AÇAI: Ascent Similarity Caching with Approximate Indexes

Tareq Si Salem¹ Giovanni Neglia¹ Damiano Carra²

¹Inria, Université Côte d'Azur

²University of Verona

Context

Classical Caching

Costs

- Quality of service cost incurred due to fetching latency
- Monetary cost for using the network infrastructure

Classical Caching

A cache with finite capacity is put close to the users.

- Hit: the requested file is stored
- Miss: the request is forwarded to the server

Similarity Caching

A cache with finite capacity is put close to the users.

- Hit: the cache serves the request object
- Miss: the cache forwards the request
- Approximate hit: serve with a similar object

Similarity Caching

Similarity Caching

Similarity Caching with Recommendations (kNN Caching)

Similarity Caching with Recommendations (kNN Caching)

- Content recommendation¹
- Image retrieval and contextual ads²
- Machine Learning serving³

³D. Grankshaw et al. "Clipper: A Low-Latency Online Prediction Serving System". In: 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). Boston, MA, 2017; U. Drolia et al. "Cachier: Edge-caching for recognition applications". In: Proc. of he IEEE ICDCS. IEEE. 2017, pp. 276-286; U. Drolia et al. "Preccep: Prefetching for image recognition applications at the edge". In: Proc. of ACM/IEEE Symposium on Edge Computing. 2017, pp. 1–13; A. Kumar et al. "Accelerating deep learning inference via freezing". In: 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19). 2019; S. Venugopal et al. "Shadow puppets: Cloud-level accurate Al inference at the speed and economy of edge". In: USENIX HotEdge. 2018.

¹T. Spyropoulos et al. "Soft Cache Hits and the Impact of Alternative Content Recommendations on Mobile Edge Caching". In: *Proc. of the Eleventh ACM Workshop on Challenged Networks*. CHANTS '16. New York City, New York: Association for Computing Machinery, 2016, pp. 51–56.

²F. Falchi et al. "A metric cache for similarity search". In: Proceedings of the 2008 ACM workshop on Large-Scale distributed systems for information retrieval. 2008, pp. 43–50; S. Pandey et al. "Nearest-neighbor Caching for Content-match Applications". In: Proc. of the 18th International Conference on World Wide Web. WWW '09. Madrid, Spain: ACM, 2009, pp. 441–450.

Contributions

- Formulate the problem of kNN optimal caching
- Propose a new similarity online caching policy AÇAI with strong performance guarantees
- AÇAI consistently improves over state-of-the-art under realistic traces

Modeling

Caching Gain Modeling

Caching Gain Modeling

A cache with allocation vector $\mathbf{x} \in \{0,1\}^{2N}$ incurs the following cost when $r \in \mathcal{R}$ is received

$$C(r, \mathbf{x}) = \sum_{i=1}^{2N} c(r, \pi_i^r) x_{\pi_i^r} \mathbb{1}_{\left\{\sum_{j=1}^i x_{\pi_j^r} \leq k\right\}}.$$

Our objective is to maximize the caching gain (cost savings) as the cache state \boldsymbol{x} changes, given as

$$G(r, \mathbf{x}) \triangleq C(r, \text{empty cache}) - C(r, \mathbf{x}).$$

Setting and Performance Metric (1/2)

Noisy unpredictable environment can act as an adversary in the worst case scenario

Regret of a policy \mathcal{P} with the (potentially random) cache states $\{\mathbf{x}_t\}_{t=1}^T$ is given by

$$\psi\text{-}\mathsf{Regret}(\mathcal{P}) = \sup_{\{r_1, r_2, \dots, r_T\} \in \mathcal{R}^T} \left\{ \psi \sum_{t=1}^T G(r_t, \mathbf{x}_*) - \mathbb{E}\left[\sum_{t=1}^T G(r_t, \mathbf{x}_t)\right] \right\}$$

- The constant $\psi = 1 1/e$ is the best approximation ratio achievable in P to the NP-Hard static optimum
- When ψ-Regret(P) is sublinear in T, the policy experiences no regret on average as T → ∞

We prove that the caching gain can be expressed equivalently as

$$G(r, \mathbf{x}) = \sum_{i=1}^{K^r-1} \alpha_i^r \min\left\{k, \sum_{j=1}^i x_{\pi_j^r}\right\} + \sigma_i^r,$$

where α_i^r , σ_i^r , and K^r are constants.

⁴E. Hazan. "Introduction to Online Convex Optimization". In: Found. Trends Optim. 2.3-4 (Aug. 2016), pp. 157-325.

We prove that the caching gain can be expressed equivalently as

$$G(r, \mathbf{x}) = \sum_{i=1}^{K^r-1} \alpha_i^r \min\left\{k, \sum_{j=1}^i x_{\pi_j^r}\right\} + \sigma_i^r,$$

where α_i^r , σ_i^r , and K^r are constants.

The fractionally relaxed problem can be cast in the framework of OCO.⁵

⁵E. Hazan. "Introduction to Online Convex Optimization". In: Found. Trends Optim. 2.3-4 (Aug. 2016), pp. 157-325.

Dissection of AÇAI

AÇAI: Core Algorithm - Online Mirror Ascent

Online Mirror Ascent (OMA) is a scheme used to generate no-regret policies.

- Requires as parameters the learning rate η and a mirror map Φ
- We select the negative entropy mirror map $\Phi(\mathbf{y}) = \sum_{i} y_i \log(y_i)$

Figure 1: OMA update rule.⁶

⁶S. Bubeck. "Convex Optimization: Algorithms and Complexity". In: Found. Trends Mach. Learn. 8.3-4 (Nov. 2015), pp. 231-357.

The regret guarentee over the fractional (relaxed) setting is Regret = O $\left(\sqrt{T}\right)$

The regret guarentee over the fractional (relaxed) setting is Regret = O $\left(\sqrt{T}\right)$

The regret guarentee over the fractional (relaxed) setting is Regret = O $\left(\sqrt{T}\right)$

The regret guarentee over the fractional (relaxed) setting is Regret = O $\left(\sqrt{T}\right)$

We transfer the guarentee from the fractional to the integral setting and obtain

$$\psi$$
-Regret = O (\sqrt{T})

The regret guarentee over the fractional (relaxed) setting is Regret = $O\left(\sqrt{T}\right)$

We transfer the guarentee from the fractional to the integral setting and obtain

$$\psi$$
-Regret = O (\sqrt{T})

AÇAI: Reducing Movement Costs

When the cache movements are costly or cannot be neglected, we propose two randomized rounding schemes:

- Refresh cache state every request with coupling
- Refresh cache state every *M* requests

AÇAI: Fast Approximate Indexes

AÇAI employs two approximate indexes:

- one for content stored in the cache (HNSW)⁷
- one for the whole catalog ${\cal N}$ stored in the remote server (FAISS)⁸

⁷Y. A. Malkov et al. "Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs". In: IEEE trans. on pattern analysis and machine intelligence (2018).

⁸J. Johnson et al. "Billion-scale similarity search with GPUs". In: IEEE Transactions on Big Data (2019).

SOTA Policies

SOTA Policies for *k*NN Caching

QCache

Experimental Validation

Datasets.

- SIFT1M trace: synthetic request process based on SIFT1M dataset⁹
- Amazon trace: request process is the timestamped reviews left by users^{10,11}

Performance Metric. The normalized time-averaged gain over T requests:

$$\operatorname{NAG}(\mathcal{P}) = \frac{1}{kc_f T} \sum_{t=1}^{T} G_{\mathcal{P}}(r_t, \boldsymbol{x}_t).$$

⁹H. Jegou et al. "Product quantization for nearest neighbor search". In: *IEEE trans. on pattern analysis and machine intelligence* 33.1 (2010), pp. 117–128.

¹⁰J. McAuley et al. "Image-based recommendations on styles and substitutes". In: Proc. of the ACM SIGIR. 2015, pp. 43–52.

¹¹A. Sabnis et al. "GRADES: Gradient Descent for Similarity Caching". In: IEEE Conference on Computer Communications (INFOCOM). 2021.

Experimental Validation - Different Capacities

Figure 2: Caching gain for the different policies, for different cache sizes $h \in \{50, 100, 200, 500, 1000, 2000\}$ and k = 10.

Experimental Validation - Different Retrieval Costs

Figure 3: Caching gain for the different policies and different retrieval cost. The cache size is h = 1000 and k = 10.

Figure 4: Caching gain for the different policies. The cache size is h = 1000, and $k \in \{10, 20, 30, 50, 100\}$.

Experimental Validation - Movement Costs

Conclusion and Future Work

We designed AÇAI, a content cache management policy that determines dynamically the best content to store on the edge server to reply to similarity search queries.

As future work, we plan to evaluate ${\rm AQAI}$ in the context of machine learning classification ${\rm tasks^{12}}$

¹²U. Khandelwal et al. "Generalization through memorization: Nearest neighbor language models". In: Proc. of the ICLR. 2020.

Thank you for your attention. Questions?

Experimental Validation - Choice of Mirror Map

Figure 6: Caching gain for AÇAI configured with negative entropy and Euclidean maps (SIFT1M trace). The cache size is h = 100 and k = 10.