
No-Regret Caching via Online Mirror Descent
Tareq Si Salem

Université Côte d’Azur, Inria
tareq.si-salem@inria.fr

Giovanni Neglia
Inria, Université Côte d’Azur

giovanni.neglia@inria.fr

Stratis Ioannidis
Northeastern University

ioannidis@ece.neu.edu

Abstract—We study an online caching problem in which
requests can be served by a local cache to avoid retrieval costs
from a remote server. The cache can update its state after a
batch of requests and store an arbitrarily small fraction of each
content. We study no-regret algorithms based on Online Mirror
Descent (OMD) strategies. We show that the choice of OMD
strategy depends on the request diversity present in a batch and
that OMD caching policies may outperform traditional eviction-
based policies.

I. INTRODUCTION

Caches are deployed at many different levels in computer
systems: from CPU hardware caches to operating system
memory caches, from application caches at clients to CDN
caches deployed as physical servers in the network or as
cloud services like Amazon’s ElastiCache [1]. They aim to
provide a faster service to the user and/or to reduce the
computation/communication load on other system elements,
like hard disks, content servers, etc.

Most prior work has assumed that caches serve requests
generated according to a stochastic process, ranging from the
simple, memory-less independent reference model [2] to more
complex models trying to capture temporal locality effects and
time-varying popularities (e.g., the shot-noise model [3]). An
alternative modeling approach is to consider the sequence of
requests is generated by an adversary, and compare online
caching policies to the optimal offline policy that views the
sequence of requests in advance [4].

Recently, Paschos et al. [5] proposed studying caching
as an online convex optimization (OCO) problem [6]. OCO
generalizes previous online problems like the experts prob-
lem [7], and has become widely influential in the learning
community [6], [8]. This framework considers an adversarial
setting, where the metric of interest is the regret, i.e., the
difference between the costs incurred over a time horizon T by
the algorithm and by the optimal offline static solution. Online
algorithms whose regret grows sublinearly with T are called
no-regret algorithms, as their time-average regret becomes
negligible for large T . Paschos et al. proposed a no-regret
caching policy based on the classic online gradient descent
method (OGD), under the assumption that (a) the cache can
store arbitrarily small fractions of each content (the so-called
fractional setting), and (b) the cache state is updated after each
request. Bhattacharjee et al. [9] extended this work proving
tighter lower bounds for the regret and proposing new caching
policies for the networked setting that do not require content
coding.

In this paper, we extend and generalize the analysis of
Paschos et al. in two different directions:

1) We assume the cache can update its state after processing
a batch of R ≥ 1 requests. This is of interest both in
high-demand settings, as well as in cases when updates
may only occur infrequently, because they are costly
w.r.t. either computation or communication.

2) We consider a broad family of caching policies based
on online mirror descent (OMD); OGD can be seen as
a special instance of this family.

Our contributions are summarized as follows. First, we show
that caching policies based on OMD enjoy O

(√
T
)

regret.
Most importantly, we show that bounds for the regret crucially
depend on the diversity of the request process. In particular,
the regret depends on the diversity ratio R/h, where R is the
size of the request batch, and h is the maximum multiplicity
of a request in a given batch. We observe that OMD with
neg-entropy mirror map (OMDNE) surmounts OGD in the
high diversity regime, and it is overturned in the low diversity
regime.

Second, all OMD algorithms include a gradient update
followed by a projection to guarantee that the new solution is
in the feasible set (e.g., it does not violate the cache capacity
constraints). The projection is often the most computationally
expensive step of the algorithm. We show that efficient poly-
nomial algorithms exist both for OGD (slightly improving the
algorithm in [5]) and for OMDNE.

The remainder of this paper is organized as follows. We
introduce our model assumptions in Sect. II. We present OMD
algorithms and quantify their regret and their computational
complexity in Sect. III. Finally, numerical results are presented
in Sect. IV.

The complete proofs are available in [10].

II. SYSTEM DESCRIPTION

Remote Service and Local Cache. We consider a system in
which requests for files are served either remotely or by an
intermediate cache of finite capacity. A cache miss incurs a
file-dependent remote retrieval cost. This cost could be, e.g.,
an actual monetary cost for using the network infrastructure,
or a quality of service cost incurred due to fetching latency.
Costs may vary, as each file may be stored at a different remote
location.

Our goal is to study online caching algorithms that attain
sublinear regret. Formally, we consider a stream of requests for



files of equal size from a catalog N = {1, 2, . . . , N}. These
requests can be served by a remote server at cost wi ∈ R+

per request for file i ∈ N . We denote by w = [wi]i∈N ∈ RN+
the vector of costs and assume that w is known.

A local cache of finite capacity is placed in between the
source of requests and the remote server(s). The local cache’s
role is to reduce the costs incurred by satisfying requests
locally. We denote by k ∈ {1, . . . , N} the capacity of the
cache. The cache is allowed to store arbitrary fractions of files,
a common assumption in the literature [5], [11], [12] and a
good approximation when the cache can store chunks of a file
and chunk sizes are much smaller than file size. We assume
that time is slotted, and denote by xt,i ∈ [0, 1] the fraction of
file i ∈ N stored in the cache at time slot t ∈ {1, 2, . . . , T}.
The cache state is then given by vector xt = [xt,i]i∈N ∈ X ,
where X is the capped simplex determined by the capacity
constraint, i.e.:

X =
{
x ∈ [0, 1]N :

∑N
i=1 xi = k

}
. (1)

Requests. We assume that a batch of multiple requests may
arrive within a single time slot. Moreover, a file may be
requested multiple times within a single time slot (e.g., by
different users, whose aggregated requests form the stream
reaching the cache). We denote by rt,i ∈ N the number of
requests—also called multiplicity—for file i ∈ N at time t,
and by rt = [rt,i]i∈N ∈ NN the vector of such requests,
representing the entire batch. We assume that the number of
requests (i.e., the batch size) at each timeslot is given by
R ∈ N. We also assume that the maximum multiplicity of
a file in a batch is bounded by h ∈ N. As a result, rt belongs
to set:

RR,h =
{
r ∈ {0, . . . , h}N :

∑N
i=1 ri = R

}
. (2)

Intuitively, the ratio R
h defines the diversity of request

batches in a timeslot. For example, when R
h = 1, requests are

concentrated on a single content. When R
h = N , requests are

spread evenly across the catalog N . For that reason, we refer
to R

h as the diversity ratio. We note that our request model
generalizes the setting by Paschos et al. [5] or Bhattacharjee
et al. [9], which can be seen as the case R = h = 1 under
our request model. We make no additional assumptions on
the request arrival process; put differently, we operate in the
adversarial online setting, where a potential adversary may
select an arbitrary request sequence inRR,h to increase system
costs.
Service Cost Objective. When a request batch rt arrives, the
cache incurs the following cost:

frt(xt) =
∑N
i=1 wirt,i(1− xt,i). (3)

In other words, for each file i ∈ N , the system pays a cost
proportional to the file fraction (1 − xt,i) missing from the
local cache, weighted by the file cost wi and by the number
of times rt,i file i is requested in the current batch rt.

The cost objective (3) captures several possible real-life
settings. First, it can be interpreted as a QoS cost paid by

each user for the additional delay to retrieve part of the file
from the server. Second, assuming that the R requests arrive
and are served individually (e.g., because they are spread-out
within a timeslot), Eq. (3) can represent the load on the servers
or on the network to provide the missing part of the requested
objects.
Online Caching Algorithms and Regret. Cache contents are
determined online: that is, the cache has selected a state xt ∈
X at the beginning of a time slot. The request batch rt arrives,
and the linear cost frt(xt) : X → R+ is incurred; the state
is subsequently updated to xt+1. Formally, the cache state is
determined by an online policy A, i.e., a sequence of mappings
{At}T−1

t=1 , where for every t ≥ 1,At : (RR,h×X )t → X maps
the sequence of the request batches and previous decisions
{(rs,xs)}ts=1 to the next state xt+1 ∈ X . We assume that the
policy is initialized with a feasible state x1 ∈ X .

We measure the performance of an online algorithm A
in terms of regret, i.e., the difference between the total
cost experienced by a policy A over a time horizon T and
that of the best static state x∗ in hindsight, i.e., x∗ =
arg minx∈X

∑T
t=1 frt(x). Formally,

RegretT (A) = sup
{r1,...,rT }∈RTR,h

{
T∑
t=1

frt(xt)−
T∑
t=1

frt(x∗)

}
,

(4)

Note that, by taking the supremum in Eq. (4), we indeed mea-
sure regret in the adversarial setting, i.e., against an adversary
that potentially picks requests in RR,h trying to jeopardize
cache performance. In Sect. IV we show our caching policies
performs well also under stochastic request processes and real
request traces.

III. ONLINE MIRROR DESCENT ALGORITHMS

Upon seeing rt, the policy A could select as xt+1 the state
that would have minimized (on hindsight) the aggregate cost
up to time t (i.e.,

∑t
τ=1 frτ (x)). This can fail catastrophically,

because of the adversarial nature of the requests. A more
conservative approach, that indeed leads to sublinear regret,
is to take gradient steps, moving in the direction of a better
decision according to the latest cost. OMD denotes a family
of gradient techniques.

The main premise behind OMD [6, Sect. 5.3] is that
variables and gradients live into two distinct spaces: the primal
space, for variables, and the dual space, for gradients. The two
are linked via a function known as a mirror map. Updates
using the gradient occur on the dual space; the mirror map
is used to invert this update to a change on the primal
variables. The standard online gradient descent OGD is a
particular OMD algorithm where the mirror map is the squared
Euclidean distance. Other mirror maps may lead to better
performance depending on the specific problem [13, Section
4.3].
OMD for Caching. Applied to our caching problem, both the
primal and dual spaces are RN . To disambiguate between the
two, we denote primal points by x,y ∈ RN and dual points



by x̂, ŷ ∈ RN , respectively. Formally, OMD is parameterized
by (a) a fixed learning rate η ∈ R+, and (b) a differentiable
map Φ : D → R, strictly convex over D and ρ-strongly convex
w.r.t. a norm ‖·‖ over X∩D, where X is included in the closure
of D. The set X is the constraint set over which we optimize.
The function Φ is called the mirror map, that links the primal
to the dual space. Two additional technical assumptions on Φ
and D must hold. First, the gradient of Φ must diverge at the
boundary of D. Second, the image of D under the gradient of
Φ should take all possible values, that is ∇Φ(D) = RN .

Given η and Φ, an OMD iteration proceeds as follows. After
observing the request batch rt and incurring the cost frt(xt),
the current state xt is first mapped from the primal to the dual
space via:

x̂t = ∇Φ(xt). (5)

Then, a regular gradient descent step is performed in the dual
space to obtain an updated dual point:

ŷt+1 = x̂t − η∇frt(xt). (6)

This updated dual point is then mapped back to the primal
space using the inverse of mapping ∇Φ, i.e.:

yt+1 = (∇Φ)
−1

(ŷt+1). (7)

The resulting primal point yt+1 may lie outside the constraint
set X . To obtain the final feasible point xt+1 ∈ X , a projection
is made using the Bregman divergence associated with the
mirror map Φ; the final cache state becomes:

xt+1 =
∏Φ
X∩D(yt+1), (8)

where
∏Φ
X∩D : RN → X is the Bregman projection defined as

ΠΦ
X∩D(y) = arg min

x∈X∩D
DΦ(x,y). DΦ(x,y) = Φ(x) − Φ(y) −

∇Φ(y)
T

(x − y) is the Bregman divergence associated with
the mirror map Φ.

A. Euclidean mirror map

The selection of the mirror map Φ(x) = 1
2 ‖x‖

2
2 and D =

RN yields the identity mapping ∇Φ(x) = x, for all x ∈ D.
Furthermore, the Bregman divergence associated with this map
is just the Euclidean distance DΦ(x,y) = 1

2 ‖x− y‖22 [13,
Section 4.3]. Upon receiving a request batch rt, the algorithm
updates its current state according to steps (5)-(8), this gives
the OGD update rule:

xt+1 = ΠX (xt − η∇frt(xt)), ∀t ∈ {1, . . . , T − 1}, (9)

where ΠX (·) is the Euclidean projection onto X . This setup of
OMD coincides with OGD, studied by Paschos et al. [5]. We
present a new regret bound in Theorem III.1, that takes into
account diversity, and improves over the bound in [5] (valid
only for R = h = 1) by a factor at least

√
2.

Theorem III.1. For η =

√
k(1− k

N )
‖w‖2∞hRT

the regret of OGD,

satisfies:

RegretT (OGD) ≤ ‖w‖∞
√
hRk

(
1− k

N

)
T (10)

Proof. Bubeck [13, Theorem 4.2] provides a general bound
on the regret of OMD, which in our caching setting becomes

RegretT (OMDΦ) ≤ DΦ(x∗,x1)
η + η

2ρ

∑T
t=1 ‖∇frt(xt)‖

2
∗
(11)

where ‖.‖∗ is the dual norm of ‖.‖, and x∗ is the best fixed
decision in hindsight. The mirror map for OGD is Φ(x) =
1
2 ‖x‖

2
2 that is 1-strongly convex with regard to the Euclidean

norm (ρ = 1) and the dual norm is also the Euclidean one.
Let x1 be the minimizer of Φ(x), then we have
∇ΦT (x1)(x − x1) ≥ 0,∀x ∈ X [6, Theorem 2.2] and,
from the definition of the Bregman divergence, DΦ(x∗,x1) ≤
Φ(x∗)− Φ(x1).

The minimum value of Φ(x) over X is achieved when xi =
k
N , i ∈ N , and x∗ is an integral solution (i.e., k components
of x∗ equal 1 and the others equal 0). Then Φ(x∗) = 1

2k and
we get:

DΦ(x∗,x1) ≤ 1

2
k (1− k/N) (12)

We now bound the second term in (11). The maximum of ‖r‖2
is achieved when R

h components are set to h, then:

max
r∈R
‖∇fr(x)‖2 ≤ max

r∈R
‖w‖∞ ‖r‖2 = ‖w‖∞

√
Rh. (13)

Plugging (13) and (12) in (11), and selecting the learning rate
η =

√
k
(
1− k

N

)
/(‖w‖2∞ hRT ), we obtain the upper bound

in (10).

The OGD Algorithm requires computing an Euclidean pro-
jection at each iteration, which, for general values of R and
h, can be performed in O

(
N2
)

steps using the projection
algorithm by Wang and Lu [14]. The algorithm proposed by
Paschos et al. [5], for the case R = h = 1, has O (N log(N))
time-complexity, but we can achieve O (N) complexity by
replacing the preliminary sorting operation with a O (log(N))
binary search and insertion.

B. Neg-Entropy Mirror Map

We now consider a different mirror map, i.e., the neg-
entropy mirror map, defined as follows:

Φ(x) =
N∑
i=1

xi log (xi) , and D = RN>0. (14)

It can be checked that this map satisfies all requirements in
Sect. III., We refer to the OMD algorithm with the neg-entropy
mirror map as OMDNE.

We first characterize the regret of OMDNE:

Theorem III.2. For η =
√

2 log(N/k)

‖w‖2∞h2T
, the regret of OMDNE

satisfies:

RegretT (OMDNE) ≤ ‖w‖∞ hk
√

2 log(N/k)T . (15)

Proof. The proof is similar to the proof of Theorem III.1.
The neg-entropy mirror map is ρ = 1

k strongly convex w.r.t
the ‖.‖1 over X [8, Example 2.5] and the corresponding dual
norm is ‖·‖∞. Moving from (11), we bound the diameter of
X w.r.t. to the Bregman divergence as well as the ‖·‖∞ of



Algorithm 1 Neg-Entropy Bregman projection onto X
Require: N ; k; ‖y‖1; P ; Sorted yN ≥ .. ≥ yN−k+1 ≥ yi, ∀i ≤ N − k

// y is the decision vector that lies outside of X .
// The scale P is a global variable initialized to 1.

1: yN+1 ← +∞
2: for b ∈ {N, . . . , N − k + 1} do
3: mb ← k+b−N

‖y‖1−
∑N
i=b+1

yiP

4: if ybmbP < 1 ≤ yb+1mbP then
// Appropriate b is found.

5: for i ≥ b+1 do
6: yi ← 1

mbP

7: end for
8: P ← mbP
9: return yP // yP is the result of the projection.

10: end if
11: end for

gradients ∇frt(xt). Finally, selecting the learning rate that

gives the tightest upper bound η =
√

2 log(Nk )/(‖w‖2∞ h2T ),
we obtain the desired regret upper bound.

The following theorem characterizes under which diversity
regime OMDNE outperforms OGD, and contrariwise the
regime where OGD surmounts.

Theorem III.3. OMDNE has a tighter regret bound than
OGD when R

h > 2
√
Nk, while OGD has a tighter regret

bound than OMDNE when R
h < 2k.

The result is obtained by relaxing the regret bound in Eq. (15)
using a sharp upper bound [15], which is subsequently com-
pared to Eq. (10), and the second regime is shown by using
the lower bound log(1 + x) ≥ x

x+1 for x > −1.
Theorem III.3 immediately implies the advantage of

OMDNE over OGD in the high-diversity ratio regime, and
it is overturned in the low-diversity regime.

Beyond its improved performance in terms of regret the
neg-entropy mirror map comes with an additional computa-
tional advantage: its projection step admits a highly efficient
implementation. As ∂Φ(x)

∂xi
= 1+log xi, the inverse mapping is

given by
(

(∇Φ)
−1

(ŷt+1)
)
i

= exp(ŷt,i− 1). Hence, the map
to the dual space and back in Eqs. (5)–(7) can be concisely
written as:

yt+1,i = xt,i e
−η ∂frt (xt)

∂xi , for all i ∈ N . (16)

In other words, OMD under the neg-entropy adapts the cache
state via a multiplicative rule, as opposed to the additive rule
of OGD.

Finally, the projection algorithm onto the capped simplex
can be implemented in O (N + k log(k)) time for arbitrary
R, h using the waterfilling-like Algorithm 1. The algorithm
receives as input the largest k components of y sorted in a
descending order. It then re-scales the b largest components
and N − b smallest ones by different constant factors; the
value of b is determined via a linear search. The following
theorem holds:

Theorem III.4. Algorithm 1 returns the projection ΠΦ
X∩D(y)

under the neg-entropy Φ, onto the capped simplex X in O (k)

steps per iteration. This results in an overall time complexity
of O (N + k log(k)) per iteration of OMD, for general R, h
values, and O (k) per iteration of OMD, when R = h = 1.

Proof. We adapt the Euclidean projection algorithm in [14].
Finding the projection x = ΠΦ

X∩D(y) corresponds to solving
a convex problem as DΦ(x,y) is convex in x and X ∩ D
is a convex set. Without loss of generality, we assume the
components of x = ΠΦ

X∩D(y) to be in non-decreasing order.
Let b ∈ N be the index of the largest component of x
smaller than 1. The KKT conditions lead to conclude that
if the components of y are ordered in ascending order, so
are the components of x, and it holds ybeγ < 1 ≤ yb+1e

γ ,
where γ is the Lagrangian multiplier associated with the
capacity constraint. The value of b can be found by checking
this condition for the possible values of b. We observe that
necessarily b ∈ {N − k + 1, . . . , N}. In fact, we cannot have
b ≤ N − k. If b ≤ N − k, we get

∑N
i=N−k+1 xi ≥ k and the

capacity constraint implies that xi = 0,∀i ≤ b, but we must
have xi > 0 since x ∈ X ∩ D and D = RN>0. As b > N − k,
then we only require the largest k components of y to perform
the projection.

For a given b let:

mb := eγ = k+b−N∑b
i=1 yi

= k+b−N
‖y‖1−

∑N
i=b+1 yi

(17)

The projection corresponds to setting map the components
yb+1, . . . , yN to 1 and multiply the other N−b components by
mb. In order to avoid updating all components at each step, we
can simply set the components xi, i > b (those that should be
set equal to 1) to 1

mb
. Then, at any time t, we can recover the

value of xt,i by P =
∏t
i=1mb,i, where mb,t is the returned

mb from the Bregman projection at time step t. Then at any
time step, the actual value of the decision variable is xP .

For general values of R and h, the projection step takes
O (k) steps per iteration and a partial sort is required to
maintain top-k components of yt sorted; this can be done
using partial sorting in O (N + k log(k)) [16].

When R = h = 1, Alg. 1 leads to only a single state
coordinate update, and requires O (log(k)) steps to maintain
top-k components of xt sorted online.

Theorem III.4 implies that OMDNE has a much smaller
computational cost than OGD. In fact, for general value of
R and h, OMDNE requires O (N + k log(k)) operations per
iteration, while OGD requires O

(
N2
)

operations. When R =
h = 1, the overall time complexity is O (k) per iteration for
OMDNE and O (N) for OGD.

IV. NUMERICAL EXPERIMENTS

A. Experimental setup

1) Datasets: Throughout all experiments, we assume equal
costs per file, i.e., wi = w′i = 1,∀i ∈ N .
Synthetic traces We generate synthetic datasets, as summa-
rized in Table I. Individual file requests are i.i.d. and sampled
from a catalog of N files according to a Zipf distribution



TABLE I: Trace Summary
Trace # Batches T N R h α

Fixed Popularity 105 105 200 1 1 0.8
Batched Fixed Popularity (1) 104 104 200 5× 103 40 0.1
Batched Fixed Popularity (2) 104 104 200 5× 103 53 0.2
Batched Fixed Popularity (3) 104 104 200 5× 103 346 0.7
Partial Popularity Change (1) 5× 103 103 500 5× 103 40 0.1
Partial Popularity Change (2) 5× 103 103 500 5× 103 169 0.4
Partial Popularity Change (3) 5× 103 103 500 5× 103 473 0.7
Akamai Trace 1.7× 104 102 103 5× 103 380 n/a

with exponent α. As we increase the exponent α, the requests
become more concentrated. Table I shows the value of h
observed in each trace. The requests are grouped into batches
of size R, and η∗ denotes the learning rate value specified in
Theorem III.1 and in Theorem III.2 for OGD and OMDNE,
respectively.

We also generate non-stationary request traces (Partial
Popularity Change traces), where the popularity of a subset
of files is modified every T = 103 time slots. In particular
the 5% most popular files become the 5% least popular ones
and vice versa. We want to model a situation where the cache
knows the timescale over which the request process changes
and which files are affected (but not how their popularity
changes). Correspondingly, the time horizon is also set to T
and, at the end of each time horizon, the cache redistributes
uniformly the cache space currently allocated by those files.
The cache size is k = 5.
Akamai Trace We consider also a real file request from a
the Akamai CDN provider [17]. The trace spans 1 week, and
we extract from it about 8.5× 107 requests for the N = 103

most popular files. We group requests in batches of size R =
5× 103, and we consider a time horizon T = 100 time slots
corresponding roughly to 1 hour. The cache size is k = 25.

2) Online Algorithms: In addition to the gradient based
algorithms, we implemented three caching eviction policies:
LRU, LFU, and W-LFU. LRU and LFU evict the least recently
used and least frequently used, respectively. W-LFU [18] is an
LFU variant that only considers the most requested contents
during a recent time window W , which we set equal to T ×R
in our experiments. The policies LRU, LFU, and W-LFU are
allowed to update the cache state after each request. Finally,
we define Best Static to be the optimal static allocation x∗.
We also define Best Dynamic to be the cache that stores the
k most popular files at any time for the synthetic traces (for
which the instantaneous popularity is well defined).

3) Performance Metrics: We measure performance
w.r.t. three metrics, that we define here. The Normalized
Average Cost NAC(A) ∈ [0, 1] corresponds to the time-
average cost over the first t time slots, normalized by the
batch size R.

NAC(A) = 1
Rt

∑t
s=0 frs(xs) (18)

The Normalized Moving Average Cost NMAC(A) ∈ [0, 1]
is computed similarly using a moving average instead over a
time window τ > 0 (we use τ = 500 in our experiments):

NMAC(A) = 1
Rmin(τ,t)

∑t
s=t−min(τ,t) frs(xs) (19)

(a) NAC of OGD (b) NAC of OMDNE(c) Time-Average Re-
gret

Fig. 1: NAC of OGD (a) and OMDNE (b). Subfigure (c) compares
their TAC. The cache capacity is k = 10, and α = 0.8.

Finally, we consider the Time Average Regret TAR(A) ∈
[0, R], which is precisely the time average regret over the first t
time slots.

TAR(A) = 1
t

(∑t
s=1 frs(xs)−

∑t
s=1 frs(x∗)

)
(20)

B. Results

1) Stationary Requests: Figures 1 (a) and 1 (b) show the
performance w.r.t. NAC of OGD and OMDNE, respectively,
under different learning rates η on the Fixed Popularity trace.
We observe that both algorithms converge slower under small
learning rates, but reach a final lower cost, while larger
learning rates lead to faster convergence, albeit to higher final
cost. This may motivate the adoption of a diminishing learning
rate, that combines the best of the two options, starting large
to enable fast convergence, and enabling eventual fine-tuning.
We show one curve corresponding to a diminishing learning
rate both for OGD and OMDNE, and indeed they achieve the
smallest costs. The learning rate denoted by η∗ is the learning
rate that gives the tightest worst-case regrets for OGD and
OMDNE, as stated in Theorems III.1 and III.2). While this
learning rate is selected to protect against any (adversarial)
request sequence, it is not too pessimistic: Figures 1 (a) and
1(b) show it performs well when compared to other learning
rates.

Figure 1 (c) shows the time-average regret TAR of OGD
and OMDNE over the Fixed Popularity trace. As both algo-
rithms have sub-linear regret, their time average regret goes
to 0 for T → ∞. Note how instead LRU exhibits a constant
time average regret.

2) Effect of Diversity: Figure 2 shows the NAC perfor-
mance of OMDNE and OGD on the traces Batched Fixed
Popularity (1), (2), and (3) under different cache capacities k
and exponent values α. We observe that OMDNE outperforms
OGD in the more diverse regimes (α ∈ {0.1, 0.2}). This is
more apparent for smaller values of k. In contrast, OGD out-
performs OMDNE when requests are less diverse (α = 0.7);
again, this is more apparent for larger k. These observations
agree with Theorems III.3, which postulated that high diversity
favors OMDNE.

3) Robustness to Transient Requests: Figure 3 shows the
normalized average cost of OMDNE and OGD over the Partial
Popularity Change traces, evaluated under different diversity



(a) k = 2, α = 0.1 (b) k = 5, α = 0.1 (c) k = 10, α =
0.1

(d) k = 2, α = 0.2 (e) k = 5, α = 0.2 (f) k = 10, α =
0.2

(g) k = 2, α = 0.7 (h) k = 5, α = 0.7 (i) k = 10, α =
0.7

Fig. 2: NAC of OMDNE and OGD evaluated under different cache
sizes and diversity regimes.

(a) α = 0.1 (b) α = 0.4 (c) α = 0.7

Fig. 3: NAC of OGD and OMDNE evaluated under different diversity
regimes when 10% of the files change popularity over time.

regimes. Dashed lines indicate the projected performance in
the stationary setting (if request popularties stay fixed). The di-
versity regimes are selected to provide different performance:
in (a) OMDNE outperforms OGD, in (b) OMDNE has similar
performance to OGD, and in (c) OMDNE performs worse than
OGD.

Across the different diversity regimes, we find the OMDNE

is more robust to popularity changes. In (a) and (b) OMDNE

outperforms OGD in the non-stationary popularity setting: we
observe a wider performance gap as compared to the stationary
setting. In (c), the algorithms exhibit similar performance.

4) Akamai Trace: Figure 4 shows that the two gradient
algorithms, OMDNE and OGD, perform similarly over the
Akamai Trace w.r.t. NMAC (the curves almost overlap). LRU,
LFU, and W-LFU may update the cache state after each
request, while the gradient algorithms can only update the
cache after R = 5000 requests. Nevertheless, the gradient
algorithms consistently outperform the classic ones.

V. CONCLUSIONS

We studied no-regret caching algorithms based on OMD
with the neg-entropy mirror map. Our analysis indicates that
batch diversity impacts regret performance; a key finding

Fig. 4: NMAC of the different caching policies evaluated on the
Akamai Trace.

is that OGD is favourable in low-diversity regimes, while
OMDNE outperforms OGD under high diversity. Our prelim-
inary evaluation results also suggest that gradient algorithms
outperform classic eviction-based policies. We plan to conduct
a more thorough comparison as future research.
Acknowledgement. G. Neglia and S. Ioannidis acknowledge
support from Inria under the exploratory action MAMMALS
and the National Science Foundation (NeTS:1718355), respec-
tively.

REFERENCES

[1] AWS, “Amazon Web Service ElastiCache,” 2018. [Online]. Available:
https://aws.amazon.com/elasticache/

[2] E. G. Coffman and P. J. Denning, Operating systems theory. Prentice-
Hall Englewood Cliffs, NJ, 1973, vol. 973.

[3] S. Traverso et al., “Temporal Locality in Today’s Content Caching: Why
It Matters and How to Model It,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 5, pp. 5–12, Nov. 2013.

[4] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E.
Young, “Competitive paging algorithms,” Journal of Algorithms, vol. 12,
no. 4, pp. 685 – 699, 1991.

[5] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis, “Learning to
cache with no regrets,” in IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, 2019, pp. 235–243.

[6] E. Hazan, “Introduction to online convex optimization,” Found. Trends
Optim., vol. 2, no. 3–4, p. 157–325, Aug. 2016.

[7] N. Littlestone and M. Warmuth, “The weighted majority algorithm,”
Information and Computation, vol. 108, no. 2, pp. 212 – 261, 1994.

[8] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Found. Trends Mach. Learn., vol. 4, no. 2, p. 107–194, Feb. 2012.

[9] R. Bhattacharjee, S. Banerjee, and A. Sinha, “Fundamental limits on
the regret of online network-caching,” Proc. ACM Meas. Anal. Comput.
Syst., vol. 4, no. 2, Jun. 2020.

[10] T. Si Salem, G. Neglia, and S. Ioannidis, “No-regret caching via online
mirror descent,” arXiv:2101.12588, 2021.

[11] L. Maggi, L. Gkatzikis, G. Paschos, and J. Leguay, “Adapting caching
to audience retention rate,” Computer Communications, vol. 116, pp.
159–171, 2018.

[12] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402–8413, 2013.

[13] S. Bubeck, “Convex optimization: Algorithms and complexity,” Found.
Trends Mach. Learn., vol. 8, no. 3–4, p. 231–357, Nov. 2015.

[14] W. Wang and C. Lu, “Projection onto the capped simplex,”
arXiv:1503.01002, 2015.

[15] C. Chesneau and Y. J. Bagul, “New sharp bounds for the logarithmic
function,” Electronic Journal of Mathematical Analysis and Applica-
tions, vol. 8, no. 1, pp. 140–145, 2020.

[16] R. Paredes and G. Navarro, “Optimal incremental sorting,” in 2006
Proceedings of the Eighth Workshop on Algorithm Engineering and
Experiments (ALENEX). SIAM, 2006, pp. 171–182.

[17] G. Neglia, D. Carra, M. Feng, V. Janardhan, P. Michiardi, and
D. Tsigkari, “Access-time-aware cache algorithms,” ACM Trans. Model.
Perform. Eval. Comput. Syst., vol. 2, no. 4, Nov. 2017.

[18] G. Karakostas and D. N. Serpanos, “Exploitation of different types of lo-
cality for web caches,” in Proceedings ISCC 2002 Seventh International
Symposium on Computers and Communications, 2002, pp. 207–212.


