v)dv,

but the integrand equals λ(|v|)M(v) a.e. with the additional assumption on (V ,dv).
(Note that in general the limit depends on the direction ω as shown with a 4 velocities
example in dimension 2).
Proof of Proposition 3.2. Of course, the proof uses spherical coordinates v=rΩ, r=|v|∈I ,
Ω=v/|v|∈SN−1, which yields the following expressions

Ψε(ξ)=C
∫
I

I(ξ,r) M(r)rN−1dr

where the constant C and the function r 7→ I(ξ,r) depend on the space dimension. It
turns out that we are led to compute the integrals (where we have set |ξ|cos(θ)= ξ ·Ω to
parametrize the sphere)

For N≥3: I(ξ,r) =
∫ π

0

ξ2r2 cos2(θ)
1+ε2ξ2r2cos2(θ)

sin(θ)dθ

=
1
ε2

∫ +ε|ξ|r

−ε|ξ|r

z2

1+z2
dz

ε|ξ|r =
2
ε2

(
1− arctan(ε|ξ|r)

ε|ξ|r

)
For N =2: I(ξ,r) =

∫ 2π

0

ξ2r2 cos2(θ)
1+ε2|ξ|2r2cos2(θ)

dθ =
2π

ε2 −
4
ε2

∫ π/2

0

dθ

1+ε2|ξ|2r2cos2(θ)

=
2π

ε2 −
4
ε2

∫ ∞

0

du
1+ε2|ξ|2r2+u2 =

2π

ε2 −
2π

ε2
√

1+ε2|ξ|2r2
.

The case V=(−1,+1) follows the same computation.

3.3 Consistency with the Diffusion Approximation

Let us make a couple of comments on Proposition 3.1. At first, (3.1) leads to

$̂ε(t,ξ)= e−Ψε(ξ)t$̂Init(ξ) (3.4)

where $Init(x)=
∫
V fInit(x,v)dv is the initial condition for (3.1), assumed independent on

ε. Then, Proposition 3.1-i) guarantees the well-posedness in L2(RN), together with the
dissipation property

d
dt

∫
RN

$2
ε (t,x)dx≤0. (3.5)
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(Actually any space derivative of the unknown is dissipated in L2 norm.) With Proposi-
tion 3.1-ii) and iii) we understand that (3.1) corresponds to a diffusion equation for small
frequencies but to a mere ODE for large frequencies. Finally, iv) implies that (3.1) is con-
sistent with the diffusion approximation since letting ε go to 0 yields, for fixed ξ

$̂ε(t,ξ)−−→
ε→0

e−Dξ·ξt$̂Init(ξ).

This implies (by a simple application of the Lebesgue theorem) that $ε tends to the solu-
tion of (2.9). More precisely, we have, for any 0≤ t≤T <∞,

‖$ε(t)−ρ(t)‖2
L2(RN) =

∫
RN

e−2Ψε(ξ)t |1−e−(Dξ·ξ−Ψε(ξ))t|2 |ρ̂Init(ξ)|2dξ

≤
∫

RN
|1−e−(Dξ·ξ−Ψε(ξ))T|2 |ρ̂Init(ξ)|2dξ−−→

ε→0
0.

Furthermore, we have

‖$ε(t)−ρ(t)‖2
L2(RN) ≤

∫
RN
|(Dξ ·ξ−Ψε(ξ))T|2|ρ̂Init(ξ)|2dξ

≤ ε2 T2×
∫
V
|a(v)|4λ(|v|)M(v)dv×

∫
RN
|ξ|4 |ρ̂Init|2dξ.

Summarizing, we obtain the following statement.

Theorem 3.1. For any ρInit ∈ L2(RN), there exists a unique solution $ε ∈C0(R+;L2(RN)) of
(2.16). As ε goes to 0, $ε converges to ρ, solution of (2.9) in C0([0,T];L2(RN)) for any 0<T<∞.
If ρInit∈H2(RN), the convergence holds with a rate O(ε).

Remark 3.1. Note also that $ε formally fulfills the mass conservation since $̂ε(t,0) =
ρ̂Init(0)=

∫
RN ρInit(x)dx.

4 Approximation of the Nonlocal Equation

This Section is concerned with numerical purposes; precisely we address the question of
the computation of the solution of (2.16). A natural attempt would be to use the equiva-
lent formulation (3.1) and a simple explicit Euler scheme

$n+1
ε −$n

ε =−∆t F−1(Ψε(ξ)n
ε

)
where the right hand side is evaluated by means of Fast Fourier Transform. However,
such a spectral approach might lead to technical difficulties when the resolution of the
kinetic equation is part of a bigger problem involving a coupling with other PDEs or
simply when considering non periodic boundary conditions. It also leads to the standard
difficulty of truncating the Fourier variable. It motivates to search for approximations of
Ψε(ξ) that allow a treatment by usual PDEs approximation techniques. Furthermore, we
wish to design a fully macroscopic model; in particular we do not want to go back to a
kinetic framework that would involve the additional variable v, by solving the coupled
equations (2.15)-(2.16) defining $ and G.
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4.1 Approximation of the Pseudo-Differential Symbol

Our goal is to replace Ψε(ξ) by a rational function Pε/Qε(ξ) so that we shall replace the
pseudodifferential equation (3.1) by

∂tQε(i∂x)$ε = Pε(i∂x)$ε

where now the differential operators Pε(i∂x) and Qε(i∂x) can be treated by finite differ-
ences, finite elements or finite volumes approaches.

Remark 4.1. For the two velocity model, the function Ψε(ξ) = ξ2/(1+ε2ξ2) already has
the desired form which directly yields

∂t(1−ε2∂2
xx)$ε =∂2

xx$ε.

It can be treated for instance with the scheme

$n+1
i −ε2 $n+1

i+1 −2$n+1
i +$n+1

i−1

∆x2 =$n
i +(∆t−ε2)

$n
i+1−2$n

i +$n
i−1

∆x2 .

Note that even if the scheme is based on the explicit Euler scheme, it requires the inver-
sion of a linear system.

To be specific, we restrict the discussion to the framework

a(v)=v, V=S2 or (−1+1), M(v)=1

detailed in Proposition 3.2-i). The strategy can be extended to other situations, as dis-
cussed in the Examples above, but the formula could become much more intricate and
not as explicit as in this simple case. The diffusion equation which corresponds to the
small mean free path limit reads

∂tρ−
1
3

∆xρ=0 (4.1)

while

Ψε(ξ)=
1
ε2

(
1− arctan(ε|ξ|)

ε|ξ|

)
.

To start with, we can use the Taylor series associated to the function ψ(z)=(1−arctan(z)/z),
namely

∞

∑
n=0

an zn, a0 =0, a2k =
(−1)k+1

2k+1
, a2k+1 =0.

This is known to usually provide a useless approximation, but it serves as a basis to
define the Padé approximant which gives a good rational approximation. We define

P(z)= p0+p1z1+···+pMzM, Q(z)=1+q1z1+···+qMzM.
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so that
Q(z)ψ(z)−P(z)=O(|z|2M+1) as z→0.

Indeed, since we have remarked that Ψε(ξ) behaves like a constant for large ξ’s it is
relevant to select P and Q with the same higher degree. Accordingly, (p0,. . .,pM,q1,. . .,qM)
satisfies the linear system

For m∈{0,.. .,M},
m

∑
n=0

an qm−n−pm =0,

For m∈{M+1,.. .,2M},
M

∑
n=0

am−n qn =0

For M=2 this yields the following approximation

z2/3
1+3z2/5

.

Accordingly, we approach Ψε(ξ) by

|ξ|2/3
1+3ε2|ξ|2/5

.

This would lead to the following definition of the approximate equation

∂t

(
1−ε2 3

5
∆x

)
$ε =

1
3

∆x$ε.

However, this approximation is not satisfactory since it misses the right behavior of
ψ(z) for large z’s. This is usual in the approximation of pseudo-differential operators,
where a range of frequencies is privileged, see for instance the applications of such tech-
niques for defining absorbing boundary conditions [22, 23]. Therefore, we modify the
definition of the approximant by imposing the correct behavior at infinity: we require

ψ(z)−P/Q(z)=O(|z|2M) as z→0, and ψ(z)−P/Q(z)=O(1/z) as z→+∞.

For M=2 this yields the following approximation

z2/3
1+z2/3

.

This would lead to the following definition of the approximate equation

∂t

(
1− ε2

3
∆x

)
$ε =

1
3

∆x$ε. (4.2)

For M=4, we are led to

P(z)=
1
3

z2+
38
245

z4, Q(z)=1+
33
49

z2+
38
245

z4.



19

Therefore the equation reads

∂t

(
1−ε2 33

49
∆x+ε4 38

245
∆2

x

)
$ε =

(1
3

∆x+ε2 38
245

∆2
x

)
$ε.

However, a high order approximation is certainly more difficult to treat numerically and
does not always provide significantly better results. Fig. 1 shows graphs of the various
approximation of the symbol Ψε(ξ); in particular we note that high order approximations
present larger discrepancies for the intermediate frequencies.
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Figure 1: Graph of the function Ψ (blue curve, ε =1) vs. its approximation: (x2/3)/(1+
3x2/5) (red curve), x2/3/(1+x2/3) (green curve), (x2/3+38x4/245)/(1+33x2/49+
38x4/245) (cyan curve).

It is remarkable that, at least in dimension 1, the approximate model (4.2) can be ob-
tained by using a different reasoning, based on a quadrature formula for evaluating the
integral that defines the symbol Ψε. Some hints is this direction can be found in [51],
where the convolution operator derived on physical grounds is approached in this way
to recover a formula proposed in [42]. We consider a finite number of positive weights
(ω1,...,ωM) and velocities (v1,...,vM) in (−1,+1) and we approach integrals

∫ +1
−1 φ(v)dv

by using a finite number of points: ∑M
i=1 ωiφ(vi). At least it is natural to require the preser-

vation of the fundamental properties of the velocity space which govern the diffusion
regime, that is

M

∑
i=1

ωi =1,
M

∑
i=1

ωi vi =0,
M

∑
i=1

ωi v2
i =

1
3

.
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Specializing to a 2 velocities approximations, M = 2, these constraints naturally lead to
the following definition of weights and velocities

ω1 =ω2 =1/2, v1 =−v2 =1/
√

3.

Accordingly, we are led to approach the symbol Ψε(ξ)=
∫ +1
−1

v2ξ2

1+ε2v2ξ2 dv by

2× 1
2

ξ2/3
1+ε2ξ2/3

,

and we recover that way the model (4.2).

4.2 Further examples

Let us detail similar manipulations for the Gaussian case in dimension three. According
to Proposition 3.2-ii) the symbol reads

Ψε(ξ)=
4π

ε2

∫ ∞

0

(
1− arctan(ε|ξ|r)

ε|ξ|r

)
e−r2/2dr.

The Taylor expansion leads to

2
√

2
3
√

π
ξ2− 6

√
2

5
√

π
ε2ξ4.

We therefore identify the coefficients of P and Q:

p0 = p1 =q1 =0, p2 =
2
√

2
3
√

π
.

We also have limξ→∞ Ψε(ξ)= 2
√

2√
πε2 which gives q2 = ε2/3. The Padé approximant of Ψε is

2
√

2√
π

ξ2/3
1+ε2ξ2/3

Figure 2 compares the Padé approximant to the symbol.
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Figure 2: Graph of the function Ψ in blue vs the Padé approximant in green for ε=10−1

We can also present some computations for the relativistic case where

a(v)=
v√

1+v2
, M(v)= e−(

√
1+v2−1).

In dimension three, the function Ψε becomes

Ψε(ξ)=
∫

R3

(v·ξ)2 1
1+v2

1+ε2 (v·ξ)2

1+v2

e−(
√

1+v2−1)dv.

Some algebraic computations lead to

Ψε(ξ)=
4π

ε2

∫ ∞

0

(
1−

arctan |ξ|rε√
1+r2

|ξ|rε√
1+r2

)
r2e−(

√
1+r2−1)dr.

Let us compute the Padé approximant with the correct behavior at infinity as
P(ξ)
Q(ξ)

where

P(ξ)= p0+p1ξ+p2ξ2 and Q(ξ)=1+q1ξ+q2ξ2 The 4th order Taylor expansion of Ψε(ξ) is

4π

ε2

(∫ ∞

0

1
3

r4e−
√

1+r2+1

1+r2 drξ2ε2−
∫ ∞

0

1
5

r6e−
√

1+r2+1

(1+r2)2 drξ4ε4

)
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We find p0 = p1 =0 and p2 =4π
∫ ∞

0
1/3

r4e−
√

1+r2+1

1+r2 dr.

The limit of Ψε as ξ → ∞ is
4π

ε2

∫ ∞

0
r2e−

√
1+r2+1dr. We therefore find q1 = 0 and q2 =

p2
limξ→∞ Ψε(ξ) so that

q2 =
ε2

3

∫ ∞

0

r4e−
√

1+r2+1

1+r2 dr∫ ∞

0
r2e−

√
1+r2+1dr

The Padé approximant is therefore

P(ξ)
Q(ξ)

=

1+
ε2

3

∫ ∞

0

r4e−
√

1+r2+1

1+r2 dr∫ ∞

0
r2e−

√
1+r2+1dr

ξ2


−1

× 4π

3

∫ ∞

0

r4e−
√

1+r2+1

1+r2 drξ2

which is approximately
P(ξ)
Q(ξ)

=
15.38539180 ξ2

1+0.2772004346 ε2 ξ2 .

Figure 3 compares the Padé approximant to the symbol.

Figure 3: Graph of the function Ψ in blue vs the Padé approximant in green for ε=10−1
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4.3 Numerical Scheme for the Approximate Equation

We focus our discussion on the numerical scheme to the simplest model (4.2) in the one-
dimension framework. We treat the space derivative with the usual 3-points finite differ-
ence scheme and for the time derivative, we use the θ−scheme

ρn+1
j −

(
θ

∆t
∆x2 +

ε2

∆x2

)ρn+1
j+1 −2ρn+1

j +ρn+1
j−1

3

=ρn
j +
(
(1−θ)

∆t
∆x2 −

ε2

∆x2

)ρn
j+1−2ρn

j +ρn
j−1

3

(4.3)

The amplification factor reads

1− 2
3∆x2

(
(1−θ)∆t−ε2)+ 2

3∆x2 cos(ξ∆x)
(
(1−θ)∆t−ε2)

1+ 2
3∆x2

(
θ∆t+ε2

)
− 2

3∆x2 cos(ξ∆x)
(
θ∆t+ε2

)
and we conclude that the scheme is stable under the CFL condition

1−2θ− 2ε2

∆t
≤ 3∆x2

2∆t
.

In particular, the scheme is unconditionally stable for the implicit scheme θ = 1 and for
the Crank-Nicolson case θ=1/2 which can be expected to reach 2nd order accuracy with
respect to ∆t and ∆x. Anyway, the scheme is always stable under the standard parabolic
CFL: 2∆t/3∆x2≤1. Similar conclusion applies if the equation is treated by a finite element
approach. As a matter of fact, we can also check that the scheme preserves the following
energy conservations associated to (4.2)

1
2

d
dt

(∫
$2dx+

ε2

3

∫
|∂x$|2dx

)
+

1
3

∫
|∂x$|2dx=0,

1
2

d
dt

∫
|∂x$|2dx+

∫ (
|∂t$|2+ε2|∂2

tx$|2
)

dx=0.

4.4 Numerical Results

At first, we compare the solutions of the heat equation (4.1) with various approximations
devised above in the periodic framework. It allows to compute the solutions directly by
FFT methods and thus to discuss the role of the nonlocal approximated model, without
any further numerical approximations. Results are displayed in Fig. 4 and 5 for the
discontinuous initial datum

ρInit(x)=1(−1/4,−1/8)∪(1/8,1/4)(x)+
1
2

1(−1/8,1/8)(x). (4.4)

The solution is computed on the domain (−1,1) and is discretized with 4096 Fourier
modes. The smoothing of the profile is reduced and delayed when using the approxi-
mated models, which furthermore preserve a higher L∞ norm. Of course, this is com-
pletely clear by a dispersion analysis: high frequencies are rapidly damped by the heat
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equation, while they are conserved by the pseudo-differential equation since the symbol
tends to a constant for large frequencies. As expected, the Padé approximation provides a
solution in between the solution of the heat equation and those of the pseudo-differential
equation with the symbol Ψε but it is able to preserve the sharp profiles. In Fig. 6, we
add to the previous comparison simulations with the standard second order Padé ap-
proximant without correction at infinity and the fourth order approximation. It confirms
that increasing the order of approximation does not change significantly the result. In
regular region, the standard approximation seems to have better behavior, but the global
L∞ error compared to computation made with the symbol is less accurate.
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(b) ε=0.5, T =0.05
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(c) ε=0.5, T =0.1
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Figure 4: Periodic case: computation by FFT for ε = 0.5 and several final time: In
blue the solution of the heat equation, in cyan the solution with the Fourier multi-
plier Ψε(ξ) = 1

ε2 (1−arctan(ε|ξ|)/(ε|ξ|)), in red the solution with the Padé approximant
ξ2/3/(1+ε2ξ2/3).
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(c) ε=0.1, T =0.1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26
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Figure 5: Periodic case: computation by FFT for ε = 0.1 and several final time: In
blue the solution of the heat equation, in cyan the solution with the Fourier multi-
plier Ψε(ξ) = 1

ε2 (1−arctan(ε|ξ|)/(ε|ξ|)), in red the solution with the Padé approximant
ξ2/3/(1+ε2ξ2/3).
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Figure 6: Periodic case: computation by FFT for ε = 0.5 and final time T = 0.5: The so-
lution of the heat equation (blue), using the Fourier multiplier (cyan), the approximant
x2/3/(1+x2/3) (red), (x2/3)/(1+3x2/5) (green) and (x2/3+38x4/245)/(1+33x2/49+
38x4/245) (black).

We perform similar simulations in a bounded domain with Neumann boundary con-
ditions and using the θ−scheme (4.3) (with θ =1/2) with 1000 discretization points. The
time step is chosen to be 10−3. Fig. 7 compares the results obtained by solving the heat
equation (4.1) and (4.2). The conclusion of the periodic case applies: the approximate
model has less smoothing effects, and the discrepancies disappear as time becomes larger,
the solutions having the same asymptotic trend to equilibrium. Anyway, as ε goes to 0,
the discrepancies are sensible for shorter time, and disappear rapidly.
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(e) ε=0.1, T =0.5
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(f) ε=0.5, T =0.5

Figure 7: Neumann boundary conditions: computation by the Cranck-Nicolson scheme
for several ε and final time: In blue the solution of the heat equation, in red the solution
with the Padé approximant ξ2/3/(1+ε2ξ2/3).

Second, it is natural to ask also for a comparison with a direct simulation of the kinetic
equation

∂t f +
v
ε

∂x f =
1
ε2

(∫ +1

−1
f (v?)dv?− f

)
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that the pseudo-differential equation (4.2) is intended to approach. We keep in mind that
we are only interested in the evolution of the macroscopic quantity

∫ +1
−1 f (v?)dv?. To

this end, we simulate the kinetic equation by using an involved numerical scheme which
reduces artificial viscosity effect. We use the P-Weno introduced in [14] which is based
on the Weno interpolation procedure. Of course such a simulation becomes very costly
as ε goes to 0, due to the CFL condition that imposes ∆t . ε∆x. We present on Figures 8
and 9 the evolution of the solution of nonlocal, kinetic and heat model with initial datum
(4.4) respectively for ε=0.5 and ε=0.1.
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(d) T =0.004

Figure 8: Comparison between heat, pseudodifferential and kinetic equations for ε =0.5
and several final time
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(f) T =0.006
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(h) T =0.008
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(i) T =0.009
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(j) T =0.01

Figure 8: Continued
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(b) T =0.0003
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(d) T =0.0007
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(e) T =0.0009
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(f) T =0.002

Figure 9: Comparison between heat, pseudodifferential and kinetic equations for ε =0.1
and several final time
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(h) T =0.006
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Figure 9: Continued

We clearly observe that the behavior of nonlocal model is with a good agreement for
small times with the kinetic equation whereas the heat equation gives rapidly diffusive
solutions. At a long time scales, like it is anticipated with the theoretical results, nonlocal
and kinetic solutions converge to the solution of the heat equation. Concerning the in-
between times, clearly the nonlocal model misses some diffusive properties. As already
remarked in [24] about Fokker-Planck simulations, the comparison is not as satisfactory
as expected. We can summarize the results as follows: for very short time, the agree-
ment between the pseudo-differential model and the full kinetic model is good, while the
heat equation immediately produces an overly smoothed profile, but it rapidly degrades:
sharp gradients of density are smoothed faster with the kinetic model (and the amplitude
of this effect is such that it does not come from numerical diffusion). Of course, for very
long time, these discrepancies disappear since all the models have the same asymptotic
trend. The interplay between the largest frequencies present in the data, the mean free
path ε and the final time of simulation is very intricate and definitely deserve further
analysis, which is beyond the scope of the present work.
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5 Applications

As said above, the nonlocal model, or rather its approximation, is quite easy to implement
and it provide cheap and decent results. Hence, it is worth discussing some possible
adaptations to more complex models. In particular, we shall see that it can be adapted
to non linear models, and to complex systems where the kinetic equation is coupled to
hydrodynamics equations. This is typically the situation which occur in plasma physics
[1, 24, 42, 43, 45, 51, 57], and we shall go back to this issue elsewhere, see [47]. Here, we
present instead a few applications in radiative transfer. In both cases, the non local model
can be interesting by its ability to preserve sharp gradient on short time and to remain
computable for a reasonable cost.

5.1 Nonlinear Grey Radiative Transfer Equation

In what follows, the variable v lies in S2 or V=(−1,+1) so that we set

Ψε(ξ)=
1
ε2

(
1− arctan(ε|ξ|)

ε|ξ|

)
.

We consider the equation

∂t fε+
v
ε
·∇x fε =

1
ε2 σ(ρε)(ρε− fε), ρε(t,x)=

∫
V

fε(t,x,v)dv,

with a function σ : (0,+∞)→R+, for instance σ(ρ) = ρα, |α|< 1. This nonlinear model
is introduced in [5] as a caricature of systems arising in radiative transfer, assuming that
the material temperature and the radiation temperature have already equilibrated; it con-
tains most of the analytical difficulties of the physical equations. We refer to [3, 5, 29, 39]
for the analysis of the asymptotic regime ε→0: we can establish the convergence of fε to
ρ solution of the nonlinear diffusion equation (Rosseland approximation)

∂tρ−
1
3

∆xF(ρ)=0, F(z)=
∫ z

0

du
σ(u)

.

Reproducing the previous developments leads to the following non local and non linear
equation

∂t$ε =−F−1
(

Ψε(ξ) F̂($ε)
)

.

The proposed approximation method would be, at the lowest order,

∂t(1−ε2∆x/3)$=
1
3

∆xF($).



33

5.2 Radiation coupled to Hydrodynamics

The nonlocal approximation can be applied also when dealing with systems of equations
where the kinetic equation describing the radiative energy is coupled to fluid equations
describing the evolution of a surrounding gas, interacting through energy exchanges.
The fluid is described by its density n, velocity u and total energy E. In what follows, we
denote e=E−u2/2 the internal energy and we shall assume that the pressure is given by
the constitutive law

p=(γ−1)ne, (5.1)

with γ=Cp/Cv >1 the adiabatic constant of the gas. Besides, the temperature θ of the gas
(material temperature) is given by

e=
R

γ−1
θ (5.2)

with R the perfect gas constant. The photons are subject to two kind of interaction phe-
nomena: emission-absorption and scattering. Accordingly, these phenomena lead to the
following expression of the interaction operator

Q=σs

(∫
V

f dv− f
)
+σa

(
θ4− f

)
where σs,a are positive coefficients characterizing scattering and absorption/emission re-
spectively. We adopt here two simplifying assumptions:

• Firstly, we restrict to a grey model where the unknowns and coefficients do not de-
pend on the frequency variable. The unknown f (t,x,v) is interpreted as a radiative
intensity: the integral 1

c

∫
Ω×O f (t,x,v)dvdx, with c denoting the light speed, gives

the energy at time t corresponding to photons evolving at time t in the domain Ω
and following a direction within a solid angle in O⊂ SN−1 = V . The grey model
is already an approximation since it is obtained by averaging over frequencies the
frequency-dependent equation and furthermore the derivation involves a suitable
definition of averaged opacities σs,a.

• Secondly, we also assume that the opacities do not depend on the temperature θ,
which would introduce further nonlinearities (the extension to variable absorption-
emission coefficient σa is however straightforward).

Then, the dynamics is governed by the following set of equations:
∂tn+∇x ·(nu)=0,
∂t(nu)+∇x ·(nu⊗u+p)=0

∂t(nE)+∇x ·((nE+p)u)=−
∫
V

Qdv
(5.3)

coupled to
1
c

∂t f +v·∇x f =Q. (5.4)
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It is worth remarking that the system conserves the total energy

d
dt

(∫
nEdx+

1
c

∫ ∫
V

f dvdx
)

=0.

This is a quite simplified framework: for instance momentum exchanges are neglected
as well as Doppler corrections that however can induce important contributions (propor-
tional to u/c) in the asymptotic regimes. We refer to [40,44] for further details on the mod-
eling issues, and to [10, 27] for mathematical analysis. We mention also [2, 20, 52, 56] for
interesting applications to combustion phenomena. We distinguish two relevant asymp-
totic regimes, corresponding to the following rescaling:

Equilibrium Regime: c→ 1
ε
�1, σa→

σa

ε
, σs→σs;

Non-Equilibrium Regime: c→ 1
ε
�1, σa→σa, σs→

σs

ε
.

In the former case, absorption/emission is the leading phenomena and the temperature
of radiation relaxes to the temperature of the gas: f 'ρ(t,x)= θ4. The limit system reads

∂tn+∇x ·(nu)=0,
∂t(nu)+∇x ·(nu⊗u+p)=0,

∂t(nE+θ4)+∇x ·((nE+p)u)=
1

3σa
∆xθ4.

The last equation expresses the balance of the total energy which is in this regime nE (material energy) +
θ4 (radiative energy). Applying the approximation procedure, we replace the energy
equation by

∂t(nE+θ4)+∇x ·((nE+p)u)=− 1
σa

F−1
(

Ψε(ξ) F (θ4)
)

.

In the non-equilibrium regime, the distribution f still relaxes to an equilibrium which
does not depend on the variable v, but the temperature of the radiation (that is ρ1/4)
differs from the temperature θ of the fluid. This is due to the fact that here scattering
dominates over absorption/emission phenomena. The limit equations read

∂tn+∇x ·(nu)=0,
∂t(nu)+∇x ·(nu⊗u+p)=0,
∂t(nE)+∇x ·((nE+p)u)=σa(ρ−θ4),

(5.5)

coupled to the following diffusion equation for the radiation energy

∂tρ−
1

3σs
∆xρ=σa(θ4−ρ). (5.6)
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A further approximation which is often used in practice consists in assuming in (5.6) that
σa'1/(3σs):=η−1�1 so that the time derivative is dropped in (5.6): then, (5.5) is coupled
to the simple elliptic equation

−∆xρ= θ4−ρ. (5.7)

Applying our approximation procedure replaces (5.6) by

∂tρ=− 1
σs

F−1
(

Ψε(ξ) F ρ
)
+σa(θ4−ρ), (5.8)

or its stationary variant. We wish to investigate numerically this asymptotics and see
how the nonlocal term modifies the behavior of the solution of the limit equations.

5.3 Numerical Scheme for Radiative Hydrodynamics in the Non equilibrium
Regime

In this Section, we are concerned with the non equilibrium regime which is thus de-
scribed by the system 

∂tn+∇x ·(nu)=0,
∂t(nu)+∇x ·(nu⊗u+p)=0
∂t(nE)+∇x ·((nE+p)u)=−σa(ρ−θ4),

∂t f +
v
ε
·∇x f =

σs

ε2 (ρ− f )+σa(θ4− f ),

(5.9)

with ρ(t,x)=
∫
V f (t,x,v)dv. The difficulties that make a direct simulation non affordable

can be summarized as follows:

• The radiative intensity f (t,x,v) depends on the additional variable v compared to
the hydrodynamic fields (n,u,E),

• The small parameter ε > 0 makes the characteristic speed of the system (v/ε vs. u
and the sound speed) very different; it induces severe stability constraints,

• There are also stiff (zeroth order) terms in the right hand side of the equations.

Therefore, based on asymptotic analysis arguments, it is interesting to replace the cou-
pled hydrodynamic/kinetic system (5.9) by a reduced system having only macroscopic
unknowns (i. e. depending on (t,x) only). The extreme situation corresponds to ε=0 and
is given by the system (5.5)–(5.6) satisfied by (n,u,E) and the radiative energy ρ. As said
in the Introduction, many systems have been proposed, usually based on some moment
closures, to describe intermediate regimes, see in particular [21] for closures based on en-
tropy minimization and [53] for adapted truncation of spherical harmonics expansions,
and the references therein.
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In what follows we go back to the system obtained with the non local approximation
and we describe numerical strategies to solve the problem


∂tn+∇x ·(nu)=0,
∂t(nu)+∇x ·(nu⊗u+p)=0,
∂t(nE)+∇x ·((nE+p)u)=σa(ρ−θ4),

η∂tρ=− 1
σs

F−1
(

Ψε(ξ) F ρ
)
+σa(θ4−ρ).

(5.10)

Note that all the stiffness is embodied into the pseudo-differential term. With η = 1,
ε > 0 it corresponds to (5.5), (5.8). Letting ε→ 0, we obtain (5.5)–(5.6) while η→ 0 yields
(5.5) coupled to (5.7) or its nonlocal approximation. In fact, as described above, we shall
deal with a Padé approximation Pε(ξ)/Qε(ξ) of the symbol Ψε(ξ) since it is amenable
to a simpler numerical treatment. For the sake of simplicity, we describe the scheme
by restricting ourselves to the one-dimension framework. The numerical scheme we
propose for (5.10) is based on a first order splitting in time. Namely, if we assume that
the different needed quantities are known at time t0, we compute the solution at time
t= t0+∆t according to the scheme

initial conditions n(t0), u(t0), E(t0) and ρ(t0)

Step 1

Solve for t∈ [t0,t0+∆t]


∂tn̄+∂x(n̄ū)=0,
∂tn̄ū+∂x(n̄ūū+ p̄)=0,
∂t(n̄Ē)+∂x((n̄Ē+ p̄)ū)=0,
η∂tρ̄=0,

with n̄(t0)=n(t0), ū(t0)=u(t0), Ē(t0)= E(t0) and ρ̄(t0)=ρ(t0).

Step 2

Solve for t∈ [t0,t0+∆t]


∂tn=0,
∂t(nu)=0,
∂t(nE)=−σa(θ4−ρ),

η∂tρ=− 1
σs

F−1( Pε(ξ)
Qε(ξ)

F ρ
)
+σa(θ4−ρ),

with n(t0)= n̄(t0+∆t), u(t0)= ū(t0+∆t), E(t0)= Ē(t0+∆t)
and ρ(t0)= ρ̄(t0+∆t).
Pε/Qε is the Pade approximation of Ψε given by
Pε(ξ)= ξ2/3 and Qε(ξ)=1+ε2ξ2/3.

Table 1: Algorithm for solving the system (5.10).
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Step 1 is treated using a classical Lagrange-Projection method. We rewrite the system to
be solved in Step 2 as follows

∂tn=0,
∂t(nu)=0,
∂t(nE)=−σa(θ4−ρ),

η
(

I− ε2

3
∂2

xx

)
∂tρ=

1
3σs

∂2
xxρ+σa

(
I− ε2

3
∂2

xx

)
(θ4−ρ).

(5.11)

Since n and nu remain constant during Step 2, the third equation in (5.11) can be recast
as R

γ−1 n∂tθ =−σa(θ4−ρ); therefore we actually have to deal with the following system,
having unknowns (θ,ρ),

R
γ−1

n ∂tθ =−σa(θ4−ρ),

η
(

I− ε2

3
∂2

xx

)
∂tρ=

1
3σs

∂2
xxρ+σa

(
I− ε2

3
∂2

xx

)
(θ4−ρ).

(5.12)

Summing these two equations and integrating with respect to space, we verify the energy
conservation ∫ ( R

γ−1
nθ+ηρ

)
dx=Cst.

Since (5.12) is nonlinear and the space-discretized problem could be stiff, we decide to
use an implicit Euler scheme. Let us define the following matrices

A=
(

R 0
0 η(Id−ε2 ∆d

3 )

)
and B=

(
−σa σa

σa(Id−ε2 ∆d
3σs

) ∆d
3σs
−σa(Id−ε2 ∆d

3 ),

)

where ∆d stands for a discrete Laplacian and R =Rn/(γ−1). The implicit Euler approx-
imation of (5.12) is(

θk+1

ρk+1

)
=
(

θk

ρk

)
+∆tA−1B

(
(θk+1)4

ρk+1

)
= F(θk+1,ρk+1). (5.13)

We solve this nonlinear problem by Newton iterations. Let us define G = I−F, which is
an application of R2N in R2N . The point (θk+1,ρk+1) is therefore a zero of G. In order to
solve G(X)=0, the Newton scheme is Xs+1=Xs−[JG(Xs)]−1G(Xs), where JG denotes the
jacobian matrix of G. We have JG = I− JF with

JF =∆tA−1B
(

4θ3 0
0 1

)
.

The Newton algorithm then reads

(A−∆tBDs)Ws+1 =(A−∆tBDs)Ws−A(Ws−W0)+∆tBφ(Ws), (5.14)
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where

W0 =(θk,ρk)∈R2N , Ds =
(

4θ3
s 0

0 1

)
, ϕ(Ws)=(θ4

s ,ρs).

We iterate the previous recurrence relation until the relative difference ‖Ws+1−Ws‖/‖W0‖
becomes smaller than a given tolerance threshold. The Newton scheme (5.14) has some
remarkable properties which deserve some comments

• Energy is conserved at each step of the Newton algorithm: a direct computation
shows that for any s

∑
j

(
Rθs,j+ηρs,j

)
=∑

j

(
Rθk

j +ηρk
j
)
,

the sum being taken over all indices of the space discretization.

• As ε and/or η go to 0, the scheme is consistent with an implicit Euler time dis-
cretization of the corresponding continuous equation.

• The scheme adapts easily to cases where the opacities σa depend on the material
temperature θ.

Remark 5.1. Since the conservation of energy is a fundamental property of the model, it is
important that the numerical method preserves it. Note that a comparable semi-implicit
method has been proposed in [28] for a slightly different radiative hydrodynamic model
and incorporated in the code Heracles of the French Atomic Energy Commission.

In order to validate the previous algorithm for long times simulation and stability
with respect to ε,η→0, we realize a first simulation issued from [16]: the goal is to recover
numerically a shock profile connecting two end states (nl ,ul ,pl) and (nr,ur,pr). Indeed,
a relevant question for applications consists in understanding how the coupling with
radiation influences the usual shock structure of the Euler system. We refer to the seminal
treatises [44, 58] and to [30] for discussion on physical grounds on this problem. More
recently the question has been revisited in [41]. A rigorous analysis of these intricate
phenomena is particularly tough. In [37], it has been proved that for shocks having a
small enough amplitude, there exists a smooth profile, solution of (5.5) coupled to (5.7)
and the stability of these profiles is investigated in [38], in the spirit of [31]. However
the problem remains essentially open for large amplitude shocks, and referring to the
physical intuition detailed in [41, 44, 58], one can expect the formation of pathological
structures, with in particular non monotone temperature profiles (the Zeldovich spikes).
Capturing such structure, which can be highly localized, is challenging for numerics and
requires carefully developped schemes, even for simplified coupled models see e. g. [2,7,
11,28,49]. For refer to [16] and the references therein for details and recent developments.

According to [16], we set R=1, γ=1.4 σa=σs=1; the left/right states are given by nl=1,
nr=3, ul =3, ur=1, pl =1.28 and pr=7.28. The speed of the shock is given by the standard
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Rankine-Hugoniot conditions for the Euler equation and we consider a stationary shock
so that the profile stays in the computation domain. For every numerical experiments
below, the domain length is set to 80 and is meshed with 1000 points. The time step
is computed such that it verifies the CFL condition. The temperature and radiation are
fixed to their values at initial time on the boundaries (which also set the value of the
pressure). The boundary conditions for the other fluid quantities are transparent (one
fixes the values at the boundary to be the adjacent ones in the domain in order to avoid
Riemann problem). Figure 10 shows the result obtained with ε = 0 = η, as in [16]: since
the profile corresponds to the large time asymptotics of the numerical solution there is
indeed no significant difference with the solutions computed with different values of the
parameters, in agreement with the remark made in Section 4.4. The remarkable point is
the non monotone profile of the temperature with a noticeable peak at the front shock.
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Figure 10: Radiative shock profile: fluid density n, fluid velocity u, pressure p, material
temperature T.

For the next test, we start from a constant state for the fluid, initially at rest: n = 1,
p=1, u=0. We put a hot source of radiation:

ρInit(x)=8.106 1(35,45)(x)+1.6.108 1(30,35)∪(45,50)(x),

(bearing in mind that the temperature of the radiative field is ρ1/4). We display the time
evolution in Fig. 11 to 16 for several values of ε and η (while σa = σs = 1 in all these
simulations). This produces quite violent patterns for the fluid density and velocity, as
well as it increases the material temperature in the central domain. The shape of the
solution is then smoothed as time grows. Compared to the diffusion limit the nonlocal
model modifies slightly the details of the solution, especially for short times, where in
particular the L∞ norm of the fluid density can differ noticeably and the temperature
spreads more in the domain as ε vanishes.
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Figure 11: Evolution starting with a constant state and a hot source: η =0, t=0.1
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Figure 12: Evolution starting with a constant state and a hot source: η =0, t=0.2
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Figure 13: Evolution starting with a constant state and a hot source: η =0, t=0.3
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Figure 14: Evolution starting with a constant state and a hot source: η =1, t=0.1
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Figure 15: Evolution starting with a constant state and a hot source: η =1, t=0.5
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Figure 16: Evolution starting with a constant state and a hot source: η =1, t=1.0

Finally, we perform the standard Su-Olson test. It consists of the following very sim-
ple coupling between radiation and temperature{

∂t+
v
ε

∂x f =
1
ε2

(
ρ− f )+θ−ρ+S,

∂tθ =ρ−θ



43

with ρ(t,x)=
∫

f (t,x,v)dv and with the source term

S(t,x)=1[0,1].

The problem is set on t≥0, x∈(0,10), v∈(−1,+1). It is completed with the initial condition

f (t=0,x,v)=10−10, θ(t=0,x)=10−10.

Boundary conditions are also given by this equilibrium state. Proposed in [46, 55] this
problem has become a benchmark for radiative transfer codes and models. We refer for
instance to [8, 10, 13] in particular for such validation of the M1 model. We compare
the computations made with the asymptotic preserving scheme introduced in [13] with
simulations using the macroscopic model{

∂tρ=−F−1
(

Ψε(ξ) F ρ
)
+σa(θ−ρ)+S,

∂tθ =σa(ρ−θ).

Actually, since we are not in the periodic case, we cannot use easily this pseudo-differential
equation; instead, we use the simple approximation

∂tρ=−F−1
( ξ2/3

1+ε2ξ2/3
F ρ
)
+σa(θ−ρ)+S,

which is amenable to the numerical treatment detailed above. In Fig. 17 we plot the den-
sity in log scales. The results are quite surprising and difficult to interpret. Qualitatively
we find the expected shape, but the values are not satisfactory. In particular, surpris-
ingly, the slope increases as ε goes to 0, conversely to the expected behavior. We do not
have explanation of this deceptive behavior, except the fact that the source term is highly
singular and maybe not well adapted when applying the Laplace operator.
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Figure 17: Su-Olson test: Comparison of the density at time final T =1 in log scales with
an AP kinetic scheme and the reduced model for several values of ε.
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6 Conclusions

By revisiting an approach used in plasma physics, we present a possible derivation of
a non local model, alternative to moment system closure approximation of kinetic equa-
tions. We investigate a few properties of the nonlocal model, which is of pseudo-differential
nature. In particular, we show the consistency with the diffusion asymptotics. We discuss
several approximations of the underlying pseudo-differential operator and we design
numerical schemes for evaluating the solution. The simulation reveal, as for the plasma
physics model [24], that such nonlocal model should be used with care. On the one hand,
it offers a cheap evaluation of macroscopic quantities, preserving steep gradients better
than the diffusion limit, and it can be easily incorporated in coupled systems describing
complex physics. On the other hand, its range of validity and the accuracy of the fit-
ting with the kinetic model have limitations. This work is a first attempt that focuses on
very simple models and we expect it might help in understanding the limitation of this
approach, in deriving suitable cure as well as designing well-suited numerical schemes.
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