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Abstract

We introduce a mathematical model based on mixture theory intended to de-
scribe the tumor-immune system interactions within the tumor microenvironment.
The equations account for the geometry of the tumor expansion, and the displace-
ment of the immune cells, driven by diffusion and chemotactic mechanisms. They
also take into account the constraints in terms of nutrient and oxygen supply. The
numerical investigations analyze the impact of the different modeling assumptions
and parameters. Depending on the parameters, the model can reproduce elimina-
tion, equilibrium or escape phases and it identifies a critical role of oxygen/nutrient
supply in shaping the tumor growth. In addition, antitumor immune cells are key
factors in controlling tumor growth, maintaining an equilibrium while protumor
cells favor escape and tumor expansion.
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1 Introduction
The tumor microenvironment (TME) is a central dynamic and complex cellular and acellular
milieu that influences tumor growth kinetics. Within the TME, it is well established that the im-
mune system plays a central role in the maintenance of the organism’s integrity by continuously
eliminating newly produced transformed cells, a concept called “cancer immunosurveillance”
composed of three phases: Elimination – tumor cells are simply destroyed by the immune re-
sponse –, Equilibrium – the immune system maintains and controls the tumor in a viable state
– and Escape – with the unlimited growth of the tumor –. This last phase results from a cancer
immunoediting exerted by the immune system and from the establishment of immune suppres-
sion mechanisms [25, 26, 31]. Indeed, cancer cells can also turn immune responses at their own
advantage, transforming immune cells to protumoral cells stimulating tumor development. The
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success of immunotherapies is based on the attempt to maintain or reverse this balance towards
the “Equilibrium” and “Elimination” phases [8]. Unfortunately, these approaches show clinical
efficacy with durable responses in only 15-20% of all cancer patients so far. Despite intense
research, these treatment failures are currently poorly explained.

Technological developments at the single cell level have helped to better understand the
complexity of the TME. Tumor cells lay in a microenvironment composed of immune cells,
cancer-associated fibroblasts (CAF), extracellular matrix proteins that form the stroma, blood
and lymphatic vessels and nerve fibers. The composition and spatial organization of the TME
can vary greatly between tumors and even within a given lesion. In invasive cutaneous squamous
cell carcinoma (cSCC), the second deadliest skin cancer with no curative therapy available fol-
lowing successive relapses, a strong immune infiltrate has been detected [10, 33, 38]. To better
visualize all the components of the cSCC TME, new imaging mass cytometry techniques have
been developed that allowed the simultaneous detection of up to 40 markers [29]. The obtained
images show tumor islets surrounded by stroma rich in ECM proteins and immune cells. Math-
ematical models and numerical simulations can provide relevant information, complementary
to experimental and clinical observations, that can help to understand the underlying biological
mechanisms within the TME.

Many mathematical models have been introduced so far with quite elaborate descriptions
of the tumor-immune interactions based on systems of ordinary differential equations, see for
instance [22, 23, 27, 28, 34, 35]. However, the spatial repartition of the tumor and immune
cells seems to play a crucial role [24] and cannot be easily taken into account by such ODE
systems. Therefore, we adopt a different viewpoint and we are going to set up a continuous
model based on partial differential equations, describing the tumor growth and the immune
response by considering the cell densities, and unknowns that depend on both the time t and
the position x. To this end, we shall describe the tumor and immune cell interactions by means
of fluid mechanic principles, appealing to methods of mixture theory [43] and their application
to biological flows [17, 40]. This approach, which takes inspiration from [2, 9, 11, 12, 14, 18, 19,
32, 41, 42] for applications to tumor growth, is intended to consider more precisely the tumor
microenvironment geometry, and the infiltration of the tumor by the immune cells. The fluid
mechanic principles will be combined with the interaction mechanisms identified in our previous
works [3, 4, 5] namely:

• Recruitment and activation of immune cells, from a bath and sources of “naive” immune
cells, are governed by the tumor growth;

• Chemotactic effects drive the immune cells towards the tumor microenvironment;

• Tumor cells are destroyed by antitumor immune cells (NK and CD8+ T cells);

• antitumor functions can be inhibited by protumor immune cells and shifted from antitu-
moral to protumoral activities;

• The tumor growth rate can be enhanced by activated protumor immune cells.

Furthermore, these mechanisms have to be coupled with the description of how the tumor
grows at the expense of its environment (fluids, fibers, extracellular matrix), and the complex
mechanisms relying on the activation of cancer associated fibroblasts. The model should take
into account the access to nutrient and oxygen, that determines the proliferation rate, and can
even lead to necrosis when it becomes insufficient. Therefore, the equations are established
through the combination of mechanical and biological effects that govern the competition for
space and resources between different species of cells. In particular, the coupling between the
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different constituents of the TME not only arises through the mass exchange dynamics, but
also in the momentum balance, that involves a description of the mechanical forces on a given
phase (viscosity, pressure, friction between the phases. . . ). Finally, the model is closed by an
algebraic constraint, which enters into the definition of the pressure field. In order to ease the
access to the equations, a schematic view of the main principles at the basis of the proposed
model is offered in Figure 1 and 2, whereas Table 1 collects the definition of the unknowns.

Having set up the model, the aim of this preliminary study is to discuss the influence of the
modeling assumptions and try to hierarchize through simulations the effects of the biological
and mechanical mechanisms, to assess whether or not the model is able to reproduce equi-
librium and escape phases, and to shed some light on the critical phenomena that shape the
space organization of the TME. The paper is organized as follows. In Section 2 we introduce in
details the system of equations that is intended to describe the interactions between the tumor
growth, the immune response, and the environment. In Section 3, we discuss several simplified
versions of this complex system and, based on numerical experiments, the role of the modeling
assumptions and parameters. Our main conclusions are the following. Firstly, oxygen/nutrient
supply is critical for shaping the tumor development. Secondly, the various versions of the
model are able to reproduce the “3E” phases; in particular equilibrium phases with a residual
tumor remaining under the control of the immune system can be observed. Thirdly, taking
into account protumoral effects of the immune response dramatically changes the dynamic and
might lead to the unlimited tumor expansion.

Immune cells Tumor cells

Environment

Dissolved substances

attraction of

oxygen/nutrient

oxygen/nutrient supply,

activation by cytokines oxygen/nutrient supply,

degradation by cytokines

activation/chemoattraction

anti- and protumor effects

mass/momentum
exchanges

Figure 1: Competition for space and resources, a schematic view of the main mechanisms
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Tumor cells

antitumor immune cells protumor immune cells

Chemotactic potential Cytokines

PIC suppress AIC

shift of AIC into PIC

AIC destroy TC

activation of AIC

PIC enhance
TC growth rate

directed motion
promote
shift/activation

TC enhance
chemotactic
potential and
release of cy-
tokines

Figure 2: Tumor and immune cells interactions. AIC: antitumor cells, PIC: protumor
cells, TC: tumor cells.

2 Model description
We adopt a modeling where we distinguish two types of populations:

• the “constituents”, a set which contains the tumor, the (anti- and protumor) immune cells
and at least another population describing the “environment” (other cells and tissues,
extracellular matrix and interstitial fluid...). These interacting phases are described by
their volume fractions, hereafter denoted φj for j ∈ {1, ..., J}. Quoting [2], In a continuum
description, the “number of cells” of a given species is probably not a suitable candidate:
it seems more appropriate to introduce the volume fraction concept, straightforwardly
inherited from the theory of multicomponent continua, so that “balance equations” for the
components are to be read as “mass balance equations”. Such a set of equations obviously
calls for velocity (or displacement) fields that are to be enforced somehow. The concept of
mixture flows precisely means that at each space point, a fraction (given by φj) of each
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phase can be encountered. The general form of the mass balance equations is

∂t(ρjφj) +∇x ·Jj = Γj , (1)

where ρj is the typical mass density of the phase j. It is assumed to be a positive constant
(incompressibility assumption for each phase). Very likely these positive quantities have
similar values, which would allow us to simplify the equations: quite often it is assumed
that all ρj ’s are given by the mass density of water, see [2] for instance. The modeling
issue relies in finding a relevant expression for

– the mass exchange term Γj , which can naturally be split into gain and loss terms

Γj = Qj − ρjφjLj

where Qj and Lj are non negative functions of the physical quantities of the model
(this formulation is related to the preservation of the natural property φj ≥ 0);

– the mass fluxes Jj can be written as

Jj = ρjφjVj (2)

and we shall derive a relevant expression for the velocity field Vj . As we shall see
below it might induce a combination of convection and diffusion effects.

• the “substances” like nutrient , oxygen, cytokines and chemokines... which are described
by their concentration αk, k ∈ {1, ....,K}. They are considered as components dissolved
in the mixture. The concentrations obey convection-diffusion equations, with reaction
terms accounting for gain and loss processes.

Such a distinction appears for instance in [2, 42, 46], or, in different contexts, in [36, 40]. Simpli-
fying assumptions can be used to reduce the model, skipping difficulties related to determining
the displacement of the cells in terms of the other unknowns and reducing the description to a
mere ODE for the radius of a radially symmetric tumor [2, 37]. A crucial feature of the model
is that, according to the definition of the unknowns as volume fractions, the relation

J∑
j=1

φj = 1 (3)

holds. This property has two important consequences for the derivation of the equations. First
of all, summing all mass balance equations (1), one is led to a constraint on the mean volume
velocity

∇x ·

 J∑
j=1

Jj

ρj

 = ∇x ·

 J∑
j=1

φjVj

 =
J∑
j=1

Γj
ρj
. (4)

This constraint implicitly defines a Lagrange multiplier, which induces a pressure field Π. Second
of all, this constraint has to be taken into account for the set up of the boundary conditions,
which should be consistent with (4) in the sense that

ˆ
∂Ω

J∑
j=1

Jj

ρj
· νx dσx =

ˆ
Ω

J∑
j=1

Γj
ρj

dx, (5)

holds, with νx the outward unit normal at x ∈ ∂Ω.
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2.1 Mass exchange terms and constituent’s equations
2.1.1 Mass exchange for the immune cells

We denote with a subscript a, resp. p, physical quantities associated to the antitumor im-
mune cells (like NK and CD8+ T cells, tumor-associated neutrophils TAN-N1, tumor-associated
macrophages M1), resp. protumor immune cells (like Treg, MDSCs, TAN-N2 and TAM-M2);
similarly we refer to the tumor and the environment with the subscripts n and m, respectively.
For the mass exchange terms, the following actions are retained from [3]
• both anti and protumor cells are subjected to natural death, with rates (homogeneous to

the inverse of a time) γa, γp respectively;

• antitumor cells are activated from a source Sa, at a rate that depends on the total tumor
mass

µ =
ˆ
ρnφn dx;

• cytokines, or more generally protumoral factors, are characterized by a concentration
denoted by I; they promote the shift of antitumor cells into protumor cells in the vicinity
of the tumor1, as well as the activation of protumor cells from a source Sp;

• protumor cells annihilate antitumor cells.
Hence, the mass exchanges terms for the anti-tmuor and protumor immune cells are given by

Γa = ρa
(
g(µ)Sa − φa

(
γa + kIaI + φp

τap

))
, (6)

and
Γp = kIpIρpSp + ρaφakIaI − γpρpφp, (7)

respectively. In these expressions, all coefficients γa, γp, 1/τap, kIaI, kIpI are homogeneous to the
inverse of a time. The function g : [0,∞) → [0,∞), which equally has the homogeneity of the
inverse of a time, is the tumor mass dependent activation rate of effector cells from the bath
of resting immune cells; the activation law can incorporate relevant limitation mechanisms, for
instance based on Michaelis-Menten kinetics. In what follows we adopt a simple linear relation
g(µ) = g0µ, with g0 > 0.

Protumoral effects involve the action of cytokines; according to [3], the evolution of cytokine
concentration is driven by a mere ODE

d
dtI = ψ − I

τ
, (8)

with τ > 0 a relaxation time and ψ a threshold function (for instance proportional to (φn−φc)+
for some φc ≥ 0). Here, the concentration I can describe further protumor signals, cytokines and
Cancer Associated Fibroblasts (CAF). In this case, we slightly modify the modeling by assuming
that ψ depends on the tumor volume fraction φn and the environment volume fraction φm, with

ψ(φn = 0, φm) = 0, ψ(φn, φm = 0) = 0.

For instance, we can set

ψ(φn, φm) =
[φn − φnI,s ]+[φm − φmI,s ]+

τ

with some thresholds φnI,s , φmI,s . This simple ODE is a simplified modeling that neglects
convection and diffusion effects.

1There are also cytokines with antitumor effects, but they are not considered as such in the model.
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2.1.2 Mass exchange for the tumor

Cell proliferation is limited by the competition for space, which is described through the home-
ostatic pressure, [6]. This effect is taken into account through a (non negative and increasing)
function P of the tumor volume fraction φn, and a threshold φ∗. A typical choice is

P = νp∗
ν − 1

(φn
φ∗

)ν−1
, ν > 1, 0 < φ∗ < 1, p∗ > 0, (9)

see [20, 39]. Here, p∗ is a reference pressure, which has the homogeneity of
( length
time

)2, while the
threshold φ∗ represents a maximum packing density. The regime ν → ∞ makes a connection
with models describing tumor growth by means of free boundary problems [20, 39]. For the
tumor cells, the source terms account for the proliferation/necrosis of the cells, as well as for
the action of the immune cells. Proliferation/necrosis are driven by the availability of nutrient
and the homeostatic pressure, while antitumor immune cells kill tumor cells and protumor cells
enhance the proliferation. We thus get

Γn = ρnφn
τn

(Υ(P, O, φp)−Aaφa).

In this expression O stands for the oxygen and nutrient concentration, τn can be interpreted as
a relaxation time and Aa describes the strength of the antitumor immune cells on tumor cells.
The coupling function Υ fulfils the following assumptions

∂PΥ < 0, ∂OΥ ≥ 0, ∂φpΥ ≥ 0.

Proliferation is indeed more effective when the pressure is low and nutrient availability is high;
it is enhanced under the action of protumor immune cells. It might be relevant to assume that
Υ vanishes when O ∈ [O∗, O∗] (quiescent phase) and Υ < 0 when O ∈ [0, O∗[: when the oxygen
concentration falls below the critical threshold O∗, then the tumor cells are unable to survive and
undergo necrotic cell death. In the latter case, Υ does not corresponds to a gain term and, for
further purposes, it is convenient to decompose Υ = [Υ]+− [Υ]−, with [Υ]± = max(0,±Υ) ≥ 0).
A possible expression, inspired from the standard logistic law, leads to

Γn = ρnφn
τn

(
k+O[O −O∗]+(1 + φp)−

(
k−O[O −O∗]− + P

p∗

)
−Aaφa

)
,

with k±O > 0 appropriate dimensionalizing constants. Quite similar coupling accounting for
close-packing effects, and coupling with oxygen/nutriments supply can be found in [9, Eq. (15)].

2.1.3 Mass exchange for the environment

Loss terms for the other constituents become gain terms for the environment, while the pro-
tumor reactions, in particular through CAF and MMP enzymes, promote the degradation of
the environment. We otherwise consider that healthy cells are not dividing relatively to the
proliferative cells and that they do not die from environmental conditions (or, maybe more
appropriately, that the two effects balance). We are thus led to

Γm = γaρaφa + γpρpφp + ρaφaφp
τap

+ ρn
τn
φnφa + ρn

τn
φn[Υ]− − ρmφmf(I).

The function f : [0,∞) → [0,∞) describes the degradation of the healthy environment by the
action of cytokines and CAF; possible expressions are f(I) = f∗I or f(I) = f∗I

1+I/I∗
in order to

take into account some limitation mechanisms. (For the simulations we only use the linear law.)
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We remark that the total mass balance is given by

Γa + Γp + Γn + Γm = ρag(µ)Sa + kIpIρpSp + ρn
τn
φn[Υ]+ − ρmφmf(I).

The total mass increases due to the tumor proliferation and the sources of anti- and protumor
cells; it decreases due to the degradation of the environment. In particular if the source of
immune cells vanish (Sp = Sa = 0), if there are no cytokines degrading the environment (I = 0)
and no supply of nutrient (O < O∗ implies [Υ]+ = 0), then the mass balance vanishes. Another
quantity of interest is the total volume balance

Γa
ρa

+ Γp
ρp

+ Γn
ρn

+ Γm
ρm

=
(
g(µ)Sa − φa

(
(γa + kIaI + φp

τap

))
+kIpISp + ρa

ρp
φakIaI − γpφp + φn

τn
(Υ(P, O, φp)−Aaφa)

+γa
ρa
ρm

φa + γp
ρp
ρm

φp + ρa
τapρm

φaφp + ρn
τnρm

φnφa + ρn
τnρm

φn[Υ]− − φmf(I)

6= 0

which could be non-zero, even when the mass balance vanishes. In [18, 40] such a non zero
volume contribution appear. This quantity is involved in the boundary condition through (5).

2.2 Oxygen and nutrient
Concentrations of oxygen and nutrients are diffused rapidly: we apply the adiabatic approxi-
mation which assumes that the diffusion process occurs on much smaller time scales that the
cell motion and divisions [11, 16]. Therefore we suppose that the equilibrium is reached instan-
taneously: the concentration O satisfies the Poisson equation

∇x · (OχO∇xφn)−∇x · (DO∇xO) = SO −O(rnρnφn + raρaφa + rpρpφp + rmρmφm). (10)

This equation incorporates a drift term directed towards higher gradients of the tumor volume
fraction, with a chemotactic coefficient χO which can be defined as a function of φn, typically
with a sigmoidal shape. The right hand side describes the consumption of nutrient from a
given source SO, say strongly located next to the vessels. It involves rates rj that can differ
depending on the considered component. In particular, the consumption rate of the tumor rn
can be substantially greater than the other rates ra, rp, rm (Warburg effect). The equation is
endowed with a (possibly non homogeneous) Dirichlet boundary condition.

The critical role of the access to nutrients and oxygen in sustaining tumor’s development has
been reported in many experiments [1, 14]. This should be reflected in the coupling between (10)
and the proliferation/necrosis terms in the mass balance equation for the tumor, as described
in Section 2.1.2. To proliferate, cells need nutrient and oxygen coming from existing vascular
vessels surrounding the tissue where the tumor grows. As the tumor develops, in regions of
high volume fraction, tumor cells are progressively starved of oxygen and nutrient (locally the
oxygen concentration falls below the threshold O∗ due to the consumption by a large number
of tumor cells) and, in consequence, their proliferation rate and the tumor’s overall growth rate
decline (see the definition of Υ in Section 2.1.2). However, starving cells have the ability to
secrete vessel chemoattractants in order to induce the formation of new blood vessels towards
the tumor. This is called the process of angiogenesis, which can be roughly taken into account
through the coefficient χO in (10). Note also that a more complicated consumption term for
the tumor can be considered as well, replacing rnρnφn by a function U which can depend on
the homeostatic pressure P and O such that ∂PU ≤ 0, ∂OU ≥ 0, U(P, 0) = 0, see [20, 39].
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2.3 Momentum fluxes
There is a huge variety of closure relations for defining the mass fluxes (2). According to [43],
and the applications of mixture theory for cancer growth modeling [2, 9, 12, 14, 32, 41, 42],
or biofilm formation [40], we follow a mechanical approach: we consider momentum equations
satisfied by the velocities Vj , with force terms depending on each phase. The latter incorporate
chemotactic effects, homeostatic pressure and drag forces. The momentum equations have the
general formulation

∂

∂t
(ρjφjVj) + div (ρjφjVj ⊗ Vj) = div(σj) + Fj

Neglecting convective effects in the left hand side, the equations reduce to

−div(σj) = Fj

with σj the stress tensor, and Fj the applied force. All constituents are subjected to a common
“hydrostatic” pressure Π, which can be interpreted as the Lagrange multiplier associated to the
constraint (3), the analog of the usual pressure field for solenoidal flows. Then, we naturally
split

σj = −ρjφjΠI + τj .

The definition of the excess stress tensor τj relies on constitutive laws and itself splits into two
contributions:

τj = viscousj − ρjφjPjI,

with

• the viscous term, which is assumed to reduce here to the simple form µj

2 (∇Vj + ∇V ᵀ
j ).

Here and below, the dynamic viscosity µj is supposed to be constant.

• an additional, isotropic, pressure field Pj which is specific to the considered phase [9, 12,
32, 40], taking into account interactions between cells of the same constituent. We adopt
the following definition:

– tumor cells are sensitive to close-packing effects: as the tumor volume fraction
increases, tumor cell membrane deforms, inducing a stress. This is described by the
homeostatic pressure term P, which becomes large as the tumor volume fraction
approaches the threshold φ∗ [12].

– the presence of immune cells induces a compression effect, which is assumed to grow
linearly with the volume fraction: Pa = Da, Pp = Dp, with Da, Dp > 0, [32, 40].

– the environment is considered as a carrying fluid, and does not support additional
pressure Pm = 0.

We turn to the description of the forces:

• the motion of immune cells is driven by chemotaxis, defined through a common potential
Φ, activated by the tumor. We have

−∇x · (DΦ∇xΦ) = ρn
(
φn −

1
|Ω|

ˆ
φn dx

)
, (11)

endowed with Neumann boundary conditions. The chemotactic coefficients χa, χp are
positive constants with the appropriate dimension.
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• the constituent labelled by j is subjected to drag forces exerted by the other constituents

dragj = ρjφj
∑
`6=j

λj`φ`(V` − Vj),

where the coefficients λj` are homogeneous to the inverse of a time.

• the co-occupancy of the domain by several constituents induce interfacial forces, orthog-
onal to the level curve of the volume fraction, namely ρjΠ∇φj .

• the momentum supply associated to the mass exchanges ΓjVj .

Summing up these contributions yields

Fj = ΓjVj + dragj + ρjΠ∇φj + ρaφaχa∇xΦ + ρpφpχp∇xΦ.

By using the identity div(φjΠI) = ∇(φjΠ) = Π∇φj + φj∇Π, we arrive at

−µj∆xVj + ρjφj∇xΠ + ρjΠ∇xφj + ρjφj∇xPj + ρjPj∇xφj = ΓjVj + dragj

+ρjΠ∇xφj + ρaφaχa∇xΦ + ρpφpχp∇xΦ,

and then
−µj∆xVj + ρjφj∇xΠ = ΓjVj + dragj + Fj ,

where all terms in this relation are homogeneous to mass
length2time2 . In this momentum balance,

the force terms are given by

Fn = −ρnφn∇xP, Fm = 0,
Fa = ρa(φaχa∇xΦ−Da∇xφa), Fp = ρp(φpχp∇xΦ−Dp∇xφp).

The model can be simplified by

• neglecting all drag terms but with the environment,

• neglecting a part or all the viscous terms so that momentum equations reduce to force
balance [16, 32],

• neglecting the contribution of the momentum associated to the mass exchanges [41].

Based on such assumptions (with µa, µp, µn � µm) we get

• For the tumor
ρnφnφmλnm(Vm − Vn)− ρnφn∇xP = ρnφn∇xΠ,

• For the antitumor immune cells

ρaφaφmλam(Vm − Va) + ρa(φaχa∇xΦ−Da∇xφa) = ρaφa∇xΠ,

• For the protumor immune cells

ρpφpφmλpm(Vm − Vp) + ρp(φpχp∇xΦ−Dp∇xφp) = ρpφp∇xΠ,

• For the environment

−µm∆xVm+ρmφm∇xΠ = ρmφm(φnλnm(Vn−Vm) +φaλam(Va−Vm) +φpλpm(Vp−Vm)).
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We divide by the mass densities and we sum up to obtain

−µm
ρm

∆xVm +∇xΠ = −φn∇xP + (φaχa∇xΦ−Da∇xφa) + (φpχp∇xΦ−Dp∇xφp),

and the other velocities are deduced form (Vm,Π) by

Vn = Vm −
1

φmλnm
(∇xΠ +∇xP),

Va = Vm −
1

φmλam

(
∇xΠ− χa∇xΦ + Da

φa
∇xφa

)
,

Vp = Vm −
1

φmλpm

(
∇xΠ− χp∇xΦ + Dp

φp
∇xφp

)
.

In other words, the mass fluxes read

Jn = ρnφn
(
Vm −

1
φmλnm

∇xΠ
)
− ρnφn
φmλnm

∇xP,

Ja = ρaφa
(
Vm −

1
φmλam

(∇xΠ− χa∇xΦ)
)
− ρa
φmλam

Da∇xφa,

Jp = ρpφp
(
Vm −

1
φmλpm

(∇xΠ− χp∇xΦ)
)
− ρp
φmλpm

Dp∇xφp,

which make convection and diffusion effects appear. In particular, it can be convenient to
rewrite the homeostatic pressure gradient as follows

φn∇xP = φnP
′(φn)∇xφn = ∇xQ, Q′(z) = zP ′(z).

The system is closed by coming back to the saturation constraint (4) which becomes

∇x · (φnVn + φaVa + φpVp + φmVm) = Γa
ρa

+ Γp
ρp

+ Γn
ρn

+ Γm
ρm

= ∇x ·
(
Vm −

( φn
φmλnm

+ φa
φmλam

+ φp
φmλpm

)
∇xΠ− φn

φmλnm
∇xP

+
( φaχa
φmλam

+ φpχp
φmλpm

)
∇xΦ− Da

φmλam
∇xφa −

Dp

φmλpm
∇xφp

)
.

Note the structure of the Stokes-like equation for (Vm,Π)(
−µm

ρm
∆x ∇x

∇x· −∇x · (α∇x)

)(
Vm
Π

)
= RHS

with α positively valued. As for the usual Stokes problem, the pressure is defined up to a
constant. Accordingly, when multiplying the LHS by (Vm,Π), we get (neglecting boundary
terms)

µm
ρm

ˆ
|∇Vm|2 dx−

ˆ
Π∇x · Vm dx+

ˆ
∇x · VmΠ dx+

ˆ
α|∇xΠ|2 dx

= µm
ρm

ˆ
|∇Vm|2 dx+

ˆ
α|∇xΠ|2 dx

which is a good indication for well posedness of the linearized problem. We also remark that the
healthy state φm = 1, φa = φp = φn = 0 with (Vm,Π) solution of the standard Stokes equation
is solution of the system.
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2.4 Boundary conditions
We expect that the tumor, and thus the anti- and protumor activities, are located far from the
boundaries of the domain and do not substantially interact with the external domains. Bearing
in mind the convection-diffusion nature of the corresponding mass fluxes, it thus makes sense
to assume

• either the homogeneous Dirichlet boundary conditions for these volume fractions:

φn, φa, φp
∣∣
∂Ω = 0. (12)

• or the zero-flux conditions

(Jn, Ja, Jp) · νx
∣∣
∂Ω = 0. (13)

The boundary conditions for φm and Vm is more intricate and should be consistent with (5).
We distinguish the design of the boundary condition, depending whether we use (12) or (13).
Assuming (12), we can impose that the tangential velocity vanishes

Vm · τx
∣∣
∂Ω = 0,

and for the normal coordinates, we remind the reader that

(φnVn + φaVa + φpVp + φmVm) · νx
= Vm · νx −

( φn
φmλnm

+ φa
φmλam

+ φp
φmλpm

)
∇xΠ · νx −

φn
φmλnm

∇xP · νx

+
( φaχa
φmλam

+ φpχp
φmλpm

)
∇xΦ · νx −

Da

φmλam
∇xφa · νx −

Dp

φmλpm
∇xφp · νx

= Vm · νx −
1
φm

(
1
λnm
∇xQ + Da

λam
∇xφa + Dp

λpm
∇xφp

)
· νx

where
Q′(z) = zP ′(z).

Bearing in mind that φm = 1− φa − φp − φn = 1 on ∂Ω due to (12), we thus decide to impose
on ∂Ω

Vm · νx =
( 1
λnm
∇xQ + Da

λam
∇xφa + Dp

λpm
∇xφp

)
· νx + 1

|∂Ω|

ˆ
Ω

(Γa
ρa

+ Γp
ρp

+ Γn
ρn

+ Γm
ρm

)
dx. (14)

Assuming (13), we can use the following definition for the normal and tangential components
of the velocity field Vm

Vm · νx
∣∣
∂Ω = 1

|∂Ω|

ˆ
Ω

(Γa
ρa

+ Γp
ρp

+ Γn
ρn

+ Γm
ρm

)
dx,

Vm · τx
∣∣
∂Ω = 0.

(15)

Namely, we impose the constant flux which is compatible with the relation (5).
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2.5 One dimensional case
In order to guide the intuition and to assess the qualitative properties of the model, we shall per-
form a series of numerical simulations, restricting ourselves to the one-dimensional framework.
Let us collect the equations in this specific context.

The mass balance equations for φn, φa, φp, φm read

∂t(ρnφn) + ∂x
(
ρnφn

(
Vm −

∂xΠ
λnmφm

))
− ∂x

(ρnφnP ′(φn)
λnmφm

∂xφn
)

= ρnφn
τn

(Υ(P, O, φp)−Aaφa),

∂t(ρaφa) + ∂x
(
ρaφa

(
Vm −

∂xΠ
λamφm

+ χa∂xΦ
))
− ∂x

( Da

λamφm
∂xφa

)
= ρag

(ˆ
ρnφn dx

)
Sa − ρaφa

(
γa + kIaI + φp

τap

)
∂t(ρpφp) + ∂x

(
ρpφp

(
Vm −

∂xΠ
λpmφm

+ χp∂xΦ
))
− ∂x

( Dp

λpmφm
∂xφp

)
= kIpIρpSp + ρaφakIaI − γpρpφp,

∂t(ρmφm) + ∂x(ρmφmVm)

= γaρaφa + γpρpφp + ρaφaφp
τap

+ ρn
τn
φnφa + ρn

τn
φn[Υ]− − ρmφmf(I),

(16)

together with the constraint
φn + φa + φp + φm = 1.

The equations for the oxygen-nutrient concentration, chemotaxis potential, and protumor cy-
tokine signal read

∂x (OχO∂xφn)− ∂x(DO∂xO) = SO −O(rnρnφn + raρaφa + rpρpφp + rmρmφm)
O
∣∣
x=0,L = Obd,

−∂x(DΦ∂xΦ) = ρn
(
φn −

1
|Ω|

ˆ
φn dx

)
,

∂xΦ
∣∣
x=0,L = 0,

d
dtI = ψ(φn, φm)− I

τ
.

(17)

Finally, the velocity Vm and pressure Π satisfy

−µm
ρm

∂2
xxVm + ∂xΠ = −φn∂xP + (φaχa∂xΦ−Da∂xφa) + (φpχp∂xΦ−Dp∂xφp),

∂x

(
Vm −

( φn
φmλnm

+ φa
φmλam

+ φp
φmλpm

)
∂xΠ− φn

φmλnm
∂xP

+
( φaχa
φmλam

+ φpχp
φmλpm

)
∂xΦ− Da

φmλam
∂xφa −

Dp

φmλpm
∂xφp

)
= Γa
ρa

+ Γp
ρp

+ Γn
ρn

+ Γm
ρm

.

(18)

The system is completed with the following boundary conditions: we impose the Dirichlet
conditions

φa, φp, φn
∣∣
x=0,L = 0, φm

∣∣
x=0,L = 1,

together with

Vmνx
∣∣
x=0,L = +

ˆ L

0

(Γa
ρa

+ Γp
ρp

+ Γn
ρn

+ Γm
ρm

)
dx.

(with the convention ν0 = −1, νL = +1).
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3 Numerical investigations: reduced models and role
of the parameters

We are going to investigate numerically the proposed system of equations. It is worthwhile to
make a hierarchy of models appear, with the freedom to disregard a part of the phenomena.
The interest of this approach is two-fold. On the one hand, these reduced equations can be
relevant for describing different stages of the tumor evolution. On the other hand, it will permit
us to discuss more clearly the role and influence of the different modeling assumptions.

The numerical treatment of such a complicated system of partial differential equations raises
several delicate issues. In particular, one should pay attention to preserve the positivity of the
volume fractions and concentrations, which requires to identify suitable stability conditions.
Next, the constraint (3) has several formulations and consequences, which are not obviously
conserved when discretizing the equations. Finally, the Stokes-like system for the pair (Vm,Π)
has a structure which deserves a specific treatment. These issues will be analyzed elsewhere
[45]; they definitely require the design of a dedicated scheme.

For the simulations, we restrict to the one-dimensional framework: the computational do-
main is the slab [−1.5, 1.5]. Table 1 collects the definition of the unknowns. Otherwise explicitly
stated, the simulations are performed with the parameters collected in Table 2. We start with
a small tumor located at the center of the computational domain, namely the initial volume
fraction of tumor cells is given by

φn(0, x) = 0.1× exp−40x2
. (19)

Variable Description
φn volume fraction of tumor cells
φa volume fraction of antitumor immune cells
φp volume fraction of protumor immune cells
φm volume fraction of the environment
I cytokine concentration
O concentration of oxygen/nutrient
Φ chemotactic potential for immune cells

Table 1: Definition of the unknowns

We are going to discuss reduced models of variable complexity in order to clarify on numerical
grounds the role of the modeling assumptions and parameters. In order to ease the identification
of the tested models, we shall use acronyms, recapped in Table 3:

• The (T) model neglects all interactions and consists in a mere scalar diffusion-reaction
equation for the tumor cells. We will discuss the influence of the exponent ν in the
homeostatic pressure law in shaping propagation fronts.

• The (T.A.)model restricts to the coupling between the tumor and the antitumor immune
response, in a given environment.

• The (T.E.O.) model focuses on the interaction between the tumor and the environ-
ment, accounting for the oxygen and nutrient supply. In particular, we discuss how the
necrotic/proliferation thresholds, the localization of the oxygen and nutrient sources and
the attracting capabilities of the tumor cells shape the tumor development.
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• The (T.A.E.O.) model couples the tumor growth, the antitumor immune response, and
the environment, showing how the competition for space and resources organises the
TME.

3.1 Evolution of an immune-free small tumor volume fraction
(model (T))

The simplest situation is obtained by completely neglecting the immune response, which means
imposing φa = φp = 0. Moreover, we suppose that the tumor volume fraction is very small
φn � φm ' 1. It turn, the velocity-pressure pair (Vm,Π) can be assumed to satisfy the
free Stokes equation, which yields Vm = 0 and Π is constant. This set of assumptions might
correspond to the earliest stages of the tumor growth. In this regime we also neglect the influence
of the nutrient supply: it is supposed to be constant, space homogeneous and sufficient to sustain
tumor proliferation. The model then reduces to a mere scalar equation

∂t(ρnφn)− ∂x
(ρnφnP ′(φn)
λnm(1− φn)∂xφn

)
= ρnφn

τn
Υ(P), φn

∣∣
x=0,L = 0, (T)

where Υ(P) = 1 − P
p∗ , and P(φn) = ν

ν−1

(
φn

φ∗

)ν−1
. We recover the equation investigated in

[39]. In particular, analyzing the regime where ν tends to ∞ makes a connection appear with
models based on free boundary problems. We also refer to [20] for an extension of this analysis
when nutrient are taken into account.

Figure 3 shows the evolution of the tumor volume fraction driven by (T), set on the compu-
tational domain [−1.5, 1.5]. We discuss the role of the exponent ν for the packing (homeostatic)
pressure, by comparing the profile of the solutions obtained with ν = 5 (left), ν = 20 (middle)
and ν = 50 (right) for the common threshold φ∗ = .7. On the left side, the value ν = 5 reflects
a low stress on the tumor; we observe a growth of the volume fraction of the tumor φn with a
smooth front which extends progressively as time increases, reaching saturation on the whole
domain [−1.5, 1.5] at t = 6. In the middle, ν is moderately large (ν = 20), and the stress
exerted on the tumor becomes higher. The volume fraction of the tumor grows and reaches the
saturation threshold at the centre of the domain quite rapidly compared to the previous case
(ν = 5): at t = 4, a saturated plateau has appeared. This saturation forms a steep front that
propagates into the computational domain. On the right side, ν is rather large (ν = 50), and
high tumor cells concentrations appear more rapidly: at t = 2 the tumor volume fraction φn
is already close to the threshold φ∗ with a steep front. This steep front reaches saturation at
t = 4. However, the front propagates less rapidly into the computational domain compared to
the case ν = 20. Hence, the choice of a higher ν leads to higher tumor cell concentrations with
sharp fronts. These observations are in line with the conclusions of [39].

3.2 Tumor cells subjected to the antitumor immune response
in a passive environment (model (T.A.))

We add to the previous model the action of the antitumor immune cells. Protumoral immune
activities are neglected (φp = 0) and we still assume φn, φa � φm ' 1, so that the environment
is supposed to be in a constant homogeneous state. Similarly, the nutrient supply is considered
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Figure 3: Simulation of the scalar equation (T): evolution of the tumor volume fraction
φn on a domain [−1.5, 1.5]. Profiles at times t = 2, 4, 6, 10, with ν = 5 (left), ν = 20
(middle) and ν = 50 (right)

as given. Therefore, the dynamic is governed by the following coupled system for φn, φa

∂t(ρnφn)− ∂x
( ρn
λnm

Q′(φn)∂xφn
)

= ρnφn
τn

(Υ(P)−Aaφa),

∂t(ρaφa) + ∂x
(
χaρaφa∂xΦ− Da

λam
∂xφa

)
= ρag

(ˆ
ρnφn dx

)
Sa − γaρaφa,

φn
∣∣
x=0,L = 0, φa

∣∣
x=0,L = 0.

(T.A.)

We remind the reader that P = νp∗
ν−1

(
φn

φ∗

)ν−1
, Υ(P) = 1 − P

p∗
and Q′(z) = zP ′(z). The

chemotaxis potential is defined by

−∂x(DΦ∂xΦ) = ρn
(
φn −

1
|Ω|

ˆ
φn dx

)
, ∂xΦ

∣∣
x=0,L = 0,

Here, we consider only space homogeneous sources of immune cells (being aware that space
organisation can be influential in shaping the immune response [3]), while we will discuss the
role of space inhomogeneities for nutrient/oxygen. The evolution of the volume fractions of the
tumor φn and of the antitumor immune cells φa is plotted in Figure 4. The antitumor response
rapidly reduces the tumor volume fraction, which then forms two symmetric peaks. These peaks
are pushed towards the edges of the domain, which, in turn, attract immune cells. Eventually,
with some slight oscillations (see Figure 4 ), plateaus appear, with a non zero tumor volume
fraction kept under control by the immune cells. This indicates the ability of the model in
reproducing equilibrium phases. Here, the formation of peaks and their displacement towards
the boundaries is not limited since the interaction with the environment is poorly described in
the reduced model (T.A.).
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Figure 4: Simulations of the coupled tumor-antitumor immune cells system model
(T.A.). Evolution of the tumor volume fraction φn (top) and the antitumor immune
cells volume fraction φa (bottom), represented at several times : t = 2, 4, 6, 10 (left),
t = 20, 30, 40, 50 (middle), t = 60, 65, 70, 80 (right) with ν = 50

3.3 Tumor-environment coupling and the role of nutrient sup-
ply (model (T.E.O.))

We go back to the situation where the immune response is disregarded (φa = φp = 0), but
now we take into account the coupling with the environment. On the one hand, we work with
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the two volume fractions φn and φm = 1− φn, and the velocity-pressure pair (Vm,Π). On the
other hand, we take into account the oxygen/nutrient supply. Namely, we are dealing with the
following system:

∂t(ρnφn) + ∂x
(
ρnφn

(
Vm −

∂xΠ
λnm(1− φn)

))
− ∂x

( ρnQ′(φn)
λnm(1− φn)∂xφn

)
= ρnφn

τn
Υ(P, O),

−µm
ρm

∂2
xxVm + ∂xΠ + ∂xQ(φn) = 0,

∂x

(
Vm −

φn
λnm(1− φn)∂x(Π + P)

)
= φn
τn

[Υ]+ −
(
1− ρn

ρm

)φn
τn

[Υ]−,

−∂x(DO∂xO) + ∂x (OχO∂xφn) = SO −O(rnρnφn + rmρm(1− φn)),

φn
∣∣
x=0,L = 0, Vm · νx

∣∣
x=0,L =

ˆ L

0

(Γa
ρa

+ Γp
ρp

+ Γn
ρn

+ Γm
ρm

)
dx, O

∣∣
x=0,L = Obd.

(T.E.O.)
The functions P and Q are defined as before, and, in the right hand side,

Υ(P, O) = k+O[O −O∗]+ −
(
k−O[O −O∗]− + P

p∗

)
.

In order to assess the influence of the source of the oxygen-nutrient supply, we perform
simulations with the source SO given by one of the following formula:

homogeneous source: SO(x) = 1
3 , (20a)

inhomogeneous source centered at the hotbed of the tumor:

SO(x) = 1
σ
√

2π
exp

(
− x2

2σ2

)
, (20b)

inhomogeneous source centered far from the hotbed of the tumor:

SO(x) = R(x)ˆ L

0
R(x)dx

, (20c)

R(x) = k1

σ1
√

2π
exp

(
−1

2

(
x−m1
σ1

)2
)

+ k2

σ2
√

2π
exp

(
−1

2

(
x−m2
σ2

)2
)
,

with k1, k2, σ, σ1, σ2 positive numbers andm1, m2 given locations in the computational domain.
For the simulations, we set σ1 = σ2 = 0.4, k1 = k2 = 1, m1 = −1, and m2 = +1. Note that
these data are normalized so that they provide the same amount of nutrient . Therefore, we
are going to discuss the influence of

• the thresholds O∗ (necrotic threshold) and O∗ (proliferation threshold), together with the
role of the stress exerted on the tumor described by the parameter ν;

• the ability of the tumor in attracting oxygen-nutrient supplies, embodied into the strength
of the parameter χO, and the role of the parameter f∗ describing the degradation of the
environment by cytokines;

• the location of the oxygen-nutrient sources compared to the initial location of the tumor,

In Figure 5, we compare two types of environment which are not very favorable to the
tumor development: we set O∗ = .8 (proliferation threshold), χO = .5 (chemotactic coefficient)
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and the delocalized source (20c); figures on the left correspond to a moderately oxygenated
environment, with necrotic threshold O∗ = 0, while figures on the right correspond to a hypoxic
environment with a positive necrotic threshold O∗ = .6. In order to make the effects more
visible, we have multiplied for this simulation the initial data (19) by a factor of 5: this leads
to a higher tumor volume fraction. From top to bottom, we make the exponent ν increase.
On top, ν = 5 corresponds to a low stress on the tumor. The tumor volume fraction decreases
due to the combined effects of the homeostatic pressure, the diffusion and the lack of oxygen
and nutrient to sustain its development: the concentration O remains below the proliferation
threshold O∗. In the hypoxic environment (right), this effect is even more sensitive since the
concentration O is also below the necrotic threshold O∗, despite the sensitive attraction exerted
by the tumor. This has to be compared to Figure 3-left where a constant supply boosts the
tumor development. Increasing ν (ν = 7 for the figures in the middle) damps these effects.
When ν is large (ν = 50 for the figures in the bottom), the tumor volume fraction becomes
stationary. This is due to the fact that the homeostatic terms P takes very small values when
φn is below the threshold φ∗, so that the death term in the equation for φn almost vanishes.
Note that in the hypoxic environment, Figure 6-middle-right, the tumor volume fraction is high
enough to attract oxygen and nutrients above the necrotic threshold at the center of the domain.

These effects are confirmed in Figure 6 which represents the evolution of the total mass in
these configurations (top), and for the initial data (19) (bottom). In the latter case, the tumor
volume fraction is too low to attract oxygen and the tumor remains in a hypoxic environment.

Next, we discuss how certain mechanisms can help the tumor in developing despite the
environment is not favorable to its expansion, either by attracting oxygen and nutrient (ef-
fect of the chemotactic coefficient χO) or through the degradation of the environment by pro-
teases/cytokines (effect of the parameter f∗).

In Figure 7, we set O∗ = .8 (proliferation threshold), O∗ = .6 (necrotic threshold), f∗ = 0
and SO is given by (20c). On the left, we have χO = .5 and the tumor extincts due to a lack
of supplies, the concentration O being below the necrotic threshold on the whole domain. On
the right, we have χO = 3.4 which allows the tumor to attract oxygen-nutrient towards the
center of the domain; the oxygen concentration passes above the proliferation threshold O∗ so
that the tumor can grow (at t = 2), eventually reaching saturation, and it expands, with the
formation of a steep front (at t = 10). The observations are confirmed by the velocity profiles
on the last line of Figure 7: the velocity field Vn vanishes in the situation of low attractivity,
while it reveals the tumor expansion towards the edges of the domain when χO is larger. This
example shows that the ability of the tumor in developing access to nutrient and oxygen is a
key feature of tumor growth reproduced by the model.

Figure 8 illustrates that the degradation of the environment equally fosters the development
of the tumor, despite an environment lacking of oxygen and nutrient supply. The parameters are
the same as in Figure 7, with χO = .5 on the left, and χO = 3.4 on the right, but now we have set
f∗ = .1. In Figure 8-left we see that the degradation of the environment by proteases/cytokines
leaves room for the tumor and the oxygen concentration slightly overtakes the proliferation
threshold in the center of the domain. This effect is limited and the tumor stabilizes (from
t = 4) because its attractiveness χO is not high enough. The representation of the total mass of
the tumor in Figure 8-bottom-left shows that the tumor remains under control. Figure 8-right
has to be compared to Figure 7-right: the saturation of the tumor volume fraction holds more
rapidly as it can be also seen on the evolution of the total tumor mass.

Finally, in Figure 9, we consider different types of sources: (20c) (left), (20b) (middle) or
(20a) (right). We compare the case where we neglect the effect of proteases/cytokines on the
environment (f∗ = 0) and the case where we consider environment degradation (f∗ = .1). We
can see that a source of nutrient close to the tumor provides much more favorable conditions
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for the tumor to grow than sources situated a little far away, for a given attraction capacity
(χO = .5 on top, or χO = 3.4 on bottom). We also confirm the influence of the degradation of
the environment: this is sensitive for instance when comparing an homogeneous source, where
taking into account the degrading action of proteases/cytokines produces a dramatic increase of
the tumor mass, see Figure 9-top-right. The worst situation is illustrated in Figure 9-bottom:
the high chemotactic coefficient χO, combined to the action of the cytokines, always lead to a
growth of the tumor mass, no matter where the source is located.

3.4 Antitumor immune response in a complex environment:
equilibrium phases (model (T.A.E.O.))

We now take into account the antitumor action of the immune system. Therefore, the model
reads

∂t(ρnφn) + ∂x
(
ρnφn

(
Vm −

∂xΠ
λnmφm

))
− ∂x

(ρnQ′(φn)
λnmφm

∂xφn
)

= ρnφn
τn

(Υ(P, O)−Aaφa),

∂t(ρaφa) + ∂x
(
ρaφa

(
Vm −

∂xΠ
λamφm

+ χa∂xΦ
))
− ∂x

( Da

λamφm
∂xφa

)
= ρag

(ˆ
ρnφn dx

)
Sa − ρaφaγa.

−∂x(DO∂xO) + ∂x (OχO∂xφn) = SO −O(rnρnφn + raρaφa + rmρmφm)

−∂x(DΦ∂xΦ) = ρn
(
φn −

1
|Ω|

ˆ
φn dx

)
,

−µm
ρm

∂2
xxVm + ∂xΠ = −φn∂xP + (φaχa∂xΦ−Da∂xφa),

∂x

(
Vm −

( φn
φmλnm

+ φa
φmλam

)
∂xΠ− φn

φmλnm
∂xP

+
( φaχa
φmλam

)
∂xΦ− Da

φmλam
∂xφa

)
= Γa
ρa

+ Γn
ρn

+ Γm
ρm

,

φn
∣∣
x=0,L = 0, φa

∣∣
x=0,L = 0, Vm · νx

∣∣
x=0,L =

ˆ L

0

(Γa
ρa

+ Γp
ρp

+ Γn
ρn

+ Γm
ρm

)
dx,

∂xΦ
∣∣
x=0,L = 0, O

∣∣
x=0,L = Obd.

(T.A.E.O.)
Note that oxygen/nutrient consumption arises from tumor cells and antitumor immune cells as
well as the environment. Hence there is both a competition for space and a competition for
resources. We consider an environment where oxygen and nutrient are available, in order to
assess whether or not the antitumor response is able to control the tumor growth in such a fa-
vorable situation. We are also going to discuss the effect of the degradation of the environment,
which can be an important ingredient in the quest for space.

We start by assuming f∗ = 0 (no degradation). Results are displayed in Figure 10, with
χO = .5 (low chemotactic coefficient, left) and χO = 3.4 (high chemotactic coefficient, right).
The tumor is rapidly eliminated, especially for delocalized (20c) and homogeneous (20a) sources.
This is coherent with Figure 9-top: in such conditions, the growth of the tumor is already
difficult without immune response. With a high chemotactic coefficient, we observe an important
elimination of the tumor cells in the center of the domain, when the source itself is centered,
see Figure 10-right. This is because the strength of the antitumor immune cells on the tumor

20



is quite high (Aa = 5) and the intensity of the antitumor source is also high (Sa = 3). This
situation, where the tumor is thus controlled has to be compared to Figure 9-bottom where, in
absence of antitumor action, the tumor was able to escape.

In Figure 11, we add the action of proteases/cytokines on the environment (f∗ = .1). In
the tested configuration, it does not modify substantially the evolution of the total tumor mass,
which is eventually eliminated (whatever the value of χO), showing the strength of the antitumor
immune response. (The profile for the oxygen/nutrient concentration does not significantly differ
from Figure 10.) The main effect however is to impact the space repartition of the tumor, which
is more localized, with more peaked values of the volume fraction when the proteases/cytokines
are activated.

It is also worth investigating the large time behavior of the system, to study whether the
tumor is completely eliminated or remains in a residual equilibrium state. This is the object
of Figure 12 and 13. In cases where the source of oxygen is localized in the vicinity of the
tumor, such an equilibrium forms. But for delocalized and homogeneous sources, the nutrient
supply is too low to sustain the presence of tumor cells, all populations (tumor and immune
cells) eventually disappear.

3.5 Simulation of the full model: from equilibrium to escape
Eventually, we perform simulation of the full model defined in Section 2.5, with both anti- and
protumor immune responses. As in [3], we see that the intensity of the source of the antitumor
immune cells is critical to determine whether the tumor is controlled or escape.

We compare in Figure 14 the behavior obtained for several values of a (homogeneous) source
of antitumor immune cells Sa = 3, Sa = 3/10 (left) and Sa = 3/1000 (right), all the other
parameters being unchanged. With Sa = 3, the tumor is controlled by the antitumor immune
response, despite the presence of protumor immune cells which are not sufficient to help the
tumor to grow. When Sa = 3/10, see Figure 14-left, we observe a higher volume fraction of
protumor immune cells, and thus a higher tumor volume fraction too, in the transient states.
When Sa = 3/1000, see Figure 14-right (mind the change of scale for the tumor volume fraction),
we observe that the tumor escapes: its volume fraction reaches saturation and forms a steep
front. Note that both anti- and protumor immune cells remain concentrated at the center of
the domain.

4 Conclusion
We have set up a hydrodynamic model, inspired from mixture theory, describing the complex in-
teractions in the TME, between tumor cells, immune cells, and the surrounding tissues. Beyond
the elimination or enhanced proliferation mechanisms by the immune system, the equations de-
scribe the competition for space and the access to nutrient and oxygen. The model is challenged
on numerical grounds, restricting to a simple one-dimensional geometry. The simulations bring
out several key mechanisms, that are critical in shaping the tumor development and the effi-
cacy of the immune response. The simplified framework discussed here already shows relevant
effects related to the space organization of the TME, motivating a modeling based on PDEs.
This preliminary attempt opens perspectives for a thorough discussion based on clinical data
obtained by modern imagery techniques, that provide a quite precise description, at a given
time, of the TME.
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A Numerical methods
The discretization of the equations is based on the Finite Volume framework, which is intended
to mimic at the discrete level the balance relations over a fixed domain that lead to the derivation
of the fluid mechanics equations. We are going to use staggered discretizations where the discrete
unknowns can be stored at different locations, depending on their physical meaning. This allows
us to handle appropriately the incompressibility constraint, in the spirit of the MAC scheme
[30]. The scheme we present here is inspired from [17, 40].

We introduce the following tessellations of the computational domain [−L,L], see Figure
15:

• we consider a set of (N + 1) points x0 = −L < x1 < · · · < xN−1 < xN = L. Let
Mi+ 1

2
= [xi, xi+1], i ∈ {0, · · · , N −1}, stand for the associated cells. It defines the primal

mesh.

• let xi+ 1
2

= (xi + xi+1)
2 , i ∈ {0, N − 1} be the centers of the mesh. These points define

the dual mesh made of the cells Mi = [xi− 1
2
, xi+ 1

2
], i ∈ {1, · · · , N − 1};

• the mesh sizes are thus given by

hi+ 1
2

= xi+1−xi, i ∈ {0, N−1}, and hi =
hi− 1

2
+ hi+ 1

2

2 = xi+ 1
2
−xi− 1

2
, i ∈ {1, · · · , N−1},

(with the specific definition for the end-mesh: h0 = 1
2h 1

2
and hN = 1

2hN− 1
2
).

Volume fractions and concentrations satisfy reaction-convection-diffusion equation that generi-
cally read

∂tX + ∂xJ = R.

The discrete volume fractions and concentrations are stored on the primal mesh: given the time
step δt, the Xi+ 1

2
’s are updated by

Xn+1
i+ 1

2
= Xn

i+ 1
2
− δt

hi+ 1
2

(Ji+1 −Ji) + δtRi+ 1
2

where one needs to define the numerical fluxes Ji,Ji+1 at the interfaces of the cell Mi+ 1
2
. To

this end, velocity fields are stored on the dual grid, and the corresponding convection fluxes are
based on the upwinding principles in order to guaranty the stability of the simulation: at least
the unknowm Xi+ 1

2
should remain non negative for sufficiently small time steps. Therefore, the

convection flux J c = ηX at the interface xi is approached by

J c
i = −[ηni ]+Xn

i−1 + [ηni ]+Xn
i , [η]± = max(0,±η) ≥ 0.

The diffusion flux J d = −ν∂xX at the interface xi is approached by using a centered approxi-
mation for the derivative; namely, we get

J d
i = −νni

Xn
i+ 1

2
−Xn

i− 1
2

hi
.

When the diffusion coefficient ν depends non linearly on the unknown X, we set

νni = ν(Xn
i ), Xn

i =
Xn
i+ 1

2
+Xn

i− 1
2

2 .
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The reaction term is a function of the unknowns X; hence we simply use Ri+ 1
2

= R(Xn
i+ 1

2
).

Note that the preservation of the positivity of the Xi+ 1
2
might impact the choice of the time

step due to this explicit discretization of the reaction term. For stability reasons, in fact it is
preferable to use a semi-implicit version of the diffusion fluxes by setting

J d
i = −νni

Xn+1
i+ 1

2
−Xn+1

i− 1
2

hi
.

Thus, the field X is updated by solving a linear system, which has a reasonable numerical cost,
and we can use larger time steps.

We turn to the discretization of the system for the velocity-pressure pair (V , Π), which
reads 

−µ∂2
xxV + ∂xΠ = F1,

∂xV − ∂x (ψ∂xΠ) = F2.
(21)

The system is completed by the boundary conditions
∂xΠ(t, 0) = ∂xΠ(t, L) = 0,

V (t, 0) = −V (t, L) = 1
2

ˆ L

0
R(t, x)dx.

The coefficients and source terms of the system are defined from the volume fractions:
ψ = ψ(X), R = R(X),
F1 = −∂xQ(X), F2 = R(X) + ∂x (ν(X)∂xX) .

The discrete pressure is stored on the primal mesh, while the discrete velocity is stored on the
dual mesh. In turn, the convection field η = V − 1

λ(1−X)∂xΠ is approached on the interface xi
by

ηni = V n
i −

Πn
i+ 1

2
−Πn

i+ 1
2

λ(1−Xn
i )hi

.

Finally, the discrete form of (21) becomes

−µ

V n
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i
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2
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i − V n
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hi− 1

2

+ Πi+ 1
2
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2
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)
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2
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2
.

Here, we have set ψi =
ψ

i+ 1
2

+ψ
i− 1

2
2 and the system is endowed with the boundary conditions

ψ− 1
2

= 0 = ψN+ 1
2
, Π− 1

2
= Π 1

2
, ΠN− 1

2
= ΠN+ 1

2
. The source terms are defined by
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i+ 1
2
)−Q(Xn
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hi
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F2,i+ 1
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= R(Xn
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2
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 .
The boundary conditions for the velocity is defined by using a quadrature formula (rectangle
or trapezoidal rule) for approaching the integral of the reaction term.

As said above, the numerical strategy is adapted from [17, 40]. However, the scheme is
based on a specific formulation of the continuous system, and it is not clear that it preserves
the equivalent expressions of the incompressibility constraints. For further details on this issue
and on more elaborate versions of the scheme, we refer the reader to [7, 45].
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Variable Description Value
φn(0, x) initial condition for the volume fraction of tumor cells Eq. (19)
φa(0, x) initial condition for the volume fraction of antitumor immune cells 0
φp(0, x) initial condition for the volume fraction of protumor immune cells 0
I(0, x) initial condition for the cytokine concentration 0
ρn mass density of tumor cells 1
ρa mass density of antitumor immune cells 1
ρp mass density of protumor immune cells 1
ρm mass density of the environment 1
p∗ reference (homeostatic) pressure 1
φ∗ threshold for the tumor volume fraction (maximum packing density) .7
ν exponent for the packing (homeostatic) pressure 5–50
Da diffusion coefficient of antitumor immune cells 1/40
Dp diffusion coefficient of protumor immune cells 1/40
DΦ diffusion coefficient of the chemotactic signal 1
DO diffusion coefficient of the oxygen/nutrient .5
χa chemotactic coefficient of antitumor immune cells .864
χp chemotactic coefficient of protumor immune cells .864
χO chemotactic coefficient of oxygen concentration 1
γa death rate of the antitumor immune cells .18
γp death rate of the protumor immune cells .2
Aa strength of the antitumor immune cells on tumor cells 5
Sa source of antitumor immune cells 3
Sp source of protumor immune cells 3
SO source of oxygen/nutrient (20a)-(20c)
g0 activation rate of effector immune cells 1
O∗ hypoxia threshold for the oxygen concentration .1
O∗ tumor proliferation threshold for the oxygen concentration .3
k+O appropriate dimensionalizing constant of oxygen concentration 1
k−O appropriate dimensionalizing constant of oxygen concentration 1
rn consumption rate of oxygen/nutrient by tumor cells .3
ra consumption rate of oxygen/nutrient by antitumor immune cells .1
rp consumption rate of oxygen/nutrient by protumor immune cells .1
rm consumption rate of oxygen/nutrient by the environment .1
f∗ enhanced environment degradation rate due to CAF and cytokines 0-1
φnI,s

threshold related to the tumor volume fraction
for cytokine production 0

φmI,s
threshold related to the environment volume fraction
for cytokine production 0

kIa conversion rate of antitumor immune cells into protumor cells 1
kIp rate of activation of naive cells into protumor immune cells by cytokines 1
τn relaxation time for tumor cells 1
τap relaxation time of the annihilation

of antitumor immune cells by the protumor immune cells 1
τ relaxation time for cytokines 1
λnm drag coefficient between tumor cells and the environment 1
λam drag coefficient between antitumor immune cells and the environment 1
λpm drag coefficient between protumor immune cells and the environment 1
µm dynamic viscosity of the environment .1

Table 2: Definitions and values of the parameters used for the simulations
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Models Description
(T) Tumor growth model

(T.A.) Tumor-antitumor immune cells model
(T.E.O.) Tumor-Environment and Oxygen model

(T.A.E.O.) Tumor-antitumor immune cells-Environment and Oxygen model

Table 3: Reduced models

29



−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Position x

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
Tum

or ϕ
n

Volume fraction tumor

ϕn at t=2
ϕn at t=4
ϕn at t=6
ϕn at t=10

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Position x

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Tum
or ϕ

n

Volume fraction tumor
ϕn at t=2
ϕn at t=4
ϕn at t=6
ϕn at t=10

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Position x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ox
yge

n O

Nutrients and Oxygen

O at t=2
O at t=4
O at t=6
O at t=10
O*= 0.8
O*= 0

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Position x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ox
yge

n O

Nutrients and Oxygen

O at t=2
O at t=4
O at t=6
O at t=10
O*= 0.8
O*= 0.6

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Position x

0.00

0.05

0.10

0.15

0.20

0.25

Tum
or ϕ

n

Volume fraction tumor

ϕn at t=2
ϕn at t=4
ϕn at t=6
ϕn at t=10

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Position x

0.00

0.05

0.10

0.15

0.20

0.25

Tum
or ϕ

n

Volume fraction tumor
ϕn at t=2
ϕn at t=4
ϕn at t=6
ϕn at t=10

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Position x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ox
yge

n O

Nutrients and Oxygen

O at t=2
O at t=4
O at t=6
O at t=10
O*= 0.8
O*= 0

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Position x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Oxy
gen

 O

Nutrients and Oxygen

O at t=2
O at t=4
O at t=6
O at t=10
O*= 0.8
O*= 0.6

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Position x

0.0

0.1

0.2

0.3

0.4

0.5

Tum
or 

ϕ n

Volume fraction tumor
ϕn at t=2
ϕn at t=4
ϕn at t=6
ϕn at t=10

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Position x

0.0

0.1

0.2

0.3

0.4

0.5

Tum
or 

ϕ n

Volume fraction tumor
ϕn at t=2
ϕn at t=4
ϕn at t=6
ϕn at t=10

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Position x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Oxy
gen

 O

Nutrients and Oxygen

O at t=2
O at t=4
O at t=6
O at t=10
O*= 0.8
O*= 0

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Position x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Oxy
gen

 O

Nutrients and Oxygen

O at t=2
O at t=4
O at t=6
O at t=10
O*= 0.8
O*= 0.6

Figure 5: Simulation of the coupled model (T.E.O.) (proliferation threshold O∗ = .8,
χO = .5 and SO given by (20c)), on left the case where necrotic threshold O∗ = 0, on
right the case where necrotic threshold O∗ = .6. The initial data (19) is multiplied by 5.
The first (resp. second and third) set of four figures correspond to the case ν = 5 (resp.
ν = 7 and ν = 50)
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Figure 6: Simulation of the coupled model (T.E.O.), evolution of the total tumor mass
for several values of ν (proliferation threshold O∗ = .8, χO = .5 and SO given by (20c); on
left the case where necrotic threshold O∗ = 0, on right the case where necrotic threshold
O∗ = .6; on top initial data is 5×(19), on bottom, the initial data is (19))
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Figure 7: Simulation of the coupled model (T.E.O.) (proliferation threshold O∗ = .8,
necrotic threshold O∗ = .6, f∗ = 0 and SO given by (20c) ), on left the case where χO = .5
(controlled tumor), on right the case where χO = 3.4 (uncontrolled tumor); with a stress
on tumor ν = 50
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Figure 8: Simulation of the coupled model (T.E.O.) (proliferation threshold O∗ = .8,
necrotic threshold O∗ = .6, f∗ = .1 and SO given by (20c) ), on left the case where
χO = .5 (controlled tumor), on right the case where χO = 3.4 (uncontrolled tumor); with
a stress on tumor ν = 50
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Figure 9: Simulation of the coupled model (T.E.O.) (proliferation threshold O∗ = .8,
necrotic threshold O∗ = .6 ) and we make the source SO vary : inhomogeneous delocal-
ized source (20c) (left), inhomogeneous source located next to the original tumor (20b)
(middle) and homogeneous source (20a) (right). We make the chemotactic coefficient χO
vary : in top the case where χO = .5, in bottom the case where χO = 3.4; with a stress
on tumor ν = 50 34
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Figure 10: Simulation of the coupled model (T.A.E.O.) (proliferation threshold O∗ = .8,
necrotic threshold O∗ = .6, f∗ = 0) and we make the source SO vary. We make the
chemotactic coefficient χO vary : on left χO = .5, on right χO = 3.4; with ν = 50, Aa = 5,
rn = .9, rm = ra = rn/10. Evolution in short time (t = 10)
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Figure 11: Simulation of the coupled model (T.A.E.O.) (proliferation threshold O∗ = .8,
necrotic threshold O∗ = .6, f∗ = .1) and we make the source SO vary. We make the
chemotactic coefficient χO vary : on left χO = .5, on right χO = 3.4; with ν = 50, Aa = 5,
rn = .9, rm = ra = rn/10. Evolution in short time (t = 10)
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Figure 12: Simulation of the coupled model (T.A.E.O.) (proliferation threshold O∗ = .8,
necrotic threshold O∗ = .6, f∗ = 0) and we make the source SO vary. We make the
chemotactic coefficient χO vary : on left χO = .5, on right χO = 3.4; with ν = 50, Aa = 5,
rn = .9, rm = ra = rn/10. Evolution in long time (t = 100)
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Figure 13: Simulation of the coupled model (T.A.E.O.) (proliferation threshold O∗ = .8,
necrotic threshold O∗ = .6, f∗ = .1) and we make the source SO vary. We make the
chemotactic coefficient χO vary : on left χO = .5, on right χO = 3.4; with ν = 50, Aa = 5,
rn = .9, rm = ra = rn/10. Evolution in long time (t = 100)
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Figure 14: Simulation of the coupled model (16): Sa = 3 and Sa = 3/10 (left), Sa = 3
and Sa = 3/1000 (right) with Sp = 3, χO = 1, f∗ = 1, and τ = 1/1000 (relaxation time
for cytokines). The parameters of the simulations are: O∗ = .8 (proliferation threshold),
O∗ = .6 (necrotic threshold), and SO given by (20c), ν = 50, Aa = 5, rn = .9, rm = ra =
rp = rn/10
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