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Abstract

We analyze an ant navigation model based on Weber’s law, where the
ants move across a pheromone landscape sensing the area using two anten-
nae. The key parameter of the model is the angle 2β representing the span
of the ant’s sensing area. We show that when β < π/2 ants are able to
follow (straight) pheromone trails proving that for initial conditions close
to the trail, there exists a Lyapunov function that ensures ant trajectories
converge on and follow the pheromone trail, with these solutions being
locally asymptotically stable. Furthermore, we indicate that the features
of the ant trajectories such as convergence speed or oscillation wave length
are controlled by the angle β. For β > π/2, we present numerical evidence
that indicates that ants are unable to follow pheromone trails. We also
assess our model by comparing it to previous experimental results, show-
ing that the solutions’ behavior falls into biologically meaningful ranges.
Our work provides solid mathematical support for experimental studies
where it was found that ant perception follows a Weber’s law, by proving
that such models lead to the desired robust and stable trail following.

1 Introduction
The exact nature of how individual ants move on the trail and re-
spond to pheromone remains unknown. [24, p.1]

The study of how organized collective animal behavior arises from simple
individual rules has been a fertile field of study for many years, see reference
[31] for a detailed introduction to the topic. Ant societies, in particular, have
been a focus of such investigations, due to their abundance in the biosphere, the
relative ease with which they can be analyzed in the laboratory, and because
the highly complex, seemingly intelligent behaviors observed in ant colonies are
unsurpassed in the natural world.

One of the key aspects that allows the emergence of collective behavior in ant
societies is chemical communication by way of pheromones. While pheromones
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are used in virtually every aspect of ant life, they are crucial to ant foraging,
especially when it relies on pheromone trails. Ants use pheromone trails to
ultimately communicate between themselves information about food sources,
such as direction, distance, quality, abundance, and so on [20, 33, 34].

Therefore, numerous experimental works have been dedicated to studying
and modeling how ants respond to pheromone at the individual level. Here, we
name just a few from a vast literature [1, 3, 5, 6, 11, 13, 14, 19, 21, 22, 23, 25,
26, 29, 27, 32] and concentrate on the important contributions in [4, 17, 16, 24,
27, 30]. In [4], an individual-based model (IBM) is proposed, using directed
pheromones to mediate the interaction between ants. In [17], a kinetic-type
PDE model is developed. In [27], an IBM model is presented, where formation
of lanes is exhibited. Finally, in [16, 24], valuable experimental results are
reported, and corresponding individual-based models are studied. In particular,
the authors show experimentally that individual ants’ turning rate is governed
by Weber’s law: the turning rate is determined by the difference in pheromone
on both sides of the ant, divided by the sum of pheromone on each side. As
we shall see, an appropriate formulation of Weber’s law is a cornerstone of our
analysis.

However, until now, to the best of our knowledge (and despite advanced at-
tempts such as [16, 24, 27]), the rigorous mathematical study of such individual
models is very scarce: for instance, stability results ensuring that trail-following
behavior is robust with respect to small perturbations are still lacking. Thus
the main goals in this paper are:

1. To present an individual-based model of ant navigation derived from mod-
eling first principles using a generalization of Weber’s law;

2. To provide a rigorous mathematical analysis of the stability properties of
the model; and,

3. To provide analytical and numerical evidence indicating that a sensing
area half-angle β less that π/2 is a necessary and sufficient condition for
robust and stable trail following behavior.

To achieve these goals, we present an individual-based model (and variants
of it) that is closely related to the models proposed in [16, 24, 2]. The proposed
model presents a series of improvements to these pioneering works in term of
their mathematical formulation. We provide a concise modeling framework, re-
lying on very straightforward assumptions about ant movement and reaction
to pheromone, and arrive at a general version of Weber’s law. At the same
time, we show rigorous mathematical results showing that, under certain real-
istic conditions, and especially when the sensing half-angle β is less than π/2,
individuals indeed follow pheromone trails.

1.1 Main results
Our main contribution is to show that the proposed model provides an accurate
and robust description of ant navigation, leading to trail following behavior.
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This is achieved through rigorous stability results for the differential equations
governing the models.

One prominent feature of our model is the sensing area around the ant,
on which it can sense pheromone. It is a circular sector with radius ` and
sensing half-angle β (so that the circular sector spans an angle 2β), illustrated
in Figure 1. One question that arises naturally is to explain the observation
that ant antennae seem to be, in all cases, oriented towards the front of the ant
[24, 20]. Although this seems intuitively to be the best possible arrangement, it
is not entirely clear that another configuration, also spanning regions behind or
to the sides of the ant could not provide an advantage for pheromone detection.

It turns out that our model supports the empirical observation that the
sensing half-angle β should be less than π/2. Indeed, many of our mathematical
results related to trail-following hold under the assumption that β < π/2; this
means that the ant does not detect pheromone behind it.

To be more precise, the main mathematical results of this paper are the
stability results in Section 3. We prove that under the assumption that the
sensing half-angle β is less than π/2, trail following is stable. This means that
the solution of the individual-based model that perfectly follows the middle of
a pheromone trail is linearly stable, under reasonable conditions on the phero-
mone concentration defining the trail. Furthermore, we prove the existence of
a Lyapunov function, thus ensuring the asymptotic stability of the trajectories.

Even before establishing the above-mentioned stability results, another, more
basic property of our model is ensured only when β < π/2: that is a lower bound
on the velocity of the ant. Although in nature ants do stop occasionally, it has
been observed that when following a trail, the speed of each individual remains
fairly constant [24]. In fact, the formulation we choose does not allow zero veloc-
ity, since the sensing region is defined around the ant’s velocity vector using its
direction. It turns out that when β < π/2 the ant’s velocity will always tend to
approach a range of “natural” velocities which are bounded and bounded away
from zero. In contrast, when β > π/2 there is no such range of velocities.

1.2 Outline of the paper
In Section 2, we present our general model based onWeber’s law and the variants
we study. In Section 3, we state and prove our rigorous stability and well-
posedness results. Next, in Section 4 we discuss the role of the sensing area
angle parameter on the trail following ability of individuals. We continue with
an assessment of the model using a comparison with some experimental results
in Section 5, before stating some concluding remarks and outlook in the final
section.

2 Presentation of the model
We propose an individual based model of ant foraging based on the simple
assumption that ants are attracted to the presence of pheromone on a small
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Figure 1: Illustration of the sensing area B around an ant, defined by the half-
angle β and radius `.

sensing area determined by the direction the ant is facing, modeling the reach
of the antennae. The center of the sensing area is assumed to be the pivotal
point on the ant as it changes direction. A similar assumption is implicit in
the modeling strategies of [16, 24]. However, here we work from first principles
in a more concise way to derive the differential equations modeling the ant’s
behavior. The consequence is that we are able to not only obtain rigorous
mathematical results, but also to analyze the role of the parameters in the
dynamics, most importantly the angle of the sensing area.

2.1 Individual dynamics and a generalized Weber’s law
In general form, our model is of the type ẋ(t) = v(t),

v̇(t) = −1

τ

(
v − F (x,v)

)
,

(2.1)

where x(t) = (x1(t),x2(t)) is the position of the ant, v(t) = (v1(t),v2(t)) is the
velocity, and the desired velocity F (x,v) must be specified. The system (2.1)
describes Newton’s second law with dissipation (the term proportional to v),
where the change in velocity is given by a relaxation to the desired velocity F ,
with (small) relaxation time τ .

The main assumption of our model is that ants are attracted to pheromone
present in a small sensing area around them, illustrated in Figure 1. This
sensing area is a circular sector aligned with the direction the ant is facing, and
represents the area around the ant’s head where it is able to detect pheromone
by antennation. At each instant, the ant makes an average of the points on the
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circular sector, weighted by quantity of pheromone at each point. This average
point can be seen as a vector from the position of the ant to the direction in
which the average pheromone is greatest – which will not necessarily be the
direction of the gradient of pheromone concentration.

More precisely, let ` be the radius of the sensing area, ∠(v,v′) ∈ [−π, π]
the angle from the vector v to the vector v′, and let β be half the angle of the
sensing area B(v, `, β), which is a circular sector of radius ` centered at zero
and aligned with the direction of the velocity vector v (see Figure 1):

B(v, `, β) = {y ∈ R2 : ∠(v,y) ∈ (−β, β), ‖y‖ ≤ `}. (2.2)

Introduce now a given, non-negative pheromone concentration P(t,x). We
set the desired velocity F (x,v) as the vector

F (x,v) = λ

∫
B

y
P(t,x + y)∫

B
P(t,x + y) dy

dy, (2.3)

where B = B(v, `, β) is defined in (2.2) above, and λ is a constant with units
(time)−1. The normalization by∫

B

P(t,x + y) dy

corresponds to the total stimuli normalization in Weber’s law (2.4) – see the
discussion below. Note that the numerator in (2.3) is a vector, and we abuse
the notation by writing the two-dimensional Lebesgue measure as dy.

2.1.1 Relation to Weber’s law

In the study of Ecology, animal movement, and, more generally, in situations
where an organism must respond to stimuli from different sources or directions,
whose intensity may span orders of magnitude, the so-calledWeber’s law applies.
It states, roughly, that if L is stimulus detection on the left side, and R on the
right side, then

Individual response ' L−R
L+R

. (2.4)

In [24], Weber’s law as applied to ant movement was shown to hold experimen-
tally. The authors of that work argue convincingly about why such a result
apparently contradicts earlier experiments which appeared to show that a dif-
ferent, nonlinear (in L and R) response law holds for ant movement (see [28]
and the discussion in [24]). Also, the model in [17] can be seen as a version
of Weber’s law. Here, we support and extend the conclusions in [24] related
to the applicability of Weber’s law to ant movement. Indeed, our model (2.3)
may be seen as a generalized Weber’s law: both the L − R term in (2.4) and
the outermost integral in (2.3) represent an average of directional stimulus, in
which signals from opposing directions have a canceling effect. In turn, the
normalization L+R in (2.4) corresponds to the denominator in (2.3).
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2.2 Effective pheromone concentration
The model (2.1) with desired velocity (2.3) has the drawback of not being clearly
defined when the pheromone concentration tends to zero in a spatially non
homogeneous way. It is not easy to see how (2.3) should be interpreted when
pheromone levels are very low or zero. However, suppose that the pheromone
concentration is a constant in space in a region around the ant. Then, since the
sensing area B is symmetric with respect to the velocity vector v, the desired
velocity in (2.3) simplifies to

F (x,v) =
λ

|B|

∫
B

y dy = C
v

‖v‖
, (2.5)

where C = λ 2
3`

sin β
β depends only on the physical parameters of the problem, but

not on the pheromone concentration (see (2.15),(2.14) below for the calculation
of C). We propose that this “natural velocity” should also be valid when the
pheromone concentration is zero.

Now, it is well known [20] that there is a minimum pheromone concentration
threshold below which individuals either ignore or cannot detect pheromone. In
turn, in the absence of pheromone, ants typically perform a random search
[16, 24, 20]. Therefore it would be desirable if our model exhibits continuity of
behavior between a state where pheromone is absent – and the ant is governed
by the natural velocity (2.5) – and a state with just-noticeable pheromone.

To achieve this continuity property, we propose to replace the pheromone
concentration P(t,x) appearing in (2.3) with a suitable function Pe(t,x) which
we call the effective pheromone. This function should take into account the
fact that, in the limit as the pheromone concentration reaches below a certain
threshold, the ant’s behavior should approach the behavior determined by (2.5).

Thus, we introduce the minimum pheromone threshold c∗ > 0 as the mini-
mum amount of pheromone which an individual reacts to. Moreover, since there
is only a finite amount of chemical receptors in an ant’s antennae, it is natural
to assume that ants are not sensitive to pheromone concentrations above a cer-
tain maximum saturation concentration c∗. Therefore, we define the effective
pheromone as

Pe(t,x) = min
(
c∗,max(c∗,P(t,x))

)
. (2.6)

Then, the effective desired velocity reads

F (x,v) = λ

∫
B

y
Pe(t,x + y)∫

B
Pe(t,x + y) dy

dy, (2.7)

where Pe is given by (2.6) with P the (actual) physical concentration of phe-
romone. We will see in Section 3 below how using the effective pheromone
concentration Pe will be essential to obtain our stability results.

Remark 2.1. 1. Any function Pe(t,x) verifying for all t > 0,x ∈ R2

0 < c∗ ≤ Pe(t,x) ≤ c∗ (2.8)
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can be considered an effective pheromone concentration, without need
for an underlying physical pheromone concentration. Therefore, in the
remainder of this paper, when we refer to an effective pheromone, we will
mean a function satisfying (2.7).

2. Although it is is not used in the analysis, it seems relevant to assume that
the effective pheromone concentration Pe is a non decreasing function of
the actual concentration P.

3. Other choices for (2.8) are possible; namely, one could choose a sigmoid
function connecting c∗ when P is zero with c∗ when P goes to +∞. We
work with (2.8) for definiteness only, since the results of this paper can be
easily adapted to different choices of effective pheromone concentration.

2.3 Generalizing the model with a local sensing measure
In the expression for the desired velocity in (2.7), we assume that every point on
the sensing area B gives an equal contribution to the integral. While this may
serve as a first approximation, in practice ants sense pheromone with the tips
of their antennae, which touch the substrate only in a subregion of the sensing
area B [24]. Different species of ants move their antennae in different ways,
some maintaining a rigid configuration of the antennae with respect to the ant’s
body, while others move the antennae quickly around their sensing area [15].

In order to include these effects in our model, we introduce a nonnegative
sensing measure µ ∈ M(B) in the following natural way. Choose an arbitrary
unit vector v, and consider a positive measure µ supported in a circular sector
around v. Suppose that µ is symmetric with respect to v. Then, we define β
and ` from µ as the smallest values for which the set B(v, `, β) defined in (2.2)
contains the support of µ. Then, for any vector v, simply define the measure µ
on B by applying the same rotation that transforms v into v/‖v‖.

Then the desired velocity (2.7) reads

Fµ(x,v) = λ

∫
B

y
Pe(t,x + y)∫

B
Pe(t,x + y) dµ(y)

dµ(y). (2.9)

When the measure µ can be given by some integrable function µ : B → R we
write

Fµ(x,v) = λ

∫
B

y
µ(y)Pe(t,x + y)∫

B
µ(y)Pe(t,x + y) dy

dy. (2.10)

In the particular case where µ ≡ 1, then Fµ reduces to F given by (2.7). This
models a case where antennal movement is important, and so every point on the
sensing area detects pheromone with equal sensitivity. In contrast, if µ contains
Dirac delta measures, then the ant’s antennae only touch the substrate at some
isolated points.
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yL

yR

Figure 2: Sensing points for the two-point sensing model (2.11).

2.4 A model with two-point sensing
Let us consider in more detail the case where

µ = δy=yL
+ δy=yR

. (2.11)

Here, δ is the Dirac delta and yL (resp. yR) represent the points where the tip
of the left (right) antenna touches the substrate, at fixed angles ±β from the
ant’s direction, at a distance of `. Thus yL and yR are at the two opposite
“corners” of B from the position of the ant (see Figure 2):

yL = `

(
cos(Θ + β)

sin(Θ + β)

)
, yR = `

(
cos(Θ− β)

sin(Θ− β)

)
, (2.12)

where v = ‖v‖(cos Θ, sin Θ). This models the case, in contrast to µ ≡ 1, where
the antennae have little or no mobility relative to the ant’s head.

Assuming (2.11),(2.12), the desired velocity (2.9) has the expression:

F (x,v) =
yL Pe(t,x + yL) + yR Pe(t,x + yR)

Pe(t,x + yL) + Pe(t,x + yR)
. (2.13)

2.5 A linearized model
In this section, we deduce from (2.3) a new model in which the pheromone
concentration P(t,x + y) appearing in (2.3) is linearized around the spatial
point x. This linearized model has the advantage that the character of the
spatial anisotropy introduced by the directional bias in the ant’s perception
is clearly revealed, by the presence of a nematic tensor. However, it is only
suitable for cases where the radius of the sensing area is very small with respect

8



to some characteristic measure of the physical situation considered. Still, it may
be a useful formulation having in mind the derivation of meso- or macroscopic
models from the proposed individual-based model.

Making a Taylor development of P, in space, around (t,x), we find

P(t,x + y) ' P(t,x) + y · ∇P(t,x).

We linearize the numerator of (2.3) accordingly:∫
B

yP(t,x + y) dy '
∫
B

yP(t,x) dy +

∫
B

y ⊗ y∇P(t,x) dy

= P(t,x)

∫
B

y dy +

∫
B

y ⊗ y dy∇P(t,x).

For the denominator of (2.3) we find∫
B

P(t,x + y) dy '
∫
B

P(t,x) dy +

∫
B

y∇P(t,x) dy

= P(t,x)|B|+∇P(t,x) ·
∫
B

y dy.

We write the velocity vector as v = ‖v‖(cos Θ, sin Θ). Then some lengthy
but straightforward calculation gives

|B(v, `, β)| = β`2, (2.14)∫
B

y dy = `3
2

3
sinβ(cos Θ, sin Θ) (2.15)

and ∫
B

y ⊗ y dy =
`4

4

(
βI +

1

2
sin 2βA(Θ)

)
,

with the so-called nematic tensor A given by

A(Θ) =

(
cos2 Θ− sin2 Θ 2cos Θ sin Θ

2cos Θ sin Θ −cos2 Θ + sin2 Θ

)

=

(
cos 2Θ sin 2Θ

sin 2Θ −cos 2Θ

)
.

Then the linearized version of the desired velocity (2.3) reads (recall that the
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sensing area B is given in (2.2))

Flin(x,v) = λ

P(t,x)

∫
B

y dy +

∫
B

y ⊗ y dy∇P(t,x)

P(t,x)|B|+∇P(t,x) ·
∫
B

y dy

= λ
P(t,x)`

2

3
sinβ(cos Θ, sin Θ) +

`2

4

(
βI +

1

2
sin 2βA(Θ)

)
∇P(t,x)

P(t,x)β +∇P(t,x) · `2

3
sinβ(cos Θ, sin Θ)

.

(2.16)
Note that the matrix A is the reflection on the line with direction v, as can be

checked by noting that detA = −1 and for any vector u, we have v ·Au = v ·u.
This, in conjunction with (2.16), yields that the linearized desired velocity Flin

is parallel to the traveling direction v, in the case where ∇P is parallel to v.
We can go a step further with the approximation

F̃lin(x,v) = λ

∫
B

y dy

|B|
+ λ


∫
B

y ⊗ y dy

|B|
−

∫
B

y dy ⊗
∫
B

y dy

|B|2

 ∇P(t,x)

P(t,x)

= λ`
2

3

sinβ

β
(cos Θ, sin Θ) + λ`2Ã(Θ)

∇P(t,x)

P(t,x)
.

The Cauchy-Schwarz inequality tells us that the matrix

`2Ã(Θ) =

∫
B

y ⊗ y
dy

|B|
−
∫
B

y
dy

|B|
⊗
∫
B

y
dy

|B|

is symmetric and definite-positive (for the continuous model (2.3); for the two-
points measure (2.13), the kernel would be spanned by v). We have

Ã(Θ) =
1

4

(
I +

sin(2β)

2β
A(Θ)

)
− 4

9

sin2(β)

β2

(
cos2 Θ cos Θsin Θ

cos Θsin Θ sin2 Θ

)

=
1

4

(
I +

sin(2β)

2β
A(Θ)

)
− 2

9

sin2(β)

β2
(I +A(Θ))

=
1

4

(
1− 8 sin2(β)

9β2

)
I +

1

4

(
sin(2β)

2β
− 8 sin2(β)

9β2

)
A(Θ).

Again, we readily check that Flin is aligned to the traveling direction v, when
∇P is proportional to v.
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3 Well-posedness and stability results
In this section, we prove several mathematical results for the models presented
previously. First, we establish non-degeneracy of the general model (2.1),(2.10)
in the sense that the velocity vector remains bounded away from zero if, and
only if, the sensing half-angle β is less than π/2. These a priori estimates then
allows us to prove a well-posedness result.

Next, we show that for a given pheromone concentration representing a trail,
the ant trajectory which follows the crest of the trail is linearly stable, both for
models (2.7) and (2.13). The result can be strengthened when it is assumed
that β < π/2.

3.1 Lower and upper bounds for the velocity
The normalisation (2.7), (2.8) allows us to prove that in fact the magnitude of
the ant’s velocity vector remains bounded, and bounded away from zero, in the
case where the sensing half-angle β is less than π/2. This property of the model
is essential, especially the fact that the velocity vector is bounded away from
zero. Indeed, the model breaks down if v = 0, since in that case the sensing
area B is not defined.

Proposition 3.1. Suppose that the sensing half-angle β satisfies 0 < β < π/2.
Let 0 < c∗ < c∗ be the pheromone detection thresholds in (2.8), and let Pe be
any effective pheromone concentration (cf. (2.7)). Then, there exist constants
C1, C2 > 0, depending only on `, c∗, c∗, β and the initial data, such that for all
t ≥ 0,

min
(
|v(0)|, C1

)
≤ |v(t)| ≤ max

(
|v(0)|, C2

)
, (3.1)

where v(t) is a solution to (2.1),(2.7). Moreover,

C1 =
2

3
λ`
c∗ sinβ

c∗β
, C2 = λ`.

Proof. First, note that from the definition of B in (2.2) we immediately obtain
the bound

|F (x,v)| ≤ λ
∫
B

|y| Pe(t,x + y)∫
B
Pe(t,x + y) dy

dy ≤ λ`
∫
B

Pe(t,x + y)∫
B
Pe(t,x + y) dy

dy = λ`,

(3.2)
and this is valid either for (2.7) or (2.3).

Next, from the second equation of (2.1), we get

1

2

d

dt
|v|2 = −1

τ
|v|2 +

1

τ
F · v. (3.3)

Using Cauchy-Schwartz inequality and the bound (3.2), we find

d

dt
|v|2 ≤ −1

τ
|v|2 +

1

τ
|F |2 ≤ −1

τ
|v|2 +

1

τ
(λ`)2.
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A simple comparison argument then shows that in fact1

|v(t)| ≤ max
(
|v(0)|, λ`

)
, t ≥ 0,

which proves the upper bound in (3.1).
Returning to (3.3), let us assume for the moment that we know that

F · v ≥ C|v| (3.4)

for some C > 0. Then,

1

2

d

dt
|v|2 ≥ −1

τ
|v|2 +

C

τ
|v|

and so
|v(t)| ≥ min

(
|v(0)|, C

)
, t ≥ 0,

which is the remaining inequality in (3.1). It remains to prove (3.4). Write (2.7)
as

λ

∫
B

Pe(t,x + y) dyF (x,v) =

∫
B

yPe(t,x + y) dy

and take the scalar product with v on both sides. Using (2.15), we obtain for
the right-hand side

λv ·
∫
B

yPe(t,x + y) dy = λc∗v ·
∫
B

y dy

+ λ

∫
B

v · y
(
Pe(t,x + y)− c∗

)
dy

≥ λc∗`3
2

3
sinβ|v|,

(3.5)

since, by (2.8), the function Pe(t,x + y) − c∗ is nonnegative and, due to the
assumption β < π/2, we have v · y ≥ 0. Next, we have by (2.14)∫

B

Pe(t,x + y) dy ≤ |B|c∗ = β`2c∗.

Putting the previous estimates together, we find

F · v ≥ 2

3
λ`
c∗ sinβ

c∗β
|v|,

which proves (3.4). This concludes the proof of the proposition.

In particular, the result of Proposition 3.1 tells us that if we take |v(0)|
small enough, then the speed |v(t)| cannot decrease for small times. The case
is different when the sensing area is larger than a half-circle, as the following
result shows.

1When |v| is greater than λ`, |v| decreases; when it is smaller, it increases.
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Proposition 3.2. Suppose that the sensing half-angle satisfies β > π/2. Then,
for any initial data, there exist pheromone detection thresholds 0 < c∗ < c∗ and
effective pheromone concentrations such that d

dt |v(t)||t=0
< 0.

Proof. With β > π/2, define the angle θ ∈ (0, π/2) by β = π/2 + θ, as in
Figure 3.

θ
π

2

Bb Br

Figure 3: The sensing area B larger than a half-circle.

Suppose that the pheromone has concentration c∗ on the blue region Bb in
Figure 3, and c∗ on the red region Br. We will now see that choosing c∗, c∗
suitably, then the speed |v(t)| decreases, at least for small times.

Suppose that the ant is aligned with the direction x2, which in Figure 3 is
the horizontal direction. Then, we have from (2.3) and the symmetry of the
pheromone concentration that F = (0, F2). We wish to prove that F2 < 0 at
t = 0, since, in that case (and since v1 = 0), the equations of motion give

v̇2(t) = −v2(t) + F2(x(t),v(t)) < 0 at t = 0,

as announced in the statement of the proposition. We have

F2 =

∫
Bb∪Br

y2
P(t,x + y)∫

Bb∪Br
P(t,x + y) dy

dy

≤ 1

c∗|Bb ∪Br|

∫
Bb∪Br

y2 P(t,x + y) dy

=
1

c∗|Bb ∪Br|

∫
D

y2(c∗ − c∗) dy,

where (cf. (2.2))
D = B(v, `, β =

π

2
− θ)
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is the circular sector with half-angle π/2− θ. Using (2.14) and (2.15) we find

F2 =
2

3
`
c∗ − c∗

c∗
· cos θ
π
2 + θ

.

Therefore, to ensure that F2 < 0, it is sufficient to have

2

3
`
c∗ − c∗

c∗
· cos θ
π
2 + θ

< 0 ⇐⇒ c∗
c∗
< 1− cos θ.

This completes the proof of Proposition 3.2.

Let us now prove that under a suitable symmetry assumption on the sensing
measure µ, the bounds of Proposition 3.1 still hold for the model with a general,
symmetric, sensing measure (2.9). Note that this result holds, in particular, for
the two-point sensing model (2.13).

Proposition 3.3. Suppose that the sensing half-angle β satisfies 0 < β < π/2.
Let 0 < c∗ < c∗ be the pheromone detection thresholds in (2.8), and let Pe be
any effective pheromone concentration — cf. (2.7). Suppose that the sensing
measure µ ∈M(B) is symmetric with respect to the vector v. Then, there exist
constants C1, C2 > 0, depending only on `, c∗, c∗, β, µ and the initial data, such
that for all t ≥ 0

min
(
|v(0)|, C1

)
≤ |v(t)| ≤ max

(
|v(0)|, C2

)
, (3.6)

where v(t) is a solution to (2.1),(2.9).

Proof. First, note that the bound on |Fµ|, (3.2), remains valid for any µ. There-
fore, the first part of the proof of Proposition 3.1 still holds, proving the upper
bound in (3.6).

The lower bound is proved in a similar way to Proposition 3.1. Recall from
its proof that we only need to have the estimate (3.4), or

Fµ · v ≥ C|v| (3.7)

for some C > 0. Consider the numerator in (2.9). We have just as in Proposition
3.1

λv ·
∫
B

yPe(t,x + y) dµ(y) ≥ λc∗v ·
∫
B

y dµ(y),

since the functions Pe(t,x + y) − c∗ and v · y ≥ 0 are nonnegative (because
β < π/2). From the symmetry of µ with respect to v, and, again from β < π/2,
we see that the vector

∫
B
y dµ(y) is a positive multiple of v, and so for some

C > 0

λv ·
∫
B

yPe(t,x + y) dµ(y) ≥ C|v|.

For the denominator in (2.9), we have simply∫
B

Pe(t,x + y) dµ(y) ≤ µ(B)c∗.

14



With the two previous estimates, we see that (3.7) holds, which concludes the
proof of (3.6).

Just as in the case of Proposition 3.2, one can prove that when β > π/2,
then the speed can decrease. We omit the proof since it is similar to the proof
of Proposition 3.2.

Proposition 3.4. Suppose that the sensing half-angle satisfies β > π/2, and
that the measure µ has mass on the region behind the ant (see Figure 3). Then,
for any initial data, there exist pheromone detection thresholds 0 < c∗ < c∗ and
effective pheromone concentrations such that d

dt |v(t)||t=0
< 0.

The previous a priori estimates allow us to prove a well-posedness result
using the classical theorems for ordinary differential equations. We omit the
proof for the sake of brevity.

Lemma 3.5. Let the sensing area B be defined in (2.2), with sensing half-angle
β in (0, π/2). Consider an effective pheromone Pe in (2.6), and let the measure
µ have the properties stated in Section 2.3. Then, the function Fµ : R4 → R2,

(x,v) 7→ Fµ(x,v) = λ

∫
B(v)

y
Pe(t,x + y)∫

B(v)
Pe(t,x + y) dµ(y)

dµ(y),

is locally Lipschitz continuous and uniformly bounded over R4. Therefore, the
solutions of (2.1),(2.9) exist, are unique, and globally defined in time.

3.2 Stability of trail following for a homogeneous trail
In this section we will give a trail-like pheromone distribution depending on one
spatial direction only, and consider the solution of the system (2.1),(2.7) which
corresponds to following along the middle of the trail. We will check that, under
a symmetry assumption on the trail, this solution is linearly stable, for both
models (2.7) and (2.13). Different conditions on the profile of the pheromone
trail are needed in each case. Furthermore, we find a Lyapunov function for the
flow, which gives the asymptotic stability of the trail-following solution.

Definition 3.6. Let c∗, c∗ be the pheromone detection thresholds introduced
in Section 2.2. We say that φ : R → [c∗, c

∗] is a trail profile if it satisfies the
following properties:

1. φ is a function of the first spatial variable x1 only;

2. φ is even and smooth except possibly at x = 0.

Given a trail profile φ, we trivially extend it to R2 to obtain a trail φ(x1,x2),
which we still denote by the same letter. A trail φ can be seen as a straight,
symmetrical pheromone trail running along the x2 direction. A typical example
is to take a (physical) pheromone distribution such as φ(x1) = ae−b|x1| (for some
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constants a, b > 0)2 and, according to (2.6) and (2.8), truncate this function by
c∗ and c∗ in order to obtain an effective pheromone distribution. More generally,
we already assume that the pheromone distribution takes values between c∗ and
c∗ only.

With such a pheromone trail, the desired velocity (2.7) is independent of x2:

F = F (x1,v1,v2) = λ

∫
B

y
φ(x1 + y1) dy∫
B
φ(x1 + y1) dy

, (3.8)

with y = (y1,y2), and B = B(v) defined in (2.2). From now on, when we write
the desired velocity F depending on 3 variables only, we mean (x1,v1,v2).

3.2.1 Stability for the model (2.7)

We consider first the model with desired velocity (2.7). We recall here the
system (2.1), 

ẋ1 = v1

ẋ2 = v2

v̇1 = −1

τ
(v1 − F1)

v̇2 = −1

τ
(v2 − F2).

(3.9)

We will prove the linear stability of the solution

(x1,x2,v1,v2) = (0,x2(0) + v∗2t, 0,v
∗
2) (3.10)

of (3.9), where the asymptotic speed v∗2 is defined by

F (0, 0,v∗2) = (0,v∗2).

This solution corresponds to an ant following exactly along the crest of the
pheromone trail with velocity v2. First, to see that indeed (3.10) is a solution
to (3.9), the only nontrivial aspect is to note that for any α > 0, the vector
F (0, 0, α) = C

∫∫
B(0,α)

yφ(y1) dy is parallel to (0, α) by the symmetry of φ,
and so F1(0, 0, α) = 0 for all time. The explicit expression for v∗2 > 0 can be
computed easily:

v∗2 = λ

∫
B(0,1)

y2
φ(y1) dy∫

B(0,1)
φ(y1) dy

. (3.11)

We establish the following stability results:

Theorem 3.7 (Linear stability for a fixed, homogenoeous pheromone trail so-
lution). Suppose that the sensing half-angle β is in (0, π/2). Consider a phe-
romone trail given by Definition 3.6 and suppose that for all 0 < x ≤ `, we
have

φ(x) <
1

x

∫ x

0

φ(y) dy (3.12)

2Note that φ(x1,x2) is a steady-state for the diffusion equation with evaporation having
as source a Dirac delta concentrated at the line x1 = 0.
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(in particular, (3.12) will hold if φ is strictly decreasing for 0 < x ≤ `). Then,
the solution (3.10) of (2.1),(2.7) is linearly stable.

Theorem 3.8 (Lyapunov function). Let x2(0),v2(0) > 0. Let F : R → R+
0 be

defined by

F(z) = −
∫ z

0

F1(s, 0, 1) ds (3.13)

(see (3.8)). Suppose that for some time t0 we have (x(t0),v(t0)) sufficiently
close to the solution (3.10). Then, in the same conditions as Theorem 3.7, the
function

0 ≤ L(x1,v1) := v2
1 + 2F(x1)

decreases along trajectories x(t),v(t) of (3.9). Moreover,

lim
t→∞

‖(x(t),v(t))− (3.10)‖ = 0.

Proof of Theorem 3.7. During this proof we omit λ and τ since it does not
change the result. Throughout the proof, we use the notation B(v1,v2) to mean
that the sensing area is centered on the vector v = (v1,v2). Recall that, since
B only depends on the direction of the velocity vector, then B(0,v2) = B(0, 1)
for all v2 > 0.

Considering any solution of (2.1),(2.7), then from uniqueness, we can deduce
that v2(t) stays strictly positive for all t > 0, if v2(0) > 0. This is because
(x1,x2,v1,v2) = (x1(0) ± tv1,x2(0),±v1, 0) are solutions for an appropriate
constant v1. Note that this is only possible due to the evenness of φ, and that
these solutions are orthogonal to the trail. Therefore, t 7→ x2(t) is strictly
monotone and x2(t) can be used as a new time variable. Thus, in the new
variable, the system (3.9) becomes

ẋ1 =
v1

v2

v̇1 = −v1

v2
+
F1

v2

v̇2 = −1 +
F2

v2

(3.14)

with F = (F1, F2) given by (3.8). The equilibrium is now (x1,v1,v2) = (0, 0,v∗2)
with v∗2 as in (3.11), and we will linearize (3.14) around it.

We have to compute the partial derivatives of F (x1,v1,v2) at the point
(0, 0,v∗2). We will prove the following:

∂x1
F2 = ∂v2

F1 = ∂v2
F2 = 0, (3.15)

∂x1
F1 = −α1 < 0, (3.16)

∂v1
F1 = α2 ∈ [0, 1), (3.17)

for some α1 > 0, α2 ≥ 0, where all functions are evaluated at (0, 0,v∗2).
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Let us start with (3.15). To prove that ∂v2F1 = ∂v2F2 = 0, observe that
F only depends on v through the vector v/|v|. Therefore, when x1 = v1 = 0,
changing v2 does not change v/|v| and so F is also not changed.

Next, still in (3.15), we prove that ∂x1
F2 = 0. We have

F2(x1, 0,v
∗
2) =

∫
B

y2
φ(x1 + y1)∫

B
φ(x1 + y1) dy

dy, (3.18)

and so differentiating with respect to x1 and taking x1 = 0,

∂x1
F2(0, 0,v∗2) =

1

(
∫
B
φ(y1) dy)2

×

×
{∫

B

y2φ
′(y1) dy

∫
B

φ(y1) dy −
∫
B

y2φ(y1) dy

∫
B

φ′(y1) dy
}
.

But
∫
B
φ′(y1) dy = 0, since B = B(0, 1) is symmetric in y1 and φ′ is an odd

function. Therefore, ∂x1F2 = 0.
Now we prove (3.16). From

F1(x1, 0,v
∗
2) =

∫
B

y1
φ(x1 + y1)∫

B
φ(x1 + y1) dy

dy

we get

∂x1
F1(0, 0,v∗2) =

1

(
∫
B
φ(y1) dy)2

×

×
{∫

B

y1φ
′(y1) dy

∫
B

φ(y1) dy −
∫
B

y1φ(y1) dy

∫
B

φ′(y1) dy
}
.

Now note that the third and fourth integrals in the curly brackets vanish as
before, while the second one is positive. For the first integral, we find∫

B

y1φ
′(y1) dy =

∫ `

0

∫
By2

y1φ
′(y1) dy1dy2.

For each y2 ∈ (0, `), integrating by parts we find∫
By2

y1φ
′(y1) dy1 =

∫ y2 sin β

−y2 sin β

y1φ
′(y1) dy1 = 2

∫ y2 sin β

0

y1φ
′(y1) dy1

= −2

∫ y2 sin β

0

φ(y1) dy1 + 2y2 sinβ φ(y2 sinβ) < 0,

where the inequality comes from writing x = y2 sinβ in assumption (3.12). This
proves (3.16). Note that we have also used the fact that β < π/2 which ensures
that each cross-section By2 is an interval containing zero. Still, note that if
β > π/2 and φ′ < 0, then (3.16) still follows.
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We move on to (3.17). First, we will show that ∂v1F1 ≥ 0 at (0, 0,v∗2). This
is equivalent to showing that, for v1 > 0 sufficiently small, we have

F1(0,−v1,v
∗
2) < F1(0, 0,v∗2) < F1(0,v1,v

∗
2).

Since F1(0, 0,v∗2) = 0, we must check that

F1(0,−v1,v
∗
2) < 0 and F1(0,v1,v

∗
2) > 0.

Let v1 be small enough that the angle θ = arctan(v1/v
∗
2) satisfies β + θ < π/2

and also β − θ > 0. With this definition, we have v/|v| = (sin θ, cos θ). Now
note that the sign of

F1(0,v1,v
∗
2) =

∫
B(v1,v∗

2)

y1
φ(y1)∫

B(v1,v∗
2)
φ(y1) dy

dy (3.19)

is the same as the sign of
∫
B(v1,v∗

2)
y1φ(y1) dy. Employing polar coordinates and

(2.15), we find∫
B(v1,v∗

2)

y1φ(y1) dy =

∫ `

0

∫ θ+β

θ−β
sinαφ(r sinα)r2 dα dr.

We consider only the integral in α. Using the symmetry of φ,∫ θ+β

θ−β
sinαφ(r sinα) dα =

(∫ 0

θ−β
+

∫ θ+β

0

)
sinαφ(r sinα) dα

=
(
−
∫ β−θ

0

+

∫ θ+β

0

)
sinαφ(r sinα) dα

=

∫ β+θ

β−θ
sinαφ(r sinα) dα > 0,

(3.20)

since [β − θ, β + θ] ⊂ (0, π/2). Similarly, the sign of F1(0,−v1,v
∗
2) is given by

the sign of ∫ `

0

∫ −θ+β
−θ−β

sinαφ(r sinα)r2 dα dr

and so by the sign of∫ −θ+β
−θ−β

sinαφ(r sinα) dα =

∫ −β+θ

−β−θ
sinαφ(r sinα) dα < 0,

since [−β − θ,−β + θ] ⊂ (−π/2, 0). This proves that ∂v1
F1 ≥ 0.

To finish proving (3.17), we need to show that ∂v1
F1 < 1. Define

g(v1) =

∫
B(v1,v∗

2)

y1φ(y1) dy.
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Then, as already observed, g(0) = 0. Now differentiate (3.19) with respect to
v1. We see that ∂v1F1 < 1 is equivalent to

g′(0) <

∫
B(0,v∗

2)

φ(y1) dy. (3.21)

Since g(0) = 0, (3.21) will be proved if, for all sufficiently small v1 > 0 (the
proof for v1 < 0 is similar) we have

g(v1) < v1

∫
B(0,v∗

2)

φ(y1) dy. (3.22)

Let us write (3.22) in polar coordinates. Setting again θ > 0 as the angle of
the vectors (0,v∗2) and (v1,v

∗
2), we can write v1 = v∗2 tan θ. Then, we want to

prove∫ `

0

∫ θ+β

θ−β
r2 sinαφ(r sinα) dα dr < v∗2 tan θ

∫ `

0

∫ β

−β
r φ(r sinα) dα dr

= tan θ

∫ `

0

∫ β

−β
r2 cosαφ(r sinα) dα dr,

(3.23)
where we used the fact that v∗2 = F2(0, 0,v∗2) and (3.18) in polar coordinates.

Now we consider only the integrals in dα. Observe that from (3.20) we may
change the limits on the integral

∫ θ+β
θ−β to

∫ β+θ

β−θ . We divide by θ > 0 on both
sides so that the inequality we wish to prove for small θ’s recasts as

1

θ

∫ β+θ

β−θ
r2 sinαφ(r sinα) dα <

tan θ

θ

∫ β

−β
r2 cosαφ(r sinα) dα.

Now, this inequality will hold for small enough θ > 0 if the limit as θ → 0
satisfies the same inequality, namely

2r2 sinβ φ(r sinβ) <

∫ β

−β
r2 cosαφ(r sinα) dα.

Canceling 2r and from the parity of the integrand on the right-hand side, we
get, equivalently,

r sinβ φ(r sinβ) <

∫ β

0

r cosαφ(r sinα) dα.

Now make the change of variable y = r sinα in the integral and set x = r sinβ.
We get

xφ(x) <

∫ x

0

φ(y) dy

which is valid from assumption (3.12). This shows that (3.17) holds.
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With (3.16)–(3.17) in hand, we can assemble the matrix for the linearized
system around the equilibrium (3.10). Recalling that −α1 = ∂x1F1 and α2 =
∂v1

F1, we find 
0 1/v∗2 0

−α1/v
∗
2

−1+α2

v∗
2

0

0
∂v1F2

v∗
2

−1/v∗2

 .

The characteristic polynomial is( 1

v∗2
+ λ

)(
− λ
(1− α2

v∗2
+ λ
)
− α1

(v∗2)2

)
. (3.24)

Linear stability will follow if all the roots have negative real part. One root is
λ = − 1

v∗
2
< 0. The other two roots satisfy −λ( 1−α2

v∗
2

+ λ) − α1

(v∗
2)2 = 0 which

is easily seen to have roots with negative real part, since from (3.17) we have
1− α2 > 0. This concludes the proof of Theorem 3.7.

Proof of Theorem 3.8. From (3.13) and (3.16) we find

F(x1) =
x2

1

2
α1 + O(x3

1)

where, since F (x1, 0,v2) and α1 do not depend on v2, the right-hand side is
also independent of v2 (in particular, F(x1) is non-negative for small enough
|x1|). Therefore, for small enough x1, we have, say,

α1

4
x2

1 ≤ F(x1) ≤ α1x
2
1,

and we can find a constant C > 0 such that
1

C
(v2

1 + x2
1) ≤ v2

1 + 2F(x1)+ ≤ C(v2
1 + x2

1). (3.25)

In other words, (x1,v1) 7→ v2
1 + 2F(x1) induces (for small enough (x1,v1)) a

distance equivalent to the standard Euclidean distance.
Recall the special solution (3.10), and let

(F ∗1 (x1), F ∗2 (x1)) := (F1(x1, 0,v2), F2(x1, 0,v2)).

From (3.9),(3.13) we find

1

2

d

dt
v2

1 = −v2
1 +

(
F1(x1,v1,v2)− F ∗1 (x1)

)
v1 + F ∗1 (x1)v1

= −v2
1 +

(
F1(x1,v1,v2)− F ∗1 (x1)

)
v1 −

d

dt
F(x1).

Therefore

1

2

d

dt
v2

1 +
d

dt
F(x1) = −v2

1 +
F1(x1,v1,v2)− F ∗1 (x1)

v1
v2

1

= v2
1

(
− 1 + ∂v1

F1(x1,v1,v2)
) (3.26)
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for some v1 between v1 and 0. Now, by estimate (3.17) we have

∂v1F1(0, 0,v∗2) < 1.

For ε0, C > 0, define the rectangle

SC,ε0 =
{

(a, b) ∈ R2 : max(a, b/2C) ≤ ε0

}
.

Fix C to be chosen later. Then, by continuity, we conclude that for small enough
ε0, we have

sup
(v2

1+2F(x1),(v2−v∗
2)2)∈SC,ε0

∂v1F1(x1,v1,v2) < 1.

That is, ∂v1F1 is less than 1 if its argument is in a small enough neighborhood
of the point (0, 0,v∗2), and this neighborhood can be taken as the set of points
(x1,v1,v2) for which (v2

1 + 2F(x1), (v2 − v∗2)2) ∈ SC,ε0 .
Now suppose that(

v2
1(0) + 2F(x1(0)), (v2(0)− v∗2)2

)
∈ SC,ε0 . (3.27)

We will prove that choosing C conveniently, then at least for some time t1 > 0
we will still have (

v2
1(t1) + 2F(x1(t1)), (v2(t1)− v∗2)2

)
∈ SC,ε0 . (3.28)

In that case, we have found a bounded invariant region for the flow and stability
follows. Let us prove (3.28).

From (3.26), at least until some time t1 > 0 we have

v2
1(t1) + 2F(x1(t1)) < v2

1(0) + 2F(x1(0)). (3.29)

Next, we observe that from (3.9), and using F2(0, 0,v2) = v∗2, we obtain

1

2

d

dt
(v2 − v∗2)2 = −(v2 − v∗2)2 +

(
F2(x1,v1,v2)− F2(0, 0,v2)

)
(v2 − v∗2)

≤ −1

2
(v2 − v∗2)2 +

1

2

∣∣F2(x1,v1,v2)− F2(0, 0,v2)
∣∣2

≤ −1

2
(v2 − v∗2)2 +

1

2
sup |∇F |2(|v1|+ |x1|)2,

where we have used that F is a globally Lipschitz function. So, for some ap-
propriate constant C1 > 0 depending only on the data of the problem (see
(3.25)),

d

dt
(v2 − v∗2)2 ≤ −(v2 − v∗2)2 + C1(v2

1 + 2F(x1)).

Therefore

(v2(t1)− v∗2)2 ≤ (v2(0)− v∗2)2e−t1 + C1

∫ t1

0

(v2
1(s) + 2F(x1(s)))es−t1 ds

≤ (v2(0)− v∗2)2e−t1 + C1(v2
1(0) + 2F(x1(0)))(1− e−t1).
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We take C = C1 in (3.27),(3.28). For the sake of readability, we now set

a(t) = v2
1(t) + 2F(x1(t)), b(t) = (v2(t)− v∗2)2.

Now let us distinguish two cases. First, suppose that

max
(
a(0), b(0)/2C1

)
= a(0). (3.30)

Then, we obtain

b(t1) ≤ b(0)e−t1 + C1a(0)(1− e−t1)

≤ 2C1a(0)e−t1 + C1a(0)(1− e−t1) < 2C1a(0).

Thus, b(t1)/2C1 < a(0). Also, from (3.29) we get a(t1) < a(0), and so

max
(
a(t1), b(t1)/2C1

)
< a(0) = max

(
a(0), b(0)/2C1

)
.

Second, suppose that

max
(
a(0), b(0)/2C1

)
= b(0)/2C1. (3.31)

Then, (3.29) gives a(t1) < a(0) just as before. Also, C1a(0) < 2C1a(0) ≤ b(0)
and so

b(t1) < b(0)e−t1 + b(0)(1− e−t1) = b(0)

⇒ b(t1)/2C1 < b(0)/2C1.

This gives
max

(
a(t1), b(t1)/2C1

)
< max

(
a(0), b(0)/2C1

)
.

In both cases (3.30) and (3.31), we find that the function

max
(
v2

1(t) + 2F(x1(t)), (v2(t)− v∗2(t))2/2C1

)
decreases along the trajectories of system (3.9), at least for small times. Since
the choice of t1 only depends on universal constants, the argument can be re-
peated and we conclude asymptotic stability for initial data close enough to
(0, 0,v∗2). The statement of Theorem 3.8 follows.

3.2.2 Stability for the two-point model (2.13)

We now consider the two-point sensing measure (2.11),(2.12) with desired ve-
locity (2.13). We will take a pheromone trail in the sense of Definition 3.6.
However, relative to the statement of Theorem 3.7, the condition on the phe-
romone trail profile φ must be strengthened. Namely, we will assume that the
pheromone profile φ(x) satisfies, for 0 < x ≤ `,

x 7→ φ(x) is decreasing, and x 7→ x2φ(x) is increasing. (3.32)

The second condition in (3.32) states that, although (for positive x) φ is de-
creasing, it cannot decrease too rapidly near the origin. To see this, consider
the particular example of φ(x) = e−b|x| + c∗, with b > 0. Then, an elementary
calculation shows that the condition (3.32) is satisfied when b ≤ 2/`.
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Theorem 3.9 (Linear stability for a fixed pheromone trail solution with two–
point sensing measure). Suppose that the sensing half-angle β is in (0, π/2), and
that v2(0), x2(0) > 0. Consider a pheromone trail φ given by Definition 3.6 and
suppose that for all 0 < x ≤ `, φ satisfies (3.32). Then, the solution (3.10) of
the system (3.9) with desired velocity (2.13) is linearly stable.

Proof. As in Theorem 3.7, the proof rests on the sign properties (3.15)–(3.17).
We begin with (3.16). Recall the expression of F in (2.13) and write yL =
(yL1,yL2), yR = (yR1,yR2). We have

F1(x1, 0,v
∗
2) =

yL1φ(x1 + yL1) + yR1φ(x1 + yR1)

φ(x1 + yL1) + φ(x1 + yR1)
.

Differentiating with respect to x1 we find that the sign of ∂x1F1 is given by the
sign of (

yL1φ
′(yL1) + yR1φ

′(yR1)
)(
φ(yL1) + φ(yR1)

)
−
(
yL1φ(yL1) + yR1φ(yR1)

)(
φ′(yL1) + yR1φ

′(yR1)
)
.

Using the evenness of φ and the oddness of φ′, as well as the fact that yL1 =
−yR1, we find that the above expression simplifies to

4yR1φ
′(yR1)φ(yR1)

which is negative from the assumptions on φ. This proves (3.16).
Next, we consider ∂x1

F2 = 0. From (2.13) and (2.12) with v1 = 0 we have

yL = `

(
− sinβ

cosβ

)
, yR = `

(
sinβ

cosβ

)
and

F2(x1, 0,v
∗
2) = `

cosβφ(x1 − sinβ) + cosβφ(x1 + sinβ)

φ(x1 − sinβ) + φ(x1 + sinβ)
≡ N(x1)

D(x1)
.

Now note that
N ′(0) = ` cosβ(φ′(− sinβ) + φ′(sinβ)) = 0,

D′(0) = φ′(− sinβ) + φ′(sinβ) = 0.

This is sufficient to prove ∂x1F2 = 0. The proof of ∂v2F1 = 0 is similar to the
one in Theorem 3.7.

Lastly, we turn to the proof of (3.17). From (2.13) we find

F1(0,v1,v
∗
2) =

yL1φ(yL1) + yR1φ(yR1)

φ(yL1) + φ(yR1)
.

Let us write the expressions of yL,yR. Let θ = arctan(v1/v
∗
2), so for small v1,

θ is small. According to (2.12) with Θ = π/2 + θ,

yL = `

(
cos(π/2 + θ + β)

sin(π/2 + θ + β)

)
= `

(
− sin(θ + β)

cos(θ + β)

)
,

yR = `

(
cos(π/2 + θ − β)

sin(π/2 + θ − β)

)
= `

(
− sin(θ − β)

cos(θ − β)

)
.
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Therefore, using the evenness of φ,

F1(0,v1,v
∗
2) =

−`
(

sin(θ − β)φ
(
` sin(θ − β)

)
+ sin(θ + β)φ

(
` sin(θ + β)

))
φ
(
` sin(θ − β)

)
+ φ

(
` sin(θ + β)

) .

We must compute ∂v1F1(0,v1,v
∗
2)|v1=0. Write the above expression as

F1(0,v1,v
∗
2) =

N(v1)

D(v1)

and note that N(0) = 0. Therefore,

∂v1

(
N(v1)

D(v1)

)
|v1=0 < 1 ⇐⇒ N ′(0) < D(0).

We have θ′(v1)|v1=0 = (v∗2)−1, and so an easy computation gives

N ′(0) = −2
`

v∗2
cosβ

(
φ(` sinβ) + ` sinβφ′(` sinβ)

)
.

On the other hand,
D(0) = 2φ(` sinβ).

Now we compute v∗2 as the value for which (0,v∗2) = F (0, 0,v∗2), with F given
by (2.13). We find with the evenness of φ and yR1 = −yL1 for v1 = 0 in (2.12),

v∗2 =
yL2φ(yL1) + yR2φ(yR1)

φ(yL1) + φ(yR1)
= ` cosβ.

Therefore,

N ′(0) < D(0) ⇐⇒ −φ(` sinβ)− ` sinβφ′(` sinβ) < φ(` sinβ).

This will be fulfilled if for x ≤ `,

−φ(x)− xφ′(x) < φ(x),

which is equivalent to the second condition of (3.32). This finishes the proof of
Theorem 3.9.

Remark 3.10. We wish to emphasize that Theorem 3.8, establishing the ex-
istence of a Lyapunov function for the flow, remains valid in the case of the
two-point sensing model. Indeed, its proof relies entirely on the structure of the
differential equations and on the properties (3.15)-(3.17), which also hold for
the two-point sensing model.
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3.3 A stability result for an inhomogeneous trail
The trail-like pheromone distribution which was considered in the previous sec-
tion allowed us to obtain stability results (Theorems 3.7, 3.8 and 3.9). This
was possible thanks to the fact that the trail pheromone only depended on one
spatial direction, and so was completely described by the trail profile φ (cf. Def-
inition 3.6). However, in nature trails are not perfectly uniform, and so it would
be interesting to consider more general pheromone distributions allowing for
some variation in the direction parallel to the trail.

In this section, we provide a partial result in this direction. We consider a
pheromone distribution of the form φ(x1)ψ(x2), where φ is (as in Definition 3.6)
a trail profile, and ψ(x2) represents the variation of the trail along its length.
Under certain assumptions on φ and ψ, we will prove that there still exists a
solution which corresponds to following the trail along its crest. Moreover, we
will show that if the ant is traveling along the center of the trail, then a small
perturbation in its direction will give rise to a desired velocity lying between the
perturbation and the direction of the trail. In other words, if the ant deviates
slightly from the center of the trail, it will desire to align itself with the trail
again.

To model a pheromone trail running along the direction x2 but with some
variation in the x1 direction, we need to assume some more restrictive proper-
ties for the trail profile φ, when compared to the results in the previous section.
Specifically, we consider a pheromone distribution of the form φ(x1)ψ(x2), sat-
isfying the following properties:

1. The trail profile φ(y) is even, smooth on [0,+∞), and strictly decreasing
for 0 ≤ y ≤ `, so that

inf
[0,`]
|φ′| > 0; (3.33)

2. ψ (the variation along the trail direction) is smooth, bounded, and bounded
away from zero,

inf
R
ψ > 0 uniformly; (3.34)

3. We suppose that

c∗ ≤ φ(x1)ψ(x2) ≤ c∗, ∀ (x1,x2) ∈ R2, (3.35)

where c∗, c∗ are the pheromone detection thresholds introduced in Sec-
tion 2.2.

A typical trail is shown in Figure 4.
The first step towards our stability result is to observe that there is a solution

of the system (2.1),(2.7), with effective pheromone Pe(x1,x2) = φ(x1)ψ(x2)
(with φ and ψ verifying (3.33)-(3.35)), which corresponds to following along the
crest, or middle, of the trail, in the x2 direction.
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Figure 4: A typical trail of the form φ(x1)ψ(x2). x2 is the horizontal direction.

Lemma 3.11. Consider an initial data (0,x0
2, 0,v

0
2) with v0

2 > 0 and suppose
that the sensing half-angle β is in (0, π/2). There exists a solution (0,x∗2(t), 0,v∗2(t))
of (2.1),(2.7) with a pheromone trail given by (3.33)-(3.35), such that ẋ∗2 = v∗2

v̇∗2 = −1

τ

(
v∗2 − F2(x∗2)

)
.

(3.36)

Proof. Just note that with F defined in (2.7), then F2(0,x∗2(t), 0,v∗2(t)) only
depends on x2, since if v1 = 0, then B does not depend on the second component
v2. The solution exists if β < π/2, since in that case Lemma 3.5 applies.

The stability result is as follows.

Theorem 3.12. Suppose that the sensing half-angle is in (0, π/2). Consider a
pheromone trail φ(x1)ψ(x2) verifying the properties (3.33)-(3.35). In addition,
suppose that the variation along the trail, ψ, is sufficiently small in the sense
that

c∗‖ψ′‖∞
inf
R
ψ

{ 8

sinβ

(c∗
c∗

)2

+ tanβ
}
< inf

[0,`]
|φ′|. (3.37)

Then, we have

∂v2
F1 = ∂v2

F2 = 0, ∂v1
F2 = 0, ∂v1

F1 < 1 (3.38)

along the solution (0,x∗2(t), 0,v∗2(t)) given in Lemma 3.11.

Remark 3.13. 1. We interpret this result, in a heuristic way, as follows:
From the symmetry of the trail, the desired velocity F along the solution
in Lemma 3.11 has zero first component. Consider a small perturbation
in the value of the velocity vector of that solution, of the form

vε = v∗ + (ε1,±ε2) = (ε1,v
∗
2 ± ε2).

If (3.38) holds, then the perturbed desired velocity F (vε) satisfies

F1(vε) = F1(0,x∗2, ε1,v
∗
2 ± ε2) = 0 + ε1∂v1F1(0,x∗2, 0,v

∗
2) + O(ε21 + ε22)

< ε1 + O(ε21 + ε22),

27



F2(vε) = F2(0,x∗2, ε1,v
∗
2 ± ε2) = F2(0,x∗2, 0,v

∗
2) + O(ε21 + ε22).

From the dynamics of the system (2.1), we expect the velocity vector vε to
relax to the desired velocity Fε. But the previous inequalities, discarding
the second order terms, show that Fε is actually between v∗ and vε, for
small enough εi. Therefore, the perturbed velocity vε will tend to relax
to the trail-following direction of v∗; see Figure 5.

v∗

vε

F (vε)

F (v∗)

Figure 5: Illustration of the result of Theorem 3.12.

2. For a fixed φ, the condition (3.37) may be viewed either as saying that ψ
must remain sufficiently far from zero (due to the inf ψ term), or that the
“frequency” of ψ remains small (due to the ‖ψ′‖∞ term). Alternatively,
with ψ fixed, (3.37) can be seen as a condition of sufficiently fast decrease
of the trail profile φ near the center of the trail.

Proof of Theorem 3.12. Recall that for i = 1, 2,

Fi(0,x
∗
2,v1,v

∗
2) =

∫
B(v1,v∗

2)

yi
φ(y1)ψ(x∗2 + y2)∫

B(v1,v∗
2)
φ(y1)ψ(x∗2 + y2) dy

dy. (3.39)

First, observe that the argument to prove ∂v2
F1 = ∂v2

F2 = 0 is the same as in
the proof of (3.15). The property ∂v1

F2 = 0 follows from (3.39) with i = 2 and
observing that this expression is even with respect to v1 (by the symmetry of
the trail). Therefore, since v1 7→ F2(0,x∗2,v1,v

∗
2) is a smooth enough function

of v1 (at least for small v1), we have ∂v1F2 = 0.
To prove ∂v1

F1 < 1, the starting point is the same as in the proof of property
(3.17) in Theorem 3.7. We define

g(v1) =

∫
B(v1,v∗

2)

y1φ(y1)ψ(x∗2 + y2) dy.
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Then, as already observed, g(0) = 0 due to the symmetry of φ. Now differentiate
(3.39) with respect to v1. We see that ∂v1F1 < 1 is equivalent to

g′(0) <

∫
B(0,v∗

2)

φ(y1)ψ(x∗2 + y2) dy. (3.40)

Since g(0) = 0, (3.40) will be proved if, for all sufficiently small v1 > 0 (the
proof for v1 < 0 is similar) we have

g(v1) < v1

∫
B(0,v∗

2)

φ(y1)ψ(x∗2 + y2) dy. (3.41)

Let us write (3.41) in polar coordinates. Setting again θ > 0 as the angle of
the vectors (0,v∗2) and (v1,v

∗
2), we can write v1 = v∗2 tan θ. Then, we want to

prove ∫ `

0

∫ θ+β

θ−β
r2 sinαφ(r sinα)ψ(x∗2 + r cosα) dα dr

< v∗2 tan θ

∫ `

0

∫ β

−β
r φ(r sinα)ψ(x∗2 + r cosα) dα dr.

(3.42)

Now, the proof differs from Theorem 3.7 since here we do not have v∗2 = F2.
We argue as follows.

Write v∗2 = v∗2±F2(x∗2). Then, the right-hand side in (3.42) becomes I1 +I2,
where

I1 = (v∗2 − F2(x∗2)) tan θ

∫ `

0

∫ β

−β
r φ(r sinα)ψ(x∗2 + r cosα) dα dr,

I2 = F2(x∗2) tan θ

∫ `

0

∫ β

−β
r φ(r sinα)ψ(x∗2 + r cosα) dα dr.

To deal with I1, we wish to bound v∗2 − F2(x∗2). For this, note that

d

dt
(v∗2 − F2(x∗2)) = −(v∗2 − F2(x∗2))− ∂x2

F2(x∗2)v∗2.

Using an energy argument exactly like in Proposition 3.1, we see that setting
w(t) = v∗2 − F2(x∗2), and if Q is such that |∂x2F2(x∗2)v∗2| ≤ Q, then we have
|w(t)| ≤ max(|w(0)|, Q). In light of this, we note first that from (3.35), (3.1)
and (2.14), we have

‖φ‖∞ ≤
c∗

infR ψ
,

∫
B

φ(y1)ψ(x∗2 + y2) dy ≥ β`2c∗, |v∗2| ≤ `.
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Using these properties, (2.15), and (3.39), we get

|∂x2
F2(x∗2)v∗2| ≤

|v∗2|
(
∫
B
φ(y1)ψ(x∗2 + y2) dy)2

×

×
∣∣∣ ∫
B

y2φ(y1)ψ′(x∗2 + y2)v∗2 dy

∫
B

φ(y1)ψ(x∗2 + y2) dy

−
∫
B

y2φ(y1)ψ(x∗2 + y2) dy

∫
B

φ(y1)ψ′(x∗2 + y2)v∗2 dy
∣∣∣

≤ 2
‖ψ′‖∞
β infR ψ

(c∗
c∗

)2
∫
B

y2 dy

= 2
‖ψ′‖∞
β infR ψ

(c∗
c∗

)2

`3
2

3
sinβ.

Therefore, bounding the integral in the definition of I1 by `22βc∗, and supposing
for simplicity’s sake that max(|w(0)|, Q) = Q,

|I1| ≤ `3
4‖ψ′‖∞ sinβ

3β infR ψ

(c∗
c∗

)2

tan θ

∫ `

0

∫ β

−β
r φ(r sinα)ψ(x∗2 + r cosα) dα dr

≤ `5 8‖ψ′‖∞ sinβ

3 infR ψ

(c∗)3

c2∗
tan θ.

(3.43)
In view of this, I1 + I2 satisfies

I1 + I2 ≥ F2(x∗2) tan θ

∫ `

0

∫ β

−β
r φ(r sinα)ψ(x∗2 + r cosα) dα dr

− `5 8‖ψ′‖∞ sinβ

3 infR ψ

(c∗)3

c2∗
tan θ.

Using (3.39) in polar coordinates, (3.42) becomes∫ `

0

∫ θ+β

θ−β
r2 sinαφ(r sinα)ψ(x∗2 + r cosα) dα dr

< tan θ

∫ `

0

∫ β

−β
r2 cosαφ(r sinα)ψ(x∗2 + r cosα) dα dr

− `5 8‖ψ′‖∞ sinβ

3 infR ψ

(c∗)3

c2∗
tan θ.

Now we consider only what is inside the integrals in dr, and note that `3

3 =∫ `
0
r2 dr. Observe that exactly as in (3.20) we may change the limits on the

integral
∫ θ+β
θ−β to

∫ β+θ

β−θ .We divide by θ > 0 on both sides to obtain the following
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formulation of the inequality we wish to establish,

1

θ

∫ β+θ

β−θ
r2 sinαφ(r sinα)ψ(x∗2 + r cosα) dα

<
tan θ

θ

∫ β

−β
r2 cosαφ(r sinα)ψ(x∗2 + r cosα) dα

− tan θ

θ
`2

8‖ψ′‖∞r2 sinβ

infR ψ

(c∗)3

c2∗
.

Now, this inequality will hold for sufficiently small θ > 0 if the limit as θ → 0
satisfies the same inequality, namely

2r2 sinβ φ(r sinβ)ψ(x∗2 + r cosβ)

<

∫ β

−β
r2 cosαφ(r sinα)ψ(x∗2 + r cosα) dα

− `2 8‖ψ′‖∞r2 sinβ

infR ψ

(c∗)3

c2∗
.

Canceling 2r and from the parity of the integrand on the right-hand side, we
get equivalently

r sinβ φ(r sinβ)ψ(x∗2 + r cosβ)

<

∫ β

0

r cosαφ(r sinα)ψ(x∗2 + r cosα) dα− `2 4‖ψ′‖∞r sinβ

infR ψ

(c∗)3

c2∗
.

Now make the change of variable y = r sinα in the integral and set x = r sinβ.
We get

xφ(x)ψ
(
x∗2 +

√
r2 − x2

)
<

∫ x

0

φ(y)ψ
(
x∗2 +

√
r2 − y2

)
dy

− x2 4‖ψ′‖∞
sinβ infR ψ

(c∗)3

c2∗
.

(3.44)

Note that for a general smooth function Φ, the following holds:∫ x

0

yΦ′(y) dy < 0 ⇐⇒ xΦ(x) <

∫ x

0

Φ(y) dy.

Using this fact, we find that (3.44) is equivalent to∫ x

0

y
d

dy

(
φ(y)ψ

(
x∗2 +

√
r2 − y2

))
dy +

∫ x

0

φ(y)ψ
(
x∗2 +

√
r2 − y2

)
dy

< −x2 4‖ψ′‖∞
sinβ infR ψ

(c∗)3

c2∗
.

(3.45)
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But the left-hand side is bounded by (recall that φ′ < 0)∫ x

0

y
d

dy

(
φ(y)ψ

(
x∗2 +

√
r2 − y2

))
dy +

∫ x

0

φ(y)ψ
(
x∗2 +

√
r2 − y2

)
dy

≤ inf
R
ψ

∫ x

0

yφ′(y) dy +
c∗

infR ψ
sup
(0,x)

y√
r2 − y2

‖ψ′‖∞
x2

2

≤ inf
R
ψ inf

[0,`]
|φ′|x

2

2
+

c∗

infR ψ
tanβ‖ψ′‖∞

x2

2
.

Therefore, canceling x2, (3.45) will hold if

− inf
R
ψ inf

[0,`]
|φ′|+ c∗

infR ψ
tanβ‖ψ′‖∞ < − 8‖ψ′‖∞

sinβ infR ψ

(c∗)3

c2∗
, (3.46)

which is equivalent to (3.37). This completes the proof of Theorem 3.12.

4 Influence of the sensing angle on trajectory shape
One of the questions raised by the previous analysis is to know how the tra-
jectory shape is influenced by the sensing angle 2β. We have already seen
that the model’s stability properties hold whenever β < π/2, and that in that
same regime the speed remains bounded away from zero. This leaves open the
question of what are the properties of the solutions when the sensing area is
larger than a half-circle, and also of what is the character of the decay to the
equilibrium solution even in the stable regime.

Here, we address these questions by means of numerical experiments, using
the model with two-point sensing (2.13). First, our simulations show that (in
the stable regime at least) trajectories that follow a pheromone trail behave like
overdamped oscillations in such a way that they decay to the pheromone trail
as e−ζ(β)t with ζ(β) behaving as

ζ(β) ∝ β2

and with a wave number
ω(β) ∝ β.

Both approximations are valid for small β values, and were tested for a large
range of parameters. In Figure 6(a) we draw the profile of the solutions for
different values of the sensing angle, exhibiting the stated behavior. The phe-
romone trail is located at y = 0 and runs horizontally. In Figure 6(b),(c), we
show the obtained values for the damping ζ and the wave number ω.

Whenever the half-angle β is larger than π/2, trajectories do not seem to be
unstable, but converge asymptotically to points located near or on the center
of the trail. One such typical trajectory is presented in Figure 7 where, again,
the pheromone trail runs horizontally along y = 0. Further, by adding noise we
find that the numerics seems to be robust and that this asymptotic point seems
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to be stable: we observe a random walk around this point. This implies that
the ant gets trapped in a given position in space: i.e., the ant fails to explore
the information clues provided by the pheromone trail. Thus, we are able to
conclude (at least numerically) that β controls the shape of trajectories: for
small values the asymptotic convergence to the pheromone trail is low and with
large wave length. But increasing β, the convergence is faster and the wave
length shorter. For larger values of β exceeding π/2, ants are not able to follow
the trail.
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Figure 6: (a): Trajectories of trail-following ants with two-point sensing (2.13),
for sensing half-angles π/10 (black), π/5 (red), and 2π/5 (green). The phero-
mone trail is located horizontally at y = 0. (b) and (c): log-log plot of damping
coefficient ζ and wavenumber ω as a function of β showing the asymptotic be-
havior for small β.
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Figure 7: Typical trajectory of an individual ant according to model (2.13),
with sensing area larger than a half-circle (β > π/2). The pheromone trail is
located horizontally at y = 0. The ant asymptotically approaches a point near
the center of the trail and thus no trail following occurs.

5 Assessment of the model by comparison with
experimental results

In this section, we argue that certain quantities calculated explicitly from our
model are in agreement with the experimental results reported in [24]. Of course,
our proposed model is, like any other, necessarily incomplete and idealized, and
so it remains challenging to assert that agreement with experimental data “val-
idates” the model. Nevertheless, it is possible to indicate that the model is
at least consistent with some data. This observation together with the demon-
strated robust mathematical properties of the model, suggests that the proposed
modeling framework might be a good starting point for further studies of ant
navigation.

With this goal in mind, we will consider the turning angle, which we define
at each time as the angle between the ant’s current velocity v and its desired
velocity F (x,v). When the pheromone distribution around the ant is supposed
to be constant on each half of the sensing area, we are able to explicitly calculate
this value.

5.1 Turning angle distribution
Following [24], we will suppose that pheromone around an ant is constant on
each half of the sensing area B, and deduce expressions for the turning angle,
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for both models (2.7) and (2.13).
Let us first consider the model (2.1),(2.7). We denote by BL and BR the

circular sectors

BL(v, `, β) = {y ∈ R2 : ∠(v,y) ∈ (0, β), ‖y‖ ≤ `},
BR(v, `, β) = {y ∈ R2 : ∠(v,y) ∈ (−β, 0), ‖y‖ ≤ `},

so that B = BL ∪ BR (see (2.2)). Suppose that the effective pheromone distri-
bution Pe in the desired velocity (2.7) is given by (see Fig. 8)

Pe = cL1BL
+ cR1BR

.

cL

cR

Figure 8: Pheromone distribution used to compute the turning angles.

Then, we compute

F (x,v) = λ
cL
∫
BL

y dy + cR
∫
BR

y dy

cL|BL|+ cR|BR|
.

Using polar coordinates, we find(∫
BL

y dy

)
1

=

∫ `

0

∫ Θ+β

Θ

r2 cos θ dθ dr

=
`3

3

(
sin(Θ + β)− sin Θ

)
,

(∫
BL

y dy

)
2

=

∫ `

0

∫ Θ+β

Θ

r2 sin θ dθ dr

=
`3

3

(
− cos(Θ + β) + cos Θ

)
,
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and (∫
BR

y dy

)
1

=

∫ `

0

∫ Θ

Θ−β
r2 cos θ dθ dr

=
`3

3

(
sin Θ− sin(Θ− β)

)
,(∫

BR

y dy

)
2

=

∫ `

0

∫ Θ

Θ−β
r2 sin θ dθ dr

=
`3

3

(
− cos Θ + cos(Θ− β)

)
.

After some routine calculations, this gives

cL

∫
BL

y dy + cR

∫
BR

y dy

=
`3

3

(
(cR + cL) sinβ

(
cos Θ, sin Θ) + (cR − cL)(1− cosβ)

(
sin Θ,− cos Θ)

)
=
`3

3

(
(cR + cL) sinβ

v

‖v‖
+ (cR − cL)(1− cosβ)

v⊥

‖v‖
)
.

Therefore, the desired velocity F (x,v) is a multiple of the vector

(cR + cL) sinβ
v

‖v‖
+ (cR − cL)(1− cosβ)

v⊥

‖v‖
.

Now, we define the turning angle α1 = α1(β) as the angle between v and F .
Thus,

α1(β) = arctan

(
(cR − cL)(1− cosβ)

(cR + cL) sinβ

)
= arctan

(
cR − cL
cR + cL

tan
β

2

)
. (5.1)

Proceeding in a similar way with the model with pointwise sensing (2.1),(2.13),
we find for the turning angle α2(β)

α2(β) = arctan

(
cR − cL
cR + cL

tanβ

)
= α1(2β). (5.2)

Observing the relation between the two turning angles, we can see that for
the purposes of calculating the turning angle, the model (2.7) with sensing on
the whole sensing area is equivalent to the model (2.13) with sensing points
situated at an angle of β/4 around the ant’s direction.

5.2 Consistency of the model with the turning angle dis-
tribution in the Argentine ant

We can use the expressions (5.1),(5.2) for the turning angles to check if they are
consistent with the experimental results of [24] for the Argentine ants (Linep-
ithema humile). In that work, the angle of the sensing area is not a parameter
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of the model. Therefore one test of our model is to determine which sensing
area half-angle β best approximates the turning angle distributions reported
in [24], and if such a value for the angle is reasonable or supported by other
considerations.

In [24, Fig. 5], the authors report the results of experiments measuring the
turning angle of the Argentine ant in response to differences in pheromone dis-
tribution on both sides of the ant. Specifically (using our notations), they plot
for various values of total pheromone cL + cR the turning angle as a function of
the pheromone difference cR− cL, and compute the slope k of that graph at the
origin. In our model, since for fixed cL + cR and β the turning angle is given by
(5.1) or (5.2), the corresponding slopes k1, k2 will be

k1 =
tan β

2

cR + cL
, k2 =

tanβ

cR + cL
. (5.3)

In Table 1, we present the values of k2 for different values of total pheromone
cL+cR, and different sensing half-angles β. The data (along with the same data
for β = π/10) is shown in Table 1 and Figure 9. We can see that the slope is
best approximated if we take a sensing half-angle close to β = 2π/13.

The fact that we obtain a particular value for β indicates that there may
be some relevant selection criteria at work for the angle. This suggests that it
would be interesting to test (either experimentally or numerically) how varying
the sensing angle impacts on the ant’s navigation efficiency.

cR + cL β = π/4 π/5 2π/13 π/7 [24, Fig. 5]
57 1.005 0.73 0.528 0.484 0.498
115 0.498 0.362 0.261 0.24 0.282
229 0.25 0.182 0.131 0.12 0.142
459 0.125 0.0906 0.0655 0.0601 0.066
918 0.0624 0.0453 0.0328 0.0301 0.031
1836 0.0312 0.0227 0.0164 0.015 0.015

Table 1: The slope k2 corresponding to the model 2.13, for different sensing
half-angles β, as a function of the total pheromone cL + cR. For each line, we
chose cL + cR as the midpoint of the range in each of the plots in [24, Fig. 5].

Let us further see if the value β = 2π/13 is consistent with the data obtained
in [24] relating to the sensing area. To achieve this, consider [24, Fig. 7]. There,
the authors show a heat map of what, according to their reasoning, can be inter-
preted as the area where the presence of pheromone around the ant correlates
better with changes in direction. Thus this area can be interpreted as a sensing
area.

In Fig. 10, we have superimposed on [24, Fig. 7] the line segments originat-
ing from the a point slightly behind the center of the ant (to account for the
perception delay), using the angle 2π/13 found above. By choosing this point
in such a way that the line segments align better with the correlation heat map,
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Figure 9: Log plot of the data in Table 1.

and knowing the typical speed of the ant at 2 cm/sec, we obtain a reaction delay
time of approximately 0.2 seconds. This value is supported by the observation
in [24] that their data are consistent with a small perception delay. Addition-
ally, we note that the fact that (allowing for the small perception delay) the red
segments in Figure 10 can be made to align reasonably well with the correlation
map from [24] indicates that the results from our model fall into biologically
realistic ranges.

6 Conclusions and outlook
We have introduced and analyzed an individual-based model specifically tailored
for ant navigation. The main aspects are a generalization of Weber’s Law using
a sensing area around the ant representing the pheromone detection area. We
have shown that the model exhibits good mathematical properties, especially
when the sensing area has a span of less than π; that is, when ants do not detect
pheromone situated behind them. In that case, we proved that the ant’s speed
will tend to a range of natural velocities which are bounded and bounded away
from zero. This result is not true if the sensing area reaches behind the ant.

We proved, under reasonable assumptions – include a sensing area smaller
than a half-circle – that pheromone-trail-following solutions exhibit stability
properties. These properties even extend, in a weaker form, to trails with vari-
ations in pheromone distribution along their length. For homogeneous trails,
linear stability of the corresponding trail-following solution is obtained, and a
Lyapunov function is found.

The question arises of whether trail following happens only when the sensing
area is smaller than a half-circle, and, more generally, in what way does the value
of the angle affect trajectory shape. We address this question with numerical
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Figure 10: Antennal span superimposed on Fig.5 from [24] (adapted with per-
mission). The blue segment represents the ant, and each green cross is 1 cm
apart.

experiments showing that the trail following trajectories behave like overdamped
oscillations around the trail, and that for sensing areas larger than a half-circle,
the ant is not able to follow a trail.

To assess the consistency of our model with previous experimental results,
we used it to calculate the turning angle distribution and found it to be in
agreement with the values found experimentally in [24].

After having studied how individuals ants interact with a pheromone land-
scape, the next natural step would be to include pheromone production and
explore the potential collective effects that emerge among interacting, phero-
mone producing ants. The obtained collective behavior could then be compared
with the results obtained in, for instance, [4]. It would be interesting to study
the spontaneous emergence of pheromone trails and investigate their proper-
ties as well as the emergence of collective behaviors, in the spirit of [8, 9, 12].
Then, it would be appealing to discuss hierarchies of models, and to investigate
whether hydrodynamic descriptions could be relevant, as in [7, 10, 18, 2]. We
intend to address these questions in further work.
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