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Machine Learning Tasks

Inference tasks are generated by users and executed through

pretrained inference models.
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Inference Delivery Networks
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• Simpler models available locally have low accuracy

• Complex models at the cloud may not meet latency

constraints
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Inference Delivery Networks

Cloud

Task

Devices

Local computation

Remote computation

Low-quality model High-quality model
Different qualities with different 

resources requirements

Integrate ML inference in the continuum between end-devices and

the cloud.
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Contributions

• Present inference delivery networks

• Propose INFIDA, a distributed online allocation algorithm for

IDNs with strong guarantees even w.o. a prior on the request

process

• Evaluate INFIDA experimentally with greedy heuristics
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System Overview
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System Description - Compute Nodes and Models (1/2)
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• We represent the inference delivery network (IDN) as a

weighted graph G (V, E)
• N={1, 2, . . . ,N} is the set of tasks the system can serve

7



System Description - Compute Nodes and Models (2/2)
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• Each node v ∈ V has an allocation budget bv ∈ R+, and

svm ∈ R+ is the size of model m ∈ M
• The budget constraints:

∑
m∈M xvms

v
m ≤ bv ,∀v ∈ V
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System Description - Inference Requests

High-quality model

• We assume that every node has a predefined routing path

towards a suitable repository node for each task i ∈ N
• A request is determined by the pair (i ,ppp)
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System Description - Cost Model

When serving request ρ=(i ,ppp) ∈ R on node pj using model m, the

system experiences a cost C
pj
ppp,m ∈ R+.

Our theoretical results hold under this very general cost model, but

to be concrete we refer to the following simpler model:

C
pj
ppp,m =

j−1∑
j ′=1

wpj′ ,pj′+1︸ ︷︷ ︸
round-trip latency

+ d
pj
m︸︷︷︸

inference delay

+ α︸︷︷︸
trade-off parameter

(1−am)︸ ︷︷ ︸
inaccuracy

.
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System Description - Request Load and Serving Capacity
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• During a slot t the system receives a batch of requests

rrr t = [r tρ ]ρ∈R ∈ (N ∪ {0})R

• Each model has an available capacity l t,vρ,m ∈ N ∪ {0}
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System Description - Serving Model (1/3)

1

2

For a model m allocated at v having the k-th smallest service cost,

we denote by:

γkρ = C v
ppp,m︸ ︷︷ ︸

model service cost

, λkρ(lll t) = l t,vρ,m︸ ︷︷ ︸
potential available capacity

, zkρ (lll t ,xxx) = xvml
t,v
ρ,m︸ ︷︷ ︸

effective available capacity

.
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System Description - Serving Model (2/3)

The aggregate cost incurred by the system at time slot t is

C (rrr t , lll t ,xxx) =
∑
ρ∈R

Kρ∑
k=1

γkρ ·min

{
r tρ −

k−1∑
k ′=1

zk
′

ρ (lll t ,xxx), z
k
ρ (lll t ,xxx)

}
︸ ︷︷ ︸

(a)

· 1{∑k−1
k′=1

zk′ρ (lll t ,xxx)<r tρ}︸ ︷︷ ︸
(b)

.

• (a) is the number of requests served by the k-th ranked model

• (b) is zero when all the requests can be served before the k-th

ranked model

Equivalently, our objective is to maximize the allocation gain

defined as G (rrr t , lll t ,xxx) = C (rrr t , lll t ,ωωω)− C (rrr t , lll t ,xxx).
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System Description - Serving Model (3/3)

The allocation gain has the following equivalent expression:

G (rrr t , lll t ,xxx) =
∑
ρ∈R

Kρ−1∑
k=1

(
γk+1
ρ − γkρ

)
︸ ︷︷ ︸

cost saving

(
Z k
ρ (rrr t , lll t ,xxx)− Z k

ρ (rrr t , lll t ,ωωω)
)

︸ ︷︷ ︸
additional requests

,

where Z k
ρ (rrr t , lll t ,xxx) ≜ min

{
r tρ ,

∑k
k ′=1 z

k ′
ρ (lll t ,xxx)

}
.
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System Description - Adversarial Setting
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• We consider a “pessimistic” scenario where both requests and

available capacities are selected by an adversary
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Subgradients computation

For every v ∈ V the gain function has a subgradient ggg v
t at point

yyy vt ∈ Yv given by

ggg v
t =

∑
ρ∈R

l t,vρ,m

(
γ
K∗
ρ (yyy t)

ρ − C v
ppp,m

)
1{κρ(v ,m)<K∗

ρ (yyy t)}


m∈M

,

where K ∗
ρ (yyy t) = min

{
k ∈ [Kρ − 1] :

∑k
k ′=1 z

k ′
ρ (lll t ,yyy t) ≥ r tρ

}
.
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INFIDA distributed allocation

1: procedure INFIDA(yyy v
1= argmin

yyyv∈Yv∩Dv
Φv (yyy v ), ηv∈R+)

2: for t = 1, 2, . . . ,T do

3: xxxv
t ← DepRound(yyy v

t ) ▷ Sample a physical allocation

4: Compute ggg v
t ∈ ∂yyyvG(rrr t , lll t ,yyy t)

5: ŷyy v
t ← ∇Φv (yyy v

t ) ▷ Map state to the dual space

6: ĥhh
v

t+1 ← ŷyy v
t + ηv ggg v

t ▷ Take gradient step in the dual space

7: hhhv
t+1 ← (∇Φv )−1 (ĥhh

v

t+1) ▷ Map dual state back to the primal space

8: yyy v
t+1 ← PΦv

Yv∩Dv (hhhv
t+1) ▷ Project new state onto the feasible region

9: end for

10: end procedure
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Theoretical Guarantees

We provide the optimality guarantees of INFIDA in terms of the
ψ-regret (ψ = 1− 1

e ).

ψ-Regret

= ψ︸︷︷︸
discount

Total gain of the static optimum− Expected total gain of INFIDA

≤ ψRLmax∆C

smin

√
2smax|V||M|

∑
v∈V

min{bv , ∥sssv∥1} log
(

∥sssv∥1
min{bv , ∥sssv∥1}

)
T

= O
(√

T
)
.

• The average ψ-regret goes to 0 when T is large enough; we perform as

well as a ψ-approximation of the static optimum that knows the sequence

of the models’ capacities and requests in hindsight!

• ψ is the best approximation bound achievable for the problem, assuming

P ̸= NP
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Experiments - Requests Traces

(a) Fixed Popularity Profile (b) Sliding Popularity Profile

Performance Metric. The performance of a policy is evaluated in

terms of the time averaged gain normalized to the number of

requests per second (NTAG).
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Experiments - Trade-off between Latency and Accuracy
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(a) α = 3
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(b) α = 4
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(c) α = 5

Figure 2: Fractional allocation decisions y v
m of INFIDA on the various

tiers of Network Topology I under Fixed Popularity Profile.
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Experiments - Trade-off between Latency and Accuracy (1/3)
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Figure 3: Average latency (dashed line) and inaccuracy (solid line) costs

experienced with INFIDA for different values of α under Network

Topology I and Fixed Popularity Profile.
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Experiments - Trade-off between Latency and Accuracy (2/3)
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Figure 4: NTAG of the different policies under Sliding Popularity Profile

and network topologies: (a) Network Topology I, and (b) Network

Topology II.
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Experiments - Trade-off between Latency and Accuracy (3/3)
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Figure 5: Average Latency vs. Average Inaccuracy obtained for different

values of α ∈ {0.5, 1, 2, 3, 4, 5, 6} under Fixed Popularity Profile and

Network Topology II.
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Experiments - Update Costs
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Figure 6: (a) Models Updates (MU) and (b) NTAG of Greedy and

INFIDA for different values of refresh period B ∈ {4, 8, 16}, and for a

dynamic refresh period. The experiment is run under Network Topology I

and Sliding Popularity Profile.
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Experiments - Scalability on Requests Load
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Figure 7: NTAG of the different policies for different request rates under

Network Topology I.
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Thank you for your attention!
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