
AÇAI: Ascent Similarity Caching with

Approximate Indexes

Tareq Si Salem1 Giovanni Neglia1 Damiano Carra2

1Inria, Université Côte d’Azur

2University of Verona

1



Context



Classical Caching

Costs

• Quality of service cost incurred due to fetching latency

• Monetary cost for using the network infrastructure

2



Classical Caching

A cache with finite capacity is put close to the users.

• Hit: the requested file is stored

• Miss: the request is forwarded to the server

3



Similarity Caching

A cache with finite capacity is put close to the users.

• Hit: the cache serves the request object

• Miss: the cache forwards the request

• Approximate hit: serve with a similar object
4



Similarity Caching

5



Similarity Caching

5



Similarity Caching with Recommendations (kNN Caching)

6



Similarity Caching with Recommendations (kNN Caching)

6



Some Applications

• Content recommendation1

• Image retrieval and contextual ads2

• Machine Learning serving3

1T. Spyropoulos et al. “Soft Cache Hits and the Impact of Alternative Content Recommendations on Mobile Edge Caching”. In: Proc. of

the Eleventh ACM Workshop on Challenged Networks. CHANTS ’16. New York City, New York: Association for Computing Machinery,

2016, pp. 51–56.

2F. Falchi et al. “A metric cache for similarity search”. In: Proceedings of the 2008 ACM workshop on Large-Scale distributed systems

for information retrieval. 2008, pp. 43–50; S. Pandey et al. “Nearest-neighbor Caching for Content-match Applications”. In: Proc. of the

18th International Conference on World Wide Web. WWW ’09. Madrid, Spain: ACM, 2009, pp. 441–450.

3D. Crankshaw et al. “Clipper: A Low-Latency Online Prediction Serving System”. In: 14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 17). Boston, MA, 2017; U. Drolia et al. “Cachier: Edge-caching for recognition applications”. In:

Proc. of the IEEE ICDCS. IEEE. 2017, pp. 276–286; U. Drolia et al. “Precog: Prefetching for image recognition applications at the edge”.

In: Proc. of ACM/IEEE Symposium on Edge Computing. 2017, pp. 1–13; A. Kumar et al. “Accelerating deep learning inference via

freezing”. In: 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19). 2019; S. Venugopal et al. “Shadow puppets:

Cloud-level accurate AI inference at the speed and economy of edge”. In: USENIX HotEdge. 2018.

7



Contributions



Contributions

• Formulate the problem of kNN optimal caching

• Propose a new similarity online caching policy AÇAI with strong

performance guarantees

• AÇAI consistently improves over state-of-the-art under realistic

traces

8



Modeling



Caching Gain Modeling

9



Caching Gain Modeling

A cache with allocation vector x ∈ {0, 1}2N incurs the following cost

when r ∈ R is received

C (r , x) =
2N∑
i=1

c(r , πr
i )xπr

i
1{∑i

j=1 xπr
j
≤k

}.
Our objective is to maximize the caching gain (cost savings) as the cache

state x changes, given as

G (r , x) , C (r , empty cache)− C (r , x).

9



Setting and Performance Metric (1/2)

10



Setting and Performance Metric (2/2)

Regret of a policy P with the (potentially random) cache states {xt}Tt=1

is given by

ψ-Regret(P) = sup
{r1,r2,...,rT}∈RT

{
ψ

T∑
t=1

G (rt , x∗)− E

[
T∑
t=1

G (rt , xt)

]}

• The constant ψ = 1− 1/e is the best approximation ratio achievable

in P to the NP-Hard static optimum

• When ψ-Regret(P) is sublinear in T , the policy experiences no

regret on average as T →∞

11



Online Convex Optimization (OCO)

We prove that the caching gain can be expressed equivalently as

G (r , x) =
K r−1∑
i=1

αr
i min

k ,
i∑

j=1

xπr
j

 + σr
i ,

where αr
i , σ

r
i , and K r are constants.

4E. Hazan. “Introduction to Online Convex Optimization”. In: Found. Trends Optim. 2.3–4 (Aug. 2016), pp. 157–325.

12



Online Convex Optimization (OCO)

We prove that the caching gain can be expressed equivalently as

G (r , x) =
K r−1∑
i=1

αr
i min

k ,
i∑

j=1

xπr
j

 + σr
i ,

where αr
i , σ

r
i , and K r are constants.

The fractionally relaxed problem can be cast in the framework of OCO.5

5E. Hazan. “Introduction to Online Convex Optimization”. In: Found. Trends Optim. 2.3–4 (Aug. 2016), pp. 157–325.

12



Dissection of AÇAI



AÇAI: Core Algorithm - Online Mirror Ascent

Online Mirror Ascent (OMA) is a scheme used to generate no-regret

policies.

• Requires as parameters the learning rate η and a mirror map Φ

• We select the negative entropy mirror map Φ(y) =
∑

i yi log(yi )

Figure 1: OMA update rule.6

6S. Bubeck. “Convex Optimization: Algorithms and Complexity”. In: Found. Trends Mach. Learn. 8.3–4 (Nov. 2015), pp. 231–357.

13



AÇAI: Virtual and Physical Cache States

14



AÇAI: Virtual and Physical Cache States

14



AÇAI: Virtual and Physical Cache States

14



AÇAI: Virtual and Physical Cache States

14



AÇAI: Virtual and Physical Cache States

14



AÇAI: Virtual and Physical Cache States

14



AÇAI: Reducing Movement Costs

When the cache movements are costly or cannot be neglected, we

propose two randomized rounding schemes:

• Refresh cache state every request with coupling

• Refresh cache state every M requests

15



AÇAI: Fast Approximate Indexes

AÇAI employs two approximate indexes:

• one for content stored in the cache (HNSW)7

• one for the whole catalog N stored in the remote server (FAISS)8

7Y. A. Malkov et al. “Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs”. In: IEEE

trans. on pattern analysis and machine intelligence (2018).

8J. Johnson et al. “Billion-scale similarity search with GPUs”. In: IEEE Transactions on Big Data (2019).

16

FAISS index on
remote content

HNSW index on
local content



SOTA Policies



SOTA Policies for kNN Caching

17



Experimental Validation



Experimental Validation

Datasets.

• SIFT1M trace: synthetic request process based on SIFT1M dataset9

• Amazon trace: request process is the timestamped reviews left by

users10,11

Performance Metric. The normalized time-averaged gain over T

requests:

NAG(P) =
1

kcf T

T∑
t=1

GP(rt , xt).

9H. Jegou et al. “Product quantization for nearest neighbor search”. In: IEEE trans. on pattern analysis and machine intelligence 33.1

(2010), pp. 117–128.

10J. McAuley et al. “Image-based recommendations on styles and substitutes”. In: Proc. of the ACM SIGIR. 2015, pp. 43–52.

11A. Sabnis et al. “GRADES: Gradient Descent for Similarity Caching”. In: IEEE Conference on Computer Communications (INFOCOM).

2021.

18



Experimental Validation - Different Capacities

0 500 1000 1500 2000
Cache size

0.0

0.2

0.4

0.6

0.8

1.0

N
A

G
LRU

SIM-LRU

CLS-LRU

QCache

AÇAI

(a) SIFT1M trace

0 500 1000 1500 2000
Cache size

0.0

0.2

0.4

0.6

0.8

1.0

N
A

G

LRU

SIM-LRU

CLS-LRU

QCache

AÇAI

(b) Amazon trace

Figure 2: Caching gain for the different policies, for different cache sizes

h ∈ {50, 100, 200, 500, 1000, 2000} and k = 10.

19



Experimental Validation - Different Retrieval Costs

0.6 0.8 1.0 1.2
Retrieval cost ×105

0.0

0.2

0.4

0.6

0.8

1.0

N
A

G
LRU

SIM-LRU

CLS-LRU

QCache

AÇAI

(a) SIFT1M trace

4 5 6 7
Retrieval cost ×104

0.0

0.2

0.4

0.6

0.8

1.0

N
A

G

LRU

SIM-LRU

CLS-LRU

QCache

AÇAI

(b) Amazon trace

Figure 3: Caching gain for the different policies and different retrieval cost.

The cache size is h = 1000 and k = 10.

20



Experimental Validation - Different Recommendations k

10 20 30 50 100
Parameter k

0.00

0.25

0.50

0.75

1.00

N
A

G

LRU

SIM-LRU

CLS-LRU

QCache

AÇAI

(a) SIFT1M trace

10 20 30 50 100
Parameter k

0.00

0.25

0.50

0.75

1.00

N
A

G

LRU

SIM-LRU

CLS-LRU

QCache

AÇAI

(b) Amazon trace

Figure 4: Caching gain for the different policies. The cache size is h = 1000,

and k ∈ {10, 20, 30, 50, 100}.

21



Experimental Validation - Movement Costs

20000 40000 60000 80000
Iterations

0

2

4

6

8

10

T
im

e
av

er
ag

ed
fe

tc
h

ed
fi

le
s

AÇAI: M=1000

AÇAI: M=500

AÇAI: M=200

AÇAI: M=100

AÇAI: CoupledRounding

(a) Time averaged fetched files

103 104

Iterations

0.70

0.75

0.80

0.85

0.90

N
A

G

AÇAI: M=1000

AÇAI: M=500

AÇAI: M=200

AÇAI: M=100

AÇAI: M=1

AÇAI: CoupledRounding

(b) Caching gain

22



Conclusion and Future Work



Conclusion and Future Work

We designed AÇAI, a content cache management policy that

determines dynamically the best content to store on the edge server to

reply to similarity search queries.

As future work, we plan to evaluate AÇAI in the context of machine

learning classification tasks12

12U. Khandelwal et al. “Generalization through memorization: Nearest neighbor language models”. In: Proc. of the ICLR. 2020.

23



Thank you for your attention.

Questions?



Extra Slides



Experimental Validation - Choice of Mirror Map

2500 5000 7500 10000
Requests

0.6

0.7

0.8

N
A

G

Neg-entropy: η = 10−5

Neg-entropy: η = 10−4

Euclidean: η = 5× 10−7

Euclidean: η = 10−6

Figure 6: Caching gain for AÇAI configured with negative entropy and

Euclidean maps (SIFT1M trace). The cache size is h = 100 and k = 10.

24


	Context
	Contributions
	Modeling
	Dissection of AÇAI
	SOTA Policies
	Experimental Validation
	Conclusion and Future Work
	Thank you for your attention. Questions?
	Extra Slides

