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We can place a local cache with finite capacity to satisfy some of

the requests.
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Classical Caching Policies

• Least recently used (LRU)

• Least frequently used (LFU)

• ... many more variants based on LRU and LFU
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System

• Catalog of files N = {1, 2, . . . ,N}
• wi ∈ R+ cost to serve file i from the remote server

• k ∈ N is the cache capacity

• The cache can store fractions of files. The set of valid cache

configurations is X =
{

x ∈ [0, 1]N :
∑N

i=1 xi = k
}

In a followup work we also consider integral caches.1

1T. Si Salem et al., arXiv preprint arXiv:2101.12588 2021.
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Requests

• We consider that requests may arrive in batches of size R,

where a given file is requested at most h times

(a) Diverse request batch

(R
h
≈ 35.7)

(b) Concentrated request batch

(R
h
≈ 3.4)

• R
h represented the diversity of the requests in a batch 6



Cost

When a request batch rt arrives, the cache incurs the following

cost:

frt (xt) =
N∑
i=1

wi rt,i (1− xt,i ).
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Uncertain Environment ≈ Adversary

• Files popularity can change over time in an unpredictable

manner.

• We target robust performance: the users can behave as

adversaries selecting the request process to harm the system.

8



Regret as a Performance Metric

Regret = Total cost of the policy− Total cost of the static optimum

=
T∑
t=1

frt (xt)−
T∑
t=1

frt (x∗)

where x∗ is the optimal static cache configuration.

• If the average regret (Regret/T ) tends to 0 when T is large,

then the policy experiences on average the same costs as the

best static optimum!

• This happens when the regret is sublinear in T . Such policy is

called a no-regret policy.

9



Online 6= Offline

• One could get inspired from offline optimization and select a

new state trying to minimize the aggregate cost. This can fail

catastrophically, because of the adversarial nature of the

requests!
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Online Gradient Descent for Caching

Paschos et al.2 proposed OGD for online caching, that updates the

cache state as follows:

• When a request is received rt the system incurs a cost frt (xt)

• Take a gradient update step x̃t+1 = xt − η∇frt (xt)

• Project x̃t+1 to the set of valid cache configurations X
• Obtain the new state xt+1 = ΠX (x̃t+1)

2G. S. Paschos et al. in IEEE INFOCOM 2019 - IEEE Conference on

Computer Communications, 2019, pp. 235–243.
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Online Gradient Descent for Caching

• It is a no-regret policy!

• This result is proved in Paschos et al.3 only for R = h = 1

3G. S. Paschos et al. in IEEE INFOCOM 2019 - IEEE Conference on

Computer Communications, 2019, pp. 235–243.
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Contributions

• First to apply the more general online mirror descent (OMD),

a family of gradient methods that includes OGD as a special

case

• Analyse OGD in the case R 6= h 6= 1. We also improve on the

Paschos et al.’s bound (valid only for R = h = 1) by a factor

at least
√

2

• Show that another policy in the OMD family has lower regret

for diverse adversarial requests or small cache sizes (difficult

scenarios), and enjoys lower computational cost

• Prove that the optimal OMD strategy depends on the

diversity of the request batches

• Evaluate the policies on synthetic traces and a real CDN trace
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Online Mirror Descent (OMD)

Figure 2: OMD update rule4.

Different mirror maps Φ give different algorithms.

4S. Bubeck, Found. Trends Mach. Learn. 2015, 8, 231–357.
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Negative Entropy Mirror Map

• We propose to use OMD with the negative entropy mirror map

Φ(x) =
N∑
i=1

xi log (xi )

.

• OMD under the neg-entropy mirror map (OMDNE) adapts

the cache state via a multiplicative rule, as opposed to the

additive rule of OGD

x̃t+1,i = xt,i e
−η ∂frt (xt )

∂xi .

• The mirror map is more suitable to the geometry of X
• The projection is less costly than in OGD

O (k) vs. O (N) for R = h = 1.

O (N + k log k) vs. O
(
N2
)

for general values of R, h.
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Fixed Popularity

(a) Normalized Time

Averaged Cost of OGD

(b) Normalized Time

Averaged Cost of

OMDNE

(c) Time-Averaged

Regret

The learning rate denoted by η∗ is the learning rate that gives the

tightest worst-case regrets for OGD and OMDNE. While this

learning rate is selected to protect against any (adversarial) request

sequence, it is not too pessimistic.
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Effect of Diversity

(a)

k = 25, α = 0.1

(b)

k = 125, α = 0.1

(c)

k = 25, α = 0.2

(d)

k = 125, α = 0.2

Zipf(α) popularity

distribution:

• Low α gives batches

with high diversity

• High α gives batches

with low diversity

OMDNE outperforms

OGD in the high-diversity

regime and small cache

sizes.
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Robustness to Transient Requests

(a) α = 0.1 (b) α = 0.3 (c) α = 0.4

We observe that OMDNE is consistently more robust to popularity

changes than OGD.
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Akamai Trace

Normalized moving average cost of the different caching policies

evaluated on the Akamai Trace. OMDNE and OGD provide

consistently the best performance compared to W-LFU, LRU and

LFU. OGD performs slightly better than OMD in some parts of the

trace.
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Thank you for your attention!
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