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We numerically investigate the long time behavior of solutions of the Lifshitz–
Slyozov system. We propose a numerical scheme in which the numerical dissi-
pation is controlled in such a way that the results for large time are meaningful.
In this respect, we find the long time behavior to crucially depend on the distri-
bution of largest aggregates present in the solution. This fact proved, in some
particular cases in [23], was difficult to obtain with previous numerical schemes
in the engineering literature leading to wrong statements. We propose a numer-
ical scheme in which we can observe and quantify the equilibration rates
towards the right asymptotic profile. Moreover, this system appears to be a very
interesting test problem for any anti dissipative scheme for conservation laws.

KEY WORDS: Lifshitz–Slyozov system; coagulation-fragmentation models;
phase transition; WENO schemes; conservation laws.

1. INTRODUCTION

We focus on the asymptotic behavior of the solutions (c, f ) of the follow-
ing Lifshitz–Slyozov (LS) equations

˛
“f
“t
+
“

“x
[(a(x) c(t)−b(x)) f]=0 in R+t ×R

+
x ,

c(t)+F
R
+
xf(t, x) dx=r > 0,

f|t=0=f0 in R+x , c|t=0=c0.

(1.1)
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This equation has been introduced in [18] as a model for the formation of a
new phase in solid solutions. It is intended to describe the later stages of for-
mation of the new phase: there still exists a non negligible number of precipi-
tates having a supercritical size. In the earlier stages, fluctuations effects lead
to the formation of these crystal germs. Here, the evolution of the precipitates
is described through the density f(t, x) of clusters having, at time t, the size
x \ 0. The dynamics is governed by a mechanism of removal from or addi-
tion to the clusters of free particles whose size is infinitely small compared to
the size of the aggregates. These free particles are called ‘‘monomers,’’ and
their density at time t is denoted by c(t). Note however that the model
requires in these ordering properties that the size of the aggregates remains
small compared to the average distance between clusters; consequently,
encounters and coalescence effects are neglected in this approximation.

The quantity V(t, x)=a(x) c(t)−b(x) is interpreted as the growth
rate, at time t, for a cluster having size x. The given coefficients a, b \ 0 are
thus the rates at which monomers are added to or removed from the
cluster, respectively. The first relation in (1.1) is a conservation law in size
space, whereas the second relation is a constraint expressing the conserva-
tion of the total mass of the material within the solution. The crucial
assumption on the coefficients is the existence, at any time t, of a unique
critical size xc(t) which splits the size domain:

V(t, x)=a(x) c(t)−b(x) < 0, for 0 [ x < xc(t),

V(t, x)=a(x) c(t)−b(x) > 0, for x > xc(t).

Indeed, in deriving the rate of growth one considers the energy balance for
a macro-particle, viewed as isolated in a bath of monomers, to maintain
its size. Then, there is a competition between surface effects which tend to
reduce the energetic cost due to the formation of an interface with volume
effects associated to the bulk free energy of the cluster. The former are
the dominating effects for small clusters. Accordingly, the evolution of a
x-cluster is determined by the ratio between the monomers concentration
c(t) and an equilibrium concentration ce(x) characterized by the size x. It
appears that ce(x) is a decreasing function of the size: there is a energetic
advantage for the small grains to dissolve and transfer their mass to the
large clusters. This phenomenom is known as the Ostwald ripening [20]:
large grains are growing at the expense of smaller ones. From a technical
point of view, this physical feature also explains why no boundary condi-
tion is needed at x=0: the rate of growth V(t, x) for small grains is nega-
tive. If one considers, at least formally, the characteristic curves

d
dt
X(t; s, x)=V(t, X(t; s, x)), X(s; s, x)=x (1.2)
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then, they are pointing outside the domain (0,+.)when they reach the origin.
Precise form of the coefficients depends on the mechanism of mass transfer;
assuming it is driven by diffusion, [18] gives the following coefficients

a(x)=x1/3, b(x)=1.

The critical size is therefore xc(t)=c−3(t) in this case. Our study will be
restricted to this physically relevant case. For details on the model, we refer
of course to the original paper of Lifshitz–Slyozov [18], but one may also
consult the classical reference [17] and the recent review of Sagalovich–
Slyozov [25].

Mathematical results establishing existence-uniqueness of solutions for
(1.1) have been obtained recently, by using various approaches: we refer to
Niethammer and Pego [21], Collet and Goudon [7], Laurençot [14],... .
On the other hand, derivation of (1.1) from the discrete model of Becker–
Döring, an infinite system of ode’s describing earlier stages of the new
phase formation (see [2]), is discussed by Penrose [24], Collet et al. [9].
However, the asymptotic behavior of the solution of (1.1) is not well
understood yet, in contrast with the situation concerning discrete models
for which we refer to Ball et al. [1]. In their seminal paper [18], Lifshitz–
Slyozov argue on physical grounds the following conjectures:

CLS1 The monomers concentration c(t) decreases as time goes to
infinity; precisely, c goes to 0 and behaves as Kt−1/3, where K
is a universal constant, independent on the initial state of the
system.

CLS2 The total number of the agglomerates, that is

m0(t)=F
R
+
f(t, x) dx

behaves as Ct−1, C depending on K and r, the total mass of
the system.

CLS3 The mean radius

Rm(t)=
1
m0(t)

F
R
+
x1/3f(t, x) dx

diverges in time like t1/3/K.

CLS4 The solution f(t, x) tends to a universal asymptotic profile,
independently on the shape of the initial data: from the initial
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state, it only depends on r as a scale parameter. Therefore, the
solution forgets its initial shape.

Despite recent progresses, the question of the asymptotic behavior is
not completely closed. In [10], an entropy has been exhibited for (1.1).
Then, assuming that part of the support of the initial data f0 is situated on
the right of the initial critical point, we can prove that c(t) goes to 0. But
monotonicity is not obtained. On the other hand, while the t−1/3 law for c(t)
(first part of conjecture CLS1) is not contested (it has been verified exper-
imentally) the questions of uniqueness of the value of K, and uniqueness
and stability of the final attractor have originated a controversial debate.

A first numerical study was performed in [6], leading to the conclu-
sion that the conjecture CLS4 was true. The distributions taken as initial
data in [6] were unbounded in support and the numerical scheme was a
simple up-winding method for hyperbolic scalar equations. This conclusion
has been proved to be wrong.

In particular, it was argued that the tail of the initial data and the
largest particles play a crucial role and can modify the asymptotic profile.
We refer for instance to Brown [3], Meerson and Sasorov [19] for a dis-
cussion on physical grounds. Mathematical analysis has been performed by
Carr and Penrose [4], Niethammer and Pego [22] that indicated that the
asymptotic behavior highly depends on the tip of the support of the initial
data. Actually, these papers are concerned with a slightly modified model,
the Lifshitz–Slyozov–Wagner equation, see [29]. However, this variant of
(1.1) is interesting enough since, roughly speaking, it should be close to
(1.1) when c has become small, see [15]. This analysis has been extended
very recently to the system (1.1) by Niethammer and Pego [23]. In partic-
ular, according to [19, 22], and [23], starting from a compactly supported
initial data with

f0(x) ’ (xs−x)a, a > −1,

xs being the endpoint of the support, the system cannot converge to the
profile predicted by Lifshitz–Slyozov. Instead, one expects the convergence
towards another profile, for a different value of K, defined by the value of
the exponent a. This fact leads to the conclusion that the conjecture CLS4
written in that generality is false. From another point of view, Niethammer
and Pego [23] results complement conjecture CLS4. Furthermore, accord-
ing to a counterexample in [4], one certainly can find initial data (with
high oscillations in the distribution of largest particles) for which the
system does not converge to any asymptotic profile. Note however that
[18] is certainly dealing with initial data having unbounded support and
quite smooth tails.
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In this paper, we propose a numerical scheme which is able to capture
the right asymptotic behavior of the solution in contrast with some numer-
ical results available in the literature. The general conclusion of our
numerical study is that the behavior predicted by Lifshitz–Slyozov cannot
be expected for any initial data. Some assumptions on the initial repartition
of the aggregates in size seems necessary for c going to 0; and, then, the
asymptotic state highly depends on the largest particles in the solutions.
Actually, these results are in complete agreement with the results proved in
[19, 22, 23]. However, with our numerical scheme we can check several
other facts not covered by the results in [23]; convergence towards the
smooth LS profile for unbounded support distribution functions, precise
form of the convergence of c(t), equilibration rates for the scaled equa-
tion,... . Moreover, this system is shown to be a very good test case for anti-
dissipative numerical methods for conservation laws since very small errors
in the approximation leads to wrong profiles in the long time asymptotics.
Let us remark that the main contribution of this study is a detailed numer-
ical classification of the asymptotic behavior of the LS system based on a
suitable high order scheme.

The paper is organized as follows. In Sec. 2, we briefly recall some
basic facts about equation (1.1). In Sec. 3, we introduce a scaled version of
(1.1), which is appropriate to investigate the large time behavior of the
system as shown in [23]. From the rescaled equation, we discuss the pos-
sible asymptotic states. Then, in Sec. 4, we describe in detail the results of
our numerical investigation of (1.1). The final section is devoted to com-
ments and conclusions on the study.

2. BASIC PROPERTIES OF LS

Let us start with some basic remarks. In the following, we use the
characteristics associated to the growth rate, neglecting the technical diffi-
culties caused by the blow up of the derivative at x=0. As in [7], it allows
us to write the solution as

f(t, x)=f0(X(0; t, x)) J(0; t, x) (2.1)

where J(s; t, x)=DxX(s; t, x). Based on the characteristic form, we
conclude:

1. The zeroth order moment, interpreted as the total number of
clusters in the solution, reads, by using characteristics,

F
R
+
f(t, x) dx=F

.

X(0; t, 0)
f0(x) dx.
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As a consequence of V(t, 0) < 0, we realize that DtX(0; t, 0) > 0.
Therefore

m0: t- F
R
+
f(t, x) dx is a non increasing function of time.

The main effect of the equation is to ‘‘stretch’’ the initial data: it
is expected that ‘‘mass goes to infinity,’’ clusters in the solution
having larger and larger size. From [18], it is expected that m0
behaves as t−1.

2. The time derivative of the monomer concentration, is given by

dc
dt
=−F

R
+
V(t, x) f(t, x) dx

=−F
xc(t)

0
V(t, x) f(t, x) dx−F

.

xc(t)
V(t, x) f(t, x) dx.

The first term is non negative, the second is non positive. Hence,
there is a struggle between these terms, depending on the reparti-
tion of the clusters in size to determine the variation of c(t).

3. It can be shown that c(t) > 0 for any time t. Next, if the initial
data f0 has its support in [0, xs]; then, by using the formula (2.1),
we realize that the support of the solution is contained in
[0, X(t; 0, xs)]. In particular, for xs <., the support of the solu-
tion remains bounded by X(t, 0, xs) <.. If initially the endpoint
xs of the support of the initial data satisfy xs > xc0 ; then the criti-
cal size cannot reach the end of the support: X(t; 0, xs)−xc(t) > 0
(see [10]).

4. According to [10], we expect that the total number of clusters
m0(t) goes to 0 while the monomers concentration either tends to
0 or r. In particular, if there exists d > 0 such that supp(f0) 5
[xc0+d,.[ ]”, then c(t)Q 0. It is conjectured, for an initial
data having its support in [0, xc0], that the two behaviors: c(t)
goes to 0 or to r, are possible, depending crucially on the initial
repartition of mass in the interval. We will see numerically that the
two behaviors are indeed possible (see Figs. 7 and 8 later).

It is also worth saying some words on a variant of Eq. (1.1) which
is commonly used. The Lifshitz–Slyozov–Wagner equation deals with a
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situation where c has reached indeed an equilibrium: it is small enough to
be neglected in the mass conservation relation, which becomes

F
R
+
xf(t, x) dx=r

i.e., a constraint on the first moment. However, we keep the c in the defi-
nition of the growth rate and the evolution equation still reads

“f
“t
+
“

“x
[(a(x) c(t)−b(x)) f]=0

Integrating the equation after multiplication by x, and taking into account
the constraint, one sees that c should satisfy

c(t)=F
R
+
b(x) f(t, x) dx 1F

R
+
a(x) f(t, x) dx2

−1

.

For the coefficients of [18], we recover

c(t)=F
R
+
f(t, x) dx 1F

R
+
x1/3f(t, x) dx2

−1

=
1
Rm(t)

,

i.e., the inverse of the mean radius of the agglomerates. Summarizing, the
Lifshitz–Slyozov–Wagner (LSW) problem is to solve

˛
“f
“t
+
“

“x
[(a(x) c(t)−b(x)) f]=0 in R+t ×R

+
x ,

c(t)=F
R
+
b(x) f(t, x) dx 1F

R
+
a(x) f(t, x) dx2

−1

f|t=0=f0 in R+x , c|t=0=c0.

(2.2)

It can be proved that the LSW equation (2.2) can be obtained from the LS
one (1.1) by an asymptotic argument; see [15]. This is the model dealt with
in [22] and [4] (the last one with the simplification a(x)=x, b(x)=1).

3. RESCALED EQUATION, AND ASYMPTOTIC PROFILES

In order to investigate the large time behavior, Lifshitz–Slyozov make
use of a scaling involving the critical size in the definition of the new time
and space variables. However, monotonicity of tW c(t) is not guaranteed
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at all (on the contrary, numerical simulations show that, especially at
earlier stages, this function is not monotone, see [6] and Sec. 4), so that the
change of variables in [18] does not clearly make sense. On the other hand,
one expects that c(t) behaves for large time as Kt−1/3, thus the critical size
xc(t) behaves as t/K3. In fact, this result has been rigorously proved in
certain cases in [23]. This behavior is revealed by the numerical simula-
tions, as we shall see in next section. This motivates the introduction of the
following scaling:

˛f(t, x)= 1
(1+t)2

g 1 ln(1+t), x
1+t
2 ,

y=ln(1+t), y=
x
1+t
.

Roughly speaking, we replace xc in the scaling of [18] by the monotone
function (1+t). We set

d(ln(1+t))=(1+t)1/3 c(t), w(y, y)=y1/3d(y)−1−y.

A short computation leads to the following rescaled form of (1.1)

˛“g“y+ ““y [w(y, y) g]=g,
d(y) e−y/3+F

R
+
yg(y, y) dy=r.

Based on the analysis of [18, 23], confirmed on this aspect by the numeri-
cal tests in Sec. 4, one expects that c(t) t1/3 tends to some constant K > 0,
i.e.,

lim
yQ.
d(y)=K.

Accordingly, d(y) e−y/3 ’Ke−y/3 is negligible for large y. Similarly, w(y, y)
looks like wK(y)=y1/3K−1−y. Thus, one is led to the following limit
equation

˛“g“y+ ““y [wK(y) g]=g,
F
R
+
yg(y, y) dy=r

(3.1)
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Notice that, from previous equation and the constraint on the first moment
of g, K is equal to the inverse of the mean radius

K=F
R
+
g dy 1F

R
+
y1/3g dy2

−1

.

To go further, one needs to discuss some basic properties of the
asymptotic growth rate wK(y)=WK(y1/3), where WK is the simple poly-
nomial WK(z)=Kz−1−z3. We shall obtain a family of possible asympto-
tic profiles, parameterized by K. We remark thatWK is concave on (0,+.)
and reaches its maximum at z=`K/3. We have, for z \ 0,

WK(z) [W
max
K =K(K/3)

1/2−1−(K/3)3/2=2(K/3)3/2−1.

Next, remark that Wmax
K is an increasing function of K, from (0,+.) to

(−1,+.), which vanishes at the critical value

Kcrit=3/22/3.

Therefore, we distinguish three cases:

(a) K <Kcrit:WK has no positive roots,WK(z) [W
max
K < 0 for z \ 0.

(b) K >Kcrit: WK has two distinct positive roots, z0, z+ (and a nega-
tive root z− ), and we haveWK(z) [ 0 for 0 [ z [ z0 or z \ z+, and
WK(z) \ 0 for z0 [ z [ z+. We will denote by y− , y+ and y0 the
corresponding values for wK(y), i.e., yi=z

3
i for i ¥ {− , 0,+}.

(c) K=Kcrit: `Kcrit/3=2−1/3 is a double root and WK(z) [ 0 for
z \ 0.

Let us now look at the stationary solutionMK of (3.1)

“y(wK(y) MK)=MK for y \ 0.

At least formally (up to the first positive zero y0=z
3
0 of wK) we can write

MK(y)=
−1
wK(y)

exp 1Fy
0

ds
wK(s)
2=− d

dy
5exp 1Fy

0

ds
wK(s)
26 .

Furthermore, for such a solution to be admissible, it should satisfy the
integrability condition yMK(y) ¥ L1(R+).

We shall see that the sub-critical case is unphysical; while for K \Kcrit,
the value of K can be related, roughly speaking, to the behavior of the
stationary solution at the end of its support. This proposition can be also
found in [23].
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Proposition 3.1. For K <Kcrit, there is no admissible stationary
solution. For K=Kcrit, one obtains the Lifshitz–Slyozov profile

Mcrit(y)=
exp 1− (2y)1/3

1−(2y)1/3
2

(1−(2y)1/3)11/3 (1+12 (2y)
1/3)7/3

, (3.2)

for 0 [ y [ y0=1/2, and 0 otherwise. For K >Kcrit, one has

MK(y)=(y0 y− y+)1/3
(1−(y/y0)1/3)p−1

(1−(y/y−)1/3)1−q (1−(y/y+)1/3)1−r
, (3.3)

for 0 [ y [ y0, and 0 otherwise, where the exponents p \ 0, q, r depend
on K. In particular, p and K are related by

K=
3(p+1)

(2p+3)2/3 p1/3
. (3.4)

Proof. The integrability requirement excludes the sub-critical case
K <Kcrit: we shall show that the first moment blows up. Indeed, for
K <Kcrit, sW wK(s)−1 is defined on the whole interval (0,+.), and we
remark that, for any y \ 0,

(1+y) exp 1Fy
0

ds
wK(s)
2=exp 1Fy

0

ds
wK(s)

+F
y

0

ds
1+s
2

=exp 1Fy
0

Ks1/3 ds
(1+s)(Ks1/3−1−s)

2 .

The integrand is non positive and behaves for large s ’s as −Ks−5/3 which
is integrable at infinity. It follows that

lim
yQ.
(1+y) exp 1Fy

0

ds
wK(s)
2=a > 0.

In particular, for y \ Y large enough, we have (1+y) exp(>y0 ds
wK(s)
) \ a/2

> 0. Since −y/wK(y)Q 1 as yQ., we deduce that

yMK(y)=
y

−wK(y)
(1+y) exp 1Fy

0

ds
wK(s)
2 1
1+y

\
a

4
1
1+y

,

holds for y \ Y large enough. Consequently yMK(y) ¨ L1(R+) for K<Kcrit.
Lifshitz–Slyozov also exclude in their analysis the case K >Kcrit; however,
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this is far from clear, in particular when dealing with compactly supported
initial data, see [4, 19, 22, 23].

Let us now look at the critical case K=Kcrit=3/22/3. We can rewrite
WKcrit (z)=−(z−2

−1/3)2 (z+22/3). Accordingly, we get for 0 [ y [ 1/2

F
y

0

ds
wKcrit (s)

=F
y1/3

0

3z2 dz
WKcrit (z)

=F
y1/3

0

1 −5/3
z−2−1/3

−
2−1/3

(z−2−1/3)2
−
4/3
z+22/3
2 dz

=1+
1

(2y)1/3−1
+ln 1 (1−(2y)

1/3)−5/3

(1+(y/4)1/3)4/3
2 ,

which yields the announced formula (3.2) for 0 [ y [ y0=1/2.
We turn to the supercritical case K >Kcrit. The polynomial WK has

three distinct roots denoted by

z− < 0 < z0 <`K/3 < z+.

Let us write z± in terms of the first positive root z0 as follows

˛ −WK(z)=(z−z0)(z
2+z0z−(K−z

2
0))=(z−z0)(z−z+)(z−z−)

z±=
1
2 (−z0±`4K−3z

2
0).

We aim at computing

F
y

0

ds
wK(s)

=F
y1/3

0

−3z2 dz
(z−z0)(z−z+)(z−z−)

=F
y1/3

0

1 p
z−z0

+
q
z−z−

+
r

z−z+
2 dz

where we check that

p=
3z20

(z0−z−)(z+−z0)
, q=

−3z2−
(z0−z−)(z+−z−)

and

r=
−3z2+

(z+−z0)(z+−z−)
.
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For convenience, let us set

o=
K
3z20

\ 1, a=
1
2
(−1+`3`4o−1),

so that

z+=az0, z−=−z0−z+=−z0(1+a),

and

p=
3

(2+a)(a−1)
=
1
o−1

\ 1, q=
−3(a+1)2

(2a+1)(a+2)

and

r=
−3a2

(a−1)(2a+1)
.

Hence, we get

F
y

0

ds
wK(s)

=ln{(1−(y/y0)1/3)p (1−(y/y−)1/3)q (1−(y/y+)1/3) r}

which yields the announced formula (3.3).
The behavior at the endpoint y0 is determined by the exponent p−1.

Recall this quantity is related to the value of

K=lim
tQ.
c(t) t1/3=lim

yQ.
d(y)

by the relation

p=
1
o−1

, o=
K
3z20

where z0 is the first positive root of WK i.e., WK(z0)=0=Kz0−1−z
3
0. This

allows us to express K as a function of the exponent p as in the relation
(3.4).

For K \Kcrit, we have computed the stationary solutionMK up to the
first positive root y0 of wK, where it vanishes. It remains to check that the
integrability condition implies thatMK should be extended by 0 for y \ y0.

Note that Mcrit is C. at the tip of its support y0, while the stationary
solutionsMK are less regular as K increases, i.e., p tends to 0 (see Fig. 1 for
a comparison of the graphs). i
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Fig. 1. Comparisons of the stationary solutions MK profiles for the discontinuous case
p=1, the corner case p=2 and the smooth case p=. (LS profile).

Remark 3.2. For p > 2, MK and M −

K vanish at the end of their
support. For p=2, MK vanishes but M −

K is a negative constant as yQ y−0
(it behaves like a triangle function). For 1 < p < 2, MK vanishes and M −

K

blows up as yQ y−0 . For p=1, MK behaves like a step function. For
0 < p < 1, MK and M −

K blow up as yQ y−0 with an integrable singularity.
For pQ 0,MK looks like a Dirac function at y0.

Let us go back to the rescaled equation (3.1) when d has reached its
equilibrium value. Set g(y, y)=h(y, y) MK(y). It follows that

“yh+wK(y) “yh=0.

Hence, integrating along the associated characteristics, we can write

h(y, y)=q(y−FK(y)), FK(y)=F
y

0

ds
wK(s)

.

Furthermore, the mass conservation yields

F
R
+
yh(y, y) MK(y) dy=r=F

R
+
yq(y−FK(y)) MK(y) dy.
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With the change of variables z=y−FK(y) \ 0, this can be rewritten as

r=F
.

y

F−1K (y−z) e
y−zq(z) dz,

where F−1K : (−., 0]Q [0, y0) is the inverse of the decreasing function
FK: [0, y0)Q (−., 0]. An obvious solution of this equation is given by
q(y)=A constant, determined by the relation

A=r 1F
R
+
yMK(y) dy2

−1

.

It yields

f(t, x)=
1

(1+t)2
g 1 ln(1+t), x

1+t
2 ’ A
(1+t)2

MK
1 x
1+t
2

for large time. The zeroth order moment of f, i.e., the total number of
clusters, behaves as

m0(t)=F
R
+
f(t, x) dx ’

A
1+t

F
R
+
MK
1 x
1+t
2 dx
1+t

’
A
t
F
R
+
MK(y) dy.

In view of the discussion above and the results obtained in [19, 4,
22, 23] one might expect the following conjecture for the LS system. If the
initial data is compactly supported in [0, xs], with f0(x) ’ C(xs−x)p−1

when xQ x−s , then the solution satisfies

f(t, x) ’
A

(1+t)2
MK
1 x
1+t
2 (3.5)

where K is associated to p by (3.4). If f0 has unbounded support, the
conjecture is

f(t, x) ’
A

(1+t)2
Mcrit
1 x
1+t
2 , (3.6)

i.e., f is described by the LS profile. This conjecture implies that CLS2 and
CLS3 hold with the corresponding value for K. We recall that this behavior
has been proved for ‘‘small’’ values of the exponent p. For p small enough
and an initial data close to the equilibrium state associated to that p, the
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condition that the initial data is ‘‘regularly varying with exponent p’’ is
necessary and sufficient to have convergence to the asymptotic profile as
time goes to infinity. For general p the condition has only been shown to
be necessary. We refer for precise definition and details to the paper [22, 23].
Also, the description of the family of stationary solutions and the different
asymptotic profiles are described in [23].

4. NUMERICAL SIMULATION OF LS

We wish to numerically investigate the question of the asymptotic
behavior of solutions of (1.1). We have seen the possibility of having
different asymptotic states depending on the behavior near the tip of the
support in previous section. This is the main point we would like to vali-
date and obtain numerically. On the other hand, we want to verify the
possibility of convergence towards the smooth LS profile for non com-
pactly supported or positive fast decaying at infinity initial data.

Is the smooth stationary state Mcrit the universal long-time profile for
the LS system? Are there any other initial data that leads to the non-
smooth self similar profiles MK for K >Kcrit? The LS conjecture CLS4
asserts that the answer to the first question is affirmative. However, we will
show by a carefully constructed numerical scheme that in fact, the second
answer is affirmative and the LS conjecture CLS4 in its full generality is
not true.

Concerning the smooth LS profile, does the evolution lead positive or
compactly supported initial data towards the smooth LS profile? How
large is the asymptotic stability neighborhoods for Mcrit? We will present
evolution results for several initial data leading to the smooth profile with
monotonic tails. However, as shown by a counterexample in [4], we can
imagine that oscillations in the tail of the initial distribution can prevent us
from convergence to the smooth asymptotic profile. We show results for
more aggressive initial data with non monotonic tail, see Figs. 26 and 27.
The results reinforce the conjecture that under suitable additional assump-
tions on positive initial data, like having Gaussian tail at ., the solution
converges towards the smooth LS profile. This is a very interesting open
problem.

The rigorous proof of part of these results was achieved in [22, 23]
but a complete understanding is still lacking, mainly for non compactly
supported initial data. The proposed method is a scheme for the LS system
that differentiates among the asymptotic profiles, as we shall see. Let us
point out that the complexity and great sensitivity of the LS system shown
by [23] is a very difficult and challenging problem to be numerically
resolved.
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This section is divided into two subsections: in the first one we
describe the numerical scheme used to discretize (1.1), the second one is
devoted to the numerical simulation results in which previous assertions are
based on and their discussion.

4.1. Numerical Method

We treat the evolution equation

“f
“t
+
“

“x
[V(t, x) f]=0 (4.1)

as a linear one-dimensional advection equation with time and position
dependent advection function V(t, x)=a(x) c(t)−b(x), for a given known
monomer concentration c(t). In order to solve numerically such linear
advection equation we can use any standard numerical scheme [16, 27]
considered for nonlinear conservation laws. In order to choose a suitable
scheme for solving (4.1), we have to take into consideration several facts:

1. One of the effects over the solution we observe is the stretching of
the support of the solution. Thus, one needs to deal with a large
domain of computation.

2. The expected asymptotic profile depends crucially on the behavior
of the data at the end of the support; therefore, smoothing effects
induced by the numerical scheme can modify the final profile. As a
consequence, one should choose the least dissipative choice among
all the possible numerical schemes. Intuitively, the LS evolution
acts in this way: zoom the tip of the support, cut the rest, stretch
it and multiply locally by an amplification factor. Thus, smooth-
ing effects done by the numerical approximations are doomed to
be amplified during the evolution. This is the main reason we need
the least possible dissipative numerical scheme.

3. High order accuracy for the solution in space is desirable since we
expect the solution to be very smooth outside possibly the tip of
the support. If we have initial solutions with jumps or corner dis-
continuities at the tip of the support, we expect them to propagate
in time, so we would also need a numerical scheme that resolves
shocks or corner discontinuities with a good accuracy, if they
appear (see Figs. 1 and 2).

4. High order in time, TVD discretizations and stability in time are
of paramount importance to obtain meaningful numerical results
after so many time iterations.
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Based on these facts, we decide to choose a standard finite volume
solver of the linear advection equation (4.1) with Godunov flux as mono-
tone flux. The choice of Godunov flux is due to the fact that is the least
dissipative (less smearing of jumps or corners) with respect to other stan-
dard fluxes: Lax–Friedrichs, Engquist–Osher,... .

In the reconstruction part we want to achieve high order in smooth
parts of the solution (that for (1.1) is always the case except possibly at the
tip of the support) and also good accuracy at shocks ( jumps) or corners, if
they initially appear. Therefore, we choose WENO reconstruction with 5
points which gives us fifth-order spatial accuracy for smooth solutions. We
refer to [13, 27] for the details of the numerical method. This method has
been tested thoroughly and it has been shown to be very robust and to
produce meaningful results for complicated non linear systems of conser-
vation laws in fluid dynamics, semiconductors, Hamilton–Jacobi equa-
tions,... (see [27] and references therein).

We solve in time by means of an explicit 3rd-order TVD Runge–Kutta
method [26] that enjoys the needed features of stability, high order and
TVD character. CFL condition is verified at each time step to ensure
numerical stability. The algebraic condition

c(t)+F
R
+
xf(t, x) dx=r > 0,

is used to determine the monomer concentration c(t) at each evaluation
needed in the Runge–Kutta method to compute the fluxes correctly.

In Fig. 2 we show the solution of this system for a step-like initial data
after 200 units of time by using the finite volume Godunov-WENO, finite
volume Lax–Friedrichs-WENO and the simple up-winding finite differ-
ences method (finite volume Godunov-first order reconstruction). We have
solved the LS system with the different methods over the interval [0, 800]
with 100 cells per unit length. Experts in numerical schemes for conserva-
tion laws can recognize easily that the simple up-winding method gives very
smeared non realistic solutions for the linear advection equation with a step
function as an initial data [16].

In fact the results of simulations for this system using the up-winding
method were reported in [6]. They asserted that the LS conjecture was true
by using different shapes of initial data, all of them with empty zero level
set (non compact support). The smearing caused by the use of the simple
up-winding method disables the possibility of finding any other possible
behavior. In fact, as Fig. 2 shows, the use of this method for a step-like
initial data can lead you to a completely wrong conclusion asserting the
convergence towards the smooth self similar solution and therefore that the
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Fig. 2. Comparisons of the numerical solutions for a step-like function initial data (f0=0.1
for 10 [ x [ 30 and 0 outside) using finite volume Godunov-WENO, finite volume Lax–
Friedrichs-WENO and upwinding finite difference method. The results given by Godunov-
WENO are the least smeared, the upwinding results are the smoother ones.

LS profile is the universal asymptotic behavior for any initial data. This
method is not at all suitable for controlling the behavior at the tip of the
support. Moreover, they obtain limiting critical values Kcrit with a error of
5–20%.

Being in principle such a simple looking numerical problem: a one
dimensional advection equation coupled with an algebraic constraint, one
has different choices for the numerical method. The objective of this paper
is not to compare different numerical methods, their efficiency and their
performance applied to the LS system and rather to highlight some of the
open questions on the LS system using a suitable numerical method. We
comment on other possible approaches, although in any case we want to
include a detailed comparison of them.

One possibility would be to solve the characteristic system (1.2) in each
time step by a suitable ODE solver and propagate the initial data through
the characteristics by (2.1) together with the computation of the monomer
concentration. The main disadvantage of these approaches is that many
points will leave the computational domain from the left (those corre-
sponding to small values of the size) and thus, one is forced to introduce
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new points every certain number of time iterations. This fact produces
a new source of numerical error since typically these new points will be
included by some interpolation procedure and it might be that the resolu-
tion at the tip of the support is deteriorated.

Of course, other high order methods different from WENO should
produce similar results for the case of smooth profiles and even for the non
smooth case if they are capable of dealing with the numerical difficulties
concerning non smooth profiles (see again the comparison in Fig. 2). For
the Maxwellian initial data, any naive implementation of the method of
lines using simple central finite differences and explicit 4th order Runge–
Kutta method gives the same results but it does not for the non smooth
initial data. The difficulty of the numerical challenge is illustrated also by
Filbet and Laurençot [12] who introduced a time explicit finite volume
numerical scheme, adapted for LS: the scheme is shown to be convergent,
however it introduces too much diffusive effects to capture non smooth
large time behavior.

Finally, let just mention that the numerical simulation of the rescaled
equation

˛“y g+“y(w(y, y) g)=g,
d(y) e−y/3+F

R
+
yg(y, y) dy=r.

is done following the same lines as above. Since we are applying the
method of lines, the right-hand side is explicitly included as a part of the
function defining the ODE system solved by the above mentioned Runge–
Kutta method. The main advantage of this rescaled form is that we can
work in a much smaller x-interval. Despite this fact, the CFL condition for
the rescaled equation is much more restrictive (stiffer problem) than for the
original LS system. Therefore, computational times are almost identical for
both problems, but the rescaled system allows us to explore easier the later
stages of the evolution. The use of certain numerical methods especially
designed to treat stiff problems (see [28]) should be explored for solving
the rescaled LS system. Also, the modified LSW system is solved in an
analogous way to the LS system.

4.2. Simulation Results

4.2.1. Validation of the Code

First, we validate our code by comparing simulation results to explicit
solutions. Explicit solutions were obtained in [7] for very simple coefficients
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without critical size. In particular, the simplest case is a(x)=ax, b(x)=bx,
with a, b > 0 constants, where the solution is exactly known

f(t, x)=b(t) f0(b(t) x),

with

b(t)=˛ (ac0−b) exp((b−ar) t)+a(r−c0)
ar−b

, for ar−b ] 0,

b(t)=1+a(r−c0) t, for ar−b=0,

whereas

c(t)=˛
r(ac0−b) exp((b−ar) t)+b(r−c0)
(ac0−b) exp((b−ar) t)+a(r−c0)

, for ar−b ] 0,

c0+r(r−c0) at
1+(r−c0) at

, for ar−b=0,

Then, the asymptotic behavior is obtained easily, depending on the
over or undersatured nature of the initial data. Precisely, one has:

If r < b/a, then c(t)Q r and

f(t, x) ’
b/a−c0
b/a−r

e (b/a−r) atf0 1
b/a−c0
b/a−r

e (b/a−r) at x2 ,

If r > b/a, then c(t)Q b/a and

f(t, x)Q f.(x)=
r−c0
r−b/a

f0 1
r−c0
r−b/a

x2 .

We use this simple case to validate the performance of the scheme. The first
test (Test 1) corresponds to a=b=1, r=41 > b/a, c0=31. The initial
data, represented in Fig. 3 bottom right, is a Maxwellian

f0(x)=
m

`2p
exp 1−(x−10)

2

2
2 .

Figure 3 shows an exact agreement of the computed solution with the
exact behavior given by

c(t)=
40×30×e−40t+10
30×e−40t+10

Q 1=b/a,
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Fig. 3. Test1: top left: final computed solution (solid line) versus exact explicit stationary
(triangles); top right: c(t) for the computed solution (solid line) versus the exact explicit
evolution of concentration of monomers (triangles); bottom left: c(t); bottom right: initial
data.

and f(t, x) ’ 1
4 f0(

x
4) as tQ.. The second test (Test 2) is a=b=1, r=

0.5 < b/a, c0 ° 1 for which we recover the expected behavior c(t) ’ 0.5
and

f(t, x) ’ 2e t/2f0(e t/2x) ’
2m

`2pe−t
exp 1−(x−10e

−t/2)2

2e−t
2 ’ 2mdx=0,

as tQ.. The monomer concentration evolution is given in Fig. 4.
Let us mention that we will show numerically converged results as we

have validated the results for the LS system by mesh refinement study for
several initial data (particularly a Maxwellian and a step function). All the
results in this subsection have been obtained by solving the corresponding
LS system over the interval [0, 60] with 30 cells per unit length.

4.2.2. Simulations on the LS Equation

Once we have validated our code we take the true LS system with the
coefficients of [18], a(x)=x1/3, b(x)=1. We first, choose as initial data f0
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Fig. 4. Test 2: c(t) for the computed solution.

a Maxwellian centered on x0 comparable to, or larger than, the critical size.
This is the situation in Theorem 1 [10] where c(t) goes to 0 as tQ.. Pre-
cisely, we set for this run: r=41, c0=1 (thus xc0=1) and the Maxwellian

f0(x)=
m

`2p
exp 1−(x−10)

2

2
2 .

as initial data (see Fig. 3 bottom right). We solve the LS system over the
interval [0, 1000] with 40 cells per unit length.

After 2000 units of time, one observes (see Figs. 5 and 6):

1. A metastability region (t < 50) for the concentration of monomers
before c(t) decreases.

2. A good agreement with the t−1/3 law, as shown in the graph of
K(t)=t1/3c(t). We can observe that it converges very quickly
towards values very close to Kcrit=1.88988, and after K(t)
changes very slowly decreasing their value until reaching
K(2000)=1.8657. We may run the code further to observe that
thereafter K(t) starts to increase slowly approaching the critical
value Kcrit=1.88988, but we will see this fact later in the rescaled
equation.
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Fig. 5. Maxwellian initial data for the LS system (c(t)Q 0): top left: c(t); top right: t1/3c(t);
middle left: zoom of t1/3c(t); middle right: m0(t); bottom left: tm0(t); bottom right: final result
(solid line) versus the corresponding LS profile (thicker solid line).

3. m0 decreases after the metastability region, in good agreement
with the t−1 law.

4. The evolution of this solution is summarized in Fig. 6 which
shows the solution f(t, x) each 250 units of time. We can see
clearly the stretching of the support and the convergence towards
the shape of the LS profile. In Fig. 5 bottom right we have plotted
the final solution after 2000 units of time versus the LS profile in
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Fig. 6. Evolution of the Maxwellian initial data (see Fig. 3 bottom right) for the LS system
every 250 time units.
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the self similar variables corresponding to this time and to this
value of r according to formula (3.6).

Next, we choose a very small c0, thus a very large critical size. The
initial data f0 is a Maxwellian centered on x0 much smaller than the critical
size, with a small variance, so that it is almost a compactly supported data,
with support to the left of the critical size. Then, one verifies that c goes
to r. This is illustrated with the data: c0=7.10−2, r=0.2 and f0 is a
Maxwellian centered at 0, with mass .1 and variance 10, given in Fig. 7 top
left. After 45 units of time, one sees that c goes very close to r (see Fig. 7
top right) and the final profile f(t, x) is almost zero (see Fig. 7 bottom).
We solve the LS system over the interval [0, 1000] with 40 cells per unit
length.

However, this behavior is very sensitive to the initial data, it changes
drastically if the initial critical size is reduced or if one increases the ‘‘sup-
port’’ of f0 (for instance, changing the variance of the Maxwellian). We
consider the same test as before changing c0=0.5, r=2, variance of f0
equals 0.01 (see Fig. 8 top left). Then, c starts increasing, reaching values
very close to r, but the evolution changes and finally it decreases to 0, as
illustrated by Fig. 8 top right. We then recover a good agreement again
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Fig. 7. Maxwellian initial data for the LS system (c(t)Q r): top left: initial data; top right:
c(t); bottom: final result.
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Fig. 8. Maxwellian initial data for the LS system (c(t)Q 0): top left: initial data; top right:
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bottom: triangle function.
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with the t−1/3 law, see Fig. 8 bottom left. Figure 8 bottom right gives the
final solution f, after 100 units of time.

Now, we want to check the LS conjecture about the universal asymp-
totic profile. In order to do this, we take three different initial data (see
Fig. 9): another smooth non compactly supported initial data: the sum of 2
Maxwellians (we have also tested initial data with unbounded support and
algebraic decay); a discontinuous compactly supported initial data: a step
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Fig. 10. Double Maxwellian initial data for the LS system: top left: c(t); top right: t1/3c(t);
middle left: zoom of t1/3c(t); middle right: m0(t); bottom left: tm0(t); bottom right: final result
(solid line) versus the corresponding LS profile (thicker solid line).
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Fig. 11. Evolution of the double Maxwellian initial data for the LS system every 250 time
units.
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Fig. 13. Evolution of the step function initial data for the LS system every 250 time units.
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Fig. 15. Evolution of the triangle function initial data for the LS system every 250 time
units.
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function; a continuous non differentiable compactly supported initial data:
a triangle function. For those initial data we have computed their evolu-
tion, the evolution of the concentration of monomers, the evolution of the
total number of agglomerates and we have compared the final solution
after 2000 units of time with stationary profiles. The results are given in
Figs. 10 and 11 for the double Maxwellian, Figs. 12 and 13 for the step
function and Figs. 14 and 15 for the triangle function.

We conclude from these figures the following observations:

1. A metastability region also appears for the concentration of
monomers before c(t) decreases. Note also that in the earlier
stages of the evolution, the behavior of c(t) is much more compli-
cated for the double Maxwellian than for the single one.

2. A good agreement with the t−1/3 law, as shown in the graph of
K(t)=t1/3c(t). We can observe that the value to which K(t) is
converging depends on the initial data. In fact, for the double
Maxwellian we observe values very close to Kcrit=1.88988, while
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Fig. 16. Maxwellian initial data for the rescaled LS system: top left: Comparison between
the computed solution after 25 time units (solid line) and the smooth LS profile Mcrit; top
right: d(t) is converging towards Kcrit=1.88988; bottom left and bottom right: zooms of the
graph of d(t).
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for the step function K(t) is larger than this value, it continues to
increase and is closer to the value K=2.05197 for p=1 given by
(3.4). Also, for the triangle function K(t) is larger than the critical
value Kcrit=1.88988, continues to increase and is closer to the
value K=1.95209 for p=2 given by (3.4).

3. m0 decreases after the metastability region, in good agreement
with the t−1 law.

4. The evolution of the solutions shows the solution f(t, x) each 250
units of time. We can see clearly the stretching of the support and
the convergence towards the shape of the corresponding stationary
state given by formula (3.5).

Here, we have solved the LS system over the interval [0, 800] with 80
cells per unit length for the step and the triangle initial data and over the
interval [0, 1000] with 40 cells per unit length for the double Maxwellian.

We have also made tests with functions having unbounded support
and algebraic decay at infinity. The conclusions on the behavior of the
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Fig. 17. Double Maxwellian initial data for the rescaled LS system: top left: Comparison
between the computed solution after 20 time units (solid line) and the smooth LS profileMcrit;
top right: d(t) is converging towards Kcrit=1.88988; bottom left and bottom right: zooms of
the graph of d(t).
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Fig. 18. Evolution of the Maxwellian initial data (see Fig. 3 bottom right) for the rescaled
LS system every 2.5 time units.
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Fig. 19. Evolution of the double Maxwellian initial data for the rescaled LS system every 2.5
time units.
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solution are the same as those for the Maxwellians and we do not deem
necessary to include figures on that case. However, the remarkable point is
the great sensitivity of the computation to the necessary truncation of the
initial data. We should take under consideration a very large array of
initial data, even with very small values in the last components, otherwise
the solution could converge to the non smooth profile associated to the
step function. This illustrates once again the high instability of the asymp-
totic profiles and the high influence of the tail of the initial data.

The crucial influence of the tail of the initial data is confirmed by the
aggressive tests which consist of dealing with oscillating initial data.
Figure 26 corresponds to the evolution, in rescaled variables, with the
initial data

m

`2ph
exp(−(x−10)2/(2h))× sin2(20x). (4.2)
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Fig. 20. Step function initial data for the rescaled LS system: top left: Comparison between
the computed solution after 10 time units (solid line) and the asymptotic profile MK with
K=2.05197; top right: Comparison between the computed solution after 9 time units (solid
line) and the asymptotic profile MK with K=2.05197; bottom left and bottom right: d(t) is
converging towards K=2.05197.
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Figure 27 corresponds to the evolution with the initial data

m

`2ph
exp(−(x−10)2/(2h))×

1
1+0.1 sin(10x)

. (4.3)

In both cases the solution does not converge to the smooth LS profile and
instead is wandering around the smooth LS profile. Moreover, even the
rescaled monomer concentration d is oscillating and does not stabilize. We
point out that the CFL becomes prohibitive and does not allow to go
further in time (but the final result presented here corresponds to e15 time
units).

As a conclusion, we can assert that the conjectures CLS1–CLS4 are
not verified in general: the large time behavior is highly dependent on the
initial data. In particular, based on numerics, we find initial data for which
conjectures CLS1–CLS3 are satisfied considering non universal constants.
There are also initial data, with infinite support, for which we do not stabi-
lize to the smooth profile.
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Fig. 21. Evolution of the step function initial data for the rescaled LS system every 2.5 time
units.
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4.2.3. Simulations on the Scaled Equation

Next, we consider the same set of initial data, but we perform the
computations on the rescaled system. As mentioned before, the main
advantage is to reduce the size of the domain of computation, since one
avoids the stretching of the support of the solution in the new variables.

The price to be paid comes from a considerable increase of the stiff-
ness of the problem, in particular when dealing with the non regular data.
This requires one to observe carefully the CFL condition; otherwise unde-
sirable oscillations can be observed on the computed solutions. These
oscillations arise mainly from the end of the support, while d is also
oscillating, illustrating again the crucial role played by the largest aggre-
gates. Note that the computational time are comparable to those for the
original system, but the rescaled variables are well adapted to go further in
time. Let us recall that the variable y is a logarithmic scale of the variable t.

Results for the Maxwellian and the double Maxwellian can be found
in Figs. 16–18 and Figs. 17–19, respectively. We recover the same conclu-
sions as with the original variables, and the convergence to the expected
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Fig. 22. Triangle function initial data for the rescaled LS system: top left: Comparison
between the computed solution after 10 time units (solid line) and the asymptotic profile MK

with K=1.95209; top right: d(t) is converging towards K=1.95209; bottom left and bottom
right: zooms of the graph of d(t).
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smooth profile. Let us remark that in this computation we have arrived at
y=25 and y=20, respectively, rescaled time units which correspond to the
order of 1011 and 109 original time units. Therefore, we have gone much
further with respect to the simulations in the original system.

Then, Figs. 20–23 show the results of the computations for the step
function and the triangle as initial data, respectively. Here, we have arrived
at y=10 rescaled time units which correspond to the order of 105 original
time units.

Again, one verifies the convergence to the asymptotic profile MK with
the value of K corresponding to the behavior of the data at the end of its
support. However, the problem becomes very stiff as the regularity at the
end of the support gets smeared. It should be noted that smearing effects
induced by the numerical approximation become noticeable at these very
large time for the largest aggregates.

Consequently, while the solution is very close to the profile MK, it
finally deteriorates and converges to the smooth profile, as observed by
Fig. 20 top, and Fig. 23 bottom right. This fact illustrates the enormous
numerical difficulty in preserving the precise behavior of the solution at the
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Fig. 23. Evolution of the triangle function initial data for the rescaled LS system every 2.5
time units.
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Fig. 24. Maxwellian initial data for the LSW system: top right, left and bottom left: Com-
parison between monomer concentration c(t) for the LS and the LSW; bottom right: Com-
parison between the computed solutions for the LS and LSW after 2000 time units.

tip of the support as time becomes very large, and thus, capturing the right
asymptotic profile. We have solved the rescaled LS system over the interval
[0, 30] with 1000 cells per unit length.

4.2.4. Simulations on the LSW Equation

Our final tests are devoted to the LSW system, the number of cells and
numerical issues are chosen in the same way as for the corresponding cases
of the LS system. The results showed in Fig. 24 and 25 confirm that this
system can be seen as a good approximation of the original one for large
time, as c(t) has become small, in agreement with the theoretical results in
[15]; it also agrees with the prediction proposed in [22] since we recover
again the asymptotic profile which corresponds to the behavior of the
initial data at the end of its support.

5. CONCLUSION

The main conclusion of our numerical study is that the asymptotic
behavior of the solutions of the Lifshitz–Slyozov system depends on the
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Fig. 25. Step initial data for the LSW system: left: Comparison between monomer concen-
tration c(t) for the LS and the LSW; right: Comparison between the computed solutions for
the LS and LSW after 2000 time units.
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Fig. 26. Perturbation of the Maxwellian initial data for the LS system in (4.2): top left: after
5 time units, top right: after 15 time units, bottom left: comparison after 15 time units with the
LS smooth profile, bottom right: monomer concentration.
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Fig. 27. Perturbation of the Maxwellian initial data for the LS system in (4.3): top left: after
5 time units, top right: after 15 time units, bottom left: comparison after 15 time units with the
LS smooth profile, bottom right: monomer concentration.

initial data. Of course, the challenging question remains to exhibit some
condition that guarantee the convergence towards the smooth profile as
conjectured in [18]. We expect that our investigation will highlight some
elements for finding a solution. First, the convergence to 0 of the monomer
concentration certainly does not hold for any initial repartition of mass.
Roughly speaking, a certain amount of mass should be given by aggregates
larger than the initial critical size. Next, even in situations where c(t) goes
to 0, monotonicity is far from clear; in any case it does not concern the
earlier stages of evolution where c can have a complicated behavior.

In our tests, when c(t)Q 0, we also verify that c(t) t1/3 goes to a con-
stant K. However, the constant depends on the distribution of the largest
aggregates present initially in the solution. Accordingly, conjectures
CLS1–CLS3 may hold under additional assumptions on the initial data,
but with a constant K which depends on the shape of the initial data f0
and the final profile preserves some memory of the initial shape of the
density. Convergence towards the smooth LS profile for several non com-
pactly supported initial data is numerically observed. These results bring up
the question referred above of finding sufficient conditions on positive fast
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decaying at infinity initial data such that their evolution leads towards the
smooth LS profile.

Let us finally mention that some questions raised in this study have
rigorously been answered in a very recent work [23]. Despite this fact, our
numerical scheme is shown to be a suitable numerical method to solve the
LS system and sheds some light on several facts not included in [23].
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