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Abstract

We establish well-posedness for a model of self-propelled agents inter-
acting through pheromone which they themselves produce. The model
consists of an arbitrary number of agents modeled by a system of ordi-
nary differential equations, for which the acceleration term includes the
influence of a chemical signal, or pheromone, which induces a turning-like
behaviour. The signal is produced by the agents themselves and obeys a
diffusion equation. We prove that the resulting system, which is non-local
in both time and space, enjoys well-posedness properties, using a fixed
point method, and show some numerical results.
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1 Introduction
Despite very limited communication abilities, certain populations of animals, or
even robots, are able to self-organize. This organization is shaped by the reaction
of the individuals to signals [2, 9, 12, 17, 19, 20], which can be either external,
or produced by the individuals themselves. Ant societies provide examples of
such remarkable pattern formations, quite easily accessible to observations and
experiments. The emergence of collective behavior in ant societies is attributed
to chemical communication by way of pheromones, chemical substances secreted
by the individuals and deposited on the substrate to provide information to the
others: ants use pheromone trails to communicate between themselves informa-
tion about food sources – such as direction, distance, quality, or abundance –,
danger, direction to the nest, and so on [3, 5, 7, 8, 13]. Mathematical modeling is
intended to shed some light on the emergence of such collective behavior, based

1Corresponding author. Instituto de Matemática, Universidade Federal do Rio de Janeiro,
Av. Athos da Silveira Ramos 149, Centro de Tecnologia - Bloco C, Cidade Universitária - Ilha
do Fundão, Caixa Postal 68530, 21941-909 Rio de Janeiro, RJ - Brasil
Email: paulo@im.ufrj.br. web page: http://www.im.ufrj.br/paulo/

2Université Côte d’Azur, Inria, CNRS, LJAD Email: thierry.goudon@inria.fr

1



on limited exchanges of information and simple individual rules; as initiated in
the seminal work [19, 20]. In the specific case of ants, it is worth mentioning
the works of [5, 6, 10, 11, 14, 16] which offer a large variety of approaches by
using individual-based models or more macroscopic PDEs systems.

Therefore, ants move in response to local concentrations of pheromones and,
in turn, modify these same concentrations by the deposit of a certain amount
of pheromone. A key point of the modelling relies on the description of the
detection capabilities of the individuals. It turns out that ant antennae seem to
be oriented towards the front of the ant, with a restricted detection angle [13, 14].
Hence, their behaviour is driven by pheromone concentrations on the trails
ahead, with a turning rate based on the differences of pheromone concentration
in the detection area, weighted by the total amount of pheromone detected;
this is known as Weber’s law. In [1], we introduced an individual-based model
for ant navigation using this Weber’s law, based on an individual description
of each ant as a self-propelled agent whose velocity depends on a pheromone,
or signal, landscape. In particular, [1] brings out the fundamental role of the
angle of the detection area in the stability of trails, in response to a given
pheromone concentration. Here, we extend the model of [1] by considering that
the pheromones are emitted by the individuals. This induces a self-consistent
field which shapes the individuals’ displacement. We address the question of
the well-posedness of the underlying system of differential equations, in order
to provide a rigorous basis to the modeling.

The difficulties in achieving this result are related to the fact that, mathe-
matically, the model consists of a system of ordinary differential equations which
are coupled nonlinearly and nonlocally in both time and space, through the in-
fluence of the pheromone signal. For this reason, it is necessary to establish
Lipschitz-like properties for the acceleration terms. This will bring into play
detailed properties of the signal distribution: on one hand, the distribution is a
solution to a diffusion equation with measure source, and on the other hand, it
must have some regularity in order to allow for the agents’ sensing.

The paper is organized as follows. In Section 2 we introduce the model:
the concentration of pheromones obeys a diffusion equation, with a source term
concentrated on individuals’ trajectories. We consider two cases for the detec-
tion capabilities: the case of a full sensing cone, where the detection domain is a
full circular section, and the extreme situation where the detection is restricted
to the endpoints of two antennae. Section 2.1 provides numerical illustrations
showing the ability of the model in reproducing the spontaneous formation of
trails. The main results are stated in Section 2.2, while Section 2.3 details a
general result on parabolic equations with measure source which can be of in-
dependent interest. The analysis of the full sector sensing model is performed
in Section 3, by means of a fixed point reasoning. The pointwise sensing model
requires refined estimates and it is studied in Section 4.
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2 Coupling the self-propelled agents’ trajectories
with pheromone signal production

Although for the purposes of [1] the agents’ trajectories evolved in the space
R2, it is natural and convenient to consider as the physical domain the two-
dimensional torus T2, which is equivalent to setting periodic boundary condi-
tions on the square [0, 1]× [0, 1]. This has the advantage of providing a bounded
domain – so the agents cannot run off to infinity – while eliminating any arte-
facts produced by boundary conditions. Indeed, it is known [14, 10] that ants
may tend to aggregate on the edges of experimental domains for reasons that are
not quite well understood. Also, it is not clear what boundary conditions the
agents should verify at an individual level. Setting the problem in T2 obviates
the need for boundary conditions, while only slightly complicating the analy-
sis. Furthermore, as shown in the numerical simulations below, a square with
periodic boundary conditions is a very natural setting to perform computations.

We consider for t ≥ 0 a population of N self-propelled agents, or “ants”,
living in the two-dimensional torus T2. Each ant has a position/velocity pair
(xi(t),vi(t)) ∈ T2 × R2. We recall here the model from [1] where each ant
deposits pheromone continuously in the substrate and so the ants interact in-
directly through the pheromone distribution. For t > 0, we have the system of
4N ODEs  ẋi = vi,

v̇i = −1

τ

(
vi − F (xi,vi,P)

)
,

(2.1)

for i = 1, . . . , N, where P : (t,x) 7→ P(t,x) is the pheromone concentration at
the point x ∈ T2 at time t, and the desired velocity function F is defined in
(2.6)-(2.9) below. The system is supplemented with initial conditions (x0

i ,v
0
i ).

We suppose that P satisfies P(t = 0,x) = P0(x) and obeys a diffusion
equation of the form

∂tP−D∆P + γP =

N∑
j=1

δx=xj(t), (2.2)

so that P(t,x) couples the equations for the different ants in (2.1). The solution
of (2.2) is given by the explicit formula

P(t,x) =
∑
z∈Z2

∫
T2

1

4πt
e−γt−

|x+z−y|2
4t P0(y) dy

+
∑
z∈Z2

∫ t

0

N∑
j=1

1

4π(t− s)
e−γ(t−s)−

|x+z−xj(s)|
2

4(t−s) ds.

(2.3)

In [1], the pheromone distribution was supposed to be a given function, de-
scribing the case where the self-propelled agents are navigating in a pre-existing
signal landscape. Here, in contrast, the signal P is generated by the agents, and
in turn influences their trajectories through the function F .
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The model relies on the notions of desired velocity and effective signal that
we describe now. Having a signal distribution P(t,x), we consider the effective
signal given by Pe(t,x) = Φ(P(t,x)), where Φ : R → R is a non decreasing
function such that for all z ∈ R

Φ(z) ∈ [c∗, c
∗], Φ(z) = c∗ if z ≥ c∗, (2.4)

Roughly speaking, we think of Φ as the function

Φ(z) = min
(
c∗,max(c∗, z)

)
, (2.5)

but other relevant functions, more regular, can be readily constructed. The
effective signal arises naturally from the fact that signal concentrations above
a maximum threshold have no additional effect, and that very low signal con-
centrations are treated as if the concentration level were at the lower threshold,
which provides a continuity property of the agent’s behaviour when the signal
level is very small. We refer the reader to [1] for a more in-depth discussion.

To complete the model (2.1), we must define the desired velocity F (x,v,P).
Let us recall from [1] some definitions. The sensing area B(v, `, β) is given by

B(v, `, β) = {y ∈ R2 : ∠(v,y) ∈ (−β, β), ‖y‖ ≤ `}, (2.6)

where ` > 0 is its radius, ∠(v,v′) ∈ [−π, π] the angle from the vector v to the
vector v′, and β is half the angle of the sensing area. Hence, B(v, `, β) is a
circular sector of radius ` and angle 2β, centered at zero and aligned with the
direction of the velocity vector v. From (2.6), we see that

|B(v, `, β)| = β`2. (2.7)

Thus, we will consider the two models discussed in [1], namely the full sector
sensing model

Fs(xi,vi,P) =

∫
B(vi)

y
Pe(xi + y)∫

B(vi)
Pe(xi + y′) dy′

dy, (2.8)

and the two point sensing model

Fd(xi,vi,P) =
yiLPe(xi + yiL) + yiRPe(xi + yiR)

Pe(xi + yiL) + Pe(xi + yiR)
, (2.9)

with vi = ‖vi‖(cos Θi, sin Θi) and (recalling that β is the sensing half-angle)

yiL = `

(
cos(Θi + β)

sin(Θi + β)

)
, yR = `

(
cos(Θi − β)

sin(Θi − β)

)
. (2.10)

Note that the model (2.9) corresponds exactly to taking the Dirac measure
δy=yL + δy=yR in place of the Lebesgue measure in (2.8); thus the agent senses
only the signal concentration at the two points yL and yR which, in the case
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of the application to ant movement, represent the points where the tips of the
antennae touch the substrate. In contrast, in the model (2.8), all points in the
sector B contribute equally to the response.

Let us note here that, as mentioned earlier, the two models presented here
are based upon Weber’s law; indeed, both (2.8) and (2.9) can be seen as a
weighted average of signal concentration around the agent, normalised by the
total signal present. We again refer to [1] for more details.

2.1 Numerical examples
In this section, we briefly present some numerical experiments to illustrate the
emergence of collective organisation from the system analysed in this work.
These results are not meant to be an in-depth investigation of the formation
of collective patterns such as trails, but serve only to illustrate the fact that,
numerically at least, agents evolving according to the system (2.1),(2.2) exhibit
spontaneous trail formation.

We implemented an algorithm in C++ to simulate (2.1),(2.2) with the two
point sensing (2.9). The ODEs are advanced in time according to the Euler
scheme (which is sufficient for our illustrative purposes) on a square with peri-
odic boundary conditions. To approximate the pheromone field, the following
approach is used: every k iterations (in the simulations below, k = 20 and the
time step is 0.2), the agents drop a pheromone “droplet” at their current posi-
tion. This droplet then evolves according to the explicit solution of the diffusion
equation without source term. In this way, the signal trail left by each agent,
given by (2.2),(2.3), is approximated by a sum of successive droplets along the
trajectory. The advantage is that this requires no mesh in order to simulate the
time evolution of the diffusion equation. It is easy to see that this procedure
amounts to nothing more than a quadrature rule for the time integral in (2.3),
computed using a discrete approximation of the agent’s trajectory. The signal
initial data is zero.

We show two experiments, the first with 10 agents (Fig.1), and the second
with 100 (Fig.2). In both cases, the initial positions and directions of the agents
are taken randomly, and this is the only source of randomness in the procedure.
One can see the self-organising process taking place, with the spontaneous for-
mation of trails.

2.2 Main results
The analysis of the system (2.1),(2.2) with a desired velocity given either by (2.8)
or (2.9) uses the fact that the agents’ speed is bounded from above and below,
as observed in [1, Propositions 3.1 & 3.3] in the case of a given pheromone
distribution. However, the proof for the model with an arbitrary number of
agents interacting through a pheromone field carries over in exactly the same
way.

Lemma 2.1 ([1]). Suppose that the sensing half-angle β satisfies 0 < β < π/2,
and v(0) 6= 0. Let 0 < c∗ < c∗ be the pheromone detection thresholds in (2.4),

5



Figure 1: Snapshots of the simulation of (2.1),(2.2),(2.9) with 10 agents. Phe-
romone droplets are coloured red, and the opacity of the droplets indicates their
age.

and let Pe be any effective pheromone concentration. Then, there exist constants
C1, C2 > 0, depending explicitly on `, c∗, c∗, β, and the initial data, but not on
t, such that for all t ≥ 0,

min
(
|v(0)|, C1

)
≤ |v(t)| ≤ max

(
|v(0)|, C2

)
, (2.11)

where t 7→ (x(t),v(t)) is a solution to (2.1),(2.2), with the desired velocity given
either by (2.8) or (2.9).

Our main results establish the existence-uniqueness of solutions for both the
full sector sensing model, and the pointwise sensing model. For the latter, we
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Figure 2: Snapshots of the simulation of (2.1),(2.2),(2.9) with 100 agents. Phe-
romone droplets are coloured red, and the opacity of the droplets indicates their
age.

need to assume that the initial positions of the agents are separated, in a way
that at t = 0 no sensing point lies on another agent. Since we are working
within the periodic framework, we make use of the following distance defined
on T2:

dT2(x,y) = inf
{
|x−y+z|, z ∈ Z2

}
= inf

{
|x−y+z|, z ∈ Z2, |z|∞ ≤ 1

}
∈
[
0,

√
2

2

]
.

Theorem 2.2 (Well-posedness for the full sector sensing model). For i ∈
{1, . . . , N}, let xi(0) ∈ T2 be the initial positions, and vi(0) ∈ R2 \ {(0, 0)} the
initial velocities of the agents. Suppose that the initial signal P(t = 0,x) = P0(x)
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is such that P0 = P0
e and

‖∇P0
e‖L1(T2) <∞. (2.12)

Then, for any t > 0, there exists a unique solution

(xi(t),vi(t)) ∈ C1([0, t];T2)× C([0, t];R2)

of the system (2.1),(2.2) with desired velocity given by (2.8).

Theorem 2.3 (Well-posedness for the pointwise sensing model). For i ∈ {1, . . . , N},
let xi(0) ∈ T2 be the initial positions, and vi(0) ∈ R2 \ {(0, 0)} the initial veloc-
ities of the agents. Suppose that the initial signal P(t = 0,x) = P0(x) is such
that P0 = P0

e and
‖∇P0

e‖L∞(T2) <∞, (2.13)

and that the initial positions satisfy

d(x0
i ,x

0
j ) > `, ∀i, j ∈ {1, . . . , N}, i 6= j. (2.14)

Then, for any T > 0, there exists a unique solution

(xi(t),vi(t)) ∈ C2([0, T ];T2)× C1([0, T ];R2)

of the system (2.1),(2.2) with desired velocity given by (2.9).

Remark 2.4. In Theorem 2.2 above, the number of agents N is arbitrary. In
Theorem 2.3, though, the condition (2.14) on the initial positions places an
upper bound on the number of agents, which is roughly N . 1/`2. However,
we believe this limitation is only technical. Indeed, as will be explained in the
analysis below, the separation condition (2.14) is only necessary for very short
times, and in no way implies that the trajectories must remain separated for
larger times. It is related to the fact that arbitrary initial data will, in general,
not be “compatible” with the type of singularities originated by the equation. If,
however, the initial data already has infinite singularities at the agents locations,
of the same type which are generated by the equation, then there would be no
need for the separation condition (2.14) and the number of agents would be
arbitrary even in Theorem 2.3.

2.3 A particular case of parabolic equation with measure
data

The next lemma focuses on the properties of the pheromone distribution P

produced by one agent. At first sight, P is solution of a parabolic equation with
measure data; the general theory of such problems, after the seminal ideas in
[18] for instance, provides solutions with a gradient in Lq, for some q < 2, see
e. g. [4, 15]. Such a regularity is not enough for the pointwise sensing model
to make sense. Hence, we need strengthened regularity, which, in the present
context, can be derived by direct inspection of the solution, expressed by means
of convolution with the heat kernel.
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Proposition 2.5. Let P0 ∈W 1,1(T2), let t > 0, and let ζ : [0, t]→ T2 be a C1

curve. Then, the function

P(t,x) =
∑
z∈Z2

∫
T2

1

4πt
e−γt−

|x+z−y|2
4t P0(y) dy

+
∑
z∈Z2

∫ t

0

1

4π(t− s)
e−γ(t−s)−

|x+z−ζ(s)|2
4(t−s) ds,

(2.15)

which is a solution to the Cauchy problem

∂tP−∆P + γP = δx=ζ(t), P(0,x) = P0(x), t ≥ 0, x ∈ T2, (2.16)

verifies
P ∈ C

(
[0, t];L1(T2)

)
(2.17)

and
∇P ∈ C

(
[0, t];L1(T2)

)
. (2.18)

Moreover, the following assertions hold:

i) for any η, ε > 0, P is C∞ over the set Uη,ε = {(t,x) ∈ [0,∞) × T2, t >
η, dT2(x, ζ(t)) > ε};

ii) for any τ > 0, there exists ε > 0 such that P(t,x) > c∗ if t ≥ τ and
dT2(x, ζ(t)) ≤ ε;

iii) for any 0 < τ < t <∞,

‖∇Pe‖L∞([τ,t]×T2) < L, (2.19)

where L may be unbounded as τ ↘ 0, and the truncation Pe is defined in
(2.4).

Finally, suppose that P0 ∈W 1,∞(T2) and for t∗ > 0 and δ > 0 let

Tt∗,δ =
{

(t,x) ∈ [0, t∗]× T2 : dT2(x, ζ(s)) ≥ δ, for any 0 ≤ s ≤ t
}

;

then, there exists a constant L > 0 such that

sup
(t,x)∈Tt∗,δ

|∇P(t,x)| ≤ L.

Essentially, Proposition 2.5 states that for each t > 0 the function P has
an integrable infinite singularity at the point x = ζ(t), but is C∞ elsewhere.
This singularity appears instantaneously for t > 0 but, for small values of t, its
influence can be mostly localised to a vanishingly small neighbourhood of the
signal deposition point.
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Proof: First of all, we set γ = 0 in the proof without loss of generality. Note
that if f is integrable on R2, then∑

z∈Z2

∫
T2

f(x + z) dx =

∫
R2

f(x) dx. (2.20)

To prove (2.17), consider first the term involving the initial data P0. We
have ∫

T2

∑
z∈Z2

∫
T2

1

4πt
e−
|x+z−y|2

4t P0(y) dy dx

=

∫
T2

P0(y)
∑
z∈Z2

∫
T2

1

4πt
e−
|x+z−y|2

4t dx dy

=

∫
T2

P0(y)

∫
R2

1

4πt
e−
|x−y|2

4t dx dy

=

∫
T2

P0(y) dy,

and so the initial data gives a finite contribution. Next we compute with (2.20),
Fubini’s Theorem, and the change of variable y = x√

4(t−s)
(but still writing the

integral with x),∫
T2

∑
z∈Z2

∫ t

0

1

4π(t− s)
e−
|x+z−ζ(s)|2

4(t−s) ds dx =

∫
R2

∫ t

0

1

4π(t− s)
e−
|x−ζ(s)|2
4(t−s) ds dx

=

∫ t

0

∫
R2

1

4π(t− s)
e−
|x−ζ(s)|2
4(t−s) dx ds

=

∫ t

0

∫
R2

e
−|x− ζ(s)√

4(t−s)
|2
dx ds

=

∫ t

0

∫
R2

1

π
e−|x|

2

dx ds = t

(note that this mass growth law is in agreement with the equation satisfied by
P). Therefore, accounting for the influence of γ, we find ‖P‖L∞(0,t;L1(T2)) <∞.
Additionally, we see that the contribution to the L1(T2) norm of the second
term of (2.15) tends to zero with t. This, in conjunction with the classical
properties of the heat kernel, gives

lim
t→0
‖P(t, ·)− P0(·)‖L1(T2) = 0.

When we prove (2.18), we will know that for each t > 0, the solution P(t,x) ∈
W 1,1(T2). Therefore, due to the semigroup property, we can prove the continuity
result above at any t > 0. This proves (2.17).

To prove (2.18), note that using (2.20) as above, the first part of (2.15) can
be written as ∫

R2

1

4πt
e−
|x−y|2

4t P0(y) dy = (K ∗ P0)(t,x),
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where P0 : R2 → R is the periodic extension of P0 andK(t,x) is the fundamental
solution of the heat equation. Therefore, by the well-known properties of the
convolution and of the fundamental solution,∫

T2

|∇(K ∗ P0)(t,x)−∇P0(t,x)| dx

=

∫
T2

|(K ∗ ∇P0)(t,x)−∇P0(t,x)| dx −→
t→0

0.

(2.21)

For the second term in (2.15), we find with σ = 1
t−s∫ t

0

1

4π(t− s)
e−
|x+z−ζ(s)|2

4(t−s) ds =
1

4π

∫ +∞

1/t

1

σ
e−

σ
4 |x+z−ζ(t−1/σ)|2 dσ.

Taking the gradient and integrating over T2, we find for the L1 norm of the
gradient of the second term in (2.15), using (2.20) and then y =

√
σx,

1

8π

∫
R2

∫ +∞

1/t

|x− ζ(t− 1/σ)|e−σ4 |x−ζ(t−1/σ)|
2

dσ dx

=
1

8π

∫ +∞

1/t

∫
R2

|y −
√
σζ(t− 1/σ)|
σ3/2

e−
1
4 |y−

√
σζ(t−1/σ)|2 dy dσ

=
1

8π

∫ +∞

1/t

1

σ3/2

∫
R2

|y|e− 1
4 |y|

2

dy dσ

= C
√
t.

These observations together prove the continuity in (2.18) at t = 0. To prove
(2.18), it suffices to apply the same reasoning for any t > 0.

Let us now prove i-iii). Let η, ε > 0 be small but arbitrary. The set Uη.ε is an
open set in [0,∞)×T2. Let T denote the distribution δx=ζ(t) ∈ D ′([0,∞)×T2);
we have Uη,ε ∩ supp(T ) = ∅ so that T is C∞ over Uη,ε. Since the differential
operator ∂t −∆ + γ is hypoelliptic, the solution P is C∞ over Uη,ε too.

In order to justify (2.19), we need some more information about how P blows
up near x = ζ(t). We are going to show that for every t,M > 0 there exists
ε > 0 such that dT2(x, ζ(t)) ≤ ε implies P(t,x) > M . Let z0(s,x) ∈ Z2 be such
that dT2(x, ζ(s)) = |x− ζ(s) + z0(s,x)|. The second part of (2.15) is evaluated
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as follows ∑
z∈Z2

∫ t

0

1

4π(t− s)
e−
|x+z−ζ(s)|2

4(t−s) ds

=
∑
z∈Z2

∫ t

0

1

4π(t− s)
e−
|x−ζ(s)+z0(s,x)+(z−z0(s,x))|2

4(t−s) ds

>

∫ t

0

1

4π(t− s)
e−
|x−ζ(s)+z0(s,x)|2

4(t−s) ds

since all terms of the sum are positive

>

∫ t

0

1

4π(t− s)
e−

dT2 (x,ζ(s))2

4(t−s) ds

>
1

4π

∫ +∞

1/t

1

σ
e−

σ
4 dT2 (x,ζ(t−

1
σ ))

2

dσ

with the change of variable σ = 1
t−s .

(2.22)

Let
V = max{|ζ ′(s)|, 0 ≤ s ≤ t} > 0

denote the maximum velocity of ζ on [0, t], and let ε ≤ tV . Then, 1/t ≤ V/ε
and so

(2.22) >
1

4π

∫ +∞

V/ε

1

σ
e−

σ
4 dT2 (x,ζ(t−

1
σ ))

2

dσ.

Also, if dT2(x, ζ(t)) ≤ ε, we find for σ ≥ V/ε

dT2(x, ζ(t− 1/σ)) ≤ dT2(x, ζ(t)) + dT2(ζ(s), ζ(t− 1/σ)) ≤ ε+ V/σ

≤ 2ε.

Therefore, when dT2(x, ζ(t)) ≤ ε, we get

(2.22) >
1

4π

∫ +∞

V/ε

1

σ
e−σε

2

dσ =
1

4π

∫ +∞

V ε

e−ρ

ρ
dρ,

with the change of variable ρ = ε2σ, and this quantity bounds (2.15) from below.
Since ρ 7→ e−ρ

ρ is not integrable on [0, 1], we have

lim
ε→0

∫ +∞

V ε

e−ρ

ρ
dρ =∞.

More exactly, observe that, for ε < 1,∫ +∞

V ε

e−ρ

ρ
dρ >

∫ V

V ε

e−ρ

ρ
dρ ≥ e−V | log ε|,

and so it suffices to take ε ≤ e−4πMeV to ensure that this integral is larger than
M > 0 (and this choice may not be optimal). To summarise, we have proved
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that for any t,M > 0, if dT2(x, ζ(t)) ≤ ε, with ε ≤ min(tV, e−4πMeV , 1), then
P(t,x) > M . In particular, we note that ε depends on t and ε→ 0 when t→ 0.

Accordingly, for any τ > 0, there exists ε > 0 such that for any t > τ > 0,
P(t,x) > c∗, ∀x ∈ Bζ(t),ε. To be specific, rewording what precedes,

in ii), we can take ε =
1

2
min(τV, e−4πc

∗eV , 1). (2.23)

Conversely, if x lies in {x ∈ T2 : P(t,x) ≤ c∗}, then dT2(x, ζ(t)) > ε, and
(t,x) ∈ Uτ,ε. We deduce that x 7→ P(t,x) as well as its derivatives are smooth
and uniformly continuous on {x ∈ T2 : P(t,x) ≤ c∗}, which is therefore a
compact set, and so the truncation Pe verifies (2.19).

We go back to (2.15) and evaluate the gradient on short time and far from
the singularity. The term coming from the initial data reads∑

z∈Z2

∫
T2

1

4πt
e−γt−

|x+z−y|2
4t ∇P0(y) dy

and it is dominated by ‖∇P0‖L∞(T2). For the contribution of the singular source
term, we rewrite the sum by introducing z0(s,x) ∈ Z2 such that

δ ≤ dT2(x, ζ(s)) = |x + z0(s,x)− ζ(s)| ≤ 1;

we thus consider∑
z∈Z2

∫ t

0

x− ζ(s) + z0(s,x) + z

8π(t− s)2
e−
|x−ζ(s)+z0(s,x)+z|2

4(t−s) ds

We split the sum depending whether |z| ≤ 1 or |z| > 1. The former is dominated
by ∫ t

0

1

4π(t− s)2
e−

δ
4(t−s) ds =

∫ ∞
1/t

1

4π
e−δσ/4 dσ =

e−δ/(4t)

πδ

since δ ≤ |x − ζ(s) + z0(s,x) + z| ≤ 2. The latter is evaluated by using |x −
ζ(s) + z0(s,x) + z| ≥ |z|− |x− ζ(s) + z0(s,x)| ≥ |z|− 1; it can be dominated by

∑
|z|>1

∫ t

0

1 + |z|
8π(t− s)2

e−
|z|−1
4(t−s) ds =

∑
|z|>1

∫ ∞
1/t

1 + |z|
8π

e−σ(|z|−1)/4 dσ

=
∑
|z|>1

1 + |z|
2π

e−σ(|z|−1)/(4t).

Therefore, we can dominate ∇P uniformly over Tt∗,δ by a constant L which
depends on t∗, δ and ‖∇P0‖L∞(T2). (Note that this claim might becomes useless
as time becomes large since the trajectory can fill the entire domain T2 so that
Tt∗,δ becomes the empty set.) This finishes the proof of Proposition 2.5.
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3 Well-posedness for the full sector sensing model

3.1 Continuity property of the desired velocity
The proof of Theorem 2.2 is based on a fixed-point argument, which relies on
a Lipschitz continuity property of the desired velocity F . For the full sector
sensing model (2.8), it states as follows.

Lemma 3.1. Let

V = {v ∈ R2 : |v| ≥ C1 > 0, for some constant C1}.

Let E be the set of of functions x 7→ Q(x) ∈ L1(T2) such that there exists a
constant L > 0 verifying

‖∇Qe‖L1(T2) < Me, (3.1)

where Qe is the truncation defined in (2.4). Then, the desired velocity function
F (x,v,Q) in (2.8) satisfies a Lipschitz property on the set T2 × V × E. More
exactly, there exists a constant CF > 0 (depending on C1,Me, `, β, c∗, c

∗) such
that for every xi,vi,Qi ∈ T2 × V× E, i ∈ {1, 2}, it holds∣∣F (x1,v1,Q1)−F (x2,v2,Q2)

∣∣
≤ CF

(
dT2(x1,x2) + |v1 − v2|+ ‖Q1e − Q2e‖L1(T2)

)
.

(3.2)

Proof. Let (xi,vi) ∈ T2 × V, and Qi ∈ E, with i = 1, 2. The difference to be
evaluated splits into three pieces∣∣F (x1,v1,Q1)− F (x2,v2,Q2)

∣∣ ≤ ∣∣F (x1,v1,Q1)− F (x2,v1,Q1)
∣∣

+
∣∣F (x2,v1,Q1)− F (x2,v2,Q1)

∣∣+
∣∣F (x2,v2,Q1)− F (x2,v2,Q2)

∣∣. (3.3)

Now, omitting the subscripts in v1 and Q1, we obtain∣∣F (x1,v,Q)− F (x2,v,Q)
∣∣

≤
∫
B(v)

∣∣∣y Qe(x1 + y)∫
B(v)

Qe(x1 + y′) dy′
− y

Qe(x2 + y)∫
B(v)

Qe(x2 + y′) dy′

∣∣∣ dy
≤ `

∫
B(v)

∣∣∣ Qe(x1 + y)∫
B(v)

Qe(x1 + y′) dy′
− Qe(x2 + y)∫

B(v)
Qe(x2 + y′) dy′

∣∣∣ dy
≤ `

∫
B

∣∣∣Qe(x1 + y)
∫
B
Qe(x2 + y′) dy′ − Qe(x2 + y)

∫
B
Qe(x1 + y′) dy′

∣∣∣∫
B
Qe(x1 + y′) dy′

∫
B
Qe(x2 + y′) dy′

dy.
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As Qe ≥ c∗, the last term is bounded by

`

|B|2c2∗

∫
B

∣∣∣Qe(x1 + y)

∫
B

Qe(x2 + y′) dy′ − Qe(x2 + y)

∫
B

Qe(x1 + y′) dy′
∣∣∣ dy

≤ `

|B|2c2∗

∫
B

∣∣∣Qe(x1 + y′)− Qe(x2 + y′)
∣∣∣ dy′ ∫

B

Qe(x1 + y) dy

+
`

|B|2c2∗

∫
B

∣∣∣Qe(x1 + y)− Qe(x2 + y)
∣∣∣ dy ∫

B

Qe(x2 + y′) dy′

≤ 2`

|B|2c2∗
|B|c∗

∫
B

∣∣∣Qe(x1 + y)− Qe(x2 + y)
∣∣∣ dy

≤ 2`c∗

|B|c2∗
dT2(x1,x2)

∫
B

∫ 1

0

|∇Qe(s(x1 + y) + (1− s)(x2 + y))| ds dy

≤ 2c∗

β`c2∗
dT2(x1,x2)

∫
T2

|∇Qe(y)| dy,

where we have made the L1 norm of the gradient of Qe appear. Owing to (3.1),
this is bounded by

2Mec
∗

β`c2∗
dT2(x1,x2).

Therefore, we end up with∣∣F (x1,v,Q)− F (x2,v,Q)
∣∣ ≤ 2Mec

∗

β`c2∗
dT2(x1,x2). (3.4)

Returning to (3.3), we find (omitting the subscripts in x,Q)∣∣F (x,v1,Q)− F (x,v2,Q)
∣∣

≤
∣∣∣ ∫
B(v1)

y
Qe(x + y)∫

B(v1)
Qe(x + y′) dy′

dy −
∫
B(v2)

y
Qe(x + y)∫

B(v2)
Qe(x + y′) dy′

dy
∣∣∣

=

∣∣∣ ∫B(v1)
yQe(x + y) dy

∫
B(v2)

Qe(x + y′) dy′ −
∫
B(v2)

yQe(x + y) dy
∫
B(v1)

Qe(x + y′) dy′
∣∣∣∫

B(v1)
Qe(x + y′) dy′

∫
B(v2)

Qe(x + y′) dy′

≤ 1

|B|2c2∗

∣∣∣∣∣
∫
B(v1)

yQe(x + y) dy

∫
B(v2)

Qe(x + y′) dy′

−
∫
B(v2)

yQe(x + y) dy

∫
B(v1)

Qe(x + y′) dy′

∣∣∣∣∣.
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Observe that, formally,∣∣∣∣∣
∫
B1

A1

∫
B2

A2−
∫
B2

A1

∫
B1

A2

∣∣∣∣∣
≤

∣∣∣∣∣
∫
B1

A1 −
∫
B2

A1

∣∣∣∣∣
∫
B2

|A2|+
∫
B2

|A1|

∣∣∣∣∣
∫
B2

A2 −
∫
B1

A2

∣∣∣∣∣
≤
∫
B14B2

|A1|
∫
B2

|A2|+
∫
B2

|A1|
∫
B14B2

|A2|,

where A4B denotes the symmetric difference (A∪B) \ (A∩B). Applying this
calculation to the previous estimate gives (omitting the constant 1

|B|2c2∗
),∫

B(v1)4B(v2)

|y|Qe(x + y) dy

∫
B(v2)

Qe(x + y′) dy′

+

∫
B(v2)

|y|Qe(x + y) dy

∫
B(v1)4B(v2)

Qe(x + y′) dy′.

(3.5)
Setting 2θ = ∠(v1,v2), we find from (2.7)

|B(v1)4B(v2)| = `2θ. (3.6)

Now note that some elementary trigonometry gives the relation

cos θ = 1− 1

2

∣∣∣ v1

|v1|
− v2

|v2|

∣∣∣2
and so

θ = arccos
(

1− 1

2

∣∣∣ v1

|v1|
− v2

|v2|

∣∣∣2).
Now consider the function f(z) = arccos(1 − 1

2z
2) defined for z ∈ [0, 2]. It is

easy to show that f ′′(z) > 0, f(0) = 0, f(2) = π. Therefore, being convex, f(z)
is below the line y = π

2 z, which gives f(z) ≤ π
2 z. We conclude that

θ ≤ π

2

∣∣∣ v1

|v1|
− v2

|v2|

∣∣∣.
Next, we wish an estimate by |v1 − v2|. To this end, we use the fact that
|v1|, |v2| are bounded from below by C1: we have∣∣∣ v1

|v1|
− v2

|v2|

∣∣∣ =
∣∣∣v1 − v2

|v2|
+ v1

|v2| − |v1|
|v1| |v2|

∣∣∣
≤ |v1 − v2|

|v2|
+

∣∣|v1| − |v2|
∣∣

|v2|
.

Next, we remark that ∣∣|v1| − |v2|
∣∣ ≤ ∣∣v1 − v2

∣∣,
16



as can be seen by squaring both sides and using the Cauchy-Schwartz inequality.
Therefore, we get∣∣∣ v1

|v1|
− v2

|v2|

∣∣∣ ≤ |v1 − v2|
2

|v2|
≤ 2

C1
|v1 − v2|. (3.7)

Returning to (3.6) we deduce that

|B(v1)4B(v2)| = `2
π

C1
|v1 − v2|.

Coming back to (3.5), we conclude that∣∣F (x,v1,Q)− F (x,v2,Q)
∣∣ ≤ C|v1 − v2|,

for C = 1
|B|2c2∗

2|B(v1)4B(v2)||B|`(c∗)2 = 1
|B|c2∗

2`2`(c∗)2 π
C1

=
(
c∗

c∗

)2 2`π
βC1

.
It remains to bound the term∣∣F (x2,v2,Q1)− F (x2,v2,Q2)

∣∣.
With computations similar to the ones before, we find (omitting the subscripts
in x2,v2)∣∣F (x,v,Q1)− F (x,v,Q2)

∣∣
≤ 1

|B|2c2∗

∣∣∣ ∫
B(v)

yQ1e(x + y) dy

∫
B(v)

Q2e(x + y′) dy′

−
∫
B(v)

yQ2e(x + y) dy

∫
B(v)

Q1e(x + y′) dy′
∣∣∣

≤ 1

|B|2c2∗

(∫
B(v)

|y|
∣∣Q1e(x + y)− Q2e(x + y)

∣∣ dy ∫
B(v)

Q2e(x + y′) dy′

+

∫
B(v)

|y|Q2e(x + y) dy

∫
B(v)

∣∣Q1e(x + y′)− Q2e(x + y′)
∣∣ dy′)

≤ 2`c∗

|B|c2∗

∫
B(v)

∣∣Q1e(x + y)− Q2e(x + y)
∣∣ dy

≤ 2c∗

`βc2∗
‖Q1e − Q2e‖L1(T2).

This concludes the proof of Lemma 3.1.

3.2 Proof of Theorem 2.2
We will use a fixed point argument. In the proof, we will use the notation X as
a shorthand for (x1, . . . ,xN ). We introduce the set

V =
{
V ∈

(
L1(0, t;R2)

)N
: 0 < C0

1 ≤ |vi(t)| ≤ C0
2 , ∀i ∈ {1, . . . , N}

}
,

with C0
1 = min(|vi(0)|, C1), C0

2 = max(|vi(0)|, C2), for the constants C1, C2

given in Lemma 2.1. We define the mapping Ψ : V → V in the following steps.
Take V ∈ V ;
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1. Define xi(t) = xi(0) +
∫ t
0
vi(s) ds ∈ C([0, t];T2), i ∈ {1, . . . , N};

2. From X(t), let P(t,x) =
∑N
i=1 Pi(t,x), where Pi is the solution of the

diffusion equation (2.2) with initial data P0. Therefore, Pi is given by

Pi(t,x) =
∑
z∈Z2

∫
T2

1

4πt
e−γt−

|x+z−y|2
4t P0(y) dy

+
∑
z∈Z2

∫ t

0

1

4π(t− s)
e−γ(t−s)−

|x+z−xi(s)|
2

4(t−s) ds;

3. From P(t,x) obtain the truncated signal Pe(t,x) according to (2.4);

4. Build the desired velocity function F (y,w,P) with y ∈ T2, w ∈ R2 with

F (y,w,P) =

∫
B(w)

y′
Pe(t,y + y′)∫

B(w)
Pe(t,y + y′′) dy′′

dy′;

5. Finally, take Ψ(V) = (w1, . . . ,wN ), with t 7→ (yi,wi)(t) as the solution
(in the integral sense) of the differential system

y′i = wi, w′i = − 1
τ

(
wi − F (yi,wi,P)

)
,

yi(0) = xi(0), wi(0) = vi(0),
(3.8)

with P and Pe given in the previous steps.

The first task is to verify that the mapping Ψ is well defined. For this we
must ensure that the system of 2N ODEs in step 5 is well-posed. Recall that
here, Pe is a fixed function, so this is a standard ODE system. To apply the
classical Cauchy–Lipschitz Theorem, we should check that the right-hand side
(so, the function F ) is a continuous function of t, where the time dependency
comes through Pe, and a Lipschitz function of yi and wi. This is ensured by
the Lipschitz property of Lemma 3.1 and the time continuity property (2.17)
in Proposition 2.5. Note that using the Lipschitz property of Lemma 3.1 here
requires that Pe has integrable gradient for s ∈ [0, t], but this is proved to be
the case in Proposition 2.5. Therefore, the system in step 5 above is well posed.

Next, we must show that the mapping Ψ takes V into V . Let V ∈ V ,
and W = Ψ(V). Since X is a solution of an ODE similar to (2.1), then by
Lemma 2.1, W is bounded by the same constants as V, which only depend on
the data of the problem.

It remains to see that Ψ is a contraction, at least for some short time t > 0.
Let V1,2 ∈ V . By steps 2, 3, and 4, we obtain signal distributions P1,2 and P1,2

e

and desired velocities which we write as

F 1,2 = F (y,w,P1,2).

Set W1,2 = Ψ(V1,2). Let us denote for j ∈ {1, . . . , N}

ζj(s) =

∫ s

0

|w1
j (r)−w2

j (r)| dr,
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so that
dT2(y1

j (s),y
2
j (s)) ≤ ζj(s).

By using (3.8), the Lipschitz property (3.2), and (2.17), we have, for s ∈ (0, t),

ζj(s) =

∫ s

0

∣∣∣ ∫ r

0

.
w1
j (σ)− .

w2
j (σ) dσ

∣∣∣ dr
≤ 1

τ

∫ s

0

∫ r

0

|w1
j (σ)−w2

j (σ)| dσ dr +
1

τ

∫ s

0

∫ r

0

|F 1(σ)− F 2(σ)| dσ dr

≤ 1

τ

∫ s

0

∫ r

0

|w1
j (σ)−w2

j (σ)| dσ dr +
CF
τ
t2‖P1

e − P2
e‖L∞((0,t);L1(T2))

+
CF
τ

∫ s

0

∫ r

0

(
dT2(y1

j (σ),y2
j (σ)) + |w1

j (σ)−w2
j (σ)|

)
dσ dr

≤ 1 + 2CF
τ

t

∫ s

0

ζj(r) dr +
CF
τ
t2‖P1

e − P2
e‖L∞((0,t);L1(T2)).

Note that while the equation (3.8) holds in the integral sense, the above compu-
tation remains valid with the obvious modifications. Using Grönwall’s Lemma,
we obtain that, in fact,

ζj(s) =

∫ s

0

|w1
j (r)−w2

j (r)| dr ≤
CF
τ
t2et

2(1+2CF )/τ‖P1
e − P2

e‖L∞((0,t);L1(T2)).

(3.9)
We proceed with an estimate of ‖P1

e−P2
e‖L∞((0,t);L1(T2)). Using Fubini’s theorem

and (2.20), we find∫
T2

∣∣P1(x)− P2(x)
∣∣ dx

≤
∑
z∈Z2

N∑
j=1

∫
T2

∫ t

0

1

4π(t− s)
e−γ(t−s)

∣∣∣e− |x+z−x1
j (s)|

2

4(t−s) − e−
|x+z−x2

j (s)|
2

4(t−s)

∣∣∣ ds dx
≤

N∑
j=1

∫ t

0

∫
R2

1

4π(t− s)

∣∣∣e− |x+z0(s)−x1
j (s)|

2

4(t−s) − e−
|x−x2

j (s)|
2

4(t−s)

∣∣∣ dx ds,
where z0(s) ∈ Z2, |z0(s)|∞ ≤ 1 is chosen such that

|x1
j (s)− x2

j (s) + z0(s)| = dT2(x1
j (s),x

2
j (s)).

Now with the change of variable y = x√
4(t−s)

(but still writing the integral with

x), we get for this last expression

N∑
j=1

∫ t

0

∫
R2

1

π

∣∣∣e−∣∣x− x1
j (s)+z0(s)
√

4(t−s)

∣∣2
− e
−
∣∣x− x2

j (s)√
4(t−s)

∣∣2 ∣∣∣ dx ds.
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Now, we have for θ ∈ [0, 1] and θ = θ
x1
j (s)+z0(s)√

4(t−s)
+ (1− θ) x2

j (s)√
4(t−s)

,

∫
R2

∣∣∣e−|x− x1
j (s)+z0(s)
√

4(t−s)
|2
− e
−|x−

x2
j (s)√

4(t−s)
|2∣∣∣ dx

=

∫
R2

∫ 1

0

2
∣∣x− θ∣∣e−|x−θ|2 |x1

j (s)− x2
j (s) + z0(s)|√

4(t− s)
dθ dx

=
dT2(x1

j (s),x
2
j (s))√

4(t− s)

∫ 1

0

∫
R2

2
∣∣x− θ∣∣e−|x−θ|2 dx dθ

=
dT2(x1

j (s),x
2
j (s))√

4(t− s)

∫ 1

0

∫
R2

2
∣∣x∣∣e−|x|2 dx dθ

= M
dT2(x1

j (s),x
2
j (s))√

4(t− s)
,

with M = 2
∫
|x|e−|x|2 dx. Therefore,∫

R2

∣∣P1(x)− P2(x)
∣∣ dx ≤ M

π

N∑
j=1

∫ t

0

dT2(x1
j (s),x

2
j (s))√

4(t− s)
ds

≤ M

π

N∑
j=1

√
t sup
s∈(0,t)

dT2(x1
j (s),x

2
j (s)).

(3.10)

Going back to (3.9), using (3.10) and the fact that the truncation is itself a
(non-strict) contraction, we see that∫ t

0

|w1
j (r)−w2

j (r)| dr ≤
MCF
τπ

t5/2et
2(1+2CF )

N∑
k=1

sup
(0,t)

dT2(x1
k(s),x2

k(s))

≤ MCF
τπ

t5/2et
2(1+2CF )

N∑
k=1

∫ t

0

|v1
k(s)− v2

k(s)| ds.

Finally, this gives

‖W1 −W2‖V ≡
N∑
k=1

∫ t

0

|w1
k(r)−w2

k(r)| dr

≤ NMCF
τπ

t5/2et
2(1+2CF )

N∑
k=1

∫ t

0

|v1
k(s)− v2

k(s)| ds

=
NMCF
τπ

t5/2et
2(1+2CF )‖V1 −V2‖V

which implies that Ψ is a contraction for t small enough. The fact that the
solutions W satisfy the estimate in Lemma 2.1, gives existence of solution for
all times.
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4 The pointwise sensing model: proof of Theo-
rem 2.3

In the proof, we use the notation X as a shorthand for (x1, . . . ,xN ). Although
we also use a fixed point argument, the strategy here is different than in the
case of the full sector sensing model. We will consider the uniform topology on
the space of C1 curves and prove directly the existence of solution to the ODE
system, bypassing the application of the Cauchy-Lipschitz Theorem inside the
fixed point proof. This is more convenient in this case, since the sensing by
Dirac deltas requires continuity properties of the signal function.

Fix initial positions X0 verifying the assumptions of the theorem, initial
velocities V0, and define the set

X =
{
X ∈

(
C1([0, t];T2)

)N such that:

0 <
C0

1

2
≤ |

.
X(s)| ≤ 2C0

2 for any s ∈ [0, t],

X(0) = X0,
.
X(0) = V0

}
,

(4.1)

with C0
1 = min(|v1(0)|, ..., |vN (0)|, C1), C0

2 = max(|v1(0)|, ..., |vN (0)|, C2), the
constants that appear in the velocity bounds (2.11), endowed with the standard
uniform topology

‖X‖X =

N∑
i=1

‖xi‖C1([0,t]) =

N∑
i=1

(
‖xi‖L∞(0,t;T2) + ‖ .xi‖L∞(0,t;R2)

)
, (4.2)

X is a closed and complete subset of C1([0, t]). We define the mapping Γ :
X →X in the following steps. Take X ∈X ;

1. From X, let P(t,x) =
∑N
i=1 Pi(t,x), where Pi is the solution of the dif-

fusion equation (2.2) with initial data 1
NP0. Therefore, the total signal

is
P(t,x) =

∑
z∈Z2

∫
T2

1

4πt
e−γt−

|x+z−y|2
4t P0(y) dy

+
N∑
i=1

∑
z∈Z2

∫ t

0

1

4π(t− s)
e−γ(t−s)−

|x+z−xi(s)|
2

4(t−s) ds;

2. From P(t,x) obtain the truncated signal Pe(t,x) according to (2.4); (When
it will be necessary we shall use the notation P[X](t,x), and Pe[X](t,x)
in order to keep track of the dependence on the trajectories X.)

3. Build the desired velocity function F (x,v,P) with x ∈ T2, v ∈ R2 with

F (x,v,P) =
yLPe(t,x + yL) + yRPe(t,x + yR)

Pe(t,x + yR) + Pe(t,x + yR)
,

according to (2.9),(2.10) (recall that yL,R depends on v);
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4. Define the new velocities by

Υ(vi(t)) = v0
i −

1

τ

∫ t

0

(
vi(s)− F (xi(s),vi(s),P)

)
ds; (4.3)

5. Finally, take Γ(X) as

Γ(xi(t)) = x0
i +

∫ t

0

Υ(vi(s)) ds. (4.4)

The first task is to verify that the mapping Γ takes X into X , at least for
t small enough. For this, notice first that

|Υ(vi(s))| ≤ |vi(0)|+ t(2C0
2 + `).

Indeed, the function F verifies |F | ≤ `, no matter what are the arguments of the
function P, as is easily checked from (2.9). By definition, initially |vi(0)| ≤ C0

2 .
Therefore, taking

t =
1

2

C0
2

2C0
2 + `

> 0

gives that the upper bound on the velocity in (4.1) is verified. For the lower
bound, we have similarly that

|Υ(vi(s))| ≥ |vi(0)| − t(2C0
2 + `),

with |vi(0)| ≥ C0
1 , so that taking

t =
1

2
min

i∈{1,...,N}

C0
1

2C0
2 + `

> 0

proves the lower bound on the on the velocity in (4.1). This proves that Γ maps
X into X , for sufficiently small t.

Now we must show that Γ is a contraction. Consider X1,X2 ∈ X , along
with the corresponding velocities V1,V2. Denote by P1,2(s,x) = P[X1,2](s,x)
the signal functions generated, respectively, by the families of curves X1 and
X2, according to step 1 above. That Γ is a contraction on X, on a small enough
time interval [0, t], is a consequence of the following Lipschitz-type estimate:∣∣F (x1

j (s),v
1
j (s),P

1)− F (x2
j (s),v

2
j (s),P

2)
∣∣ ≤ Λ

∥∥X1 −X2
∥∥

X
, (4.5)

which holds for s ∈ [0, t] and j ∈ {1, . . . , N}, with a uniform constant Λ > 0,
which only depends on the parameters of the problem. With (4.5), we can
show that Γ admits a unique fixed point in X , provided t is small enough.
It defines a solution of the nonlinear differential system (2.1), (2.2), with (2.9);
since Lemma 2.1 applies, this solution satisfies the strengthened estimate (2.11),
which allows us to eventually extend the solution to any time interval.

The proof of (4.5) turns out to be quite involved. The strategy is to distin-
guish:
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• what happens for very short times: the trajectories do not intersect and
the individuals do not feel each other. Hence the argument relies on the
regularity of P far from the deposition points, inherited from the initial
data.

• what happens for positive times, by using the regularizing estimates of
Proposition 2.5.

The following considerations are essential in the proof; they allow us to use the
properties of the initial state to derive the necessary estimates on the earliest
stages of the time evolution. Let us pick some 0 < δ � ` such that for any
j 6= k, dT2(x0

j ,x
0
k) > ` + 4δ. The trajectories in X have maximal speed C0

2 .
Therefore, for any X ∈X , 0 ≤ t ≤ t∗ and j ∈ {1, ..., N}

• the ball B(xj(t), δ) remains included in B(x0
j , δ + C0

2 t
∗);

• any point located at a distance ` from xj(t) is at least at a distance
`− C0

2 t ≥ `− C0
2 t
∗ far from x0

j .

Hence, we can find t∗ > 0 small enough so that

• inf
{
dT2(x1

j (t),x
2
k(s)), 0 ≤ t, s ≤ t∗, j, k ∈ {1, ..., N}, j 6= k, X1,X2 ∈

X
}
≥ `+ δ,

• inf
{
dT2(S(x1

j (t), `), B(x2
k(s), δ)), 0 ≤ t, s ≤ t∗, j, k ∈ {1, ..., N}, X1,X2 ∈

X
}
≥ δ,

where S(x, `) stands for the sphere of center x and radius ` > 0. The con-
sequence from this claim is that on the time interval [0, t∗], the sensing points
(antennae), which lie on the spheres S(x1

j (s), `), stay at a positive distance away
from all signal deposition points x2

k(r), r ≤ s, of curves in X . With notation
similar to that of Proposition 2.5, we introduce the compact set

Tt∗,δ =
{

(t,x) ∈ [0, t∗]×T2, dT2(x,x1
j (s)) ≥ δ, j ∈ {1, ..., N}, X1 ∈X , 0 ≤ s ≤ t

}
.

We turn to the Lipschitz estimate. We have∣∣F (x1
j (s),v

1
j (s),P

1)− F (x2
j (s),v

2
j (s),P

2)
∣∣

≤
∣∣F (x1

j (s),v
1
j (s),P

1)− F (x2
j (s),v

1
j (s),P

1)
∣∣

+
∣∣F (x2

j (s),v
1
j (s),P

1)− F (x2
j (s),v

2
j (s),P

1)
∣∣

+
∣∣F (x2

j (s),v
2
j (s),P

1)− F (x2
j (s),v

2
j (s),P

2)
∣∣

= A+B + C.

(4.6)

We are going to estimate the three terms one after the other, and for all three
we obtain the estimate by considering first what happens on a short enough
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time interval [0, t∗], and second dealing with positive times in (t∗, t). We begin
by estimating A:

A =

∣∣∣∣y1
jL(s)P1

e(s,x
1
j (s) + y1

jL(s)) + y1
jR(s)P1

e(s,x
1
j (s) + y1

jr(s))

P1
e(s,x

1
j (s) + y1

jL(s)) + P1
e(s,x

1
j (s) + y1

jR(s))

−
y1
jL(s)P1

e(s,x
2
j (s) + y1

jL(s)) + y1
jR(s)P1

e(s,x
2
j (s) + y1

jr(s))

P1
e(s,x

2
j (s) + y1

jL(s)) + P1
e(s,x

2
j (s) + y1

jR(s))

∣∣∣∣,
which after a somewhat lengthy computation using only c∗ ≤ Pe ≤ c∗ and
|yL,R| = `, gives

A ≤ c∗`

2c2∗

(∣∣P1
e(s,x

1
j (s) + y1

jL(s))− P1
e(s,x

2
j (s) + y1

jL(s))
∣∣

+
∣∣P1
e(s,x

1
j (s) + y1

jR(s))− P1
e(s,x

2
j (s) + y1

jR(s))
∣∣). (4.7)

According to Proposition 2.5, we can find L > 0 such that ‖∇P1‖L∞(Tt∗,δ) ≤
L, and thus ‖∇P1

e‖L∞(Tt∗,δ) ≤ L too. For any 0 ≤ s ≤ t∗, the domain Ts =

{
(⋃N

j=1B(x1
j (s), δ)

)
is path connected, and it contains both x1

j (s) +y1
jL(s) and

x2
j (s) +y1

jL(s). So there exists a curve ζ : [0, 1]→ Ts connecting x1
j (s) +y1

jL(s)

and x2
j (s) + y1

jL(s) such that
∫ 1

0
|ζ ′(r)| dr ≤ DdT2(x1

j (s),x
2
j (s)) for some 0 <

D ≤ πδ, and we find

∣∣P1
e(s,x

1
j (s) + y1

jL(s))− P1
e(s,x

2
j (s) + y1

jL(s))
∣∣ =

∣∣∣ ∫ 1

0

d

dr
P1
e(s, ζ(r)) dr

∣∣∣
≤
∫ 1

0

|∇P1
e(s, ζ(r))| |ζ ′(r)| dr

≤ DLdT2(x1
j (s),x

2
j (s)).

We proceed similarly for x1
j (s) + y1

jR(s) and x2
j (s) + y1

jR(s), and coming back
to (4.7), we conclude that

A ≤ DLc∗`

2c2∗
dT2(x1

j (s),x
2
j (s))

holds at least for s ∈ [0, t∗].
For s ∈ (t∗, t], property (2.19) holds, and the previous precautions are not

necessary: we have simply∣∣P1
e(s,x

1
j (s) + y1

jL(s))− P1
e(s,x

2
j (s) + y1

jL(s))
∣∣ ≤ L(t∗)dT2(x1

j (s),x
2
j (s)),

with L(t∗) from (2.19). In any case, for all 0 ≤ s ≤ t, we have

A ≤ max

(
DLc∗`

2c2∗
, L(t∗)

)
dT2(x1

j (s),x
2
j (s)) ≤ Λ

∥∥X1 −X2
∥∥

X
, (4.8)
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where the constant Λ depends on `, δ, t∗, c∗, c∗.

Now consider the term B in (4.6). To keep the presentation less cluttered,
we now omit some sub- and superscripts that do not change. So, writing x =
x2
j (s),v

1,2 = v1,2
j (s), y1,2

L,R = y1,2
jL,R(s) and Pe(·) = P1

e(s, ·), we find

B =
∣∣F (x,v1,P)− F (x,v2,P)

∣∣
=

∣∣∣∣∣y1
LPe(x + y1

L) + y1
RPe(x + y1

R)

Pe(x + y1
L) + Pe(x + y1

R)
− y2

LPe(x + y2
L) + y2

RPe(x + y2
R)

Pe(x + y2
L) + Pe(x + y2

R)

∣∣∣∣∣
≤

∣∣∣∣∣ y1
LPe(x + y1

L)

Pe(x + y1
L) + Pe(x + y1

R)
− y2

LPe(x + y2
L)

Pe(x + y2
L) + Pe(x + y2

R)

∣∣∣∣∣
+

∣∣∣∣∣ y1
RPe(x + y1

R)

Pe(x + y1
L) + Pe(x + y1

R)
− y2

RPe(x + y2
R)

Pe(x + y2
L) + Pe(x + y2

R)

∣∣∣∣∣
= B1 +B2.

Then, we get

B1 ≤ dT2(y1
L,y

2
L)

Pe(x + y1
R)

Pe(x + y1
L) + Pe(x + y1

R)

+ y2
L

∣∣∣ Pe(x + y1
L)

Pe(x + y1
L) + Pe(x + y1

R)
− Pe(x + y2

L)

Pe(x + y2
L) + Pe(x + y2

R)

∣∣∣
≤ c∗

2c∗
dT2(y1

L,y
2
L) +

1

2c2∗

∣∣∣(Pe(x + y1
L)− Pe(x + y2

L))Pe(x + y2
R)

+ Pe(x + y2
L)(Pe(x + y2

R)− Pe(x + y1
R))
∣∣∣

≤ c∗

2c∗
dT2(y1

L,y
2
L)

+
c∗

2c2∗

(∣∣Pe(x + y1
L)− Pe(x + y2

L)
∣∣+
∣∣Pe(x + y2

R)− Pe(x + y1
R)
∣∣).

The points x2
j (s)+y1

jL(s) and x2
j (s)+y2

jL(s) are both in S(x2
j (s), `). There-

fore, as we did above, for each pair of such points we can again find a curve
ζ : [0, 1]→ Ts (with a slight modification of the definition of Ts) connecting the
given points such that

∫ 1

0
|ζ ′(r)| dr ≤ DdT2(y1

L,y
2
L). In this way,

∣∣Pe(x + y1
L)− Pe(x + y2

L)
∣∣ =

∣∣∣ ∫ 1

0

d

dr
P1
e(s, ζ(r)) dr

∣∣∣
≤ DLdT2(y1

L(s),y2
L(s)),

using Proposition 2.5. This gives

B1 ≤
c∗

2c∗
dT2(y1

jL(s),y2
jL(s)) +

LDc∗

c2∗

(
dT2(y1

jL(s),y2
jL(s)) + dT2(y1

jR(s),y2
jR(s))

)
.
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The term B2 satisfies a similar estimate, by exchanging yL and yR. Now ob-
serve that, in fact, dT2(y1

jL(s),y2
jL(s)) = dT2(y1

jR(s),y2
jR(s)) =

∣∣ v1
j (s)

|v1
j (s)
− v2

j (s)

|v2
j (s)|

∣∣.
By using (3.7) – which relies on the fact that the speed of the elements of X is
bounded from below – this is dominated by 4

C0
1
|v1 − v2|. Therefore, we find

B ≤
( c∗

2c∗
+

8LDc∗

C0
1c

2
∗

)∣∣v1
j (s)− v2

j (s)
∣∣.

This is valid for s ∈ [0, t∗]. For s > t∗, property (2.19) holds and so, we finally
obtain, for 0 ≤ s ≤ t,

B ≤ Λ
∣∣v1
j (s)− v2

j (s)
∣∣ ≤ Λ

∥∥X1 −X2
∥∥

X
. (4.9)

Eventually, writing x = x2
j (s), yL,R = y2

jL,R(s) and P1,2
e (·) = P1,2

e (s, ·), we
consider from (4.6)

C =
∣∣F (x2

j (s),v
2
j (s),P

1)− F (x2
j (s),v

2
j (s),P

2)
∣∣

=

∣∣∣∣∣yLP1
e(x + yL) + yRP

1
e(x + yR)

P1
e(x + yL) + P1

e(x + yR)
− yLP

2
e(x + yL) + yRP

2
e(x + yR)

P2
e(x + yL) + P2

e(x + yR)

∣∣∣∣∣.
After some very similar manipulations as before, we can bound this term with
differences of the form

`c∗

2c2∗

∣∣P1
e(s,x

2
j (s) + y2

jL(s))− P2
e(s,x

2
j (s) + y2

jL(s))
∣∣, (4.10)

or with yR instead of yL.
To start with, notice that it is enough to estimate this difference in the

particular case where the families of curves (x1
1, . . . ,x

1
N ) and (x2

1, . . . ,x
2
N ) differ

only by one of their components, say, x1
1 6= x2

1 but x1
k = x2

k, k ∈ {2, . . . , N}.
Indeed, in the general case we have∣∣Pe[X1]− Pe[X

2]
∣∣ ≤ ∣∣Pe[(x1

1,x
1
2, . . . ,x

1
N )]− Pe[(x

2
1,x

1
2, . . . ,x

1
N )]
∣∣

+
∣∣Pe[(x2

1,x
1
2, . . . ,x

1
N )]− Pe[(x

2
1,x

2
2, . . . ,x

1
N )]
∣∣

+ · · ·+
∣∣Pe[(x2

1, . . . ,x
1
N )]− Pe[(x

2
1, . . . ,x

2
N )]
∣∣,

where in each difference, only one curve in each family is different. Tak-
ing this into account, we now denote P1(s,x) = P[X1](s,x) and P2(s,x) =
Pe[(x

2
1,x

1
2, . . . ,x

1
N )](s,x) and wj(s) = x2

j (s) + y2
jL(s).

We have (note that we are not considering the truncation now, but the
difference between the truncated functions is bounded by the difference of the
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non-truncated functions)∣∣P1(s,wj(s))− P2(s,wj(s))
∣∣

≤
∑
z∈Z2

N∑
k=1

∫ s

0

1

4π(s− r)

∣∣∣e− |wj(s)+z−x1
k(r)|2

4(s−r) − e−
|wj(s)+z−x2

k(r)|2

4(s−r)

∣∣∣ dr
≤
∑
z∈Z2

1

4π

∫ +∞

1/s

1

σ

∣∣∣e−σ4 |wj(s)+z−x1
1(s− 1

σ )|
2

− e−σ4 |wj(s)+z−x2
1(s− 1

σ )|
2
∣∣∣ dσ.

We are going to adapt some reasonings used when justifying Proposition 2.5.
Let z1 ∈ Z2, with |z1|∞ ≤ 1 (which thus depends on s and σ) be such that

min
{
|wj(s) + z− x1

1(s− 1/σ)|, |wj(s) + z− x2
1(s− 1/σ)|, z ∈ Z2

}
= min

{
|wj(s) + z1 − x1

1(s− 1/σ)|, |wj(s) + z1 − x2
1(s− 1/σ)|

}
.
(4.11)

Then, we can rewrite the previous estimate as follows

∣∣P1(s,wj(s))− P2(s,wj(s))
∣∣ ≤ ∑

z∈Z2

1

4π

∫ +∞

1/s

1

σ

∣∣∣e−σ4 A(z)2 − e−σ4 B(z)2
∣∣∣ dσ,

where we have set

A(z) = |wj(s) + z1 − x1
1(s− 1/σ) + z|,

B(z) = |wj(s) + z1 − x2
1(s− 1/σ) + z|.

Notice that for σ, a, b ≥ 0, using the mean value theorem,

|e−σ4 a
2

− e−σ4 b
2

| = σ

2
ce−

σ
4 c

2

|b− a| ≤ σ

2
max(a, b)e−

σ
4 min(a,b)2 |b− a|.

We find∣∣P1(s,wj(s))− P2(s,wj(s))
∣∣

≤
∑
z∈Z2

1

8π

∫ +∞

1/s

max(A(z),B(z))e−
σ
4 min(A(z),B(z))2

∣∣x1
1(s− 1/σ)− x2

1(s− 1/σ)
∣∣ dσ

≤
∥∥X1 −X2

∥∥
X

∑
z∈Z2

1

8π

∫ +∞

1/s

max(A(z),B(z))e−
σ
4 min(A(z),B(z))2 dσ.

(4.12)
We observe that max(A(z),B(z)) ≤ 2 + ` + |z|. We treat separately the sums
over |z| ≤ 1 and |z| > 1. For the former, we use that dT2(wj(s),x

k
1(s−1/σ)) ≥ δ

holds for any 0 ≤ s ≤ t∗ and σ ≥ 1/s, so that min(A(z),B(z)) ≥ δ, and for the
latter we remark that A(z) and B(z) are bounded from below by |z| − 1, when
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|z| > 1. It follows that, for some K > 0∣∣P1(s,wj(s))− P2(s,wj(s))
∣∣

≤
∥∥X1 −X2

∥∥
X
K

∫ +∞

1/s

e−δ
2 σ

4 dσ +
∑
|z|>1

∫ +∞

1/s

(1 + |z|)e−(|z|−1)σ4 dσ


≤
∥∥X1 −X2

∥∥
X

4K

 1

δ2
e−δ

2/(4t∗) +
∑
|z>1

(1 + z|)e−(|z|−1)/(4t
∗)

 .

holds when 0 ≤ s ≤ t∗.
We now discuss the case where s ∈ (t∗, t]. It relies on the properties stated

in Proposition 2.5. The idea is that, once some time has passed from s = 0,
Proposition 2.5 ensures that there is a small ball around the deposition point
where Pe ≡ c∗, and so, even if now the sensing points overlap with another
agent’s position, the truncation eliminates the undefined behavior of a Dirac
delta evaluating a singular function. Consider then any x ∈ T2. We are going
to estimate

∣∣P1
e(s,x) − P2

e(s,x)
∣∣, still assuming that X1 and X2 only differ by

one of their components: x1
1 6= x2

1 but x1
k = x2

k, k ∈ {2, . . . , N}.
We know that:

for each s > 0 there exists ε ∈ (0, 1) such that P1,2
e (s,x) ≡ c∗ if x ∈

N⋃
k=1

B(x1
k(s), ε).

We consider three cases.
Case 1: dT2(x,x1

1(s)) < ε and dT2(x,x2
1(s)) < ε. In this case, there is nothing

to prove, as Proposition 2.5 ensures that |P1
e(s,x)− P2

e(s,x)| = |c∗ − c∗| = 0.
Case 2: dT2(x,x1

1(s)) > ε and dT2(x,x2
1(s)) > ε. First, note that in case we

also have dT2(x,x1
k(s)) < ε for some k ∈ {2, . . . , N}, then actually P1

e(s,x) =

c∗ = P2
e(s,x). Otherwise, as x is far away from the singular points x1,2

1 (s), we
may use the fact that |P1

e − P2
e| ≤ |P1 − P2|.

To be more precise, by continuity, we can find r∗ < s such that for r∗ ≤ r ≤ s
we have dT2(x1

1(r),x1
1(s)), dT2(x2

1(r),x2
1(s)) ≤ ε. We can now make the same

calculation that leads to (4.12) but with x in place of w2
j (s) to get, with obvious

notation,∣∣P1(s,x)− P2(s,x)
∣∣

≤ K
∥∥X1 −X2

∥∥
X

∑
z∈Z2

∫ +∞

1/s

max(A(z),B(z))e−
σ
4 min(A(z),B(z))2 dσ

where
A(z) = |x + z1 − x1

1(s− 1/σ) + z|,
B(z) = |x + z1 − x2

1(s− 1/σ) + z|.
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So, if σ∗ is such that s− 1/σ∗ = r∗ (which amounts to σ∗ = (s− r∗)−1),∑
z∈Z2

∫ +∞

1/s

max(A(z),B(z))e−
σ
4 min(A(z),B(z))2 dσ

=
∑
z∈Z2

(∫ σ∗

1/s

+

∫ +∞

σ∗

)
max(A(z),B(z))e−

σ
4 min(A(z),B(z))2 dσ

= I + J.

(4.13)

Let us first take care of the term I. We have(
|z|∞ − 1

)+ ≤ A(z),B(z) ≤ 1 + |z|, (4.14)

where (a)+ = max(0, a). It follows that

I ≤
∑
z∈Z2

∫ σ∗

1/s

(
1 + |z|

)
e−

σ
4 (|z|∞−1)2 dσ

≤
∑
|z|∞≤1

∫ σ∗

1/s

(1 + |z|) dσ +
∑
|z|∞>1

∫ σ∗

1/s

(
1 + |z|

)
e−

σ
4 (|z|∞−1)2 dσ

≤ 9(1 +
√

2)(σ∗ − 1/s) +
∑
|z|∞>1

1 + |z|
(|z|∞ − 1)2

[
e−

σ
4 (|z|∞−1)2

]σ∗
1/s

≤ 9(1 +
√

2)σ∗ +
∑
|z|∞>1

(1 + |z|)e−σ
∗
4 (|z|∞−1)2 .

Let us now detail how this estimate depends on s through the parameter σ∗.
Since all the velocities are bounded by the constant 2C0

2 , we have necessarily
s − r∗ = 1/σ∗ ≥ ε/(2C0

2 ): the trajectories entered the ball B(x1,2
1 (s), ε) earlier

than at time s − ε/(2C0
2 ). For a similar reason, we have also s − r∗ = 1/σ∗ ≤

2ε/C0
1 . Therefore, we get

I ≤ 9(1 +
√

2)
2C0

2

ε
+

∑
|z|∞>1

(1 + |z|)e−
C0
1

8ε (|z|∞−1)2 ,

where still ε depends on s. However, we are focusing on the situation where
s ≥ t∗ > 0 so that, going back to (2.23), we can find two constants K1,K2 > 0
such that K1/t

∗ ≤ ε−1 ≤ K2/t
∗ holds for any s ≥ t∗. We are thus led to the

uniform estimate I ≤ Λ, with a constant Λ > 0 depending only on the data of
the problem through t∗ (which, we recall, is a small but fixed time depending
on the separation of the initial positions).

Now we turn to J in (4.13). For σ ∈ (σ∗,+∞) we have

dT2(x1
1(s− 1/σ),x1

1(s)), dT2(x2
1(s− 1/σ),x2

1(s)) ≤ ε,

and so, since we are in Case 2, x does not lie on the trajectories x1
1(s− 1/σ) or

x2
1(s − 1/σ). We can still use (4.14) and the estimate on σ∗ discussed before,
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and we arrive at the uniform estimate J ≤ Λ. Gathering the estimates on I and
J , we conclude that∣∣P1(s,x)− P2(s,x)

∣∣ ≤ Λ
∥∥X1 −X2

∥∥
X
, (4.15)

as desired.
Case 3: dT2(x,x1

1(s)) < ε (say) but dT2(x,x2
1(s)) > ε. Note that in Propo-

sition 2.5-ii), any ε′ < ε will also fulfil the conclusion. Therefore, (eventually
having to take a smaller ε), we can suppose that in addition to (4), it also holds
that P1,2

e (s,x) ≡ c∗ if x ∈ ∪Nk=1B(x1
k(s), 2ε), and this changes nothing in the

proofs of Cases 1 and 2. Now, Case 3 follows by the following reasoning. If
dT2(x1

1(s),x2
1(s)) ≤ ε, then necessarily dT2(x,x2

1(s)) ≤ 2ε, and so P2
e(s,x) = c∗,

and |P1
e(s,x) − P2

e(s,x)| = 0. If dT2(x1
1(s),x2

1(s)) > ε, then
∥∥X1 −X2

∥∥
X

> ε
and then we can estimate brutally using (2.23)

|P1
e(s,x)− P2

e(s,x)| ≤ 2c∗

ε

∥∥X1 −X2
∥∥

X

≤ Λ
∥∥X1 −X2

∥∥
X
.

We can now go back to (4.10), which can be dominated by Λ
∥∥X1 −X2

∥∥
X
,

and so the term C in (4.6) satisfies the same bound for all s ∈ [0, t]. Together
with the estimates (4.8),(4.9), this gives (4.5).

Note that for extending the solution from [0, t] to an arbitrary time interval,
we make use of the estimates of Lemma 2.1 satisfied by the solution on [0, t],
and we repeat the same reasonings which have permitted to handle the interval
[t∗, t]. This concludes the proof of Theorem 2.3.
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