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Abstract
We propose a small-step operational semantics to support
reasoning about web applications written in the multi-tier
language HOP1. The semantics covers both server side and
client side computations, as well as their interactions, and
includes creation of web services, distributed client-server
communications, concurrent evaluation of service requests
at server side, elaboration of HTML documents, DOM oper-
ations, evaluation of script nodes in HTML documents and
actions from HTML pages at client side.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Formal Definitions and Theory—Semantics;
D.3.2 [Programming Languages]: Language Classifications—
Design languages

General Terms Languages, Theory

Keywords Web programming, Functional languages, Multi-
tier languages.

1. Introduction
The web is built atop an heterogeneous set of technologies.
Traditional web development environments rely on differ-
ent languages for implementing specific parts of the appli-
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cations. Graphical user interfaces are declared with HTM-
L/CSS or Flash. Client-side computations are programmed
with JavaScript augmented with various APIs such as the
Document Object Model (DOM) API. Communications be-
tween servers and clients involve many different protocols
such as HTTP for the low level communication, XmlHttpRe-
quest for implementing remote procedure calls, and JSON
for serializing data. Server sides are frequently implemented
with languages such as PHP, Java, Python, or Ruby. Using
so many different tools and technologies makes it difficult
to develop and maintain robust applications, it also makes it
difficult to understand their precise semantics.

Semantics of web applications has not been studied glob-
ally but rather components by components. In a precursor
paper Queinnec has studied the interaction model of web ap-
plications based on forms submissions [17]. This work has
been pursued by Graunke and his colleagues in several pub-
lications [11, 10]. Several formal semantics for JavaScript
have been proposed [16, 12] excluding the semantics of the
DOM that has been first studied in [8, 9]. Various formal
semantics of programming languages can be used to under-
stand behaviors of server-side code but as precise as they
are, none of them can be used to understand applications as
a whole as they only cover small parts of the applications.

As a response to the emergent need of simplifying the de-
velopment process of web applications, multi-tier languages
have been recently proposed. Examples of such languages
include HOP [19], Links [4], Swift [3], and Ur [2]. Multi-tier
languages usually provide a unified syntax, typically based
on a mainstream programming language syntax, where web
applications can be fully specified: server and client code.
These languages usually also relieve the programmer from
the burden of thinking about communication protocols. The
HOP programming language pushes this philosophy to the



extreme by addressing all aspects of web applications and
totally eliminates the need of any external language in pro-
gramming these applications.

HOP [19] (http://hop.inria.fr) is based on the
Scheme programming language [13] which it extends in
several directions. It is multi-threaded. It provides many li-
braries used for implementing modern applications (mail,
multimedia, ...). It also extends Scheme with constructs and
APIs dedicated to web programming. The new constructs
are: i) service definitions that are server functions associated
with URLs that can be invoked by clients, ii) service invoca-
tions that let clients invoke servers’ services, iii) client-side
expressions that are used by servers to create client-side
programs, and, iv) server-side expressions, that are embed-
ded inside client-side expressions. The new APIs are: full
HTML and DOM support that let servers and clients define
and modify HTML documents and HTML fragments.

When a HOP program is loaded into a HOP broker [18],
i.e., the HOP execution environment, it is split and compiled
on-the-fly. Sever-side parts are compiled to a mix of byte-
code or native code and client-side parts are compiled to
JavaScript [15]. In the source code, a syntactic mark instructs
the compiler about the location where the expression is to be
evaluated. Figure 1 illustrates the dual compilation.
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Figure 1. Hop architecture

When the HOP broker starts, it registers all the available
programs and waits for client connections. Upon connection,
it actually loads the program needed to fulfill the request
it has received and returns a HTML document which con-
tains the client-side part of the program to the client that
has emitted the request. That client proceeds with the exe-
cution of the program. When needed, the client may invoke
server-side services which accept client-side values and re-
turns server-side values. The normal execution of the HOP
program keeps flowing from the client to the server and vice-
versa.

By covering all aspects of programming web applica-
tions, HOP can then be used to reason globally about these
applications. Our contribution in this paper is to provide
a formal and unified small-step operational semantics that

could support such reasoning. A denotational continuation-
based semantics was previously given for a core subset of
HOP [20]. However, this work did not cope with DOM oper-
ations nor multiple clients. It only described the elaboration
of client-side code as generated by the server-side code. The
semantics given in this paper, in addition to being written
in the more versatile style of operational semantics, covers a
much wider spectrum of the language. Indeed, our semantics
can support global formal reasoning about web applications.

For a part the HOP language, being based on Scheme, re-
lies on standard programming constructs. However, several
features of HOP are specific of a multi-tier language, and
therefore require specific semantics that, as far as we can
see, have not been previously formalized. These features are
mostly related to the stratified design of server codes. In par-
ticular, the dynamic client code generation from the server
and its installation at client site are prominent features of
HOP.

Contents The paper is organized as follows: in Section 2
we describe a core of the language HOP and its semantics
which is extended in Section 4 with DOM operations. In
Section 3 we describe the access control mechanism in HOP.
Finally, we conclude in Section 5 and propose future direc-
tions.

2. Core HOP

2.1 Syntax
In this section we introduce the syntax, and then the seman-
tics, of the HOP language, or more precisely of the core con-
structs of the language. A more complete version, involv-
ing the DOM part, will be considered in Section 4. Our core
language exhibits the most prominent features of the HOP
language: service definition and invocation, transfer of code
and values from the server to a client, that is, the distributed
computing aspect of HOP. The Core HOP syntax is stratified
into server code s and tilde code t. The former is basically
Scheme code enriched with a construct (service (x) s) to de-
fine a new service, that is a function bound to an URL, and
a construct ˜t to ship (tilde) code t to the client. The latter
may include references $x to server values, and will be trans-
lated into client code c, before being shipped to the client. In
the actual HOP system, the latter is compiled into JavaScript
code [15], but here we ignore the compilation phase from
HOP to JavaScript, as we provide a semantics at the level of
(source) client code.

The syntax is given in Figure 2, where x denotes any
variable. We assume given a set Url , disjoint from the set of
variables, of names denoting URLs. These names are values
in the Core HOP language, where they are used as denoting a
function, or more accurately a service. When provided with
an argument, that is a value w, a call (uw) to a service is
transformed into a value u?w that can be passed around as
an argument. In particular, such an argument will be used in
the (with-hop u?w w′) form, which sends the value w to the



u ∈ Url URL

s ::= x | w | (s0 s1) | ˜t server code

| (service (x) s) | (with-hop s s)

t ::= x | u | u?v | (lambda (x) t)

| (t0 t1) | $x | (with-hop t0 t1)

w ::= u | u?w | (lambda (x) s) server values

| ˜c | ()

c ::= x | v | (c0 c1) client code

| (with-hop c0 c1)

v ::= u | u?v | (lambda (x) c) | () client values

Figure 2. Core HOP Syntax

service at u somewhere in the web, and waits for a value to
be returned as an argument to the continuation w′.

A server expression usually contains subexpressions of
the form ˜t. As we said, t represents code that will be
executed at client site. This code cannot create a service,
that is, it does not contain any subexpression (service (x) s),
but it usually calls services from the server, by means of the
(with-hop t0 t1) construct, and it may use values provided
by the server, by means of subexpressions $x. When the
latter are absent (that is, when they have been replaced by
the value bound to x), a t expression reduces to a client
expression c. Notice that for the server an expression ˜c is
a value, meaning that the code c is frozen and will only
be executed at client site. Values also include (), which is
a shorthand for the unspecified Scheme runtime value. In a
more complete description of the language we would include
other kinds of values, like for instance boolean truth values,
integers, strings, and so on, as well as some constructs to
build and use these values. It is also easy to add Scheme
imperative constructs like (set! x s).

As usual (lambda (x) s) binds x in the expression s,
and the same holds for (service (x) s). A HOP program is
a closed expression s, meaning that it does not contain any
free variable (but it may contain names u for services that
are provided from outside of the program). We shall consider
expressions up to α-conversion, that is up to the renaming of
bound variables, and we denote by s{y/x} the expression
resulting from substituting the variable y for x in s, possibly
renaming y in subexpressions where this variable is bound,
to avoid captures.

The operational semantics of the language will be de-
scribed as a transition system, where at each step a (possibly
distributed) redex is reduced. As usual, this occurs in specific
positions in the code, that are described by means of evalu-
ation contexts [5]. In order to describe in a simple way the
communications between a client, invoking a service, and
the server, which computes the answer to the service request,

we shall introduce a new form into the syntax, namely

s ::= · · · | (j s)

where j is a “communication identifier” (or channel), taken
from some infinite set, disjoint from the set of variables and
the set Url of URLs. The syntax of evaluation contexts is as
follows:

E ::= [] | (E s) | (wE) | (jE)

| (with-hop E s) | (with-hop w E)

Since client code and client values are particular cases of
server code and server values respectively, evaluation con-
texts in client code are particular cases of (server) evaluation
contexts. One can see that for the (with-hop s0 s1) form,
one has to evaluate s0, and then s1, before actually calling a
service. As usual, we denote by E[s] the result of filling the
hole [] in context E with expression s.

2.2 Semantics
The semantics of a HOP program is represented as a se-
quence of transitions between configurations. A configura-
tion consists in

• a server configuration S, together with an environment
µ providing the values for the variables occurring in the
server configuration. The server configuration consists in
a main thread executing server’s code, and a number of
threads of the form (j s) executing client’s requests to
services.

• a client configuration C, which consists in a multiset of
running clients. Each client is a tuple 〈c, µ,W 〉 where
c is the running client code, typically performing service
requests, µ is the local environment for the client (distinct
from the one of the server: the client and the server do
not share any state), and W is a multiset of pending
continuations (v j), waiting for a value returned from
a service call (which has been named j), or callbacks
(v c), and more generally client code c waiting for being
processed at client site (we shall see another instance of
this in Section 4 with the onclick construct).

• a global environment ρ, binding URLs to the services
they denote.

• a set J of communication identifiers that are currently in
use.

Then a configuration Γ has the form ((S, µ), C, ρ, J). How-
ever, to simplify a little the semantic rules, and to represent
the concurrent execution of the various components, we shall
use the following syntax for configurations:

Γ ::= µ | ρ | J | s | 〈c, µ,W 〉 | (Γ ‖ Γ)

where µ is a mapping from a finite set dom(µ) of vari-
ables to values (server values or client values), ρ is a map-
ping from a finite set dom(ρ) of URLs to services, that is



†w =

8><>:
⊥ if w = (lambda (x) s)

c if w = ˜c

w otherwise

Ξ(µ, x) = x

Ξ(µ, u) = u

Ξ(µ, u?v) = u?v

Ξ(µ, (lambda (x) t)) = (lambda (y) Ξ(µ, t{y/x}))
where y 6∈ dom(µ)

Ξ(µ, (t0t1)) = (Ξ(µ, t0)Ξ(µ, t1))

Ξ(µ, $x) =

8><>:
⊥ if µ(x) = (lambda (y) s)

or µ(x) = ˜c

µ(x) otherwise
Ξ(µ, (with-hop t0 t1)) = (with-hop Ξ(µ, t0) Ξ(µ, t1))

Figure 3. Server to Client

functions (lambda (x) s), and W is a finite set of expres-
sions of the form (v j)2 or (v c). A configuration is well-
formed if it contains exactly one µ, one ρ and one J3. We
only consider well-formed configurations in what follows.
We assume that parallel composition ‖ is commutative and
associative, so that the rules can be expressed following the
“chemical style” of [1], specifying local “reactions” of the
form Γ −→ Γ′ that can take place anywhere in the configura-
tion. That is, we have a general rule

Γ −→ Γ′

(Γ ‖ Γ′′) −→ (Γ′ ‖ Γ′′)

meaning that if the components of Γ are present in the
configuration, which can therefore be written (Γ ‖ Γ′′),
and if these components interact to produce Γ′, then we can
replace the components of Γ with those of Γ′.

Before introducing and commenting the reaction rules,
we need to define an auxiliary function transforming tilde
code into client code. As we said a subexpression ˜t in server
code is not evaluated at server side, but will be shipped to the
client, usually as the answer to a service request. Since the
expression t may contain references $x to server values, to
define the semantics we introduce an auxiliary function Ξ
that takes as arguments an environment µ and an expression
t, and transforms it into a client expression c. This is defined
in Figure 3, where we also introduce a partial function †
that transforms a (server) value into a client expression by
removing the tilde, provided the value is not a λ-abstraction.
The Ξ transformation consists in replacing $x by the value
bound to x in µ, but one should notice that a function, that is
a (lambda (x) s), or client code c cannot be sent to the client
this way, because this would in general result in breaking

2 These expressions (v j) do not evaluate, and therefore we do not need to
add them to the syntax of client code.
3 These components are omitted whenever they are empty.

the bindings of free variables that may occur in such an
expression. Then this has to be considered as an error.

The semantics is given in Figure 4, which we now com-
ment. First notice that we write a compound configuration
(Γ ‖ Γ′) as Γ ‖ Γ′. This is not ambiguous, since paral-
lel composition is commutative and associative. When we
have to evaluate a variable (rule VARS), we need to lookup
into the corresponding environment µ, which we express as
a reaction from E[x] ‖ µ, but obviously the environment
must remain unchanged as a component of the configuration,
which is why we restore it in E[w] ‖ µ, where w = µ(x).
As we said when introducing the syntax, a call (uw) to a
service is transformed into a value u?w (rules REQS and
REQC). In server code, a subexpression ˜t is translated (rule
TILDE) into a server value ˜c by means of the transfor-
mation Ξ. Evaluating (service (x) s) (rule SERVDEF) cre-
ates a new URL name4 u 6∈ dom(ρ), returns this name
to the evaluation context, and updates the service environ-
ment ρ by adding a new service (= function) associated with
u. We may have service invocations from the server, that
is (with-hop u?w0 w1), where the name u refers to some
pre-existing service, that has not been created by the run-
ning program. In that case (rule SERVINVOCS), we assume
that the returned value w is provided by an “oracle” Ω. This
value is passed as an argument to the continuation w1. This
oracle represents a call to an external service available in
the web, and allows for writing mashups using HOP. Ob-
serve that service invocation from the server behaves like
a RPC, whereas service invocation from a client is asyn-
chronous: evaluating a (with-hop u?v0 v1) from client side
(rule SERVINVOCC) creates a new communication name j,
spawns a thread (j (w v0)) at server side to evaluate the re-
quest to the service, and terminates the invocation at client
side while adding a continuation (v1 j) that waits for the
value returned from the server. This returned value is trans-
formed into server code (or value) by means of the † func-
tion, and then provided as an argument to the continuation
v1 (rule SERVRET); the communication identifier j is then
recovered. Concluding the semantics of the with-hop con-
struct, a callback (v′ c) from the setW is evaluated when the
client’s code has terminated (rule CALLBACK). Finally, we
have a last rule INIT, similar to SERVINVOCC, that models
the situation where a new client shows up and sends a service
request to the server, initiating a new thread of computation
at server side. However in this rule the client’s continuation
has a special form setdoc, the meaning of which will become
clear in Section 4, where this continuation is used to set up
a HTML page at client side. In Core HOP, we can consider
setdoc as being simply the identity (lambda (x) x).

Let us illustrate this semantics with an example, where
we use the form (let ((x s0)) s1) as an abbreviation for

4 In the HOP language this is an optional argument to a service definition.



µ(x) = w

E[x] ‖ µ −→ E[w] ‖ µ
(VARS)

µ(x) = v

〈E[x], µ,W 〉 −→ 〈E[v], µ,W 〉
(VARC)

E[(uw)] −→ E[u?w]
(REQS)

〈E[(u v)], µ,W 〉 −→ 〈E[u?v], µ,W 〉
(REQC)

y 6∈ dom(µ)

E[((lambda (x) s)w)] ‖ µ −→ E[s{y/x}] ‖ µ ∪ {y 7→ w}
(APPS)

y 6∈ dom(µ)

〈E[((lambda (x) c)v)], µ,W 〉 −→ 〈E[c{y/x}], µ ∪ {y 7→ v},W 〉
(APPC)

Ξ(µ, t) = c

E[˜t] ‖ µ −→ E[˜c] ‖ µ
(TILDE)

u 6∈ dom(ρ)

E[(service (x) s)] ‖ ρ −→ E[u] ‖ ρ ∪ {u 7→ (lambda (x) s)}
(SERVDEF)

u 6∈ dom(ρ) Ω(u,w0) = w

E[(with-hop u?w0 w1)] ‖ ρ −→ E[(w1 w)] ‖ ρ
(SERVINVOCS)

j 6∈ J ρ(u) = w

〈E[(with-hop u?v0 v1)], µ,W 〉 ‖ ρ ‖ J −→ (j (w v0)) ‖ 〈E[()], µ,W ∪ {(v1 j)}〉 ‖ ρ ‖ J ∪ {j}
(SERVINVOCC)

(j w) ‖ 〈c, µ,W ∪ {(v j)}〉 ‖ J −→ 〈c, µ,W ∪ {(v (†w))}〉 ‖ J − {j}
(SERVRET)

〈v, µ, {c} ∪W 〉 −→ 〈c, µ,W 〉
(CALLBACK)

j 6∈ J ρ(u) = w

ρ ‖ J −→ (j (w v)) ‖ 〈(), ∅, {(setdoc j)}〉 ‖ ρ ‖ J ∪ {j}
(INIT)

Figure 4. Core HOP Semantics

ρ0 −→ (j ((lambda (z) s) ())) (INIT)

‖ 〈(), ∅, ((lambda (x) x) j)〉 ‖ ρ0 ‖ {j}
∗→ (j, (let ((xu1)) ˜t)) ‖ µ0 (APPS, SERVDEF)

‖ 〈(), ∅, ((lambda (x) x) j)〉 ‖ ρ1 ‖ {j}

where µ0 = {z′ 7→ ()}
ρ1 = ρ0 ∪ {u1 7→ (lambda (y) y)}

∗→ (j ˜c) ‖ µ1 (APPS, TILDE)

‖ 〈(), ∅, ((lambda (x) x) j)〉 ‖ ρ1 ‖ {j}

where c = (with-hop (u1 ()) (lambda (x) x))

µ1 = µ0 ∪ {x′ 7→ u1}
∗→ µ1 ‖ 〈((lambda (x) x) c), ∅, ∅〉 ‖ ρ1 (SERVRET,CALLBACK)

∗→ (j ((lambda (y) y) ())) ‖ µ1 (REQC, SERVINVOCC)

‖ 〈((lambda (x) x) ()), ∅, ((lambda (x) x) j)〉 ‖ ρ1 ‖ {j}
∗→ (j ()) ‖ µ2 (APPS,VARS,APPC,VARC)

‖ 〈(), µ′0, ((lambda (x) x) j)〉 ‖ ρ1 ‖ {j}

where µ2 = µ1 ∪ {y′ 7→ ()}
µ′0 = {x′ 7→ ()}

∗→ µ2 ‖ 〈(), µ′1, ∅〉 ‖ ρ1 (SERVRET,CALLBACK,APPC,VARC)

where µ′1 = µ′0 ∪ {z 7→ ()}

Figure 5. Operational Semantics: an Example



((lambda (x) s1) s0). Let

s = (let ((x (service (y) y))) ˜t)
t = (with-hop ($x ()) (lambda (x) x))

We start with a configuration where there is a service
(lambda (z) s) available at URL u0, that is with ρ0 =
{u0 7→ (lambda (z) s)} (and µ = ∅ = J , so we omit these
components). Then we have the transitions shown in Fig-
ure 5, which displays service definition and the interactions
between clients and a server. In the first step we interpret
the setdoc continuation as the identity, as explained above.
One can see (in the last steps) that server threads compute
concurrently with clients. However, one should observe that,
since the server and the clients do not share any common
state, there is no conflict between the server and client com-
putations, nor among client computations. This means that,
when reasoning about the behavior of a HOP program, we
do not have to consider all the possible interleavings, since
many steps are actually independent from each other. In fact,
we could have presented the semantics using a synchronous
style, where a client always waits for the answers from the
server before resuming its own computations. That is, we
could have restricted the VARC, REQC, APPC and SERV-
INVOCC rules to the case where the set W only contains
callbacks of the form (v c), and no pending continuation
(v j). This is not the way a HOP program actually behaves,
but this restriction to the semantics does not change it in an
essential manner, if the services always return. In any case,
one should be able to use local reasoning for server and
client code.

2.3 Implementation
HOP rests on traditional web technologies to execute pro-
grams. The server side code is executed by a bootstrapped
web server [18] that embeds an on-the-fly compiler that
compiles client-side code to JavaScript [15]. Communica-
tions between servers and clients implement the HTTP pro-
tocol [6].

The actual service definition construct (service) let servers
associate arbitrary URLs to services. These values, repre-
sented by u?v in the semantics (see Figure 2), are used in
web browsers URL bars to spawn HOP executions. For in-
stance, provided with a server accepting connections on port
8080, pointing a browser to the URL

http://localhost:8080/hop/doc

forces the server to load the interactive documentation pro-
gram and to start its execution. This delivers a web page im-
plementing the GUI of the live documentation. This action
is modeled by the INIT rule of the semantics (see Figure 4).

The mapping from URLs to services, named µ in the se-
mantics rules such as the SERVDEF in Figure 4, is imple-
mented on the server by a global hash table which is not au-
tomatically garbage collected. When a service is defined, the
program may add annotations such as time-to-live or timeout

s ::= . . . | (sservice R (x) s) server extension

Figure 6. Access Control Extension for HOP Syntax

that enables the server to remove expired services from the
environment.

The implementation of service invocation (the with-hop
construct, the semantics of which is given by rules SERV-
INVOCS, SERVINVOCC, SERVRET, and CALLBACK) is im-
plemented with the famous XmlHttpRequest object of Ajax
applications. Upon service invocation, the actual arguments
are marshalled using a format suitable for URLs (rule SERV-
INVOCC). On return, values are marshalled by the server us-
ing the JSON convention. Using that particular encoding en-
ables fast browser unmarshaling.

3. Access Control
As an option to the interaction between clients and server,
HOP proposes access control facilities. In this section we
show how these facilities can be formally modeled. Access
control permissions in HOP include service execution per-
mission and read permission for directories. For simplicity,
we only model service execution permissions here. We in-
troduce the set Credentials of credentials which is disjoint
from Url and variables. A credential cr ∈ Credentials can
be seen as an abstract representation of username and pass-
word, which serves as a token for access. We use R for de-
noting a set of credentials. To model services protected by
a simple access control protocol, we assume a specific form
(sservice R (x) s) of defining a “secured service.” The HOP
syntax is extended as shown in 6. When defining a service
protected by access control, one needs to provide a set of
credentials, such that only those who hold one of the cre-
dentials can access the service. Accordingly, we extend the
definition for ρ and client configuration:

• The global environment ρ binds urls to a pair (R,w) for
someR and w. The setR denotes permitted access rights
for the service;

• The client configuration C now is a tuple 〈cr, c, µ,W 〉,
where cr is the credential held by the client.

We update the semantics rules for access control in Figure
7. Only rules concerning access control are shown. For the
other rules, cr in a client configuration is left unchanged.
When defining a new service, rule SERVDEF binds the url
with a set of credential provided and a service body. The
INIT rule models that a new client with a credential sends
a service request. The request takes place only when the
credential is in the set of credentials related to the requested
service. The SERVINVOCC rule, similar to INIT, also checks
the credential.



u 6∈ dom(ρ)

E[(sservice R (x) s)] ‖ ρ −→ E[u] ‖ ρ ∪ {u 7→ (R, (lambda (x) s))}
(SERVDEF)

j 6∈ J ρ(u) = (R,w) cr ∈ R

〈cr,E[(with-hop u?v0 v1)], µ,W 〉 ‖ ρ ‖ J −→ (j (w v0)) ‖ 〈cr,E[()], µ,W ∪ {(v1 j)}〉 ‖ ρ ‖ J ∪ {j}
(SERVINVOCC)

j 6∈ J ρ(u) = (R,w) cr ∈ R

ρ ‖ J −→ (j (w v0)) ‖ 〈cr, (), ∅, {(v1 j)}〉 ‖ ρ ‖ J ∪ {j}
(INIT)

Figure 7. Core HOP Extended with Access Control

HOP implementation of access control relies on HTTP [6]
which accommodates authentications with two different
schemas known as Basic and Digest Access Authentica-
tion [7]. Basic authentication sends user identity and pass-
word as plain texts in the header of the request. Digest au-
thentication sends the user identity and password encrypted
with a nonce. Digest authentication is therefore slightly more
secure than Basic authentication. A third traditional means
for authenticating requests consists in including user iden-
tity and password in the host part of the URLs. This method
which offers roughly the same (in)security as the Basic au-
thentication scheme is widely used because it eases HTTP
requests to be scripted.

HOP rests on these standard mechanisms to authenticate
requests. Upon reception, requests are authenticated by pars-
ing the header fields. A special anonymous user is used as a
default authentication for requests that contain no valid au-
thentication information. Users are declared in HOP config-
uration files. They are created at the very beginning of the
server execution, before the first request is received. An user
is a data structure containing a name for identification, an en-
crypted password, a list of files and directories it is allowed
to access to, a list of services it is allowed to execute, and
a list of groups it belongs to. When a service is about to be
executed in response to a client call, HOP automatically au-
thenticates the request and checks if that user is granted the
permission to execute the service. When authorized, the exe-
cution proceeds. Otherwise, HOP returns a dedicated HTTP
response code (401) that forces the client browser to pops
up a login window and resubmit the request with a different
authentication. In addition to the automatic authentication,
HOP programs may also explicitly check user permissions.
Hence, any service may enforce it’s own security policy.

4. DOM Extension
In Section 2 we have seen how distributed computations
are built and run in HOP, but apart from that we have seen
no interesting effect of a HOP program. In this section we
consider another part of the HOP language, which allows
one to built HTML trees, that will be interpreted and dis-
played by the client’s browser. The client can manipulate the
host HTML page by means of the DOM (Document Object

p, q, r . . . ∈ Pointer

s ::= · · · | (〈tag〉 s) | (〈tag〉 : onclick s0 s1)

| (dom-append-child! s0 s1)

t ::= · · · | (〈tag〉 t) | (〈tag〉 : onclick t0 t1)

| (dom-append-child! t0 t1)

w ::= · · · | p

c ::= · · · | (〈tag〉 c) | (〈tag〉 : onclick c0 c1)

| (dom-append-child! c0 c1)

v ::= · · · | p

tag ::= HTML | DIV | · · ·

Figure 8. DOM Extension for HOP Syntax

Model [14]) interface of the browser. Then we enrich the
syntax with some basic HTML constructs, written in Scheme
style, and operations supported by the DOM. Here we con-
tent ourselves to consider the HTML and DIV tags, and the
(dom-append-child! s0 s1) construct – the other ones are
similar (see [8]). The HOP syntax is extended as shown in
Figure 8, where we assume given an infinite set Pointer of
pointers, that will be used to denote nodes in HTML trees.
The pointers are run-time values. Notice that instead of writ-
ing 〈tag〉 · · · 〈/tag〉 as in HTML, we write (〈tag〉 · · · ) in
HOP, which means that a tag is a function that is used to
build an HTML document. The general form in HOP is

(〈tag〉 [: attr ] s)

where attr is an optional list of attributes. We only consider
here the cases where there is no attribute, or where this at-
tribute is onclick s, but we sometimes write (〈tag〉 [: attr ] s)
for any of the two forms, when the attribute is irrelevant. The
optional onclick s attribute offers to the client the possibility
of running some code (namely c if s = ˜c), by clicking on
the node. (In HOP there are other similar facilities.)

The semantics of the (〈tag〉 [: attr ] · · · ) construct is
that it builds a node of a tree in a forest. In order to define
this, we assume given a specific null pointer, denoted α,
which is not in Pointer . We use π to range over Pointer ∪



µ(r) = (α, (〈HTML〉 [: attr ] `)

(j r) ‖ µ ‖ 〈(), ∅, {(setdoc j)}, α〉 ‖ J −→ µ ‖ 〈r, µ d r, ∅, r〉 ‖ J − {j}
(SERVRET1)

dom(µ0 d w) ∩ dom(µ1) = ∅

(j w) ‖ µ0 ‖ 〈c, µ1,W ∪ {(v j)}, r〉 ‖ J −→ 〈c, µ1[µ0 d w],W ∪ {(v (†w))}, r〉 ‖ J − {j}
(SERVRET2)

Figure 9. HOP Semantics (Modified Rules)

{α}. Then a forest maps (non null) pointers to pairs made
of a (possibly null) pointer and an expression of the form
(〈tag〉 [: attr ] c1 + · · · + cn). The pointer q ∈ Pointer
assigned to p is the ancestor of the node, if it exists. If it
does not, this pointer is α. Such a node is labelled tag and
has n children, which are either leafs (labelled with some
client code or value) or pointers to other nodes in the tree.
For simplicity we consider here the forest as joined to the
environment providing values for variables. That is, we now
consider that µ is a mapping from a set dom(µ) of variables
and (non null) pointers, that maps variables to values, and
pointers to pairs made of a (possibly null) pointer and a node
expression. The syntax for node expressions a is as follows:

a ::= (〈tag〉 `) | (〈tag〉 : onclick c `)

` ::= ε | c | (`0 + `1)

where ε is the empty list. In what follows we assume that +
is associative, and that ε+ ` = ` = `+ ε. We shall also use
the following notations in defining the semantics, assuming
that the pointers occuring in the list ` are distinct:

(〈tag〉 [: attr ] `) + p = (〈tag〉 [: attr ] `+ p)

(〈tag〉 [: attr ] `0 + p+ `1)− p = (〈tag〉 [: attr ] `0 + `1)

Given a forest µ, and p ∈ dom(µ), we denote by µ[p 7→
(π, a)] the forest obtained by updating the value associated
with p in µ. More generally, we define µ[µ′] as follows:

dom(µ[µ′]) = dom(µ) ∪ dom(µ′)

(µ[µ′])(p) =

(
µ′(p) if p ∈ dom(µ′)

µ(p) otherwise

For P ⊆ dom(µ), we also define µdP to be the least subset
of µ satisfying

I ⊆ dom(µ d P )

q ∈ dom(µ d P ) & µ(q) = (q′, (〈tag〉 [: attr ] `)

⇒ q′ ∈ dom(µ d P )

q ∈ dom(µ d P ) & µ(q) = (π, (〈tag〉 [: attr ] `0 + q′ + `1)

⇒ q′ ∈ dom(µ d P )

q ∈ dom(µ d P ) ⇒ (µ d P )(q) = µ(q)

We overload this notation by writing µ d c for µ d P where
P is the set of pointers that occur in c. This is the forest that
is the part of µ relevant for the expression c.

The syntax of evaluation contexts needs to be extended,
but we also have now to distinguish client’s evaluation con-

texts C from server’s evaluation contexts S:

S ::= · · · | (〈tag〉 S) | (〈tag〉 : onclickS s)

| (〈tag〉 : onclickw S)

| (dom-append-child! S s)

| (dom-append-child! w S)

C ::= · · · | (〈tag〉C) | (〈tag〉 : onclick cC)

| (dom-append-child! C c)

| (dom-append-child! v C)

The main difference is that at client side we do not evaluate
c0 in (〈tag〉 : onclick c0 c1), because this is the code that
will be executed at client side when an “onclick” action
is performed. Finally, as regards configurations, we now
assume that clients are rooted. That is, a client configuration
now has the form

〈c, µ,W, r〉

where the pointer r is the root of the HTML page that is
displayed at the client site by the browser.

The semantic rules given in Figure 4 still hold, except for
SERVRET, which we redefine below. We also have to extend
the Ξ(µ, t) function in rule TILDE to take into account the
new constructs. This is done in the obvious way, preserving
the structure of the expression (the function Ξ only has an
effect on the $x subexpressions), with Ξ(µ, p) = p for any
p ∈ Pointer . The modified rules are given in Figure 9, while
the new ones are in Figure 10. The VARC, REQC, APPC,
CALLBACK, SERVINVOCC and INIT rules of Figure 4 have
to be adapted to suit the new form of a client configuration,
which involves a root. This is done in the obvious way –
so we omit to write the adapted rules –, except that in the
INIT rule, the client is not yet rooted, or more precisely its
root is α: the client is waiting for an HTML tree (with a
root) to be provided by the server. This is formalized in rule
SERVRET1: the server sends a root r, together with the asso-
ciated tree µdr, which should satisfy some well-formedness
condition to be displayed by the browser. Here we only re-
quire that the node at r denotes an 〈HTML〉 node, with-
out any ancestor. In this rule the evaluation of (setdoc r),
which is supposed to have the (here invisible) side effect of
displaying something of µ d r, immediately returns r. The
SERVRET2 rule is the same as SERVRET of Core HOP, ex-
cept that some forest may also be returned, which should not
conflict with the current client’s HTML forest. The reader
will notice the disymmetry between the rules for passing a



R(r, p) µ(p) = (q, (〈tag〉 [: attr ] `0 + c+ `1))

〈v, µ,W, r〉 −→ 〈c, µ[p 7→ (q, (〈tag〉 [: attr ] `0 + `1))],W, r〉
(SCRIPT)

Q(r, p) µ(p) = (q, (〈tag〉 : onclick c0 `))

〈c1, µ,W, r〉 −→ 〈c1, µ,W ∪ {c0}, r〉
(ONCLICK)

w 6∈ Pointer p 6∈ dom(µ)

S[(〈tag〉 w)] ‖ µ −→ S[p] ‖ µ ∪ {p 7→ (α, (〈tag〉 †w))}
(TAGVS1)

p 6∈ dom(µ) µ(q) = (α, a)

S[(〈tag〉 q)] ‖ µ −→ S[p] ‖ µ[q 7→ (p, a)] ∪ {p 7→ (α, (〈tag〉 q))}
(TAGIS1)

w1 6∈ Pointer p 6∈ dom(µ)

S[(〈tag〉 : onclickw0 w1)] ‖ µ −→ S[p] ‖ µ ∪ {p 7→ (α, (〈tag〉 : onclick †w0 †w1))}
(TAGVS2)

p 6∈ dom(µ) µ(q) = (α, a)

S[(〈tag〉 : onclickw q)] ‖ µ −→ S[p] ‖ µ[q 7→ (p, a)] ∪ {p 7→ (α, (〈tag〉 : onclick †w q))}
(TAGIS2)

v 6∈ Pointer p 6∈ dom(µ)

〈C[(〈tag〉 [: attr ] v)], µ,W, r〉 −→ 〈C[p], µ ∪ {p 7→ (α, (〈tag〉 [: attr ] v))},W, r〉
(TAGVC)

p 6∈ dom(µ) µ(q) = (α, b)

〈C[(〈tag〉 [: attr ] q)], µ,W, r〉 −→ 〈C[p], µ[q 7→ (p, b)] ∪ {p 7→ (α, (〈tag〉 [: attr ] q))},W, r〉
(TAGIC)

µ(p) = (π, a0) µ(q) = (q′, a1) µ(q′) = (π′, a2)

S[(dom-append-child! p q)] ‖ µ −→ S[()] ‖ µ[p 7→ (π, a0 + q), q 7→ (p, a1), q′ 7→ (π′, a2 − q)]
(APPENDS1)

µ(p) = (π, a0) µ(q) = (α, a1)

S[(dom-append-child! p q)] ‖ µ −→ S[()] ‖ µ[p 7→ (π, a0 + q), q 7→ (p, a1)]
(APPENDS2)

µ(p) = (π, b0) µ(q) = (q′, b1) µ(q′) = (π′, b2)

〈C[(dom-append-child! p q)], µ,W, r〉 −→ 〈C[()], µ[p 7→ (π, b0 + q), q 7→ (p, b1), q′ 7→ (π′, b2 − q)],W, r〉
(APPENDC1)

µ(p) = (π, b0) µ(q) = (α, b1)

〈C[(dom-append-child! p q)], µ,W, r〉 −→ 〈C[()], µ[p 7→ (p′, b0 + q), q 7→ (p, b1)],W, r〉
(APPENDC2)

Figure 10. HOP DOM Semantics

value from the server to a client (SERVRET1 & 2), which
“drags” a tree with it, and for passing a value from a client to
the server, as an argument for a service call (SERVINVOCC),
which does not pass a tree. This is because we have found no
interesting use for that. Consequently, in the current version
of HOP it is an error to use a client’s node at server site.

The document sent by the server to the client upon initial-
ization may contain some code to execute, and also oppor-
tunities for interactions from the client, which in our sim-
plifying presentation of the HOP language only consists in
onclick c expressions. Then there is a phase in which the
browser, while interpreting the document sent by the server,
will execute client code that is contained into the document.
This is expressed by the SCRIPT rule, where the predicate
R(r, p) means that p is a descendant of r, and that the code
that we find at node p, and which is to be triggered, is the
leftmost one in the tree µ d r determined by r. (We should
also check that this tree is still a valid HTML document. We

do not formally define this predicate here – this is straightfor-
ward.) When this has been done, the client may interact with
the server, by clicking on an active node. This is expressed
by the rule ONCLICK, where again we have a precondition
Q(r, p), meaning that p is a descendant from r, and that there
is no code left to execute (by means of the SCRIPT rule) in
the tree (again we do not formally define this predicate here).

We have already explained the next six rules, from
TAGVS1 to TAGIC, that describe the construction of the
server (resp. client) forest from the (〈tag〉 s) and (〈tag〉 :
onclick s0 s1) (resp. (〈tag〉 [: attr ] c)) expressions. We dis-
tinguish two cases for each of these constructions: if the
child of the node is a value which is not a pointer, then we
just create a corresponding new node in the forest. If this is
a pointer q, pointing to another node in the forest, we again
create a new node identified by some p, but we must also
update the ancestor of q, which becomes p. In the rules for



the server we see that the server values are transformed into
client values or client code by means of the † function.

The remaining rules describe how the DOM operation we
consider, that is (dom-append-child! s0 s1) computes: first
the expressions s0 and s1 have to be evaluated. They are
supposed to return pointers p and q pointing to nodes in the
forest. Then one updates the node at p, moving q as a new
child of p, as well as the node at the ancestor of q (if any)
which loses its q child, and we update q’s ancestor to be p.
It is easy to formalize the other DOM constructs in a similar
way (see [8, 9]). This will be done in a more complete formal
description of the semantics of the HOP language.

Let us illustrate the semantics with DOM extension with a
few examples. For all the following examples, we start with a
configuration where there is a service (lambda (z) s0) avail-
able at URL u0, that is with ρ0 = {u0 7→ (lambda (z) s0)}.

Example 1 This example demonstrates how DOM tree is
manipulated and transmitted from server-side to client-side.
Let

s0 = (let ((x (service (y) (〈DIV〉 y)))) s1)

s1 = (let ((d (〈DIV〉 ()))) s2)

s2 = (let ((h (〈HTML〉 d))) s3)

s3 = (let ((k (dom-append-child! h (〈DIV〉 ˜t)))) h)

t = (with-hop ($x ())
(lambda (x) (dom-append-child! $d x)))

The transitions are shown in Figure 11, where the service
ships a HTML tree containing a piece of client node. The
client code, evaluated in client-side, requests a new tree from
the server and appends it to the current document.

Example 2 This example shows how script nodes are eval-
uated in client-side, especially the evaluation order.

s0 = (let ((d (〈DIV〉 ˜t0))) s1)

s2 = (let ((h (〈HTML〉 d))) s2)

s3 = (let ((c (dom-append-child! h (〈DIV〉 ˜t1)))) h)

t0 = ((lambda (y) y) ())

t1 = ((lambda (x) x) ())

We then have transitions shown in Figure 12, where transi-
tions regarding tree construction and transmission in server-
side are omitted. The tree transmitted to client contains two
pieces of code. The left one c0 will be evaluated before the
right one c1.

Example 3 This example demonstrates the ability of run-
ning code by invoking “onclick” attribute.

s0 = (〈HTML〉 (〈DIV〉 : onclick ˜t))

t = ((lambda (x) x) ())

Here are some states in the execution of this program:

ρ0 −→ (j ((lambda (z) s0) ()))

‖ 〈(), ∅, (setdoc j), α〉 ‖ ρ0 ‖ {j}
∗→ µ0 ‖ 〈q, µ1, ∅, q〉 ‖ ρ1

where µ1 = {q 7→ (α, (〈HTML〉 p)),
p 7→ (q, (〈DIV〉 : onclick c))}

c = ((lambda (x) x) ())

∗→ µ0 ‖ 〈(), µ2, ∅, q〉 ‖ ρ1

where µ2 = µ1 ∪ {x′ 7→ ()}

Example 4 This example shows that only valid HTML
document is meaningful as an answer to initial client request.
Let

s0 = (〈DIV〉 ˜t)

t = ((lambda (x) x) ())

Since the returning tree will not be a valid HTML document,
the computation will be blocked by rule SERVRET1.

5. Conclusion
We have presented a small step operational semantics for
the multi-tier programming language HOP, covering both
the server side and client side computations, and their in-
teractions. This semantics may therefore be used to reason
globally about the behavior of web applications. As a ben-
efit, language based techniques for analysis and verification
are thus made available to web applications, opening new re-
search directions to tackle security and reliability problems
for the web from a programming viewpoint.
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