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ABSTRACT

The recent success of immunotherapies for the treatment of cancer has highlighted the importance of
the interactions between tumor and immune cells. Mathematical models of tumor growth are needed to
faithfully reproduce and predict the spatiotemporal dynamics of tumor growth. We introduce a math-
ematical model intended to describe by means of a system of partial differential equations the early
stages of the interactions between effector immune cells and tumor cells. The model is structured in
size and space, and it takes into account the migration of the tumor antigen-specific cytotoxic effector
cells towards the tumor micro-environment by a chemotactic mechanism. We investigate on numeri-
cal grounds the role of the key parameters of the model such as the division and growth rates of the
tumor cells, and the conversion and death rates of the immune cells. Our main findings are two-fold.
Firstly, the model exhibits a possible control of the tumor growth by the immune response; never-
theless, the control is not complete in the sense that the asymptotic equilibrium states keep residual
tumors and activated immune cells. Secondly, space heterogeneities of the source of immune cells can
significantly reduce the efficiency of the control dynamics, making patterns of remission-recurrence

appear.

1. Introduction

Cancer development is the consequence of an accumula-
tion of mutations that leads to the deregulation of a relatively
restricted number of key pathways, enough for tumor forma-
tion and progression. Tumors grow not only because of the
genetic and epigenetic changes that confer a growth advan-
tage, but also under the control of immune cells within the
tumor microenvironment [19, 29]. Experimental and clini-
cal evidences indicate that the immune system plays a criti-
cal role in the prevention and the eradication of tumors, see
e. 2. [19, 24, 44, 54, 55].

The genetic alterations in the tumor trigger the expres-
sion of neoantigens and upregulation of ligands of activating
natural killer (NK) cell receptors which provides the immune
system a basis to engage an immune response. In an effi-
cient anti-tumor immune response, neoantigens are captured
by Antigen Presenting Cells (APCs) such as Dendritic Cells
(DCs) which activate naive/resting T'-cells in secondary lym-
phoid organs draining the tumor site. As a result, activated
and proliferating C D81 and C D4 effector T-cells will mi-
grate towards the tumor micro-environment where they can
eliminate tumors. This loop is known as the cancer immu-
nity cycle, see [9]. Nonetheless, this cycle is subjected to
many impediments. Succinctly, tumor antigens can be treated
as self-antigens and lead to the priming of regulatory T'-cells
responses inhibiting effector responses [52]; tumor cells can

*Corresponding author
$4 kevin.atsou@inria. fr (K. Atsou); anjuere@ipmc.cnrs. fr (F.
Anjuére); braudeipme.cnrs. fr (V. Braud); thierry.goudon@inria.fr (T.
Goudon)
ORCID(S): 0000-0003-3144-8652 (F. Anjuere); 0000-0001-8213-3947 (V.
Braud)

produce inhibitory cytokines such as IL-10 or IL-4 (Inter-
leukin 10 or Interleukin 4) which diminish the inflammation
and lead to anergic and tolerant T'-cells [33, 46]; tumors also
express proteins such as PD-L1 which can bind to the PD-
1 receptors on activated T-cells, inhibiting their cytotoxic
activity [34]. Effective immune responses are thus counter-
balanced by the activation of a myriad of immunosuppres-
sive strategies [49]. The interactions between tumor cells
and the immune cells rely on highly complex mechanisms,
that lead to divide the immune response to cancer into three
different phases: elimination, equilibrium, and escape [19].
In this context, the design of an efficient treatment by en-
hancing the immune response, also called immunotherapy,
is challenging.

Mathematical models might help to understand the inter-
play between tumor growth and the immune response [12,
15, 20, 37, 50]. These models can even be completed in or-
der to also describe and optimize the action of chemother-
apy treatments and strategies to boost immune responses [2,
57]. However, most of these models are based on quite so-
phisticated ordinary differential equations (ODEs) systems,
and do not take into account space heterogeneities, and the
displacement capabilities of the immune cells. Many mod-
els also do not consider in details the uncontrolled cellular
division at the origin of the tumor growth. These are the
questions we address, by proposing a description based on
size and space structured interacting cell populations. In
this model, more specifically intended to describe the early
stages of the tumor growth, the displacement of the immune
cells is governed by chemotaxis, according to signals emit-
ted by the tumor. The construction of the coupled partial
differential equations (PDEs) system is based on a set of
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modeling assumptions, detailed in Section 2.1 below. These
simplifying assumptions can be questionable, but they are
intended to keep the most relevant mechanisms with a sys-
tem of equations as simple as possible. The modeling dis-
cussion is particularly driven by the following concerns: (1)
to have at hand a model affordable for numerical simulation
without a too important computational cost, (2) to reduce the
number of parameters: considering more intricate phenom-
ena would require to introduce further parameters, but their
role can make the discussion more obscure, due to a lack of
knowledge of their effective value, and difficulty in having
access to measurements [21].

The paper is organized as follows. In Section 2.1, we
collect the modeling assumptions and in Section 2.2 we set
up the model, which couples a convection-diffusion equa-
tion for the immune cells to a growth-fragmentation equa-
tion for the tumor cells. An overview of the main ques-
tions that are addressed with the model can be find in Sec-
tion 2.3. Section 2.4 presents the mathematical insights on
the equations, bringing out the capability of controlling the
tumor growth, through an interpretation by means of identi-
fication of eigen-elements. The main result means that the
tumor stops expanding, but it does not disappear entirely:
a cancer-persistent equilibrium is reached between the tu-
mor and the immune system, a phenomenon which has been
clinically observed [10, 19, 38]. The theoretical statement
assumes certain technical conditions, say on the smallness
of the rate of tumor cell division, but we are not able to de-
cide whether or not this technical restriction is necessary.
Next, we investigate the features of the model on numeri-
cal grounds in Section 3. We check numerically the ability
of the immune system to control tumor growth, in agree-
ment with the theoretical result. We pay a specific atten-
tion in identifying the leading parameters that govern the
immune response efficiency, which could be important to
guide therapeutic strategies. Our simulations also reveal the
importance of space-structuration: space heterogeneities of
the sources of naive immune cells, that provide, once acti-
vated, the tumor-specific cytotoxic effector cells eliminating
the tumor, dramatically influences the immune response effi-
ciency. Replacing the homogeneous distribution of immune
cells by a few spots makes the immune response less effi-
cient. Instead of the control of the tumor, that would be kept
at a fixed mass, what we can observe is a periodic succession
of rapid growth and remission phases.

2. Mathematical model

2.1. Modeling assumptions
We take into account two populations of interacting cells:

e the tumor antigen-specific cytotoxic effector cells in-
cluding C D8* T-cells and natural killer (NK) cells,

e the tumor cells.

The specific biological assumptions we consider to construct
the model are based on the behavior of the effector cells in

the micro-environment of a growing tumor and on the key
phenomena governing tumor cell growth:

A.1 environmental constraints such as nutrient concentra-
tions, temperature, etc. are assumed to be constant;

A.2 the states of the tumor cells are characterized by their
size (or, equivalently, their volume or their mass);

A.3 the growth rate of a tumor cell is a deterministic pro-
cess: in absence of an immune response, each tumor
cell grows with a certain rate which might depend on
its size;

A.4 when a tumor cell reaches a certain size, the so-called
“fission size”, it divides into daughter cells, usually
two identical cells, at a certain rate;

A.5 each tumor cell induces a signal, for instance of chem-
ical nature, which is related to the tumor antigenicity:
the higher the mass of the tumor and the higher the
antigenicity, the higher the amplitude of the signal;

A.6 the tumor antigen-specific C D8 T-cells are recruited
and activated by APCs and the NK cells are recruited
and activated by tumor cells from a bath of non-activa-
ted immune cells; the recruitment is characterized by
a certain rate driven by the presence of tumor cells;

A.7 the activated tumor antigen-specific C D8% T-cells and
the NK cells migrate towards the tumor micro-environ-
ment by chemotaxis: they follow the gradient of a po-
tential induced by the overall tumor-derived signals;

A.8 activated tumor antigen-specific C D8* T-cells and NK
cells which reach the tumor induce the death of the tar-
geted tumor cells;

A.9 the tumor microenvironment is not immunosuppres-
sive.

Let us discuss these assumptions, with possible hints for fu-
ture developments of the modeling:

e assumption A.1 makes sense as far as we model very
early stages of tumor development. For the same rea-
son, hypoxia effects are neglected.

e assumption A.2 is quite restrictive. As it will be de-
tailed below, we completely neglect any geometrical
effect. It is likely that such a modeling only makes
sense in the early stages of the tumor growth, when
the size of the tumor remains small. Reasoning with
the size of the cell is convenient to guide the intuition,
but we can similarly work by characterizing the cells
by the amount of cyclin complexes they contain; this
leads to the same kind of equations, see [5, 6]. More-
over, many other factors can be relevant to character-
ize the state of a tumor cell: mutation rate, weight,
age and access to nutrients, etc. It would be possible
to incorporate more degrees of freedom, but it would
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also raise the issue of the access to the corresponding
governing parameters. For this reason, it is unclear
that incorporating further details will make the model
more accurate.

e assumption A.3 can be modified by introducing some
stochasticity in the growth process.

e similar considerations apply to assumption A.4, which
can take into account random effects, or depend on
further variables.

e assumptions A.5, A.6 and A.9 are restrictive too: the
model is set to be in the most favorable situation to
eliminate tumors but other immune cells are also in-
volved. Animportant role is played by activated C D4+
T cells, mostly by the IFN-y they secrete. CD4* T-
cells participate to the activation of NK cells and C D8*
T-cells. But, if on the one hand the activated C D4*
T-cells are stimulating the proliferation of C D8% ef-
fector T'-cells, on the other hand, they can be con-
verted into regulatory T'-cells and thus limit antitumor
immunity. Consequently, the immune system not only
act to suppress tumor growth, but it has both stimula-
tory and inhibitory effects and it might fail in control-
ling some growing tumors, due to immunosuppressive
mechanisms triggered by the tumor [10, 49, 58]. The
modeling of such immunosuppressive mechanisms will
be addressed in a forthcoming work. Moreover, as the
tumor grow, it itself becomes more heterogeneous un-
der the mutation dynamics, which, in turn, activates
various cytotoxic responses.

2.2. Construction of the model
The model uses two distinct length scales:

e the length scale of the displacement of the immune
cells. Let us denote [ L] the corresponding unit (typi-
cally in mm). Immune cells thus occupy a certain po-
sition, denoted by x and measured with [L].

o the length scale of the tumor cells. Let us denote [/] its
unit (typically in gm). Tumor cells have a certain vol-
ume, hereafter denoted by z, measured with the unit
(113 (typically pm?).

This modeling assumes that the length scale associated to
the displacement of the immune cells is “infinitely large”
compared to the length scale associated to the size of the
tumor cells. It is consistent with the fact that we neglect any
effects due to the geometry of the tumor, which is not sen-
sitive at the scale of the displacement of the immune cells.
The interactions between the tumor and the immune system
are described by the evolution of the following unknowns:

Tumor cell density. The population of tumor cells is struc-
tured by the volume variable: (¢, z) — n(t, z) stands for the
volumic density of tumor cells. Let [cell,] denote the unit
measuring the number of tumor cells. The density » is then
measured in [cell, ] - [/173. Given two volumes Zy> 21 >0,

the integral fz 7;2 n(t, z)dz gives the number of tumor cells
having a volume in the interval [z, z,] at time .

The cytotoxic effector cell concentration. Let us denote
(t,x) — c(t,x) the concentration of immune cells that are
actively fighting against the tumor (it thus includes C D8*
T-cells and NK cells) at time ¢ and position x. Let [cell,.] be
the unit measuring the number of immune cells. Then ¢ is
measured in [cell ] [L]73. (We will perform the simulations
by restricting to the two dimensional framework, assuming
homogeneity in the third direction; the necessary adaptation
are left to the reader.)

2.2.1. The tumor growth and division

At the macroscopic scale, the tumor is seen as a punc-
tual mass, located, say, at the center of the region of inter-
est (x = 0). The model can be easily extended to take into
account multiple tumor sites. Tumor cells proliferate in an
uncontrolled manner due to a loss of checkpoints of the cell
cycle and they proliferate massively by staying in the mito-
sis phase of the cell cycle. Neglecting for the time being the
interaction with the cytotoxic cells, the evolution of the tu-
mor results from two phenomena: a natural growth and the
division of mature tumor cells into daughter cells.

Let z = V(z) > 0be the natural, possibly size-dependent,
growth rate of the tumor cells. With the time variable t mea-
sured in [f] (typically in day), V' is measured in [P -7t
At the early stages of tumor growth, see assumption A.1, V'
can be assumed constant. More intricate growth laws are
presented in Appendix A.

The cell division mechanism is embodied into an opera-
tor

(s3]
O(n)(t, z) = —a(z)n(t, z)+/ a(zk(z|Z)n(t, 2y dz'. (1)
V4
where the gain term accounts for cells with size z produced
by the division of larger cells, and the loss term is related
to the division of cells with size z. The division process is
governed by two quantities: the frequency a(z’) of division
of cells having size z’, thus measured in []71, and the dis-
tribution in size k(z|z") of products from the division of a
tumor cell with size z’. Tt is likely that the parameter of the
division process depends on the size variable. For instance,
division frequency might vanish for the smallest cells, which
means a(z) = 0for 0 < z < z(, and then be a non decreasing
function of the size. The kernel k satisfies the fundamental

identity [41]

V4
/ Z'k(Z'|z2)dZ = z. 2)
0
It implies the following mass conservation property

/°° zQ(n)(t,z)dz = — /00 za(z)n(t, z)dz
0 0

+/°oa(z’) (/z zk(z|Z") dz) n(t,z')dz'
0 0
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For further purposes, let us introduce the expected number of
cells produced from the division of a cell with size z, defined
by
_ V4
N(z) = / k(Z'|z)dzZ. ?3)
0
It is supposed to be larger than 1. Then, cell division changes
the total number of cells by an amount given by

/00 On)(t,z)dz = /OO(J\_f(z) — Da(z)n(t,z)dz > 0.
0 0

Finally, the evolution of the population of tumor cells is driven
by the PDE

0 0

—n(t,z) + —(V(2)n(t, 2)) = Q(n)(1, 2). “

ot dz
referred to as a growth-fragmentation equation [41]. This
type of integro-differential equation is quite common in ma-
terial science and in biology [17, 18, 27, 47]; see also for
specific applications to tumor growth, possibly taking into
account several compartments, [5, 6]. Equation (4) is com-
pleted by the initial distribution of tumor cells

&)

n = ny,

1= 0
and a boundary condition. Hereafter, we assume that the
size variable ranges over the whole interval (0, +00), and the
boundary condition excludes the creation of cells with vol-
ume 0O:

n(t,0) = 0. (6)

Division and growth can be seen as competing mecha-
nisms: the latter increases the size of the cells, while the
break-up described by the former creates new smaller cells
from the large ones. This can be understood by considering
the evolution of the total number of tumor cells in the tumor
Ho(?) and the total volume of the tumor y(¢), respectively
given by

Ho(t) = /oo n(t,z)dz, @ = /°° zn(t,z)dz. (7)
0 0

Integrating (4) and using the boundary condition (6) yields

§u0<t)= /0 (N'(2) - Da(2)n(t,2)dz >0, (8)
and

4= / " V(2)n(t, z)dz > 0. )
0

dr
Equation (8) tells us that the total number of cells in the tu-
mor increases due to cellular division processes. However,
division does not influence the total volume of the tumor: we
see with equation (9) that the increase of the total volume of
the tumor is only due to the growth rate V' > 0. We refer the
reader to Appendix B (Table 2) for details about units and
parameters for the tumor growth model.

Binary Division. A relevant example is provided by the
case of binary division, where a cell with volume z splits
into two cells, with respective volumes az and (1 — a)z,
a € (0,1/2] being a division parameter. The correspond-
ing kernel reads

1 1
k(z'|z)= =6z + ———6_ =
(=12) a “Ta (l-a) *TTa
and the division operator becomes

—a(z)n(t, z) + é"(g)n<t’ g (10)

a

el =)

l—a \1-a 1—a/’

Assuming the symmetry of the division process imposes a =
1/2 in (10), and the division operator is given by

om(t,z) =

O(n)(t, z) = 4a(2z)n(t,2z) — a(z)n(t, z). arn

Further relevant examples of division kernels can be found
in [18].

2.2.2. Evolution of the cytotoxic effector cell
population
The immune cells occupy the space domain Q C R3.
The evolution of the tumor antigen-specific cytotoxic effec-
tor cell population is driven by the mass balance principle,
which leads to the local balance law

o,c+V-J=8.

Gains and losses of cytotoxic effector cells result from two
phenomena, which shape the expression of the flux J and the
source S. Firstly, activated cytotoxic NK and T-cells, which
can eliminate tumor cells, are extracted from a bath of non-
activated immune cells. According to assumption A.6, the
conversion of these immune cells into tumor antigen-specific
effector cells depends on the mass of the tumor cells, the
quantity we have already denoted g (¢). The description of
the recruitment process involves

e (t,x) — S(t, x), the space distribution of the source of
immune cells (measured in [cell,] - [L]‘3). We shall
observe different behaviors of the system depending
whether the source .S is constant or space-inhomoge-
neous.

e p, the, possibly space-dependent, rate at which NK
and T-cells are activated (measured in [¢]71). It takes
into account the antigenicity of the tumor cells.

e adimensionless factor y; — g(u) that describes how
the presence of tumor cells stimulates the production
of new effector cells and the conversion of immune
cells into effector cells or their recruitment. Hence,
we naturally have g(0) = 0. Since we are treating
early stages of tumor growth, we can use a mere lin-
ear relation. However, it can be relevant for longer
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term interaction to impose a threshold on the recruit-
ment process [58]. Such a saturation effect is usu-
ally taken into account with a Michaelis-Menten law
[12, 39, 37], which leads to

Hi
B+u’

where f is the steepness coefficient of the immune cell
recruitment, measured in [cell,] like ;.

gl = (12)

Secondly, the tumor antigen-specific cytotoxic effector cells

die at a certain rate, denoted by y. This rate can be space-

dependent, or y;-dependent; it is measured in []7!. In what

follows, we will always assume that y > 0 is constant.
Therefore, we get

S = g(u)pS —ye.

We turn to the description of the tumor antigen-specific
cytotoxic effector cells displacement. The motion of the cy-
totoxic effector cells results from two distinct phenomena.
On the one hand, they follow a random walk process, that can
be considered as a Brownian motion, which makes the popu-
lation of activated immune cells spread in the whole domain.
It is characterized by the coefficient x — D(x), measured in
[L])? - [f]7'. Tt can be space dependent and matrix-valued,
in order to describe for instance different tissues or tissues
where the displacement is easier in certain directions than in
others. The details of the migration process can play a criti-
cal role in the anti-tumor immune surveillance. For instance
in [51], it is reported that the fibers of the extracellular ma-
trix control the trajectories of the cytotoxic effector cells in
human lung tumors and the geometrical effects can restrict
the amount of these cells infiltrating the tumor. On the other
hand, a displacement towards the tumor is governed by the
tumor cells antigenicity: according to assumptions A.5 and
A.7, the activated NK and T -cells follow the gradient of a
potential, that we denote ¢(¢, x), induced by the tumor anti-
gens. The directed movement of the NK and T-cells in re-
sponse to the signal induced by the tumor is conditioned by
the sensitivity of their membrane receptor, embodied into
a factor denoted y. It might be possible to assume that y
depends on the attractive potential ¢, for instance to model
the fact that cells do not detect signals that are too weak or
too high. We can find more details about such chemotactic
mechanisms in [30, 31, 32, 36]; the role of such effects in
the immune response to tumor growth is already pointed out
in [40]. Gathering these information, we have

J= cxV,¢ - DV.c, (13)
—— ——
convection by chemotaxis  diffusion

where the chemotactic velocity yV, ¢ is measured in [L] -

[~

Finally, the concentration of tumor antigen-specific cy-
totoxic effector cells obeys the PDE

0,c+V, - (cyV,¢p—DV. c)=g(u)pS—yc. (14)

It is endowed by the initial data
c|t:0 = ¢, (15)

and the homogeneous Dirichlet condition

c =0, 16
|aQ (16)
which means that the immune cells far from the tumor are
non-activated.

2.2.3. The tumor-induced attractive potential

The attractive potential ¢ is induced by the presence of
tumor cells. Every tumor cell with size z produces a cer-
tain chemical signal, according to a form function o(x, z).
Having in mind the chemical nature of the signal, the attrac-
tive potential can be measured in number of chemoattractant
molecules, with a unit denoted by [mol]. Accordingly, the
coefficient y will be measured in [L]?-[¢]~! - [mol] and & in
[mol] - [cell, ]~ - [1173[t]~'. The chemoattractant molecules
are subjected to a natural diffusion, depending on a coeffi-
cient X (measured in [L]? - [f]!). We can simply assume
that £ > 0 is a scalar constant, but it could be a matrix-
valued function of the space variable as well. The source of
the attractive potential is given by the sum of all the chemical
contributions of the tumor cells, which leads to the equation

-V - (KVep)(x) = /00 zn(t, z)o(x, z)dz, 17
0

with a given matrix-valued function x € Q — K(x) (verify-
ing0 <k, <KX)E-E<k* <ooforany x € Q, & € S?).
If the form function o does not depend on the size variable,
this becomes

=V - (KV@)(x) = 6(x)p; (1) 18)

The equation is set on the domain € and needs to be com-

pleted by boundary conditions. We can choose Dirichlet
boundary conditions ¢p| = 0. However, it is more relevant
to consider instead the homogeneous Neumann condition,
which tells us that the flux of chemoattractant vanishes on

the boundaries of the domain
KV .- vjm =0. (19)

In this case, (17), or (18), is not consistent with the boundary
condition: the right hand side should be replaced by

/°° zn(t, z)o(x, z)dz— €L / /°° zn(t, z)o(x, z)dz dx
0 12l Ja Jo

the mean of which vanishes. In what follows we shall con-
sider constant coefficients K and o. Space inhomogeneities
can be relevant to describe different conductive or sensitivity
properties depending on the tissues.
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2.2.4. Effect of the immune system on the tumor

According to assumption A.8, when the tumor antigen-
specific cytotoxic effector cells reach the tumor micro-envi-
ronment, they release cytotoxic substances which eventually
leads to the death of the tumor cells. This effect is described
by adding a death term in the tumor growth model (4), which
becomes

on+0,(Vn)=Q(n)— m(c,n). (20)

It is natural to suppose that m(c, n) vanishes if either ¢ or
n vanishes. The expression of the death term involves a
non negative space-dependent weight x — 6(x), measured
in [cell,] - [cell ]7! - [¢]7! - [1]73, which incorporates both
the strength of the immune response and a radius of interac-
tion. This weight might equally depend on the tumor volume
t = p,(t). Inspired from [37] the death term can be modeled
by Michealis-Menten kinetics:

_ 1y_nt2
me,n)(t, 2) = /Q‘S(y et dyx Xy

21
with &, @’ > 0, but we shall also work with a linear expres-
sion (which amounts to set @’ = 0). Further details on the

units of the parameters of the equations can be found in Ap-
pendix B (Table 3).

2.3. Summary and workplan
The general interaction model we are dealing with thus
reads (fort >0,z >0, x € Q)

(0,n + 0,(V'n) = O(n) — m(c, n),
0,c+V, - (cyV,¢— DV, c)=pg(u)S —vyc,

zn(t, z)o(x, z)dz

-V (KVg) = /

0
1

-—— // zn(t, z)o(x, z) dz dx,
12 Ja Jo
n(,0)=0fort > 0,

(22)
n(t =0, z) = ny(z) for z > 0,
c(t,x) = 0 for x € 092,

c(t =0,x) = cy(x)for x € Q,

(V¢ - v =0for x € 0Q.

We remind the reader that the cell division operator Q(n) and
the immune cell-tumor interaction term m(c, n) are defined
in (1) and (21) respectively. We refer the reader to Tables 2
and 3 where the biological meaning of the unknowns and of
the parameters is recapitulated.

We shall see that the model (22) is able to reproduce equi-
librium states, where the tumor and the effector cells are in a
dynamic balance, and we will provide a mathematical justifi-
cation of this fact (see Theorem 2 below). In the equilibrium
phase, as pointed out in [19], tumor cell proliferation appears
to be controlled by the immune system and we address on
numerical grounds the effects that influence this control. In

particular, the mass of the residual tumor and the speed of
convergence to the equilibrium state can vary significantly
with the parameters of the model. Accordingly, we particu-
larly challenge the following effects:

e dealing with a space-structured model gives access to
new phenomena: we will compare the homogeneous
distribution of the source of naive immune cells to the
case where the cells are heterogeneously distributed
at a certain distance of the micro-environment of the
tumor.

e it is important to determine how the parameters influ-
ence the dynamics, not only through their strength, but
also depending whether or not they depend on the size
or space variables: On the one hand, the aggressive-
ness of the tumor can be tested by acting on the growth
rate V" and on the division rate a of the tumor cells. On
the other hand, the efficiency of the host immune sys-
tem depends on the activation rate p, the death rate y,
the immune strength 6 and the migration of NK and T'-
cells towards the tumor microenvironment. Note also
that immunotherapy can modify these parameters, for
instance by improving tumor elimination through in-
creasing cytotoxic strength (that can be achieved by
acting on anti-immune checkpoint like PD-1) [58], by
fostering T'-cells enrichment, as a consequence of the
depletion of Grl+ cells, or by blocking myeloid sup-
pressor cell recruitment to the tumor site [23, 28, 35].

e as said above, saturation effects can be taken into ac-
count in both the conversion process of immune cells
into tumor antigen-specific cytotoxic effector cells and
the death of tumor cells by these cytotoxic cells. We
will discuss the role of these saturation effects on the
dynamics, comparing the saturated and non-saturated
models in Appendix D.

2.4. A few mathematical comments

This Section aims at providing an intuition on the be-
havior of the solutions of (22), based on mathematical argu-
ments. First, with some simplifying assumptions, the equa-
tions can be reduced to a mere ODEs system, which admits
stationary solutions. The stability analysis helps in under-
standing the role of the parameters of the model. Second, by
means of eigen-elements of the cell division equation, we
identify a scenario which reproduces the equilibrium phase
of the tumor-immune interaction [19].

2.4.1. A simplified model: damping and oscillations

Under some restrictive assumptions, we can obtain a clo-
sed set of ODEs by integrating (22) over the size and space
variables. This (oversimplified) situation shed some light on
the role of the parameters. Let us consider the very specific
case where

e the source S of immune cell is constant,

e all parameters V, 6, p, K are constant,
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e ¢ does not depend on the size variable,

e the interactions are non saturated: m(c, n) = én fg cdy,
and g(u;) = py,

e we consider the binary division model, as described
in (11), with a constant frequency a.

Moreover, we replace the homogeneous Dirichlet boundary
condition (16) for the NK and T -cells by the Neumann bound-
ary condition

Ve v =0.

0 (23)

These assumptions clearly lack of biological relevance. For
instance, assuming that a and 6 are constant means that any
tumor cell has the same division rate a, irrespective of its
size, and any effector cell acts the same way on the tumor,
irrespective of its position in the domain Q. The resulting
model reads

-

(6tn + 6Z(Vn))(t, z)

= —an(t, z) + 4an(t,2z) — on(t, z)/ c(t,y)dy,
0,c+V, - (cyV,¢p—DV c)=pusS - yc,Q
< -KA¢p = ui{o),

n(t =0, z) = ny(z), c(t =0,x) = cy(x),

n(t,0) =0, Ve vt )| =0 Vi vt -)|aQ =0,
‘ (24)

where we use the shorthand notation (¢) = ¢ — él [Q o dx.
As simple as it appears, this model can provide useful hints
on the qualitative features of the original PDEs system. In
this simple framework, the dynamics can be understood by
considering a reduced system of ODEs. Indeed, we obtain a
closed system of equations for y, 41, given by (7), and the
total number of active immune cells

yc(t)=/c(t,x)dx.
Q

We get
d
= —6u),
Mo = o (a—dn)
d
il Vg —ouypc, (25)
d
e ZpSH = ¥V U
The states
ya®
H UH
U 0 H sV pS
9{ =lo ?]H — g )/[f)
U7 ol bu| ™| 7ops
p! 0 u M &
1)

are equilibrium solutions of (25). The former corresponds
to an healthy state, the latter to a stationary state with resid-
ual tumors and immune cells. For the unhealthy state, the
more important the bath of immune cells or the recruitment
probability, the lesser the tumor mass; the more agressive
the tumor (with a higher division rate a) or the weaker the
immune system, the higher the tumor mass.

The Jacobian matrix evaluated at the equilibrium points reads

2
a 0 0 0 —,J,a S
F L N L S 2
0 #zpS -y zpS
0 #pS -y

respectively. Therefore, as far as the cell division is active
(a > 0), JH has a positive eigenvalue and the healthy state is
unstable. For the unhealthy state, the characteristic polyno-
mial is p(A) = =43 — (a+7)A? —2ay A—ya®. We distinguish

. . h f i 11s
two cases, driven by the ratio £ (= dcathrate of immune cells
a tumor cells division rate

e if y > 4a, the eigenvalues are real; they are given by
1
b= (~Vrr=4a-7).
1
and A3 = 3 (\/Y(V —4a) —7/>,

and they are all negative.

j’l = —a,

e if y < 4a, the eigenvalues have an imaginary part:

Ay==a, L= % (—iVY(4a—}’)—7>,
and/13=%(i\/m—7),

but all the real parts are negative: 4; < 0, Re(4,) =
Re(43) = —% <0.

Therefore, the unhealthy state is always stable. The asymp-
totic behavior of the solution depends only the ratio y/a:
y = 4a is a threshold between a purely damped behavior,
see Fig. 1 and 2-(a), (b), (c), and an oscillatory behavior (the
greater the cell division, the faster the oscillations), see Fig. 1
and 2-(d), (e), (f). These oscillations thus appear when the
tumor is more aggressive, while the damping rate is driven
by the immune efficiency.

2.4.2. Existence of equilibrium phases

Let us go back to the growth-fragmentation equation (4),
with a general division process described by (1), with possi-
bly size-dependent division frequency z +— a(z) and growth
rate z — V (z), respectively, neglecting for a while the im-
mune response. The large time behavior of the cell divi-
sion equation is described by means of eigen-elements of
the transport-division operator. Namely, we seek a positive
function z > 0 » N(z) > 0 and a positive number 4 > 0
such that

0,(VN)—Q(N)+ AN =0forz >0,
+o0
N@0)=0, N(z) >0 forz >0, N(z)dz =1.

0
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Figure 1: Typical behavior of the solutions of (25). The data are: ¥V = 0.616, § = 0.5,

p=4.66, S =6.38 (x-axis: time, y-axis: y;, mass of the tumor, and p_, the total number
of active immune cells).
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Figure 2: Typical phase portraits (u,, p#,) of (25) for different initial tumor mass. The data
are: V' =0.616, 6 =0.5, p=4.66, S =6.38

(26) (H1) a € L*®((0, c0)) and there exists z, > 0,a* > a, >0
The analysis of this eigen-problem requires some technical

such that 0 < a(z) < a* forany z > 0,0 < a, < a(z)
forany z > z,,

assumptions. For instance, when the growth rate V" is con-

stant, we suppose:
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(H2) k(z|z") > 0, k(z|z') = 0 when z’ < z and
/ zk(z|z))dz = 7'.
0

These assumptions ensure the existence-uniqueness of the
eigenpair (4, N), satisfying (26), see [42] and the textbook
[47, Theorem 4.6] which indicates further connections with
the renewal equation. The case where the growth rate V' is
non-constant is addressed in [18]; the assumptions neces-
sary for the analysis are collected in Appendix A. Then, it
can be shown that n(#, z) behaves as time becomes large like
e’ pN (z), where p > 0 is entirely determined by the initial
condition ng: see [43] where this result is established by us-
ing relative entropy techniques (and [14] for a very similar
problem arising in tumor growth modeling too).

The precise expression of the eigen-function N is not
explicitly known in general. Nevertheless, for the specific
kernel of symmetric binary division, see (11), with a con-
stant division rate we have detailed information, as shown in
[4], see also [48] and [47, Lemma 4.1].

Lemma 1. Let Q be defined by (11) with a constant division
rate a > 0. Let V be a positive constant. Let (an)nGN be the
sequence defined by the recursion

ag = 1,

Then the function
N@ =N Y (=1'a,exp (271 22),
() ,,=0( ), exp v z

with N > 0 an appropriate normalizing constant, belongs
to the Schwartz class §(R™) and is the unique solution of
(26), where A = a.

The shape of the profile is governed by the ratio % (=
division rate

growth rate

rate (resp. the higher the growth rate), the more spread the
profile. According to the intuition a large growth rate pro-
motes the formation of large tumor, a large division rate fa-
vors the proliferation of small cells.

This (semi-)explicit formula will be used to check nu-
merically the behavior of the coupled problem when it tends
to a stationary state. For general fragmentation kernels, we
can obtain the following relation: integrating (26) over z €
(0, o0) yields

), as illustrated by Fig. 3: the smaller the division

A= / ooQ(N)dz = / oo(J\'f(z) — Da(z)N(z)dz
0 0

with N defined in (3) (which tells us that A = a for (11)
with a constant division rate). Similarly, considering the first
order moment of the equation, we get

/00 VN(z)dz
o000

/ zN(z)dz
0

A= 27

Equilibrium solution

Figure 3: Shape of the leading eigen-function of the growth-
division equation for several values of < (x-axis: z, size of the
tumor cells, y-axis: number of tumor cells at the final time)

Now, we turn back to the coupled system (22): these con-
siderations will be crucial to discuss the large time behavior
of the system. Precisely, we consider the version where

e there is no saturation in the death rate induced by the
interaction,

e ¢ depends only on the space variable x.

Namely, we have

on+0,(Vn)=Q(n) - n/ 6(x)c(t, x)dx
Q
0ic + V- (xcVydp — DV ) = pg(uy)S — e,
1 Vi (KV, @) = py(o)
n(t =0,z) =ny(z), c(t =0,x) = cy(x)

n(t,0) = 0, c(t, -)|dQ =0, KV, ¢, -)‘m = 0.

\

Here, we assume

e K, D are bounded matrix-valued functions defined on
Q, that verify a uniformly elliptic condition,

e V', aand k are such that (26) admits a unique solution,

e g :[0,00) > [0,00)isaC! increasing function such
that g(0) = 0,

e x — pS(x)and x — o(x) are non negative functions
that belong to L*(Q).

We observe in the numerical experiments that in many situ-
ations, a non proliferation state can be reached and the inte-
gral fg 6(y)c(t, y) dy tends to a constant. We wish to provide
a mathematical explanation of this phenomenon, which cor-
responds to the equilibrium phase clinically observed [10,

K. Atsou, F. Anjuére, V. Braud & T. Goudon: Preprint submitted to Elsevier

Page 9 of 23



Equilibrium in tumor cells-immune system interactions

19, 38], with residual tumors and active immune cells. A
natural candidate for the tumor size-distribution is an equi-
librium fig N (z), with N the eigen-function defined by (26).
Thus, we wish to identify a stationary solution of (22) under
the form (s1y N (2), C). This leads to the relation

(0.(ViigN) = Q(dyN)) (2) = —figN (2) /Q 5(x)C (x) dx.

-~
=—AfigN(2)

Hence, the concentration of cytotoxic effector cells should
satisfy

/ 5(x)C(x)dx = 4
Q

the leading eigenvalue of the (free-)fragmentation equation.
This can be checked on the numerical simulations, for the
simplified division model (11) with a constant division rate
a > 0, and working with a constant growth rate V': we find
that fg 6(y)c(t, y) dy tends to a, and s(t, z) becomes propor-
tional to the profile given in Lemma 1. Therefore, we expect
that the immune system organizes so that the death rate in-
duced by the action of the cytotoxic effector cells counter-
balances the natural Malthusian behavior of the cell division
equation. That the death rate can, in certain circumstances,
reaches the leading eigenvalue of the cell division equation
is justified by the following statement.

Theorem 2. Let ®@ be the solution of

1
=0 - —

_Vx . (]CVXCD) Q]

o(y)dy,
Q
endowed with the homogeneous Neumann boundary con-
dition. If ¢ > 0 is small enough, there exists a unique
(&) > 0 such that Ca ey solution of the stationary equa-
tion
ﬁlvx : (CVX(D)

{ yC =V, -(DV,C) - = g(fi;)pS,

c| =0,
0Q=0
(28)

satisfies fQ 6Cdx =7.

Proof. We introduce the mapping
F (€, 1) €10,00) X [0, 00) |—>/6CM] dx-7¢
Q

where C, is the solution of (28) associated to y;. We are
searching for the zeroes of &. Of course F(0,0) = 0, with
Cy = 0. Next, we have 9, F(,uy) = fQ 6C/,41 dx, with C;,n
the solution of

yC' =V, - (DV,C') -
=g (u)pS+V,

c’ =0.
0Q=0

WV, - (C'V, D)
(C,, V@),

In particular, since g’(0)pS # 0 is non negative and Cy =
0, the maximum principle for elliptic equations tells us that
C) > 0. Tt follows that 9,,7(0,0) = Jo aCé dx > 0. We
can thus apply the implicit function theorem: there exists
¢, > 0and a mapping ji; : £ € [0,7,) — ji;(£) such that
for any (¢, j1;(¢)) = 0 holds forany £ € [0,7,). We have

0T (€, i1(0)) +
=1+

_'(f)ﬁ,,ld*(f ()
1&)0, F (€, 1, () =0

with ()”197(0, 0) > 0. Hence, £ — j;(¢) is increasing on
the neighborood of # = 0, and it thus takes positive values.
|

We remind the reader that the asymptotic behavior for
the tumor population is expected to be described by an eigen-
function associated to the leading eigenvalue A, thus pro-
portional to z — N(z). Theorem 2 defines implicitly the
corresponding value ji; of the total mass, and we can find
fip accordingly (for instance, when V' is constant, by going
back to (27) we get 1 = y & 0) Theorem 2 applies when

the leading eigenvalue is small enough. For the simple bi-
nary division model (11) with a constant division rate a, ac-
cording to Lemma 1, this is a smallness assumption on a.
Therefore this statement raises the following questions that
will be investigated numerically: (1) is this condition only
a technical requirement ? how small should be a to observe
a control and what happens as a becomes large ? (2) how
11, the total mass of the persistent tumor, behaves with re-
spect to the parameters ? These issues can be interpreted
as indicators of the efficiency of the immune response. In
a forthcoming work, we shall investigate how this approach
permits us to compute a priori the equilibrium state and the
mass of the residual tumor that can be predicted for a given
set of parameters [3].

3. Results of the numerical experiments

In what follows, the tumor is always located at the origin
of the computational domain €, which is the ball Q = {x =

(x1,x9) € R2, |x| = % < R}. (Of course, sim-

ulations can be performed in 3D as well, up to an increase
of the computational cost.) The simplification discussed in
Section 2.4.1 is very specific: it does not hold when chang-
ing the boundary condition for ¢ and taking into account the
fact that the action of the cytotoxic cells is localized. To this
end, we use a weight 6, which is a Gaussian centred at x = 0
with a fixed variance € and an amplitude A:

2
o(x) = A exp <—ﬁ> . 29)
0\ 2r

x%+x

For defining the source term of the chemoattractant poten-
tial, we also use a Gaussian profile

A 2
7 exp <—%> : (30)
96 2r 290’
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Throughout this Section, we assume that the interaction term
has the form:

m(c,n)(t,z) = n(t, z) /Q o(y)e(t, y)dy

and g(¢;) = ;. In order to ease comparison, we make
use of the binary division operator, so that we will compare
the asymptotic size-distributions of tumors with the profile
given by Lemma 1. Appendix C provides details about the
numerical method used to perform the simulations. For the
simulations, we shall use the following data, otherwise ex-
plicitly stated: the initial data are Ey(x) = 0 and ny(z) =
1)<, <750 and the parameters are given in Table 1.

3.1. Homogeneous distribution of the source of
immune cells: an equilibrium state with
persistent tumors establishes

We start by considering the case where the source of im-
mune cells is homogeneously distributed which means that
S is constant over the domain Q. This assumption is relevant
for the NK cells.

The fundamental observation is that the size-distribution
of tumors tends to the profile given in Lemma 1, see Fig. 4.
The chemotactic potential, and the concentration of activated
cytotoxic cells also tend to stationary states: the former points
towards the center of the domain where the tumor is located,
see Fig. 5, the latter is more concentrated at the center of
the domain, see Fig. 6. In Fig. 7-11, we show the evolu-
tion of the mass y; of the tumor compared to the immune
strength ji () = /Q 6(x)c(t, x) dx, for different values of the
parameters. Depending on the values of the parameters, we
observe some damped oscillations in the tumor mass and in
the concentration of immune cells. We observe that, when
the tumor mass decreases, the tumor antigen-specific cyto-
toxic effector cells take more time to leave the tumor micro-
environment. This latter phenomenon is converted into a
slight delay in the time evolution of the cytotoxic effector
cells concentration in the tumor micro-environment with re-
spect to the evolution of the tumor mass when both of them
are decreasing. According to what is expected from Theo-
rem 2, ji.(¢) tends to a, the leading eigenvalue of the free-
growth/division equation; this is a robust observation of the
numerical investigation.

Next, we make the parameters vary in order to discuss
the influence of their value on the behavior of the system.
We only modify one quantity at a time, the others being kept
as in Table 1.

o Tumor aggressiveness. By increasing the rate divi-
sion a we make the tumor more aggressive, see Fig. 7.
We recover a qualitative behavior observed in Sec-
tion 2.4.1: for small a’s the mass of the tumor is rapidly
damped, and oscillation-free. An oscillatory behav-
ior can be observed as a increases: the higher a, the
higher the frequency. For the tested parameters, the
damping always occurs, with a convergence towards
the expected asymptotic profile. The asymptotic mass

1.0 — n(t,2) at t=99.90
=== N(2)

Figure 4: Convergence to the asymptotic profile. Left: Time
evolution of the tumor profile. Right: Comparison of the tumor
size-distribution at T = 99.90 with the exact asymptotic state
(x-axis: z, size of the tumor cells, y-axis: number of tumor
cells at the final time)

VO at t: 50.0 days

Figure 5: Non saturated interactions, homogeneous source of
immune cells: the gradient of the chemotactic potential at
t = 50.0 (the axis correspond to the space coordinates)

of tumor is significantly positive for large a. We ob-
serve that the tumor mass reaches higher values when
a is larger, both during the transient states and for the
equilibrium value. Note also that the profile of the
time evolution becomes sharper, especially for the re-
action of the immune system, see (d): ji, increases
rapidly in response to a growth of the tumor mass, and,
once the tumor controlled, it relaxes gently.

Consistently with Section 2.4.1, as the immune cell
death rate y decreases, oscillations appear. Note also
that the value of y impacts significantly the asymptotic
value of the mass of the tumor: the higher y, the higher
the tumor mass, see Fig. 8.

e FEfficiency of the immune response. The immune re-
sponse is enhanced by increasing either A, the ampli-
tude of the death term in the tumor growth equation (it
measures the strength of the immune cells against the
tumor cells), see (29), or the conversion rate p: this
sensitively reduces the final amount of tumors, and
slightly accelerates the damping, see Fig. 9.

The immune response is also influenced by playing on
the strength of the chemoattractive effect (by increas-
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RIA[ & [ A, | 0 | a

Vv P X S Y

0.02 | 0.002 | 0.05 | 0.8

0.616 | 0.25 | 0.864 | 20 | 0.18

Table 1
Data for the simulations

c(t, x) at t: 0.0 days

c(t, x) at t: 0.159 days

1.0 50 1.0 a0

0 35

3.0
30 25
S 205
20T 159

-0.5

10 1.0

0.5

0 0 1045 0 0.0

(a) (b)
g(t, x) at t: 20.029 days S(t, Xx) at t: 26.652 days
1. 1

4.0 4.0

35 35

0.5 3.0 0.5 3.0
A 25 25
0.0 205 00 2023
15" 1.5 °

-0.5 1.0 -0.5 1.0

0.5 0.5

-1.0 0.0 -1.0 0.0

-1 0 1 -1 0 1
(e) (f)

c(t, x) at t: 6.782 days

wn

1.8“’ x) at t: 13.406 da

1.0 4.0 4.0

3.5 3.5

0.5 3.0 0.5 3.0
25 25
0.0 20% 0.0 20%
159 15°

-0.5 1.0 -0.5 1.0

0.5 0.5

—1.0_1 0 1 0.0 -1.0_1 0 1 0.0

(c) (d)
l_Ej‘(l’, x) at t: 33.276 days 1.8“’ x) at t: 39.899 days

4.0 4.0

3.5 3.5

0.5 3.0 0.5 3.0
255 255
0.0 20 : 0.0 5.0 :
159 159

-0.5 1.0 -0.5 1.0

0.5 0.5

-1.0_1 o 1 0.0 -1.0_1 o 1 0.0

(g) (h)

Figure 6: Non saturated interactions, homogeneous source of immune cells: time evolution
of the cytotoxic effector cells concentration ¢ (the axis correspond to the space coordinates)

ing y or A;). The amplitude A represents the am-
plitude of the tumor antigenicity, see (30). It is well
known that the more antigenic a tumor, the more ef-
fective the immune response. Quite surprisingly, the
effect is not that sensitive: by increasing A, oscilla-
tions are slightly smoothed out and the convergence
to the asymptotic profile is a bit faster, see Fig. 10.
What is much more important is the diffusion coeffi-
cient D: increasing D dramatically reduces the effi-
ciency of the immune system: an asymptotic profile
is still reached, but the equilibrium tumor mass can
be significantly higher, see Fig. 11 (note it it is not
monotone with respect to D). This observation raises
the issue of considering space dependent diffusion co-
efficients, possibly matrix valued, describing more or
less favorable spreading conditions depending on the
tissues surrounding the tumor.

3.2. Influence of space-heterogeneities:
equilibrium states vs. periodic behavior
In this Section, we keep the same model and data as in
Table 1, but we deal with a non homogenous source of im-
mune cells, see Fig. 12. This situation is biologically related
to the action of the T-cells. It describes the fact that non-

(a) a=0.0625

(b) a=025
HIT \\\nnn
" ([
M+
(a=4 (d) a=16

Figure 7: Non saturated interactions, homogeneous source of
immune cells. Evolution of the tumor mass y, (red curves, left
axis), and of ji, (blue curve, right axis) for several values of
the division rate a
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(a) y =0.0625

(©) r=1 (d) 7 =16

Figure 8: Non saturated interactions, homogeneous source of
immune cells. Evolution of the tumor mass y, (red curves, left
axis), and of j, (blue curve, right axis) for several values of
the immune cells death rate y

AN —
(a) A =0.0001 (b) A=0.1
() A=10 (d) A=100

Figure 9: Non saturated interactions, homogeneous source of
immune cells. Evolution of the tumor mass y, (red curves, left
axis), and of ji, (blue curve, right axis) for several values of A

activated T-cells are retained in the draining lymph nodes
where they are activated by the dendritic cells presenting the
tumor antigens and they proliferate. Once activated they mi-
grate from the lymph nodes towards the tumor site. How-
ever, space-inhomogeneities of the source .S dramatically
impacts the dynamics: in many situations, with the same
data as in homogeneous case but the source!, we observe
an oscillatory behavior and there is no sensitive damping at

Ithe comparison makes sense since the source has in the two cases the
same total mass [ .S dx.

(a) A, =0.0001

(c) 4, =10 (d) A, =100

Figure 10: Non saturated interactions, homogeneous source
of immune cells. Evolution of the tumor mass u, (red curves,
left axis), and of j, (blue curve, right axis) for several values

of A,.

(a) D =0.0001 (b) D=0.1

(c) D=10 (d) D =100

Figure 11: Non saturated interactions, homogeneous source
of immune cells. Evolution of the tumor mass y, (red curves,
left axis), and of ji. (blue curve, right axis) for several values
of the diffusion coefficient D.

all, at least on the time scale of observation. This observation
should be considered with caution (it is not excluded that the
control occurs on a very long time scale and that the damp-
ing is so weak that it cannot be observed on the time scale of
the simulation), bearing in mind both its mathematical sig-
nification and its practical relevance. In particular, there are
cases where the asymptotic profile does not establish. In fact,
what we observe is a control of a different nature: the tumor
mass does not blow up, nor stabilize; instead it seems to os-
cillate, alternating spikes and remissions. Fig. 13 shows the
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space-repartition of the cytotoxic effector cells: we clearly
observe the reproduction of patterns, where the concentra-
tion of active immune cells is always higher in the source
sites, but can be significantly weak at the center of the do-
main, where the tumor stands. Meanwhile, see Fig. 14-(c)
and (d), we observe a rapid growth of the tumor mass, which
next shrinks significantly under the action of the immune
system and then remains in a dormant state for a while, as
time evolves, see [1, 10, 38] for comments on such oscilla-
tions. Itis remarkable that these oscillations result only from
space heterogeneities, while the model does not take into ac-
count anti-immune reactions or inflammatory mechanisms.
The relevance of such oscillatory behavior has been pointed
out in several modeling works, see for instance [37], where
they are reproduced by introducing delays in ODEs [7, 16],
or stochastic effects [8]; here they naturally emerge in the
dynamic of the PDEs system.

1.0
» 17.5
0.5 15.0
12.5
0.0 10.0
7.5
-0.5 5.0
. ‘ 2.5
-1.0; 0.0

-1.0 -0.5 0.0 0.5 1.0

Figure 12: Heterogeneous source of immune cells S (the axis
correspond to the space coordinates)

e Tumor aggressiveness.  There is no indication, on
the time of simulation of trend to an equilibrium when
the division rate is large. Reducing the division rate a
restores the damping, see Fig. 14, which agrees with
the guess from Section 2.4.1. For larger a we observe
peaks of tumor mass and immune cells, which appear
regularly. The period (about 27 time units) of the os-
cillations does not change substantially with a. The
tumor mass reaches also higher values as a increases.

We make the immune cell death rate y vary, for a rela-
tively small value of a (given in Table 1). As y in-
creases, the equilibrium is reached faster, with less
oscillations but it leads to an asymptotic state with a
larger tumor mass, see Fig. 15.

o Efficiency of the immune response. Strengthening the
immune response A or the conversion rate p damps
the tumor growth, and reduces the oscillations, see
Fig. 16. On the figure, we observe the delay of the
immune system compared to the tumor growth. Influ-
ence of the chemoattractant effect is stronger than in
the homogeneous case: increasing A, improves sig-
nificantly the damping, see Fig. 17.

What is remarkable is the fact that the equilibrium
phase can be recovered by strengthening the chemoat-
tractant effect: this is illustrated in Fig. 18, where the
data are the same as in Fig. 14-(c), but the chemotactic
strength y has been increased.

4. Conclusive discussion

We have set up a new model intended to describe the
interaction between the immune system and tumors. Based
on size and space structured densities, the system of PDEs is
able to take into account the displacement of tumor antigen-
specific cytotoxic immune cells and the size variation of the
tumor cells. Despite its simplicity the model allows us to
bring out some relevant observations.

In particular, it is able to reproduce the formation of equi-
librium phases, characterizing the ability of the immune sys-
tem to restrain cancer growth for extended time periods. This
effect, which leads to persistent tumors at a controlled level,
was inferred from clinical observations and demonstrations
using mouse models [19, 38]. Here, it is predicted mathe-
matically and it has been checked numerically. This obser-
vation has important practical consequences. For instance,
it is possible that this dormant state is constituted of tumors
with size below the measurement capacities of the current
imaging methods. However, a change in the tumor environ-
ment such as a modification of the immune system efficiency
can break the control over the tumor. This is in agreement
with reports on transplantation of undetected cancer from
organ donor into immunosuppressed recipients [38]. Main-
taining cancer in a viable equilibrium state represents a rele-
vant goal of cancer immunotherapy. It is therefore important
to understand the parameters that govern the efficiency of the
immune response and the parameters to target to improve tu-
mor control.

Moreover, the numerical experiments also show the cru-
cial role of space organization and reveal phenomena that
cannot be captured by non spatially structured models. In
particular controlling the tumor with a low total mass is much
more difficult when the source of immune cells is non ho-
mogeneously distributed. In such a situation, periodic pat-
terns can be observed with the chronic formation of tumors
having a significantly high mass, alternating with remission
periods. Having a homogeneous source of immune cells
in the peripheral environment of the tumor makes the im-
mune response much more efficient, since it promotes an
immediate contact between the tumor and the cytotoxic ef-
fector cells. Otherwise, the capacity in draining the acti-
vated immune cells towards the tumor, expressed through
the strength of the chemotaxis potential, is a critical param-
eter of the immune response. Biologically, the role of the
spatial distribution of the source of immune cells can be re-
lated to the types of cytotoxic cells considered in the mod-
eling. The source of NK cells could be assumed to be ho-
mogenously distributed at the early stage of tumor growth.
In contrast, T-cells need an efficient priming which occurs
in the draining lymph nodes, and their sources is therefore
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Figure 13: Time evolution of the cytotoxic effector cells concentration c(z,x) (the axis
correspond to the space coordinates)

(a) a=0.0625 (b) a=025

(d) a=16

Figure 14: Non saturated interactions, heterogeneous source
of immune cells. Evolution of the tumor mass u, (red curves,
left axis), and of fi, (blue curve, right axis) for several values
of the division rate a.

non-homogeneously distributed. Hence, as shown in [23],
both NK and C D8* T-cells cooperate to the anti-tumor im-
mune response and our results can illustrate the complimen-
tary role of NK and CD8* T-cells. Moreover, our study
shows that enhancing the chemoattractant effects is crucial
in the immune response. Promoting the migration of T-cells
towards the tumor microenvironment has indeed been iden-

[ @ w 0 g e W ® ® 3

() r=1

Figure 15: Non saturated interactions, heterogeneous source
of immune cells. Evolution of the tumor mass g, (red curves,
left axis), and of fi. (blue curve, right axis) for several values
of the immune cells death rate y

(d)y=16

tified as a possible strategy for immunotherapy [53], for in-
stance by increasing the level of Ty 1 chemokines like CXCL9
and CXCL10, which increases the level of tumor-infiltrating
CD8* T cells [45]. Our findings are equally consistent with
current experimental and clinical data which show the role of
immune check-point in immunosuppressing T'-cell responses.
Indeed, T'-cells express PD-1 after being activated as a mech-
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(a) A =0.0001

(d) A=100

(c) A=10

Figure 16: Non saturated interactions, heterogeneous source
of immune cells. Evolution of the tumor mass u, (red curves,
left axis), and of j, (blue curve, right axis) for several values
of A

(a) A, = 0.0001

il | ]
L \/
(c) A, =10 (d) A, =100

Figure 17: Non saturated interactions, heterogeneous source
of immune cells. Evolution of the tumor mass y, (red curves,
left axis), and of j, (blue curve, right axis) for several values
of A,

anism of retro-control; using anti-PD-1 antibodies restores
the activation of these cells (cytotoxicity and secretion of
IFN-y). A greater clearance of tumors has been observed
when anti-PD-1 therapy is combined with anti-CTLA4 ther-
apy, possibly because of the removal of a checkpoint for T-
cell proliferation and priming [10]. These effects appear in
the model by playing with the parameters p or A so that the
immune cells are more activated or more efficient at killing
tumors.

The current version of the model however misses sev-

40 12
10
301 |
| 8
|
— [l ‘ u
120 || 6 =

10

0 20 40 60 80 100
t

Figure 18: Non saturated interactions, heterogeneous source
of immune cells. Evolution of the tumor mass u, (red curves,
left axis), and of f, (blue curve, right axis) with a = 4 and
7 =100

eral phenomena, which require further modeling efforts. In
particular, it does not address numerous immunosuppres-
sive mechanisms that establish as the tumor grows. For in-
stance, in well-developed tumors, stromal activity can de-
velop signaling modalities which inhibit T-cell activity and
favor the recruitment of myeloid-derived suppressors cells,
which have T'-cell suppressive capacity. These effects con-
tribute to the chronic development of tumors; they will be
investigated in a forthcoming work.

A. Tumor growth

The growth rate z — V'(z) can incorporate some mecha-
nisms describing that the growth becomes more difficult for
larger tumors. Relevant examples, depicted in Fig. 19, are:

e Exponential law: V' (z) = V,exp(—7z) where 7 is a
relaxation parameter,

o Logistic law: V(z) =V, < exp(—(z — s)) >’

1+ exp(—(z — s))
e Gompertz’ law: V (z) = V, exp(—b(exp(cz))).

Further examples and details on the modeling of the growth
rate can be found in the review [56].

In order to establish the existence of a leading eigen-
element, as discussed in Section 2.4.2, the following assump-
tions should be fulfilled [18]:

o [12/%k(2'|2)dz’ < 22

e ac Llloc((O, o)) N F, where F is the set of non nega-
tive functions f such that we can find p, g > 0 verify-
ing limsup z7? f(z) < oo and liminf z? f(z) > 0;

Z—> 0

Z—> 00
e there exists r > 0 such that supp(a) C [r, );
e there exists @; > 0 such that 21V (z) € L> and for

any compact K C (0, o0) we can find cg > 0 such that
V(z) > cx a.e. on K;
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--- exponential
— logistic

Figure 19: Shape of several growth laws z » V(z) (x-
axis: z, size of the tumor cells, y-axis: growth rate of
the cells)

e foracertainy > 0, z — % lies in the set L(l) of
functions f for which there exists d > 0 such that

f e L((0,d));

e there exists M > 0,y > 0 such that /OS k(z'|z)dz’ <
min(1, M(s/z)");

za(z) _

i . . 1 . . . —
°* also lies in L and it verifies lim__, o, Vo

We refer the reader to [18] for further comments and inter-
pretations on the these assumptions, which guaranty existence-
uniqueness for (26).

B. Model parameters

Table 2 collects the information about variables, parameters
and units for the tumor growth model, and Table 3 details
the units of the parameters of the equations for the immune
system.

Remark 3. The model can take into account two distinct
saturation effects: the former in the expression of the recruit-
ment term of the cytotoxic effector cells, through the function
g, the latter in the expression of the death term describing the
action of the activated immune cells on the tumor. We also
work with saturationless models, which means

g(uy) = s m(c,n) = n/gé(y)C(t, y)dy.

We leave the reader adapt the definition of the units to such
cases.

C. Numerical method

For the numerical simulation of the model, we use the so-
called finite volume approach, for which we refer the reader
to [22].

The growth-division equation. The computational domain
for the size variable is the interval [0, z, ] where z, is chosen
large enough: due to the division processes, we expect the

the solution remains essentially on a bounded interval, and
the cut-off should not perturb too much the solution. For the
simplified binary division model, a guess is provided by us-
ing the profile given by Lemma 1. This domain is split into
cells M; = (z;_1/2, Ziy1/2), centered on z; = w
where zy = 2y = 0 < ... < 21y < z; < Zyyypp <
o < ZNg1/2 = ZN41 = Zx- In what follows, the step Az =
Zj41/2 — Zj—12 is assumed to be constant. We denote by Az
the time step and t* = k At. The discrete unknowns nf , with
ie{l,.,I}andk € {1, ..., N,} are intended to be approx-
imation of the mean value ﬁ f o 1%, z)dz. The integral
that defines the gain term of the division operator is approx-
imated by a simple quadrature rule. For the operator (11)
the kernel involves Dirac masses which are approached by
peaked Gaussian. The scheme reads

n<tl — px
L K — F¥
Az——+ L~ L)
1 @31
= —q,Aznf + AZ2 ) a(z)k(z,|z;)nk — m?,
j=1
where Ff | n= Viy12n; represents the convective numeri-

cal flux on the interfaces of z;,; /,, which is defined accord-
ing to the upwinding principle and m; is the approximation
of the interaction term (see below). Note that the step Az
should be small enough to capture the division of small cells,
if any.

We can use formula (1) to check that the numerical pro-
cedure preserves the eigen-function of the growth division
equation when m is replaced by 0 and using the eigen-function
as initial data.

The effector cytotoxic cells displacement equation. We
work with a tessellation of € made of triangles, that form
an admissible mesh of Q, see [22, Definition 3.1, sp. (iv)].
Let K be a control volume of the mesh 7. The set of the
edges of the mesh is noted £&. We distinguish the edges on
0Q and the internal edges: & = £ U ™. We also denote
¢k = {¢ € £NOK}, di the distance from the point xg to
the edge ¢ and | K| stands for the two dimensional measure
of the control volume K, |¢| for the length of an edge ¢ € &.
If ¢ € &M, then ¢ = K| L and the distance dy; between x g
and x; is equal to dg . +d .

The chemotactic convection can be very strong and im-
pact severely the stability condition of a scheme that would
be explicit on the transport part of the equation. For this
reason, we use an implicit approach defined by

+1 k
|K|CIK<—_CK
At
32
= (— Y Pty - Y gKg<D,cfgl>) G2
s€ik 3594

+|K|puf Sk — IKlye',
and then we update the chemotactic potential by

= D) Gkc(K. B = IKluy(o)k

c€lk

(33)

K. Atsou, F. Anjuére, V. Braud & T. Goudon: Preprint submitted to Elsevier

Page 17 of 23



Equilibrium in tumor cells-immune system interactions

variables descriptions units example of units Estimated values examples Source
z volume of tumor cells [P um? ~ 103um? (in average)
t time variable [t] day
n density of tumor cells with a volume z [cell,]- [IT? cell, - um™ A tumor reaching the size of lem? [13]
(approximately 1lg wet weight) is
commonly assumed to contain 1 X
10°%cells (1073cell, - um=3)
Vv tumor cells growth rate [P 11 um’ - day™! 0.985 -10° um? - day™" (Breast tumor)
a rate at which a cell of size z divides [n! day™!
k distribution of cells from a cell of size z dividing (-3 um!
Ho total number of tumor cells in the tumor [cell,] cell,
i total volume of the tumor [cell,]-[IT? cell - um?
Table 2
Recap of the main definitions and notations for the tumor growth model
variables  descriptions units example of units Estimated values examples Source
x space variable [L] mm
c concentration of activated cytotoxic [cell ]-[L] cell, - mm™
effector cells
7 chemotactic coefficient [L)? - [1]7" - [mol]™" mm? - mmol ™" - day™ 102 — 10%cm?s™'mol™' or 8.64 x Farell and al. 1990 [25]
10" — 8.64 x 10°mm? - mmol~" - day™"
(Macrophages)
¢ attractive potential [mol] mmol
D natural space diffusion coef. of the [L)-[1]! mm® - day™" 8.64x1077cm?-s7! or 8.64x 10 mm?-  A. Friedman et al. [26], (A.K. Cooper
cytotoxic effector cells population day™' (cytotoxic effector cells) (or et al. [11])
0.025mm? - day™" for effector T-cells)
p conversion rate of immune cell into (17! day™' 0.25 day™' (IL-2 induced activa- A. Friedman et al. [26]
tumor antigen-specific cytotoxic ef- tion)
fector cells
N density of the source of immune cells [cell ]-[L]7 cell, - mm™
p steepness coefficient of the immune [cell,] cell,
cell recruitment
y natural death rate of the tu- [~ day™' 0.18 day™! A. Friedman et al. [26]
mor antigen-specific cytotoxic effec-
tor cells
K natural space diffusion of the attrac- [L?- [} mm? - day™' 2.16 mm? - day™'
tive potential ¢
c chemical signal induced by each tu-  [mol]-n~' - [[17°[1]""  mmol - cell" - ym™ - day™" 2001073 mmol - =" - day™'
mor cell
. . [cell,] .
) strength of the immune response ——— cell, -cell - ym™ -day™ 1 day™, average rate at which ef- A. K. Cooper et al. [11]
[eell,] - 1] - [1] 3 :
fector T-cells kill tumor cells
a steepness coefficient of the tumor cell [cell,] - [IT cell, - um=

death term

In (32)-(33), we have used the following notations:

Table 3

Recap of the main definitions and notations for the immune system model

o for the diffusive flux of a quantity w, with the diffusion
matrix A, we set

e

gKg(A7 wfﬂ) = Ag_
dKL

(wg —wyp) ifgee™

with the necessary adaptation on the boundary, ac-
cording to the boundary condition (Dirichlet or Neu-

mann),
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e for the convective flux, we set

rKg(ch’ d)‘rg)
= dlil()(CK(‘bL — )" — xep(dp — ¢71<)_)
KL
for ¢ € &int|

and Fy (c, . ¢, ) = 0if ¢ € £,

The expression of the interaction term in (31) depends on
the details on the death term; for instance when it depends
linearly on ¢ and n, it reads

K _ K K
m; = n; Z |K |6k k-
Kerg

The time step At is determined in order to preserve the posi-
tivity of the solution, namely we assume the following CFL
stability condition:

Az

At < min(—,
MaXoc <., V(z)

)
Maxo <, a(z)’ ZKGTQ |K |5k '

D. Supplementary material

D.1. Non-saturated interactions and saturated
conversion of effector cells

In this Section, we discuss the saturation effect taken into
account in the conversion from non activated immune cells
to effector cytotoxic cells. Namely, in the evolution equa-
tion for ¢, we take y; — g(u;) as in (12), with f = 5000.
The other parameters are still as in Table 1. The saturation
effect accounts for the fact that the activation process of im-
mune cells is limited. We can expect that as the threshold
decreases, the immune system is less efficient in controlling
the tumor growth.

On the simulations, we still observe the asymptotic trend
towards an equilibrium, as predicted by the theoretical re-
sults. However, the tumor mass is considerably higher than
for the saturation-free model, see Fig. 20. With an homo-
geneous source of immune cells, the control still occurs as
the death rate y of the cytotoxic effector cells increases, but
the high asymptotic tumor mass reveals a loss of efficiency of
the immune system, see Fig. 21. When the source of immune
cells is heterogeneous (we work with the same distribution as
in Fig. 12), the control is lost as y increases, see Fig. 22. The
saturation effect can be discussed also by making the steep-
ness parameter f vary. As f is reduced, the control is not
lost, but the asymptotic mass of the tumor becomes higher,
see Fig. 23 and 24.

D.2. Saturated interactions and non-saturated
conversion of effector cells
In this section, let us briefly discuss the saturation ef-
fect taken into account in the interaction between the effec-
tor cells and the tumor cells. Namely, in the tumor growth

(a) a = 0.0625 (b) a=025
| )
(c)a=4 (d)a=16

Figure 20: Saturated conversion, homogeneous source of im-
mune cells. Evolution of the tumor mass p, (red curves, left
axis), and of i, (blue curve, right axis) for several values of a.
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i
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|
(c)r=4 (d)r=16

Figure 21: Saturated conversion, homogeneous source of im-
mune cells. Evolution of the tumor mass u, (red curves, left
axis), and of ji, (blue curve, right axis) for several values of y.

equation, the interaction term becomes

n(t, z)

m(c, n)(t,z) = /Q Set, ) dyx =2

as in (21), with aa’ = 1. For the numerical tests, we set
a = 3000. The other parameters are as in Table 1. This
expression traduces the fact that the tumor antigen-specific
cytotoxic effector cells have access to a limited amount of
tumor cells. We point out that our analysis by means of
eigen-elements does not apply here since we have introduced
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(a) y = 0.0625

(c)y=4 (d)r=16

Figure 22: Saturated conversion, heterogeneous source of im-
mune cells. Evolution of the tumor mass y, (red curves, left
axis), and of ji, (blue curve, right axis) for several values of y.
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(c) B =500 (d) § = 1000

Figure 23: Saturated conversion, homogeneous source of im-
mune cells. Evolution of the tumor mass u, (red curves, left
axis), and of i, (blue curve, right axis) for several values of g.

non linearities with respect to #» in the tumor growth equa-
tion. Nevertheless, we can investigate on numerical grounds
whether or not the immune system can control the tumor
growth in this case.

We observe, see Fig. 25 (homogeneous source of im-
mune cells), an effective control of the tumor evolution, at
least when the tumor is not too agressive, with a moderate di-
vision rate a. When a becomes larger, the tumor mass grows
exponentially fast. Similar features are observed with a non
homogeneous source of immune cells.

(b) =100

® 00 g £ W @ w

(c) § =500 (d) f = 1000

Figure 24: Saturated conversion, heterogeneous source of im-
mune cells. Evolution of the tumor mass p; (red curves, left
axis), and of ji, (blue curve, right axis) for several values of g.

As we make a vary, we observe two phenomena: when
a increases, both the frequency of oscillations is higher and
the damping is stronger, see Fig. 26 (homogeneous source
of immune cells). We get a similar behavior by playing with
A,. Surprisingly, with an heterogeneous source of immune
cells, the periodic behavior observed in the saturation-less
case reappears when a (or A,) is small, see Fig. 27. (In
Fig. 27-(a) the behavior is also periodic but the period is
higher than the represented simulation time.)

(c)a=1 (d)a=4

Figure 25: Saturated interactions, homogeneous source of im-
mune cells. Evolution of the tumor mass p; (red curves, left
axis), and of ji, (blue curve, right axis) for several values of a.
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(a) =10
T V,VA\/\/W*
(c) @ =500 (d) @ = 1000

Figure 26: Saturated interactions, homogeneous source of im-
mune cells. Evolution of the tumor mass y, (red curves, left
axis), and of ji, (blue curve, right axis) for several values of a.

(c) a =500

(d) @ = 1000

Figure 27: Saturated interactions, heterogeneous source of
immune cells. Evolution of the tumor mass y, (red curves, left
axis), and of ji, (blue curve, right axis) for several values of a.

D.3. Multiple tumor sites

The model can be adapted to consider the relevant situ-
ation where there are many tumor sites. With g the number
of tumor sites, we can consider possibly different parameters
governing the growth and the immune interactions. Let

e n; be the size-structured distribution of tumor cells in
the sitei € {1, ...,q};

e V,, a; and §; be the corresponding growth rate, divi-
sion rate and immune strengths, respectively;

Figure 28: Chemotactic potential at + = 0.12 in the case of
multiple tumor sites with different division rates

e ¢; be the form function describing the signal emitted
by each tumor.

The model becomes

-

omn; +0,(Vin;) = Q;(n;) — n; / 6;(x)c(t, x) dx,
Q

dic+V,-(ycV,¢p— DV, c)
q (3]

] =pS Z / zn;(t,z)dz —yc, G4
i=170

q (¢
-V, KV, ) =) / zn,(t, z) dz{o;,),
i=1 70

\

endowed with initial and boundary conditions. For the nu-
merical test, we deal with ¢ = 3 tumor sites, located at the
positions

x; = (0,-0.30), x, =(0.5,0.3), x3 = (=0.5,0.3).

We assume that the tumor sites have the same constant growth
rate V', immune strength 6 and form function o, but distinct
division rates, a, 2a, 1.5a. The parameters are defined as in
Table 1. We work with the heterogeneous source of immune
cells illustrated in Fig. 12. The behavior of the tumor mass
and immune cells mass has the same features as in the single
site case, see Fig. 29.
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