
No-Regret Caching via Online Mirror Descent

IEEE International Conference on Communications (ICC) 2021

Tareq Si Salem 2,1 Giovanni Neglia1,2 Stratis Ioannidis3

June 16, 2021

1Inria 2Université Côte d’Azur

3Northeastern University

1



Caching

Requests Retrieval costs

Users

Remote server

2



Caching

Cache
Remote server

Users
Retrieval costsRequests

We can place a local cache with finite capacity to satisfy some of

the requests.

3



Classical Caching Policies

• Least recently used (LRU)

• Least frequently used (LFU)

• ... many more variants based on LRU and LFU

4



System

• Catalog of files N = {1, 2, . . . ,N}
• wi ∈ R+ cost to serve file i from the remote server

• k ∈ N is the cache capacity

• The cache can store fractions of files. The set of valid cache

configurations is X =
{

x ∈ [0, 1]N :
∑N

i=1 xi = k
}

In a followup work we also consider integral caches.1

1T. Si Salem et al., arXiv preprint arXiv:2101.12588 2021.

5



Requests

• We consider that requests may arrive in batches of size R,

where a given file is requested at most h times

(a) Diverse request batch

(R
h
≈ 35.7)

(b) Concentrated request batch

(R
h
≈ 3.4)

• R
h represented the diversity of the requests in a batch 6



Cost

When a request batch rt arrives, the cache incurs the following

cost:

frt (xt) =
N∑
i=1

wi rt,i (1− xt,i ).

7



Uncertain Environment ≈ Adversary

• Files popularity can change over time in an unpredictable

manner.

• We target robust performance: the users can behave as

adversaries selecting the request process to harm the system.

8



Regret as a Performance Metric

Regret = Total cost of the policy− Total cost of the static optimum

=
T∑
t=1

frt (xt)−
T∑
t=1

frt (x∗)

where x∗ is the optimal static cache configuration.

• If the average regret (Regret/T ) tends to 0 when T is large,

then the policy experiences on average the same costs as the

best static optimum!

• This happens when the regret is sublinear in T . Such policy is

called a no-regret policy.

9



Online 6= Offline

• One could get inspired from offline optimization and select a

new state trying to minimize the aggregate cost. This can fail

catastrophically, because of the adversarial nature of the

requests!

10



Online Gradient Descent for Caching

Paschos et al.2 proposed OGD for online caching, that updates the

cache state as follows:

• When a request is received rt the system incurs a cost frt (xt)

• Take a gradient update step x̃t+1 = xt − η∇frt (xt)

• Project x̃t+1 to the set of valid cache configurations X
• Obtain the new state xt+1 = ΠX (x̃t+1)

2G. S. Paschos et al. in IEEE INFOCOM 2019 - IEEE Conference on

Computer Communications, 2019, pp. 235–243.

11



Online Gradient Descent for Caching

• It is a no-regret policy!

• This result is proved in Paschos et al.3 only for R = h = 1

3G. S. Paschos et al. in IEEE INFOCOM 2019 - IEEE Conference on

Computer Communications, 2019, pp. 235–243.

12



Contributions

• First to apply the more general online mirror descent (OMD),

a family of gradient methods that includes OGD as a special

case

• Analyse OGD in the case R 6= h 6= 1. We also improve on the

Paschos et al.’s bound (valid only for R = h = 1) by a factor

at least
√

2

• Show that another policy in the OMD family has lower regret

for diverse adversarial requests or small cache sizes (difficult

scenarios), and enjoys lower computational cost

• Prove that the optimal OMD strategy depends on the

diversity of the request batches

• Evaluate the policies on synthetic traces and a real CDN trace

13



Online Mirror Descent (OMD)

Figure 2: OMD update rule4.

Different mirror maps Φ give different algorithms.

4S. Bubeck, Found. Trends Mach. Learn. 2015, 8, 231–357.

14



Negative Entropy Mirror Map

• We propose to use OMD with the negative entropy mirror map

Φ(x) =
N∑
i=1

xi log (xi )

.

• OMD under the neg-entropy mirror map (OMDNE) adapts

the cache state via a multiplicative rule, as opposed to the

additive rule of OGD

x̃t+1,i = xt,i e
−η ∂frt (xt )

∂xi .

• The mirror map is more suitable to the geometry of X
• The projection is less costly than in OGD

O (k) vs. O (N) for R = h = 1.

O (N + k log k) vs. O
(
N2
)

for general values of R, h.

15



Fixed Popularity

(a) Normalized Time

Averaged Cost of OGD

(b) Normalized Time

Averaged Cost of

OMDNE

(c) Time-Averaged

Regret

The learning rate denoted by η∗ is the learning rate that gives the

tightest worst-case regrets for OGD and OMDNE. While this

learning rate is selected to protect against any (adversarial) request

sequence, it is not too pessimistic.
16



Effect of Diversity

(a)

k = 25, α = 0.1

(b)

k = 125, α = 0.1

(c)

k = 25, α = 0.2

(d)

k = 125, α = 0.2

Zipf(α) popularity

distribution:

• Low α gives batches

with high diversity

• High α gives batches

with low diversity

OMDNE outperforms

OGD in the high-diversity

regime and small cache

sizes.

17



Robustness to Transient Requests

(a) α = 0.1 (b) α = 0.3 (c) α = 0.4

We observe that OMDNE is consistently more robust to popularity

changes than OGD.

18



Akamai Trace

Normalized moving average cost of the different caching policies

evaluated on the Akamai Trace. OMDNE and OGD provide

consistently the best performance compared to W-LFU, LRU and

LFU. OGD performs slightly better than OMD in some parts of the

trace.

19



Thank you for your attention!

20


