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Abstract

We consider a system coupling the incompressible Navier–Stokes equations to the Vlasov–
Fokker–Planck equation. Such a problem arises in the description of particulate flows. We design
a numerical scheme to simulate the behavior of the system. This scheme is asymptotic-preserving,
thus efficient in both the kinetic and hydrodynamic regimes. It has a numerical stability condition
controlled by the non-stiff convection operator, with an implicit treatment of the stiff drag term
and the Fokker-Planck operator. Yet, consistent to a standard asymptotic-preserving Fokker-Planck
solver or an incompressible Navier-Stokes solver, only the conjugate–gradient method and fast Pois-
son and Helmholtz solvers are needed. Numerical experiments are presented to demonstrate the
accuracy and asymptotic behavior of the schemes, with several interesting applications.
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1 Introduction

This paper is concerned with the simulation of a system of PDEs describing the evolution of disperse
two-phase flows. While these flows can be modeled by a continuum description for all phases [34]
we adopt here a kinetic–fluid modeling [44]. Such models are applicable to suspensions of solids
as well as droplets. We use a kinetic description for the particulate phase and a hydrodynamic
one for the underlying continuous fluid phase. Typical applications cover the dynamics of sprays
[2, 3, 21, 43], particulate flows in fluidized beds [7], the calibration of fire prevention devices [48],
environmental studies on pollutant transport [50, 53, 20, 46, 45, 49], combustion theory [44, 40, 54]
and engine design [25, 39].

There exists a large variety of kinetic–fluid models, depending on the considered physical regime.
Here and below, we adopt the following assumptions:

• The fluid phase is incompressible and viscous. For the sake of simplicity, we suppose that the
fluid density is constant and homogeneous (see Remark 2.1 below).

• Both the fluid and particle phases are isothermal.

• We consider a single species of particles, with a given and fixed mass density and size.

∗Project-Team SIMPAF, INRIA Lille Nord Europe Research Centre
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• We assume there is no mass exchange between the phases, or in other words, the volume
fraction occupied by the particles does not influence significantly the fluid density. According
to [44], it corresponds to the so–called Thin Sprays modeling.

• Particles are subject to Brownian motion: according to [24, 23] it leads to diffusion with
respect to the velocity variable in the equation for the particle distribution function.

• Each phase exerts an influence on the other phase through drag forces. Models for the
drag forces are developed through experimental investigation and can have quite intricate
expressions. Here we shall use the simplest Stokes formula where the drag force is proportional
to the relative velocity (v− u). An interesting derivation through homogenization arguments
is discussed in [22].

Then, the flows are described by the fluid velocity field u(t, x) ∈ R
N , depending on time t ≥ 0 and

space x ∈ R
N , and the particle distribution function f(t, x, v), which additionally depends on the

(particle) velocity variable v ∈ R
N . The evolution of the density f is governed by

∂tf + v · ∇xf =
1

ε
Luf +∇xΦ · ∇vf, (1)

where we have set
Luf = ∇v ·

(

(v − u)f +∇vf). (2)

A derivation of such an operator for particles in inhomogeneous flows is discussed in [27]. The
evolution of the fluid obeys the Incompressible Navier-Stokes system







∂tu+∇x · (u⊗ u) +∇xp−∆xu =
1

ε
κ

∫

(v − u)f dv,

∇x · u = 0,
(3)

with κ > 0 a coupling constant that depends on the physical properties of the two phases.
The two phases are subject to external forces, embodied into the potential Φ. Of course, in the

momentum equation (3), the external force term is incorporated within the pressure. Note however
that the strength and the orientation of the external force might be different for the two phases. A
relevant example is given by gravity driven flows where ∇xΦ is proportional to g, the gravitational
acceleration. For the particles, the coefficient is ηP = (1−ρF/ρP ) which accounts for the buoyancy
force, with ρF and ρP (typical) densities of the fluid and the particles, respectively. The system
(1)–(3) is written here in dimensionless form. The scaling parameter ε is associated to the Stokes
settling time

2ρPa
2

9µ

with µ the dynamic viscosity of the fluid, a the typical radius of the particles. We refer e.g. to
[11, 14] for further details on the scaling issues.

The goal of the present paper is the design of a performing numerical scheme, able to han-
dle different regimes, from ε = O(1) (the kinetic regime) to ε ≪ 1 (the hydrodynamic regime).
As will be detailed below, in the hydrodynamic regime, the particle distribution function relaxes

to the Maxwellian n(t,x)
(2π)N/2 e

−|v−u(t,x)|2/2 and the limiting system for particle density n and parti-

cle macroscopic velocity u, which coincides to the fluid velocity, looks like the non homogeneous
incompressible Navier–Stokes system, see (10)–(11).

Existence of weak solutions of system (1)–(3) has been investigated in [33] by fixed point meth-
ods and the theory has been revisited in [9] by using compactness techniques. Definitely, a difficulty
relies on the construction of approximate solutions that preserve the conservation/dissipation prop-
erties of the model. We also refer to [41] for the analysis of compressible models. Smooth solutions
close to equilibrium are studied in [31], see also [16] for a similar analysis of macroscopic models.
The analysis of the asymptotics ε → 0 in (1)–(3) is due to [29] by means of relative entropy methods,
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see also [42]. It is also worth mentioning related works like the local existence of smooth solutions
for the case without velocity–diffusion [4], several studies of coupling with the Euler system (i.e.
viscosity is sensible only at the scale of the particles) [14, 15, 13] and systems with energy exchanges
[8, 10, 30].

This work is organized as follows. In Section 2 we detail a few basic facts about the system
(1)–(3) and the regime ε → 0. In Section 3 we detail the construction of the numerical scheme. Our
method takes place among the so–called “Asymptotic Preserving Schemes”, a terminology coined
in [35]. It means that the scheme is suitable for the kinetic equation in such a way that letting ε
go to 0 while holding the mesh size and time step fixed, the scheme becomes a suitable scheme for
the limiting equations. In particular, the stability constraints do not degenerate in the asymptotic
regime. We refer to [36] for a recent review on the AP schemes and their applications. Roughly
speaking the idea consists in evaluating implicitly the stiff terms of the equation. Here, it will require
to invert the Fokker–Planck operator (2). To this end, we will follow the discretization introduced
in [37]. Furthermore, our formulation of the scheme follows the framework of the projection method
(see Chorin [17]–[19], Temam [51]), in the sense that only fast Helmholtz or Poisson solvers are
needed, even with the implicit, nonlocal coupling terms between particles and the fluid. This is
most natural when the incompressible fluid equations are solved by the projection method. The
Fokker-Planck solver here, on the other hand, has a computational cost and complexity comparable
to the previously developed AP scheme without the coupling to the fluid equation [37]. Both first
and second order schemes are presented in this framework. Section 4 is devoted to the results of
numerical simulations for checking accuracy, asymptotic behavior as well as some applications.

2 Hydrodynamic Limit

Let us briefly recall some basic facts about the system (1)–(3) and the regime ε → 0. The key
remark, observed in [28, 29], relies on the following energy–entropy dissipation property

d

dt

(

κ

∫

RN×RN

f
(

1 + Φ+ v2/2 + ln(f)
)

dv dx+

∫

RN

|u|2/2 dx
)

+

∫

RN

|∇xu|2 dx+
κ

ε

∫

RN×RN

∣

∣(v − u)
√

f + 2∇v

√

f
∣

∣

2
dv dx = 0.

(4)

A similar relation holds when the problem is set on a bounded smooth domain Ω with reasonable
boundary conditions. For instance we can assume no–slip of the fluid

u
∣

∣

∣

∂Ω
= 0 (5)

and specular reflection of the particles

γ−f(t, x, v) = γ+f
(

t, x, v − 2v · ν̂(x)ν̂(x)
)

, (6)

where ν̂(x) stands for the unit outer normal at point x ∈ ∂Ω and γ± denote the trace operators on
the set

{

(t, x, v) ∈ (0,∞)× ∂Ω× R
N , ±v · ν̂(x) > 0

}

.

We refer to further comments in [14]. It is worth rewriting the Fokker–Planck operator as

Luf = ∇v ·
(

Mu∇v

( f

Mu

))

, Mu(v) =
1

(2π)N/2
exp

(

− |v − u(t, x)|2
2

)

.

As ε goes to 0, since the Fokker–Planck operator is penalized, we expect that f makes Luf (and
the dissipation term in (4)) vanish which means that f becomes proportional to the Maxwellian
centered to the fluid velocity

f(t, x, v) ≃ n(t, x)Mu(t,x).

3



Hence the question is to identify the equation satisfied as ε → 0 by the particles density n and the
velocity u.

To this end, let us write the equations satisfied by the moments

n(t, x) =

∫

RN

f(t, x, v) dv, J(t, x) =

∫

RN

vf(t, x, v) dv.

Then one has
∂tn+∇x · J = 0, (7)

∂tJ +∇xP+ n∇xΦ = −1

ε
(J − nu) (8)

where

P(t, x) =

∫

RN

v ⊗ vf(t, x, v) dv.

Combined to (3) one obtains

∂t

(

u+ κJ
)

+∇x ·
(

u⊗ u+ κP
)

+∇xp+ κn∇xΦ = ∆xu. (9)

Accordingly, when J and P are asymptotically defined by the moments of the Maxwellian nMu,
one is led to

J ≃ nu, P ≃ nu⊗ u+ nI.

Inserting this ansatz into (9) one arrives at

∂t

((

1 + κn
)

u
)

+∇x ·
((

1 + κn
)

u⊗ u
)

+∇x

(

p+ κn
)

+ κn∇xΦ = ∆xu, (10)

where the velocity is still required to be divergence free while for the density of particles

∂tn+∇x · (nu) = 0. (11)

The system (10)–(11) is (up to the gravity term) nothing but the incompressible Navier-Stokes
system for the composite and inhomogeneous density (1+κn). Of course a rigorous justification of
the convergence statement presents technical difficulties, due to the nonlinear passages to the limit
it requires, in particular with the product nu ⊗ u. We refer to [29] for a proof based on relative
entropy arguments and to [41, 42, 14] where related questions are discussed.

Remark 2.1 Note that the problem does not simplify if we start with the Stokes equation for the
fluid instead of (3), because the convection term in the limit equation comes anyway from the
kinetic pressure P. We point out also that it makes sense to consider from the beginning that the
fluid density ρ(t, x) is non homogeneous. In such a case (3) is replaced by

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u) +∇xp+ ηF ρ∇xΦ̃ = ∆xu+
1

ε
κ

∫

RN

(v − u)f dv,

coupled to the divergence free constraint ∇x · u = 0. Here ∇xΦ̃ = 1
ηP

∇xΦ = g. Note the coefficient
ηF , potentially different from ηP , characterizes the effect of the external forces on the fluid. The
limiting problem will be of the same type for the composite density ρ+ κn; namely one obtains as
ε → 0

∂tρ+∇x · (ρu) = 0 = ∂tn+∇x · (nu) = 0,

∂t

((

ρ+ κn
)

u
)

+∇x ·
((

ρ+ κn
)

u⊗ u
)

+∇x

(

p+ κn
)

+ (ηF ρ+ ηPn)∇xΦ̃ + ∆xu,

∇x · u = 0.
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3 An AP Scheme for the kinetic–fluid coupling system

As announced in the Introduction, we wish to construct a numerical scheme for (1)–(3), with the
specific request to capture the asymptotic regime ε → 0 efficiently. In particular, as ε goes to
0, the scheme should become a robust solver for the limit system (10)–(11). Furthermore, the
asymptotic regime should not introduce prohibitive numerical constraints, by having the stability
condition independent of ε. A scheme that fulfills these requirements is said Asymptotic Preserving
[35, 26, 36]. Roughly speaking, the idea is to evaluate implicitly the stiff terms in the equations,
namely the drag force in (3) and the Fokker–Planck operator in (1). The key point of the method
that provides the AP property to the scheme relies on a convenient time splitting which allows
to compute implicitly the stiff terms efficiently. Recall that an AP scheme for the Fokker-Planck
equation, developed in [37], relies just on a conjugate gradient method for the implicit Fokker-
Planck operator, while a typical incompressible Navier-Stokes solver, such as the projection method,
requires a fast Poisson or Helmholtz solver. For the problem under study, even if more implicit
coupling terms are involved than the problems studied previously, our AP schemes do not require
more than the conjugate gradient method and a fast Poisson or Helmholtz solver.

3.1 Projection method for INS system with variable fluid density

In this section we recall the projection method for the incompressible Navier-Stokes (INS) system
with variable fluid density with no–slip boundary condition:



















∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (u⊗ u) +∇xp−∆u = S,

∇x · u = 0,

u(t, x) = 0, on ∂Ω.

(12)

Here we can assume S is a stiff source term.
Although the fluid is modeled by (3) with constant fluid density, we have a good reason to start

with the review of the projection scheme for (12). That is, the limit system (10)–(11) itself is a
variable density INS system. We want our scheme automatically becomes a projection method for
(10)–(11) as ε → 0.

The projection method for INS system with constant fluid density was first introduced by
Chorin ([17, 18, 19]) and Temam ([51]). The extensions to second order have been studied a lot,
for example, in [38, 52, 5]. It is also generalized to (12), the INS system with variable density,
for example, in [6, 1, 32, 12]. In this section we focus on the temporal discretization. The space
derivative is assumed to be continuous at this moment. We leave the spatial discretization to the
end of this section.

3.1.1 A first order method

A first order projection method can be summarized as






























ρk+1 − ρk

∆t
+∇x · (ρkuk) = 0,

ρk+1u∗ − ρkuk

∆t
+∇x · (ρkuk ⊗ uk)−∆xu

∗ = S∗,

uk+1 − u∗

∆t
+

1

ρk+1
∇xp

k+1 = 0, with ∇x · uk+1 = 0.

(13)

The system is solved with no–slip boundary condition for u∗, Neumann boundary condition for
pk+1,

u∗ = uk =
∂p

∂ν̂
= 0, on ∂Ω. (14)
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The momentum equation is splitted into a viscosity step (for u∗) and a projection step (for
uk+1). The viscosity step needs a Helmholtz solver. Similarly to the projection method for the
constant density INS system, the projection step is solved in two steps. First the pressure pk+1 is
computed by taking the divergence of both sides,

∇x ·
(

1

ρk+1
∇xp

k+1

)

=
1

∆t
∇x · u∗,

where a variable coefficient Poisson solver is needed. Then uk+1 is updated via

uk+1 = u∗ +
∆t

ρk+1
∇xp

k+1.

This is a direct generalization of Chorin-Temam projection method to the system (12).

3.1.2 A second order method

The second order projection methods for (12) have been studied in [6], with a Crank-Nicolson type
stiff term. However, to obtain an AP scheme, we hope the stiff term is solved fully implicitly.
Illustrated by [32], we give the following BDF based second order pressure incremental (also called
pressure correction) projection method:































3ρk+1 − 4ρk + ρk−1

2∆t
+∇ · (2ρkuk − ρk−1uk−1) = 0,

3ρk+1u∗ − 4ρkuk + ρk−1uk−1

2∆t
+ 2(∇x · (u⊗ u))k − (∇x · (u⊗ u))k−1+∇xp

k −∆u∗ = S∗,

3uk+1 − 3u∗

2∆t
+

1

ρk+1
∇x(p

k+1 − pk) = 0, with ∇x · uk+1 = 0.

(15)

The same boundary conditions (14) are applied. This is solved in a similar way as in the first order
method.

This second order method is based on the pressure correction idea introduced in [52], which is
necessary for the INS system with variable density. The viscosity part of momentum equation is
solved with current pressure ∇xp

k. Then the incremental of pressure, (pk+1 − pk), is computed in
the projection step.

3.2 Construction of the AP Schemes

The AP scheme works in two steps. Firstly we update the macroscopic quantities n, J, u, p and
secondly we update the microscopic density of particles. The former leads to invert a coupled
linear system. The latter needs to invert the Fokker–Planck operator, which relies on a specific
discretization to obtain a structure appropriate for using performing algorithms.

To start with, we compute the macroscopic density of particles,

1

∆t
(nk+1 − nk) = −

∫

v · ∇xf
k dv. (16)

Next we solve the coupled momentum equations (8) with (3), based on the projection method
described in Section 3.1.1. We would like to point out that, to derive an AP scheme, one has to
impose the stiff coupling term (1/ε term) in both the viscosity step and the projection step.

We solve the viscosity part of momentum equations with only part of the stiff term:

1

∆t
(J∗ − Jk) = −

∫

v ⊗ v∇xf
k dv − nk∇xΦ− 1− α

ε

(

J∗ − nk+1u∗
)

, (17a)

1

∆t
(u∗ − uk)−∆xu

∗ = −∇x · (uk ⊗ uk) +
1− α

ε
κ
(

J∗ − nk+1u∗
)

, (17b)
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where α ∈ (0, 1) is any constant. One can simply choose α = 1
2 .

It is equivalent to solve

(

1

∆t
+

1− α

ε+ (1− α)∆t
κnk+1 −∆x

)

u∗

=
uk

∆t
−∇x · (uk ⊗ uk) +

(1 − α)κ

ε+ (1− α)∆t

(

Jk −∆t

∫

v ⊗ v∇xf
k dv −∆tnk∇xΦ

)

.
(18)

The no–slip boundary condition for u∗ is used,

u∗
∣

∣

∣

∂Ω
= 0. (19)

(18) is a Helmholtz equation for u∗, which can be solved by the Preconditioned Conjugate Gradient
method without difficulties (for example, see [47]). Then J∗ is solved accordingly.

Next u∗ is projected to the divergence free space, with the remaining stiff coupling term.

1

∆t
(J∗∗ − J∗) = −α

ε

(

J∗∗ − nk+1uk+1
)

,

1

∆t
(uk+1 − u∗) +∇xp

k+1 =
α

ε
κ
(

J∗∗ − nk+1uk+1
)

.

(20)

With J∗∗ canceled, one has,

uk+1 +
1
∆t +

α
ε

1
∆t +

α
ε (1 + κnk+1)

∆t∇xp
k+1 =

(

1
∆t +

α
ε

)

u∗ + α
ε κJ

∗

1
∆t +

α
ε (1 + κnk+1)

. (21)

Noting that uk+1 is divergence free, by taking the divergence of both sides, one arrives at,

∇x ·
(

1

ρk+1
ε

∇xp
k+1

)

=
1

∆t
∇x ·

(

(

1
∆t +

α
ε

)

u∗ + α
ε κJ

∗

1
∆t +

α
ε (1 + κnk+1)

)

,
∂pk+1

∂ν̂

∣

∣

∣

∂Ω
= 0, (22)

with

ρk+1
ε :=

1
∆t +

α
ε (1 + κnk+1)
1
∆t +

α
ε

, (23)

where the dependence on ∆t and α is omitted in the notation, for the sake of simplicity.
pk+1 is solved from Equation (22) by a Conjugate Gradient method. Then uk+1 is obtained from

(21). Finally fk+1 is solved based on the kinetic equation (1), with a fully implicit Fokker-Panck
operator

fk+1 − fk

∆t
+ v · ∇xf

k −∇xΦ · ∇vf
k =

1

ε
Luk+1fk+1, (24)

where
Luk+1fk+1 = ∇v · ((v − uk+1)fk+1 +∇vf

k+1).

Then Jk+1 is updated by taking the first moment of fk+1.
This is a predictor-corrector method for the kinetic equation (1). One first predicts the momen-

tum at tk+1 by solving for u∗. Then the divergence free velocity uk+1 is derived and the momentum
Jk+1 at tk+1 is corrected accordingly. The only constraint on time step is the CFL condition from
the transport part of kinetic equation (1), i.e. ∆t ≤ ∆x

max |v| , with ∆x the space mesh size.

3.3 A second order scheme

However, any constant α ∈ (0, 1) will result in a first order time splitting. To derive a second order
scheme, we start with a lemma on a toy model.
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Lemma 3.1 The ODE equation
du

dt
= f(u)

can be solved by
3u∗ − 4uk + uk−1

2∆t
= (1− α)f(u∗),

3uk+1 − 3u∗

2∆t
= αf(uk+1).

The method is second order if α = 0, 1. Furthermore, the second order is also achieved if

α = O(∆t), or 1− α = O(∆t).

The proof is straightforward if one studies the local truncation error. The case α = O(∆t) is what
we need.

Now we generalize the first order scheme (16)–(24) to second order. The convergence order can
be improved by the following techniques.

• The time derivative terms are approximated by a second order BDF method, i.e.,

∂ta(t
k+1) ≈ 3ak+1 − 4ak + ak−1

2∆t
;

• The transport terms are approximated by extrapolation from previous two steps, i.e.,

b(tk+1) ≈ 2bk − bk−1;

• The stiff terms are implicitly evaluated at tk+1;

• Take α = O(∆t) in the splitting of stiff terms.

• Pressure incremental technique. The viscosity step in momentum equation is solved with
pressure at current step. Then the projection step computes the incremental of pressure.

We describe the detailed scheme now. For simplicity we denote

a† = 2ak − ak−1.

First, the macroscopic density of particles nk+1 is computed by,

1

2∆t
(3nk+1 − 4nk + nk−1) = −

∫

v · ∇xf
† dv. (25)

Next we solve the coupled momentum equations (8) with (3), with part of stiff terms and pressure
term at tk,

1

2∆t
(3J∗ − 4Jk + Jk−1) = −

∫

v ⊗ v∇xf
† dv − n†∇xΦ− 1− α

ε

(

J∗ − nk+1u∗
)

,

1

2∆t
(3u∗ − 4uk + uk−1)−∆xu

∗ +∇xp
k = −∇x · (u⊗ u)† +

1− α

ε
κ
(

J∗ − nk+1u∗
)

.

(26)

Again α ∈ (0, 1). Illustrated by Lemma 3.1, we need α = O(∆t) to ensure the second order

accuracy. We take α =
∆t

tmax
, where tmax is the total time length of our simulation.

The above system can be recast as
(

3

2∆t
+

3(1− α)

3ε+ 2(1− α)∆t
κnk+1 −∆x

)

u∗ =
4uk − uk−1

2∆t
−∇x · (u⊗ u)† −∇xp

k

+
1− α

3ε+ 2(1− α)∆t
κ

{

4Jk − Jk−1 − 2∆t

(
∫

v ⊗ v∇xf
† dv + n†∇xΦ

)}

.
(27)
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The no–slip boundary condition for u∗ is used.
Equation (27) can be solved by the Preconditioned Conjugate Gradient method without dif-

ficulties. Then J∗ is solved using (26). Next u∗ is projected to the divergence free space, with
pressure correction and the remaining part of stiff terms,

3

2∆t
(J∗∗ − J∗) = −α

ε

(

J∗∗ − nk+1uk+1
)

,

3

2∆t
(uk+1 − u∗) +∇x(p

k+1 − pk) =
α

ε
κ
(

J∗∗ − nk+1uk+1
)

.

(28)

With J∗∗ canceled, one has

uk+1 +
3

2∆t +
α
ε

3
2∆t +

α
ε (1 + κnk+1)

2∆t

3
∇x(p

k+1 − pk) =

(

3
2∆t +

α
ε

)

u∗ + α
ε κJ

∗

3
2∆t +

α
ε (1 + κnk+1)

. (29)

Then as in the first order scheme, one can take the divergence of both side. The first term vanishes
since uk+1 is divergence free. One can solve for pk+1 − pk. Then pk+1 is derived.

Finally fk+1 is solved based on the kinetic equation (1),

3fk+1 − 4fk + fk−1

2∆t
+ (v · ∇x −∇xΦ · ∇v)(2f

k − fk−1) =
1

ε
Luk+1fk+1, (30)

and Jk+1 is updated by taking the first moment of fk+1.
Equations (25)–(30) give a second order scheme in time. We will check this convergence order

numerically in Section 4.1.
Note that this second order scheme is a multistep method. To compute the solutions at tk+1,

we need the solutions from both tk and tk−1. Therefore, with initial data at t0, it is necessary to
apply the first order method to obtain the solutions at t1. Then this second order scheme can be
started.

Remark 3.2 We can formally check the second order accuracy. A rigorous proof is out of the
scope of this paper.

First, u∗ and J∗ themselves are first order approximations of uk+1 and Jk+1. The local trun-
cation error gives,

u∗ = uk+1 +O(∆t2), J∗ = Jk+1 +O(∆t2). (31)

Next we add up equations (26) and (28):

1

2∆t
(3J∗∗ − 4Jk + Jk−1) = −

∫

v ⊗ v∇xf
† dv − n†∇xΦ− 1

ε

(

J∗∗ − nk+1uk+1
)

+R1,

1

2∆t
(3uk+1 − 4uk + uk−1)−∆xu

k+1 +∇xp
k+1 = −∇x · (u ⊗ u)† +

1

ε
κ
(

J∗∗ − nk+1uk+1
)

+R2,

where the remainder terms

R1 = −1− α

ε

((

J∗ − nk+1u∗
)

−
(

J∗∗ − nk+1uk+1
))

,

R2 =
1− α

ε
κ
((

J∗ − nk+1u∗
)

−
(

J∗∗ − nk+1uk+1
))

+∆x(u
∗ − uk+1).

Noting J∗∗ is also (at least) a first order approximation of Jk+1, one has J∗∗ = Jk+1 + O(∆t2).
Combined with (31), one has

R1 = O(∆t2), R2 = O(∆t2).

Therefore uk+1 and J∗∗ are second order approximations of u(tk+1) and J(tk+1). Then the distri-
bution fk+1 is solved via the second order discretization (30).
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3.4 The AP property

Now we show that the first order scheme (16)–(24) is asymptotic preserving and the limiting scheme
gives a first order approximation for the limiting system (10)–(11).

As ε → 0, (24) gives
Luk+1fk+1 = O(ε), for k ≥ 0.

This is equivalent to
fk = nkMuk +O(ε), for k ≥ 1.

Then one has
Jk = nkuk +O(ε),

∫

RN

v ⊗ vfk dv = nkuk ⊗ uk + nk
I+O(ε).

Therefore, (16) is just
1

∆t
(nk+1 − nk) = −∇x · (nkuk) +O(ε). (32)

Besides, equation (17a) gives
J∗ = nk+1u∗ +O(ε).

Multiply (17a) by κ and add to (17b). One obtains,

1

∆t

((

1 + κnk+1
)

u∗ −
(

1 + κnk
)

uk
)

−∆xu
∗ =

−∇x ·
((

1 + κnk
)

uk ⊗ uk
)

− κ∇xn
k − κnk∇xΦ+O(ε).

(33)

Equation (32) and (33) give a first order discretization of the limiting system (10)–(11), without
the pressure term.

Moreover, as ε → 0, (21) becomes,

uk+1 +
1

1 + κnk+1
∆t∇xp

k+1 = u∗, (34)

which is exactly the projection step for (10)–(11).
Similarly one can show the limiting of the second order scheme (25)–(30) gives

1

2∆t
(3nk+1 − 4nk + nk−1) = −∇x · (nkuk)†,

1

2∆t

(

3
(

1 + κnk+1
)

u∗ − 4
(

1 + κnk
)

uk +
(

1 + κnk−1
)

uk−1
)

−∆xu
∗ +∇xp

k =

−∇x · ((1 + κn)u⊗ u)
† − κ∇xn

† − κn†∇xΦ,

3(uk+1 − u∗)

2∆t
+

1

1 + κnk+1
∇x(p

k+1 − pk) = 0,

∇x · uk+1 = 0.

(35)

It is the second order projection scheme described in Section 3.1.2 for the limiting system
(10)–(11), an INS system with spatial variable density (1 + κn).

3.5 Full discretization

3.5.1 Space and velocity discretization

For the sake of concreteness, let us discuss space and velocity discretization issues by restricting
to the two–dimension case. The extension to higher dimension is straightforward. We denote by
∆x the (uniform) mesh size. We define a regularly spaced and symmetric velocity grid, with step

10



∆v. Denoting j = (j, j′) and m = (m,m′) in N
2, fk

j;m stands for the numerical approximation of

f(k∆t, (j− 1/2)∆x, (m − 1/2)∆v−vmax). Here we assume v ∈ [−vmaxvmax]
2. The grid points are

located in the cell center.
For the transport term v · ∇xf in (24) and (30), we apply the upwind type second order shock

capturing schemes (see [30]). Discrete differential operators are defined dimension-by-dimension.
The specular reflection law is used to define the ghost points. For instance, labeling the numer-

ical unknown with indices j, j′ ∈ {1, ..., J} and m,m′ ∈ {1, ..., 2M}, where the M first (resp. last)
velocities are negative (resp. positive), leads to

fk
0,j′;m,m′ = fk

1,j′;2M+1−m;m′ , fk
J+1,j′;m,m′ = fk

J,j′;2M+1−m,m′ .

For the pressure, Neumann boundary condition (22) leads to

pk+1
0,j′ = pk+1

1,j′ , pk+1
J+1,j′ = pk+1

J,j′ .

The no–slip boundary of u∗ (19) leads to

u∗
0,j′ = −u∗

1,j′ , u∗
J+1,j′ = −u∗

J,j′ .

Similar expression holds when exchanging the role of u∗
1, u

∗
2, j, j

′ and m′,m′.
The convection term ∇x · (u ⊗ u) and the diffusion term ∆xu in incompressible Navier-Stokes

system (3), as well as the terms ∇x ·u∗ and ∇xp in the projection steps (22)–(21), are approximated
by center differences.

Macroscopic quantities are defined by using the 2–dimensional version of the trapezoidal rule
in order to ensure that the even moments of the odd functions with respect to v vanish.

The derivative with respect to velocity which appears in the acceleration term is also solved by
the upwind type second order shock capturing schemes (see [30]).

3.5.2 Inversion of the Fokker-Planck operator

We have already discussed the discretization of the transport term. Now we focus on how to solve
fk+1 from (24), where the stiff term is treated implicitly. We need to invert the Fokker–Planck
operator. To this end, we follow the approach introduced in [37]. We write

Luf =
√

Mu L̃uh

with

h =
f√
Mu

, L̃uh =
1√
Mu

∇v ·
(

Mu∇v

( h√
Mu

))

.

Note that L̃u is symmetric for the standard L2 inner product
∫

RN

L̃uh g dv =

∫

RN

h L̃ug dv.

Accordingly, we set

hj;m =
fk+1
j;m

√

Mk+1
j;m

, L fk+1
j;m =

√

Mk+1
j;m L̃ hj;m.

The discrete operator L̃ is symmetric which allows to make use of the Conjugate Gradient algo-
rithm. In dimension two, the discrete operator L̃ is defined as follows

L̃ hj,j′;m,m′ =
1

∆v2

(

hj,j′;m,m′+1 + hj,j′;m+1,m −M
k+1

j,j′;m,m′hj,j′;m,m′ + hj,j′;m,m′−1 + hj,j′;m−1,m′

)

,

M
k+1

j,j′ ;m,m′ =

√

Mk+1
j,j′;m+1,m′ +

√

Mk+1
j,j′;m,m′+1 +

√

Mk+1
j,j′;m−1,m′ +

√

Mk+1
j,j′;m,m′−1

√

Mk+1
j,j′;m,m′

(36)
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which indeed leads to a symmetric matrix. Observe that L̃
(
√
Mk+1

)

j;m
= 0. Therefore, the

updating of the particles distribution function

(

1− ∆t

ε
L
)

fk+1
j;m = Sk

j;m

obeys the following rules:

• Solve the linear system
(

1− ∆t

ε
L̃
)

hj;m =
Sk
j;m

√

Mk+1
j;m

.

• Set fk+1
j;m = hj;m

√

Mk+1
j;m .

4 Numerical simulations

From now on we will use the following notations: x = (x, y) is the position variable, v = (v1, v2)
is the velocity variable, u = (u1, u2) is the fluid velocity and up = (up1, up2) is the macroscopic
particle velocity.

We apply the second order method described in Section 3.3. Unless otherwise specified, we
always use the following settings.

The computation is performed on (x,v) ∈ [0, 1]2× [−vmax, vmax]
2, with vmax = 8. The specular

boundary condition is applied on particle distribution f , while no-flip boundary condition is used
for fluid velocity u.

We take Nx = 128 grid points in each x direction and Nv = 32 grid points in each v direction.
We apply the van Leer type slope limiter on the discretization of the advection parts, and take
∆t = ∆x

5vmax
, which guarantees the stability.

We always take
f(0,x,v) = n(0,x)Mup(0,x)

as the initial data for particles distribution. Here up = J
n is the macroscopic velocity of particles.

Note that this is not necessary the equilibrium in the sense that Luf 6= 0 in (2) since we do not
require up = u.

We take κ = 2 throughout the simulations. However the schemes can be applied to the case
when κ is very large, without any difficulty.

4.1 Convergence Order

First we numerically check that the scheme described in Section 3.3 is indeed second order in ∆x
(therefore in ∆t). We start with the initial data

n(0,x) = 10−10 + exp
(

−80(x− 0.5)2 − 80(y − 0.5)2
)

,

up(0,x) =

(

sin2(πx) sin(2πy)
− sin2(πy) sin(2πx)

)

,

u(0,x) = up(0,x).

(37)

We compute the solutions on a grid of Nx ×Nx ×Nv ×Nv, with Nx = 16, 32, 64, 128 respectively.
As mentioned before, Nv = 32. After time tmax = 0.025 we check the following error,

e∆x(f) = max
t∈(0,tmax)

||f∆x(t)− f2∆x(t)||p
||f2∆x(0)||p

,

e∆x(u) = max
t∈(0,tmax)

||u∆x(t)− u2∆x(t)||p
||u2∆x(tmax)||p

.

(38)
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(b) Convergence of fluid velocity u.

Figure 1: The test of convergence order with initial data (37). This figure shows the l1 errors (38) in
particle distribution f (left) and l2 norm of fluid velocity u (right) with different ε.

This can be considered as an estimation of the relative error in lp norm, where f∆x and u∆x are
the numerical solutions computed from a grid of size ∆x = 1

Nx
. The numerical scheme is said to

be k-th order if e∆x ≤ C∆xk, for ∆x small enough.
Figure 1 gives the convergence order in l1 norm for particle distribution f and in l2 norm for

fluid velocity u. This shows that the scheme is second order in space (hence in time) uniformly

in ε for both particle distribution f and fluid velocity u, as expected.

4.2 AP Property

Now we check the AP property we proposed in Section 3.4. We take the volcano like initial data

n(0,x) = (0.5 + 100((x− 0.5)2 + (y − 0.5)2)) exp
(

−40(x− 0.5)2 − 40(y − 0.5)2
)

,

up(0,x) =

(

− sin(2π(y − 0.5))
sin(2π(x − 0.5))

)

exp
(

−20(x− 0.5)2 − 20(y − 0.5)2
)

,

u(0,x) = 0.

(39)

Therefore initially up 6= u and the equilibrium is not assumed. We apply the second order scheme
and perform the simulation until t = 0.5. In Figure 2, where ε = 1, we show the pictures of
particle density n, streamlines of particle velocity up and fluid velocity u at t0 (the initial time),
t1 (after one time step) and t450 (the end time). The streamlines of particles and fluid are totally
different. The particles expand to the whole square domain and are not significantly affected by
the circulating fluid. We show the same quantities in Figure 3 with ε = 10−5. In this case the drag
force between different phases is so strong that the particles also circulate in the square domain.
Besides, the expansion in particle density is decelerated by the fluid. The particles keep the volcano
shape well in this period of time.

At last, we check the time evolution of l1 distances ||f −nMu||1. Note that Mu is a Maxwellian
centered at the fluid velocity u. The result is shown in Figure 4. As expected, we have f −nMu =
O(ε) after one time step. This gives a direct evidence of the AP property we proposed.

4.3 Some Applications

Our schemes are easily extended to more complicated circumstances. In this section we apply
our schemes to several different problems. We also incorporate the Reynolds number into the
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Figure 2: Numerical simulation with initial data (39) for ε = 1. This figure shows the particle density
n (left column), streamlines of particle velocity up (middle column) and fluid velocity u (right column)
at t = 0 (upper row), t = ∆t (middle row) and t = 500∆t (lower row). The gravity is neglected.
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Figure 3: Numerical simulation with initial data (39) for ε = 10−8. This figure shows the particle
density n (left column), streamlines of particle velocity up (middle column) and fluid velocity u (right
column) at t = 0 (upper row), t = ∆t (middle row) and t = 500∆t (lower row). The gravity is
neglected.
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incompressible Navier-Stokes system in the usual way






∂tu+∇x · (u⊗ u) +∇xp−
1

Re
∆xu =

1

ε
κ

∫

(v − u)f dv,

∇x · u = 0.
(40)

The parameters in our simulation allow us to compute with Reynolds number up to Re = 1000
without trouble in stability. In the following simulation we will take Re = 1000. Larger Reynolds
number, which requires smaller mesh size ∆x for the sake of accuracy, is beyond the scope of this
work.

In section 4.3.1 the external force (the gravity) is considered. In section 4.3.2 a different bound-
ary condition is applied to the particle distribution f , while in section 4.3.3 we apply a different
boundary condition to the fluid velocity u.

4.3.1 Simulation of gravity driven flow

Now we consider the dam like initial data,

n(0,x) = 10−10 + 10≤x≤0.5,
up(0,x) = 0,
u(0,x) = 0.

In this case the movement of particles and fluid are initiated by the gravity. We include the external
force term ∇xΦ · ∇vf in our simulation, where Φ = gy with gravity constant g = 1. The particles
are uniformly distributed on the left hand side. As the simulation starts, the particles fall down
and cause the circulation of fluid.

Figure 5 shows the time evolution of particle density (left) when ε = 1, as well as the evolution
of streamlines of velocity of particles (middle) and fluid (right). In this case the drag force between
particles and fluid is not significant. The particles just fall down and cover the whole bottom. The
streamlines show clearly the behavior of particles is quite different from that of the fluid.

Figure 6 shows the time evolution of particle density when ε = 10−3. Now the drag force
between particles and fluid is stronger. The streamlines of particles and the fluid are similar all the
time. As time evolves, the particles fall down and drive the fluid to circulate counter-clockwisely.
Then the particles follow this circulation. Finally the particles settle at the bottom uniformly due
to the loss of energy.

Figure 7 shows the time evolution of particle density when ε = 10−8. In this case the drag
force between particles and fluid is so strong that the particles and the fluid always keep the same
pace. The solution behavior is quite similar to the case when ε = 10−3. But it has a much smaller
dissipation effect in the particle density. In fact, since ε is quite small, the composite density
(1 + κn) satisfies the INS system (10)((11)). The only diffusion effect in particle density is due to
the numerical dissipation.

4.3.2 Simulation of Injecting Problem

Now let us consider the situation when the particles are injected into the square domain. We take
the initial data as follows.

n(0,x) = 10−10, up(0,x) = u(0,x) = 0.

The injecting particle flow is described by the boundary condition on f ,

f(t,x,v) = 12≤v1≤3, if x ∈ Γ

where v1 is the first component of v. The entrance of flow Γ locates at the center of the left
boundary,

Γ = {(0, y)|0.45 ≤ y ≤ 0.55}.
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Figure 5: The time evolution of particle density (left) and streamlines of velocities of particles (middle)
and fluid (right) corresponding to the dam like initial data. The gravity is considered. ε = 1.
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Figure 6: The time evolution of particle density (left) and streamlines of velocities of particles (middle)
and fluid (right) corresponding to the dam like initial data. The gravity is considered. ε = 10−3.
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Figure 7: The time evolution of particle density (left) and streamlines of velocities of particles (middle)
and fluid (right) corresponding to the dam like initial data. The gravity is considered. ε = 10−8.
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We perform the simulation with different ε. In Figure 8 we show the particle density (left) and
streamlines of particle velocity (middle) and fluid velocity (right) at time t = 5. We ignore the
gravity effect.

In Figure 8(a), where ε = 1, the particles spread to the right end of the domain. The streamlines
of fluid and particles are quite different, which suggests the interaction between them are not
obvious.

In Figure 8(b), where ε = 10−3, the spreading of particles to the right end is decelerated by the
strong drag force from the fluid. A mushroom-shape front is formed. The streamline of particles
and fluid are similar to each other, with visible difference.

In Figure 8(c), where ε = 10−6, a similar mushroom-shape front is formed, with a lower spread-
ing speed. The streamline of particles and fluid are quite close to each other.

4.3.3 Simulation of Cavity Flow

Finally we apply our scheme to cavity flow. The cavity flow happens in a wide range of area, for
example, the car sunroof and aircraft landing gear well.

We simulate the fluid flowing past an open cavity. Initially the cavity is full of rest fluid and
the particle sediments are resting near the bottom corner of the cavity. The outside fluid flows past
the opening of the cavity with a constant velocity, which drives the inside fluid circulating in the
cavity. For simplicity we assume that the particle cannot escape the cavity, although our scheme
can be easily generalized to the case when this escape happens.

We give the initial and boundary conditions corresponding to this description,

n(0,x) = 10−10 + 10≤x≤0.5,0≤y≤0.5,
up(0,x) = 0,
u(0,x) = 0.

with

u(t,x) =

(

1
0

)

, if y = 1.

We need to modify (19) accordingly to incorporate this boundary condition.
We take ε = 10−8 and neglect the gravity effect. The simulation is performed with Reynolds

number Re = 1000. Figure 9 (left) shows the time evolution of particle density distribution until
t = 16. The particles move along the streamline of fluid and circulate in the cavity. A second
circulation is observed in the right corner.
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(b) ε = 10−3.
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(c) ε = 10−6.

Figure 8: The particle density (left), streamlines of velocities of particles (middle) and fluid (right) at
t = 5 for the injecting problem, with different ε. The gravity is neglected.
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Figure 9: The time evolution of cavity flow, with Reynolds number Re = 1000. Here ε = 10−8. The
gravity is neglected. Left: the particle density; Middle: streamlines of velocities of particles (middle);
Right: streamlines of velocities of fluid (right).
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