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Abstract—A similarity cache can reply to a query for an
object with similar objects stored locally. In some applications of
similarity caches, queries and objects are naturally represented as
points in a continuous space. Examples include 360◦ videos where
user’s head orientation—expressed in spherical coordinates—
determines what part of the video needs to be retrieved, and
recommendation systems where the objects are embedded in
a finite-dimensional space with a distance metric to capture
content dissimilarity. Existing similarity caching policies are
simple modifications of classic policies like LRU, LFU, and
qLRU and ignore the continuous nature of the space where
objects are embedded. In this paper, we propose GRADES, a new
similarity caching policy that uses gradient descent to navigate
the continuous space and find the optimal objects to store in the
cache. We provide theoretical convergence guarantees and show
GRADES increases the similarity of the objects served by the
cache in both applications mentioned above.

I. INTRODUCTION

Similarity searching [1] is a key building block for a large
variety of applications including multimedia retrieval [2], [3],
recommender systems [4], [5], [6], genome study [7], [8],
machine learning training [9], [10], [11], and serving [12],
[13]. Given a query for an object, the goal is to retrieve one
or more similar objects from a repository.

In the traditional setting, a cache is used to speed up
object retrieval: once similarity search has identified the set
of similar objects in the global catalog, the system checks
if some of these objects are stored in the cache memory.
In this setting, the cache performs a local exact lookup for
the objects. Similarity search over the catalog can itself be a
time-consuming operation, equivalent to linearly scanning the
whole catalog [14]. Moreover, if users generating the queries
are located far from the repository, they may experience long
delays.

In order to solve these problems, the seminal papers [4], [3]
proposed, almost at the same time, a different use of the cache:
clients’ requests are directly forwarded to the cache; then the
cache performs a similarity search over the set of locally stored
objects and possibly serves the requests without the need to
forward the query to the (remote) repository. The cache can
then reduce the overall serving time at the cost of providing
objects less similar than those the repository would provide.
They named this operation similarity caching, in contrast with
the traditional exact caching. Later, the idea has been proposed
under the name of soft caching [15] to take advantage of edge
caches for content recommendation.

Fig. 1: Cached objects’ movements in the representation space
(R2) during [0, T ] when the cache is managed by GRADES.
The catalog is made by the points in a 100 × 100 grid, dark
shaded areas correspond to more popular objects. Dissimilarity
cost Cd(x, y) = 1/10‖x − y‖1, retrieval cost Cr = 1, cache
size k = 50. See the description in Sect. V.

In many applications similarity is quantified using super-
vised machine learning techniques that collectively go under
the name of distance metric learning [16]. These techniques
learn how to map similar objects to vectors in Rd (called em-
beddings) that are close according to p-norm distances, cosine
similarity, or Mahalanobis distances. Requests and objects live
then in a continuous space. This is also the case for other
potential applications of similarity caching like 360◦ videos,
where requests for parts of the video are implicitly dictated by
the user’s head orientation expressed in spherical coordinates.

Existing dynamic policies for similarity caches adapt and
extend well-known exact caching policies, like LRU and LFU,
to deal with the notion of a dissimilarity cost, i.e., how distant
is a cached object from the request. As a consequence, they
treat requests and objects as discrete entities and ignore the
continuous representation space.

This paper proposes GRADES, the first similarity caching
policy designed to exploit object embedding in Rd with
a distance that captures dissimilarity costs. While previous
policies update the cache state replacing a cached object
with (in general) a distant one—corresponding to “jumps” in
the representation space—GRADES incrementally updates the
(embedding of) each object using a gradient descent step to
progressively reduce the dissimilarity cost.

Qualitatively, as shown in Fig. 1, the objects in the cache
smoothly move in the representation space to find their optimal



position, i.e., where they can serve a large number of requests
with small dissimilarity cost.

We prove that in a stationary setting, with an opportune
choice of the gradient step sizes, GRADES converges to a
cache configuration that corresponds to a critical point of the
service cost (likely a local minimum). Our experiments based
on realistic traces (made available online [17]) shows that
GRADES outperforms existing similarity caching policies both
for 360◦ videos and recommendation systems applications.

The paper is organized as follows: related work in Sect. II,
formal problem definition in Sect. III, GRADES and its theo-
retical guarantees in Sect. IV, experimental results in Sect. V.

II. RELATED WORK

Most existing policies for similarity caches generalize well-
known exact caching policies, like LRU and LFU, to the
new context, where besides (exact)-hits and misses, also
approximate-hits are possible. For example SIM-LRU [4],
[12] maintains the content in an ordered queue and serves
an object from the cache if it is closer to the request than a
given threshold (an approximate hit occurs). The object is then
moved to the front of the queue. When no object in the cache
is close enough to the request, there is a miss. The answer is
then retrieved from the server and inserted at the front of the
queue, possibly evicting items from the back. RND-LRU [4]
is a variant of SIM-LRU where the threshold is replaced
by a random variable that is a function of the dissimilarity
cost. As SIM-LRU and RND-LRU are adaptions of LRU,
qLRU-∆C [18] modifies qLRU [19] introducing a refresh
probability that depends on the similarity. Finally, DUEL [18]
is inspired by LFU, and decides which object to evict by
tracking the dissimilarity cost (i.e., the cost associated to the
distance between a cached object and the request) accumulated
over a given time-window. In our experiments we compare
GRADES with SIM-LRU, qLRU-∆C, and DUEL.

Our algorithm was inspired by the work from Jorge Cortés
and his coauthors on coordination algorithms for mobile
agents (see e.g. [20], [21], [22]). In their setting mobile
agents (e.g., drones) place themselves in the space to be able
to detect the largest number of events in the environment.
Similarly, the objects in the cache need to position themselves
to optimally serve the requests popping out over the space.
Despite similarities at a high-level, their work focuses on a
two-dimensional space and needs to take into account agents’
movement and communication constraints that do not hold in
our context.

From another point of view, GRADES gradient update can
be considered as a generalization of stochastic K-means
algorithms, where the function we want to minimize is not
necessarily the squared Euclidean distance (as it is the case for
K-means). Our proofs rely on techniques for non-convex op-
timization originally proposed in [23] also to study K-means.

Online caching policies based on gradient methods have
been proposed in the stochastic request setting (see, e.g., [24],
[25]), and, more recently, in the adversarial setting [26]. In
these papers, the gradient step updates a vector of length equal

to the catalog size, whose component i (in [0, 1]) represents
which fraction of object i should be stored in the cache or
equivalently the probability to store i in the cache. Differently
from this line of work, GRADES uses the gradient step to
modify the objects in the cache and maintains a vector of size
equal to the cache—then much smaller than the catalog size.

A costly operation in any similarity search system is to find
the closest object to the request. A simple solution is to index
the collection, e.g., with a tree based data structure, to find
the exact closest object. Unfortunately, when the number of
dimensions d of the representation space exceeds 10, such an
approach has a computational cost comparable to a full scan of
the collection [14]. For this reason a number of approximate
search techniques have been developed, which trade accuracy
for speed and provide one or more points close to the request,
but not necessarily the closest. Prominent examples are the
solutions based on locality sensitive hashing [27], product
quantization [28], [29], pivots [30], or graphs [31]. In the ex-
periments in this paper, we have performed an exact similarity
search, but any of these approximated search techniques could
be used in GRADES.

III. PROBLEM DEFINITION

We consider a similarity search system where a server
answers users’ queries with the most similar object from a
locally stored catalog. We assume that each request or object in
the catalog can be represented as a point in the d-dimensional
Euclidean space Rd. In what follows we will refer to such
representations as embeddings and, for the sake of simplicity,
we will identify each object/request with its embedding (e.g.,
we will say that object x belongs to Rd).

Requests satisfied by the server incur a retrieval cost Cr,
which quantifies the delay the user experiences to retrieve the
object from the remote server, and/or the additional load for
the server, and/or the additional load for the network.

In alternative, the request may be satisfied by a similarity
cache which stores a subset of the catalog. The cache provides,
in general, a less similar object than what the server could
provide, but incurs a negligible retrieval cost, as, for example,
it is located closer to the user, or uses a faster memory storage
or can perform faster lookup operations on the smaller set of
stored contents. For simplicity we assume all objects have the
same size and the cache can store up to k objects.

Our model of the system is similar to the one considered in
previous papers on similarity caching in the continuous setting
like [4], [18].

Let Z and X denote the catalog and the set of possible
requests, respectively. Both sets may be finite or infinite, but
we require them to be compact (to be able to retrieve a closest
object to a given request). The “quality” of a similarity search
for x depends on how similar the response object z is to the
request. We assume the dissimilarity cost is quantified by the
function Cd(x, z) = h(‖x − z‖), where h : R → R+ is a
non-decreasing non-negative function and ‖·‖ is a norm in
Rd (e.g., the Euclidean one). For example Faiss (Facebook



AI Similarity Search) library [32] for multimedia retrieval
supports all p-norms for p ∈ [1,∞].

The state of the cache at time t is given by the set of objects
St currently stored in it, St = {y1t , y2t , . . . , ykt }, with yit ∈
X ⊂ Rd. Requests arrive first at the cache. Given a request for
object xt at time t, let it denote the index of the most similar
object to the request (if there are many equally similar ones we
arbitrarily select one), i.e., it ∈ arg mini=1,...,k Cd(xt, y

(i)
t ).

If the cache satisfies the request xt, it will use content y(it)t ,
and the user will incur the dissimilarity cost Cd(xt,St) ,
Cd(xt, y

(it)
t ) = miny∈St Cd(xt, y), but the retrieval cost is

negligible. Alternatively, the cache can forward the request
to the server, where it will be satisfied by the most similar
object in the catalog. The request will generate the retrieval
cost Cr, and the user will experience the dissimilarity cost
Cd(xt,Z) = minz∈Z Cd(xt, z) ≤ Cd(xt,St).

Ideally, the cache should compare the costs of serving re-
quest locally (Cd(xt,St)) and from the server (Cd(xt,Z)+Cr)
and select the most convenient action. But, in order to evaluate
Cd(xt,Z), the cache would need to store locally metadata for
the whole set Z and find the closest object in it. The memory
and computation requirements could defeat the whole utility to
have a cache. For this reason we consider the cache does not
know Cd(xt,Z), but it is easy to adapt our algorithm when it
is not the case and its theoretical guarantees still hold.

In the impossibility to compare Cd(xt,St) with the request-
dependent value Cd(xt,Z)+Cr, the cache compare Cd(xt,St)
with a constant threshold value Cθ. If Cd(xt,St) ≤ Cθ, the
cache serves the request locally, otherwise it forwards it to the
server. We assume Cθ is set once and for all offline. Figure 2
illustrates how requests are served.

As Cd(xt,St) = Cd(xt, y
(it)
t ), the final cost to serve request

x (denoted by C(xt,St)) depends only on y(it)t :

C(xt,St) = C(xt, y
(it)
t )

=

{
Cd(xt, y

(it)
t ), if Cd(xt, y

(it)
t ) ≤ Cθ,

Cr + Cd(xt,Z), otherwise.
(1)

After a request, the cache can update its state. As updates
can themselves generate retrieval costs, we restrain to reactive
policies that can only update their state by inserting the object
retrieved from the server to satisfy a request.

In our theoretical analysis in Sect. III, we consider the case
when requests arrive according to a Poisson process and are
i.i.d. distributed. In the finite case (|X | < ∞), we recover
the classic independent reference model [33], where object x
is requested with rate λx. In the continuous case, we need
to consider a spatial density of requests and objects in a set
A ⊂ X are requested with rate

∫
A λx dx.

Under the above assumptions, for a given cache state S =
{y1 . . . yk}, we can compute the corresponding expected cost
to serve a request:

C(S) ,

{∑
x λxC(x,S), finite case∫
X λxC(x,S) dx, continuous case.

(2)

Fig. 2: Coverage of the request space (⊂ R2) by 4 objects in
the cache with norm-2 as dissimilarity cost. Crosses represent
the objects. Each object is the closest point to requests in
the corresponding Voronoi cell delimited by the red lines.
Consider a request x falling in the Voronoi cell of an object
yi. If x is closer to yi than the critical radius Rθ (such that
h (Rθ) = Cθ), x receives yi as reply, otherwise (it falls in the
gray shaded area) it generates a miss.

Finding an optimal set of objects S∗ to store is NP-hard as
it is a generalization of the problem considered in [18] (where
Cd(x,Z) = 0 for each x ∈ X ). Nevertheless, we propose a
dynamic policy, that, under the stationary request process, can
achieve a stationary point of C(S).

IV. A GRADIENT-BASED ALGORITHM

The key idea of our algorithm is to let the objects stored
in the cache gradually “move” in the space Rd to reach a
position where they can be used as approximate answers for
a large number of requests (see Fig. 1). Upon a request at
time t, the most similar object in the cache, y(it)t , is moved
in the direction opposite to the gradient of the service cost
(∇yC(xt, y

(it)
t )) proportionally to a time-varying step-size (or

learning rate) ηt:

y
(it)
t+1 = y

(it)
t − ηt∇yC

(
xt, y

(it)
t

)
. (3)

It is possible to prove that C(x, y) is differentiable everywhere
and then the gradients in (3) exist with probability 1 when the
request process is continuous (the proof is omitted because
of space contraints). When the request process is discrete, the
probability that the gradient ∇yC(xt, yt) does not exist may
be non-zero, but we can then perturb the request by a small
random vector ε ∈ Rd and consider ∇yC(xt + ε, yt).

The attentive reader may frown upon the simple algo-
rithm (3). First, it potentially updates the cache upon every
request, even when Cd(xt, y

(i)
t ) ≤ Cθ and the cache would

not need to retrieve any object. Second, even if y
(i)
t is

the embedding of an object in the catalog, y(i)t+1 may not
correspond to any object in the catalog.

In the following sections we address all issues mentioned
above. After having refined the update rule (3) (Sect. IV-A),
we prove that this idealized algorithm indeed converges to
a critical point of C(S) (Sect. IV-B). Then, in Sect. IV-C
we present a practical algorithm which 1) satisfies all our
requirements, 2) keeps the state of the cache “close” to the
state of the idealized algorithm, and 3) is more reactive and
thus more suitable to non-stationary request processes.



A. Introducing a Projection

As requests are only for objects in the bounded set X ,
there exists a norm-2 ball with radius R — B2(R) = {y ∈
Rd, ‖y‖2 ≤ R}) — such that X ⊂ B2(R) and C(x, y) = Cr
for each y /∈ B2(R) and each x ∈ X . There is no advantage
to store in the cache objects that do not belong to B2(R) as
they do not contribute to approximate any request. We then
modify (3) in order to make closer to B2(R) any cached object
y
(i)
t that the gradient update may have brought out of B2(R).

We write

y
(i)
t+1 = y

(i)
t − ηtg

(i)
t , (4)

g
(i)
t =


∇yC(xt, y

(i)
t ), if (i = it) ∧ (y

(i)
t ∈ B2(R))

f(‖y(i)t ‖ −R)
y
(i)
t

‖y(i)t ‖2
, if y(i)t /∈ B2(R),

0, otherwise,

where f(u) = d
du

u4

1+u2 = 2u3 2+u2

(1+u2)2 (for technical reasons
explained in the proof of Theorem IV.2).

B. Convergence

In this section we provide convergence results for the basic
algorithm described by (4). We assume the cache update rule
generates embeddings that always correspond to objects in the
catalog. Moreover, we will ignore the cost of updates made
after the request is served. These two simplifications will be
removed in the next section.

It will be useful to denote the cache state as a vector
yt = (yt,1, . . . , yt,k) ∈ Rk×d, obtained concatenating the
embeddings of the different objects in the cache. Similarly,
we define the different costs as function of yt and then write
Cd(yt), C(yt), and C(yt).

We are now going to prove that algorithm (4) converges
almost surely to a stationary point of C(y).

The trajectory of yt is bounded almost surely:

Lemma IV.1. Let the learning rate ηt be selected so that∑+∞
t=1 ηt = +∞ and

∑+∞
t=1 η

2
t < +∞. The sequence (yt) is

bounded almost surely.

This lemma, whose proof is sketched in App. A, is used in
the proof of the following convergence result.

Theorem IV.2. Let the learning rate ηt be selected so that∑+∞
t=1 ηt = +∞ and

∑+∞
t=1 η

2
t < +∞. If C() is continuously

differentiable up to the second order then

lim inf
t→∞

‖∇yC(yt)‖2 = 0 a.s.

If C() is continuously differentiable up to the third order then

lim
t→∞

∇yt
C(yt) = 0 a.s.

The sequence (yt) converges then to a critical point of C(·),
i.e., a point where the gradient is zero. This may be a saddle
point, a local maximum or a local minimum of C(·). The latter
is more likely as it is the only one locally stable. The proof
of Theorem IV.2 is in App. B.

Algorithm 1 GRADES

1: Let k be the cache size and x the object requested
2: if (|SV,t| < k) ∧ (x /∈ SV,t) then . still space in cache
3: Insert x in VC
4: Retrieve and insert ρ(x) in PC
5: µ(x) = ρ(x)

6: yV = arg miny∈SV,t
Cd(x, y)

7: Update SV,t according to (4)
8: if Cd(x, yV ) ≤ Cθ then . virtual hit
9: if ‖x− yV ‖ < ‖µ(yV )− yV ‖ then . x approximates
yV better than µ(yV )

10: Evict µ(yV )
11: Retrieve and Insert ρ(x) in PC
12: µ(yV ) = ρ(x)

13: GRAFT HIT UPDATE(x, SV,t)

14: yP = arg miny∈SP,t
Cd(x, y)

15: ξ ∼ Uniform(0, 1)
16: if ξ < p then
17: (update, ω) =GRAFT MISS UPDATE(SV,t, x, ρ(x))
18: if update then
19: Evict ω and µ(ω)
20: Retrieve and Insert ρ(x) in VC and PC
21: µ(ρ(x)) = ρ(x)
22: yP = ρ(x)

23: if (Cd(x, yP ) ≤ Cθ) ∨ (ρ(x) inserted in PC) then
24: Serve yP
25: else
26: Retrieve and Serve ρ(x)

C. Implementation

In this section we present our complete caching policy
GRADES, whose pseudo-code is in Algorithm 1. Theorem IV.2
shows that the basic gradient update (4) attains a critical point
of the expected cost C(·). Nevertheless, we have assumed
that this update rule always generates embeddings in Rd that
correspond to objects in the catalog. However, if the catalog
has a finite number of objects, this is unlikely to happen, as the
update (4) can potentially generate any real vector. Moreover,
the update (4) may modify an object in the cache upon each
request and then generate a high load on the server and the
network to retrieve the new modified objects.

In Sect. IV-C1 we describe how our algorithm addresses
these issues. We then move on in Sect. IV-C2 to describe
some additional features that provide a higher adaptivity of the
algorithm to deal with highly non-stationary request processes,
allowing for some random insertions with probability p.

1) Dealing with Finite Catalogue and Reducing Server
Load: We propose to maintain a virtual cache (VC) and a
physical cache (PC). The VC only stores some metadata, but
no actual object; its use is common to other policies like
2-LRU [19] or ADAPTSIZE [34]. The VC is sometimes called
shadow cache.

In our case the VC stores k vectors in Rd that are updated
upon each request according to the basic algorithm in (4).



These vectors are the embeddings of the objects we would
like to store in the cache, but, as discussed above, such objects
may not exist, or they may not have been retrieved yet from
the server. The PC contains objects from the catalog together
with their embeddings.

At a high level, the main idea behind GRADES is to maintain
the PC as close as possible to the VC. We use then the
current state of the VC to drive updates at the PC, i.e., object
eviction and insertion. In particular each vector yV in the VC
is matched by an actual object µ(yV ) in the PC and GRADES
will opportunistically update µ(yV ) to make it as close as
possible to yV .

We now describe in details Alg. 1 using the following
additional notation:
• SV,t and SP,t denote the state of the VC and the PC,

respectively.
• ρ(x) denotes the closest object in the catalogue to x.

The gray lines correspond to changes to increase algorithm
adaptivity and will be discussed in Sect. IV-C2.

Upon a request for x, if there is still space in the cache, we
retrieve the most similar object in the catalogue ρ(x). GRADES
inserts x and ρ(x) in the VC and in the PC, respectively, and
matches them (µ(x) = ρ(x)). These operations are described
in lines 2–5. The cache will finally serve ρ(x).

If the cache is already full, the closest object in VC i.e., yV
will be updated according to (4) (lines 6–7). Upon a virtual hit,
if x is closer to yV than the currently matching object µ(yV )
in the PC, GRADES takes advantage of this request to replace
µ(yV ) with ρ(x) (lines 9–12). In a stationary setting, the state
of VC converges to a critical point of the cost (Theorem IV.2)
and the PC should become closer and closer to it. Finally, the
most similar object in PC is served if it is close enough to x,
or if in any case ρ(x) has been retrieved (line 11).

2) Increasing Adaptivity: According to what we described
above, only the closest object in VC is updated upon a request
(unless some projection back to B(R) is needed). A potential
problem is that if an object x far from any other object has
been accidentally inserted in VC (and the corresponding object
ρ(x) in PC), it may never be updated and may uselessly
occupy cache space. Moreover, if at some point the request
process changes abruptly, some objects in the cache that were
initially useful may find themselves too far from the new
requests. Again, the gradient algorithm, by itself, would not
update such objects.

To overcome this problem, we can graft to GRADES a more
dynamic caching policy that occasionally (with probability p)
updates the VC, hopefully evicting the least useful object in
the VC.

The “grafting” is described by the grey lines in Algorithm 1
and has been designed to support general cache eviction
algorithms like LRU, LFU, and their variants. The grafted
caching policy internally maintains its own data structure, e.g.,
an ordered queue for LRU. Upon an approximate hit, the
hit update rule of the grafted policy is called (line 13). For
example, LRU would move the requested object (if present in
the cache) to the front of the queue. Also, with probability p,

TABLE I: Traces description

Trace Number of requests Catalog size Dimension (d)

Synthetic 2,000,000 97,969 2
360◦ videos 10,000,000 25,393 3
Amazon trace 908,179 63,891 100
CiteULike trace 2,411,819 153,277 100
Movielens trace 620,222 136,677 200

GRADES invokes the miss update rule of the grafted policy,
that may lead to select an element ω to be evicted. GRADES
then updates accordingly the VC and the PC (lines 19–22).

V. EXPERIMENTS

In this section, we empirically validate our algorithm
through simulations. First we demonstrate the benefit of the
algorithm, by using synthetic traces. Next, to demonstrate
real world applicability of our algorithm, we use GRADES
in the domain of caching for 360 videos and recommendation
systems. We assume that the catalog coincides with the set
of possible requests (Z = X ) and then set Cθ = Cr. The
retrieval cost Cr is always equal to 1. Table I summarizes
the main characteristics of the traces. Further details about the
experimental setup and the properties of request traces will be
described in the corresponding subsections. To the best of our
knowledge, there are no public traces for similarity caching;
we made our traces available online [17].

We compare GRADES with the following algorithms.
a) GREEDY is an offline static algorithm that progressively

fills the cache inserting the object that provides the largest cost
saving given the set of objects already inserted. The algorithm
provides a 1

2 approximation in terms of cost savings [35].
b) LRU+ updates the cache as the classic LRU evicting the

least recently used content when needed, but it can provide
approximate objects.

c) SIM-LRU [4] maintains the content in an ordered queue
as LRU. It moves objects to the front upon an approximate
hit, and evicts objects from the back when needed.

d) qLRU-∆C [18] is a variant of qLRU [19] that, upon
an approximate hit, moves the object to the front with a
probability which is proportional to the service cost reduction
the object has guaranteed on the current request.

e) DUEL [18], upon a request for object x not in cache,
x is matched with an object y in the cache in a tournament
aimed at deciding if x is a better candidate to be stored in the
cache as compared to y. The decision is made by comparing
the cost savings x and y provide over a fixed interval of time
(f ). If the new object x provides a larger cost saving, then x
replaces y in the cache.

A. Synthetic Traces

We consider a setting similar to [18]. The catalog is made
by the points of a L × L bi-dimensional grid with L = 313.
For any two objects x and y on the grid we define the approxi-
mation cost to be proportional to the norm-1 distance between
the two points x and y, in particular Ca(x, y) = 1

10 ||x− y||1.
The cache has size k = 313.



Fig. 3: The heatmap depicts the popularity distribution of
objects in the grid. The darker regions A and B contain
the most popular content. The circles represent the final
configuration produced by the GRADES policy (η = 0.64)
under the trace Synthetic in Table I.

Fig. 4: Expected cost C(·) incurred by different policies under
the trace Synthetic in Table I: LRU+, SIM-LRU, qLRU-∆C
(q = 10−2), GREEDY, and GRADES (η = 0.64, plain and
grafted with p = 10−1). Cache size k = 313.

The traffic is generated under the Independent Reference
Model [33]. There are two popular regions A and B centered
around coordinates (65, 65) and (220, 220), respectively; they
are produced by a mix of two Gaussian distributions. In
particular, an object at (norm-1) distances d1 from the center
of A and d2 from the center of B is requested with probability

Pr(d1, d2) ∝ 0.4× e
−d21

2×152

√
2π × 15

+ 0.6× e
−d22

2×252

√
2π × 25

.

The popularity distribution of the objects in the grid is depicted
in the heat-map in Fig. 3. Figure 1 corresponds to a rescaled
version of the same process.

Figure 4 shows the performance of GRADES without any
graft and with different grafts (LRU+, SIM-LRU, qLRU-
∆C) for a quite large value of the grafting parameter (p =
10−2). GRADES/X denotes GRADES grafted with policy X.
We observe that GRADES achieves the smallest cost, however
by grafting SIM-LRU we can make the initial transient faster.
Figure 3 also shows the final cache configuration reached by
GRADES: as expected, the density of the objects in the cache
is higher where the request density is higher.

The effect of the grafting parameter p is shown in Fig. 5
and depends on the specific grafted policy. We see that
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Fig. 5: Effect of the grafting parameter p on the final
expected cost C(·). GRADES/qLRU-∆C (q = 10−2) and
GRADES/SIM-LRU for different learning rates under the trace
Synthetic in Table I. Cache size k = 313.

GRADES/qLRU-∆C1 is relatively insensitive to the grafting
up to p = 0.05, but for larger values of p the cost increases,
and approaches the cost of qLRU-∆C alone (about 0.295
as it can bee seen in Fig. 4). This happens because, for
large p, more and more cache updates are due to qLRU-
∆C, which, even upon an approximate hit, may introduce
the requested object with probability proportional to q. For
GRADES/SIM-LRU, the cost again increases as p increases,
but it is always much smaller than the cost of SIM-LRU
alone (about 0.32). The explanation is that SIM-LRU never
introduces new objects on approximate hits. Hence, as far as
the current cache allocation provides approximate answers, the
function GRAFT MISS UPDATE in Alg. 1 does not modify the
current cache allocation.
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Fig. 6: Effect of grafting parameter p on the expected cost
C(·) in a dynamic setting for GRADES/qLRU-∆C (η = 0.64).
The cache is initialized to a stationary configuration as in
Fig. 3. Now, only requests corresponding to region B from
the synthetic trace are made. Cache size k = 313.

Until now, we have considered a stationary request scenario,
where there is no evident advantage from grafting a more
reactive policy to GRADES. In Fig. 6 we consider a highly
non-stationary setting. At time 0, the cache is initialized as in
Fig. 3, but then, suddenly, the request process changes abruptly
and no more requests for objects in region A are generated.
The cache should reach a new configuration where all cached
objects are located in region B, achieving a lower cost, as

1Note that GRADES grafted with p = p′ to a qLRU-∆C with q = q′ is
equivalent to GRADES grafted with p = 1 to a qLRU-∆C with parameter
q = p′ × q′.



Fig. 7: Expected cost C(·) incurred by the different policies un-
der the trace Synthetic in table I: qLRU-∆C (q = 10−3, 10−2),
DUEL , GREEDY, and GRADES (η = 1.28, 0.64 grafted with
p = 1 and q = 10−3). Cache size k = 313.

now the same number of objects should cover a smaller area.
Figure 6 shows that a higher value of p enables faster migration
of objects from region A to region B in the cache.

Figure 7 shows the synergy between GRADES and the
grafted policy. qLRU-∆C, DUEL, and GRADES, all have
parameters (q, η, and f ) that can be tuned to find an optimal
trade off between convergence speed and final cost: they can
converge fast to configurations within a large neighborhood of
a critical point (for high q, high η, and low f , respectively),
or slowly to configurations within a smaller neighborhood.
Experiments in [18], in a setting similar to ours, show
that qLRU-∆C achieves a worse cost-vs-speed tradeoff than
DUEL. Figure 7 confirms that this is the case, but when qLRU-
∆C is grafted on GRADES, the resulting policy improves on
top of DUEL. In fact GRADES/qLRU-∆C achieves a better
trade-off as it is able to converge to a cost comparable to DUEL
in a shorter time, or equivalently to a smaller cost in roughly
the same time. Note also that DUEL’s expected cost at steady
state is noisier than GRADES/qLRU-∆C’s cost, showing the
advantage of smoothly updating the state using gradients.

B. 360◦ Videos

We test our algorithms on 360◦ video traces. A 360◦ video
is an immersive, spherical video [36], [37]. The video is first
projected on to a 2D plane to be encoded by classic 2D video
encoders. The video is divided into time segments, and each
segment is further spatially divided into tiles. The VR headset
is optimized to fetch the required tiles based on the head
position of the user. A system responsible for the delivery of
360◦ videos can cache the popular tiles in nearby caches [38].
Moreover, tiles at the periphery of the user’s field of view
could be approximated by neighbouring tiles that are stored at
the cache and can then be served with low latency. Similarity
caching may then be useful in this context, specially in the
future when the number of tiles will increase and close tiles
will become more similar.

We generated a sequence of tiles’ requests for 360◦ videos
using the approach proposed in [39]. We took real traces from
8 videos watched by 48 users each, and then built a navigation
graph for each video, i.e., a Markov Chain that represents the
spatial and temporal viewing correlations for the video. The
videos we considered have on average 207 segments, each

with 25 tiles. From each navigation graph we can generate an
arbitrary number of possible views of the video. We generated
then a trace with 10000 users as follows. At time t = 0, each
user selects one of the videos at random and starts watching
the video from a random segment of the video. The user
then walks through the navigation graph to view the complete
video. Once the user reaches the last segment in the video, it
selects a new video uniformly at random (with replacement)
and starts watching the selected video from the first segment.
The process is repeated till 10 million requests are generated.

We assume each tile can approximate at most 4 tiles (the
adjacent ones), with a fixed approximation cost Ca = 0.1.

Figure 8 compares the performance of GRADES/qLRU-∆C
and qLRU-∆C. Note that in this setting, the representation
space exhibits a very rough granularity, as the tiles of a
segment cannot be used to approximate those of another
segment and each segment is decomposed in a 5 × 5 grid of
tiles. Nevertheless, GRADES/qLRU-∆C shows significant im-
provement with respect to existing similarity caching policies
and approaches the cost of GREEDY.

Fig. 8: Expected cost C(·) incurred by the different caching
policies for the trace 360◦ videos in Table I. GRADES/qLRU-
∆C (q = 0.01, 0.05) with η = 1.0 and qLRU-∆C (q =
0.01, 0.05). Cache size k = 4000.

C. Machine Learning Traces

We study the performance of similarity caching under the
following traces in high-dimensional spaces.

a) Amazon trace: The paper [40] proposes a technique to
embed the images of Amazon products in a 100-dimensional
space, where the Euclidean distance between two items cap-
tures the similarity of the sets of users who purchased or
viewed both items. We have restricted ourselves to the prod-
ucts in the category “Baby” and we have assumed that a
request for a given item was issued at time t, if a user left
a review for the considered item at the same time.

b) CiteULike trace: The CiteULike dataset [41] contains
a bipartite network of 22,715 users and 153,277 tags, where
each edge represents a timestamped tag creation. The em-
beddings in a 100-dimensional space are obtained using the
collaborative metric learning model proposed in [42]. As for
the Amazon trace, the Euclidean distance within this space
encodes the similarity between users and items, where the
items here are the tags. We generated the trace considering



that an object (tag) is requested when one user adds the
corresponding tag.

c) Movielens trace: We have trained the RecVAE col-
laborative filtering model from [43] on the Movielens dataset
[44] to embed users’ rating histories in a d = 200 dimensional
space. Users with similar rating histories are mapped to vectors
close according to the Euclidean distance. We have generated
the trace by embedding every batch of 38 ratings from the
same user (38 is the median number of ratings across all users)
and assigning it the timestamp of the latest rating in the batch.

In all previous traces similarity is captured by the Euclidean
distance. We then assume the dissimilarity cost to be pro-
portional to the squared Euclidean distance, i.e., Cd(x, y) =
b‖x − y‖22. As the absolute value of such distance has not a
clear meaning, we select the constant b so that on average an
object can approximate a given fraction α of the catalogue.
We say that x can approximate y if Cd(x, y) ≤ Cr = 1, and
we call α the approximability value. We set the cache size to
k = 100.

The time-average cost of different caching policies is shown
in Fig. 9 for the Amazon trace and 10% approximability.
Although an object is able to approximate only 10% of the
catalog on average, similarity caching policies significantly
reduce the cost in comparison to an exact caching policy like
LRU, with qLRU-∆C and GRADES/qLRU-∆C achieving
the lowest service cost. The empirical distribution of pairwise
distances in Amazon trace (due to space constraints we cannot
show it) shows that objects are quite scattered in this high-
dimensional space. The objects in the virtual cache are then
in general far from any object in the catalog and we could
expect gradient methods to perform poorly. Nevertheless,
Fig. 9 shows that GRADES/qLRU-∆C outperforms existing
similarity caching policies. Similar results hold for the other
two traces.

Finally, Fig. 10 reports the costs obtained for the three traces
under different values of approximability. As expected, the
service cost reduces as the approximability becomes larger.
In the CiteULike trace, the service cost flattens rapidly (it is
almost constant after 10% approximability): a close look at
the dataset shows that popular objects are clustered in a small
region of space. Once the approximability value guarantees
that these objects can approximate each other, the marginal
improvement from further increasing approximability becomes
negligible. The other two traces show instead a similar be-
haviour, with the service cost that is still decreasing after 20%
approximability. We also observe that the relative improvement
of GRADES/qLRU-∆C in comparison to qLRU-∆C becomes
larger as the approximabilty increases.

VI. CONCLUSIONS

In this paper we have proposed GRADES, a new caching
policy for similarity caching systems that takes advantage
from the fact that objects and requests are typically em-
bedded in a continuous metric space. GRADES outperforms
traditional caching policies in stationary scenarios, converging
to provably optimal configurations under mild assumptions.

Fig. 9: The time averaged cost incurred by different policies
under the trace Amazon trace: LRU, LRU+, SIM-LRU,
qLRU-∆C (q = 10−3) and GRADES/qLRU-∆C (η = 6.9 ×
102, grafted with p = 1). The level of approximability is 10%.
Cache size k = 100.

(a) Amazon (b) CiteULike (c) MovieLens

Fig. 10: The average cost incurred by qLRU-∆C (q =
10−3) and GRADES/qLRU-∆C (grafted with p = 1) under
the machine learning traces. The learning rates picked in
different approximability levels are: (a) (η = 5.4× 102, 6.3×
102, 6.9×102, 7.7×102), (b) (η = 2.4×10−2, 2.6×10−2, 3.0×
10−2, 3.2× 10−2) and (c) (η = 1.6× 10−1, 2.7× 10−1, 3.2×
10−1, 3.8× 10−1). Cache size k = 100.

Moreover we have shown that GRADES can be grafted to
any traditional caching policy, obtaining flexible schemes that
achieve arbitrary trade-offs between convergence speed and
average costs at steady state. The performance of GRADES
and its extensions has been evaluated in several synthetic and
realistic scenarios.
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APPENDIX A
SKETCH OF LEMMA IV.1 PROOF

Proof. We observe that for yt(i) ∈ B2(R), ‖g(i)t ‖2 is bounded
and for yt(i) /∈ B2(R), ‖g(i)t ‖2 ≤ 2 + 2‖y(i)t ‖2, then there
exists positive constants Al and Bl for l = 1, 2, 3, 4, such that
for ‖g(i)t (x, y

(i)
t )‖l2 ≤ Al +Bl‖y(i)t ‖l2.

We also observe that inf{y(i)t ·g
(i)
t ,∀y(i)t /∈ B2(R+1)} > 0

for all i = 1, . . . , k.
We will prove boundedness using the function ft =∑k
i=1 φ(‖y(i)t ‖22), where φ(u) = 1u≥(R+1)2(u − (R +

1)2)2. There exist positive constants A and B such that(
A0 +B0‖y(i)t ‖42

)
≤ A/k +Bφ(‖y(i)t ‖22).

Taking advantage of the inequality φ(v) − φ(u) ≤ (v −
u)φ′(u) + (v− u)2 applied for u = ‖y(i)t ‖22 and v = ‖y(i)t+1‖22,



and of the inequalities above, we can derive the following
inequality

ft+1 − ft ≤
k∑
i=1

[
−2ηty

(i)
t · g

(i)
t φ′(‖y‖22)

]
+ η2t (A+Bft) .

(5)

We take now the conditional expectation given Ht =
(y1,y2, . . . ,yt):

Ex[ft+1 − ft|Ht] ≤
k∑
i=1

[
−2ηty

(i)
t · Ex

[
g
(i)
t

]
φ′(‖y(i)t ‖22)

]
+ η2t (A+Bft) ≤ η2t (A+Bft)., (6)

where the last inequality follows from φ′(‖y(i)t ‖22) = 0 for
y
(i)
t ∈ B2(R+ 1) and y(i)t · g

(i)
t > 0 for y(i)t ∈ B2(R+ 1).

From (6) we can reason as in [23, Sect. 5.2] to show
that {ft}t∈N is a quasi-martingale and apply convergence
results for quasi-martingales [23, Sect. 4.4] to conclude that
ft converges almost surely to a random variable f∞ ≥ 0
with E[f∞] < ∞. We want to conclude that f∞ = 0 with
probability one, and then yt is bounded almost surely.

Moving around the terms in (5) and summing over t, we
obtain

∞∑
t=1

k∑
i=1

2ηty
(i)
t · g

(i)
t φ′(‖y‖22)

≤ f1 − f∞ +

∞∑
t=1

η2t (A+Bft) < +∞ a.s. (7)

because
∑
t η

2
t <∞ and ft converges to f∞ <∞.

Let H be the set of sequences such that f∞ > 0. For each
sequence in H, ft > f∞/2 for large t, and then there exists at
least a value it and an opportune ε > 0 such that ‖y(it)t ‖2 >
(R + 1) + ε. Then both y

(i)
t · g

(i)
t and φ′(‖y‖22) are bounded

below by positive quantities and the series in the LHS of (7)
diverges as

∑
t ηt = +∞. But we have concluded that this

series converges a.s., then Pr (H) = 0 and f∞ = 0 a.s.. Each
sequence (y1,y2, . . . ) is then bounded a.s.

APPENDIX B
SKETCH OF THEOREM IV.2 PROOF

Proof. We denote by yt,i the i-th component of the vector
yt ∈ Rk×d, and by yi the i-th component of a generic vector
y ∈ Rk×d.

We define F (u) = u4/(1 + u2), L(y) =∑k
i=1 1yit /∈B2(R)F

(
‖y(i)t ‖2 −R

)
, and C̃(x,y) = C(x,y) +

L(y). We observe that ∇yC̃(x,yt) = (g
(1)
t , . . . , g

(k)
t ),

i.e., the dynamic in (4) is evolving according
to the gradient of C̃(x,yt). Similary we define
C̃(y) = Ex

[
C̃(x,y)

]
= C(y) + L(y). The function L(y) is

continuously differentiable up to the third order, then C̃(y) is
continuously differentiable up to the second/third order when
C(y) is so. Moreover, we observe that ‖∇yC̃(y)‖2 > 0 for

y(i) /∈ B2(R) for some i. Then, lim inft→∞‖∇yC̃(yt)‖2 = 0,
implies that lim inft→∞‖∇yC(yt)‖2 = 0.

Lemma IV.1 shows that the sequence H = (y1,y2, . . . )
is bounded a.s. Consider a bounded sequence H , such that
yt ∈ B2(R′) for some R′ > 0. ∇C̃(x,yt) exists a.s. and it
is bounded for any x ∈ X . By the dominated convergence
theorem, it follows that we can invert the expectation and the
gradient Ex

[
∇yC̃(x,yt)

]
= ∇y Ex

[
C̃(x,yt)

]
= ∇yC̃(yt).

As C̃() is continously differentiable up to the second order
upon B2(R′), the partial derivatives are bounded, in particular,
there exist two constants c1 and c2 such that |∂C̃(y)/∂yi| ≤ c1
and |∂2C̃(y)/∂yi∂yj | ≤ c2 for each i, j ∈ {1, 2, . . . , kp}.

Using Taylor formula we can arrive to

C̃(yt+1)− C̃(yt) ≤ −ηt∇yC̃(yt) · ∇yC̃(xt,yt) + η2t b, (8)

where b = c2c
2
1kp/2.

After summing for t = 1, . . . , T , we take the expected
value, and let T diverges to obtain
∞∑
t=1

ηt E
[
‖∇yC̃(yt)‖22

]
≤ E

[
C̃(y1)

]
+

∞∑
t=1

η2t b < +∞. (9)

The series on the LHS is then summable. It follows that
∞∑
t=1

ηt‖∇yC̃(yt)‖22 < +∞ a.s. (10)

and then we can complete the proof of the first thesis:

lim inf
t→∞

‖∇yC̃(yt)‖2 = 0 a.s.

Consider now that C() is continously differentiable up to
the third order and then its third order partial derivatives are
bounded over B2(R′), i.e., |∂3C̃(yt)/∂yi∂yj∂yl| ≤ c3. Let
a(y) = ‖∇yC̃(y)‖22. This is continuously differentiable up to
the second order. We can then use again the Taylor formula
as above and obtain:

a(yt+1)− a(yt) ≤ −2ηt

kp∑
i,j=1

∂C̃(y)

∂yj

∂2C̃(y)

∂yi∂yj

∂C̃(xt,yt)

∂yi

+ η2t
c′2c

2
1(kp)2

2
,

where c′2 = 2kp(c22 + c1c3).
If we now compute the conditional expectation given the

history up to t, Ht = (y1,y2, . . . ,yt), we obtain

E[a(yt+1)− a(yt)|Ht] ≤ 2c2kpηt‖∇yC̃(yt)‖22 + η2t
c′2c

2
1(kp)2

2
.

From which we can show that {a(yt)}t∈N is a quasi-
martingale and converges almost surely to a random variable
a∞ with finite expected value. As a∞ > 0 if and only if
‖∇yC̃(yt)‖22 > 0 for large t, it is possible to reason as at the
end of the proof of Lemma IV.1 and use (10) to conclude that
a∞ = 0 almost surely. It follows that

lim
t→∞

∇C̃(yt) = 0 a.s..
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