
Certificate Translation for Optimizing Compilers

Gilles Barthe

IMDEA Software

and

Benjamin Grégoire and César Kunz and Tamara Rezk

INRIA Sophia Antipolis - Méditerranée

Proof Carrying Code provides trust in mobile code by requiring certificates that ensure the
code adherence to specific conditions. The prominent approach to generate certificates for com-
piled code is Certifying Compilation, that automatically generates certificates for simple safety
properties.

In this work, we present Certificate Translation, a novel extension for standard compilers that
automatically transforms formal proofs for more expressive and complex properties of the source
program to certificates for the compiled code.

The article outlines the principles of certificate translation, instantiated for a non optimizing
compiler and for standard compiler optimizations in the context of an intermediate RTL Language.

Categories and Subject Descriptors: D.2.4 [Software/Program Verification]: Formal methods;
F.3.2 [Semantics of Programming Languages]: Program analysis; F.3.1 [Specifying and
Verifying and Reasoning about Programs]: Logics of programs

General Terms: Languages, Verification, Security

Additional Key Words and Phrases: Proof-carrying Code, Program Verification, Static Analysis,
Program Optimizations

1. INTRODUCTION

1.1 Background and Motivation

Program verification environments provide a means to establish that programs meet
their specifications, and are increasingly being used to validate safety-critical or
security-critical software [Barnett et al. 2005; Chalin et al. 2006; Burdy et al. 2003;
Barthe et al. 2007]. Typically, such program verification environments combine
automated techniques such as abstract interpretation and theorem proving with
interactive tools such as proof assistants. While automated theorem provers are
useful to detect many common programming mistakes and sometimes to establish
some simple policies, the use of interactive verification tools might be required for
many policies, including basic safety policies for complex software (the complexity
of the software may render relatively simple safety policies difficult to verify auto-
matically), and complex policies that involve the functional behavior of software.

This work was partially supported by IST Project MOBIUS.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c©

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–44.

2 · Gilles Barthe et al.

Most often, program verification environments target high level languages; for ex-
ample, several program verification environments have been developed for popular
programming languages such as Eiffel, Java or C. The focus on high level languages
is beneficial for developers, since it enables them to gain increased confidence or
feedback directly on their code, without the need to consider the particular run-
time environment where the code shall be executed. There are strong arguments
to verify compiled code; in particular, reasoning at the level of source code restricts
the scope of properties that can be verified, and is also not appropriate in mobile
code scenarios where users do not have access to the source programs and require
guarantees on compiled code. There are several frameworks to verify low-level code
but little work studying the link between reasoning at source and compiled levels,
for those properties that can be verified at both levels. The objective of our work
is precisely to fill this gap by proposing a mechanism, called certificate translation,
for bringing the benefits of interactive source code verification to code consumers.

1.2 Proof Carrying Code

In order to transfer evidence from source programs to compiled programs, certifi-
cate translation relies on Proof Carrying Code [Necula 1997], a.k.a. PCC, which
provides a means to establish trust in a mobile code infrastructure, by requiring
that mobile code is sent along with a formal proof, a.k.a. certificate, showing its ad-
herence to a property agreeable by the code consumer. More concretely, certificate
translation relies upon a typical PCC architecture, i.e. a formal logic for specify-
ing and verifying policies, a verification condition generator VCGen for producing
proof obligations which ensure that the component respects the safety policy, a cer-
tificate language to represent proofs, and a proof checker that validates certificates
against specifications. While PCC does not preclude generating certificates from
interactive verification of source programs, the prominent approach to certificate
generation is certifying compilation [Necula and Lee 1998], which automatically
constructs certificates for safety properties such as memory safety or type safety.
Certifying compilation is by design restricted to a specific class of properties and
programs— in order to achieve automatic generation of certificates and, thus, to
reduce the burden of verification on the code producer side. In contrast, certificate
translation is by design very general and can be used to enforce arbitrary properties
on arbitrary programs. Of course, generality comes at the cost of automation, and
thus certificate translation must be agnostic about the verification process, and in
particular it should applicable to programs that have been annotated and proved
interactively with a proof assistant.

1.3 Certificate Translation: informal definition and setting

The primary goal of certificate translation is to transform certificates of source-
language programs into certificates of compiled programs. Given a compiler rep-
resented by the function T·U, a function T·Uspec to transform specifications, and
certificate checkers (expressed as a ternary relation “c is a certificate that P ad-
heres to φ” and written c : P |= φ), a certificate translator is a function T·Ucert such
that for all programs p, policies φ, and certificates c,

c : p |= φ =⇒ TcUcert : TpU |= TφUspec

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 3

Certificate translators are intrinsically bounded to a compilation scheme and to a
verification infrastructure, that are captured by the functions T·U and T·Uspec, and
by the relation · : · |= · respectively.

In this paper, we focus on the problem of certificate translation for an optimizing
compiler from a high-level imperative language to an intermediate RTL represen-
tation. Compilation proceeds by successive transformations: imperative programs
are first translated into RTL programs, then common program optimizations are
successively applied to RTL programs in order to yield the target program. For each
step, we build an appropriate certificate translator, and combine them to obtain a
certificate translator for the complete compilation process.

Our verification infrastructure builds upon verification condition generators (VC-
Gen), which are part of the standard PCC infrastructure and are also used in many
interactive verification environments. A VCGen can be seen as an automatic strat-
egy for applying Hoare logic rules; it generates from a program p and a specifica-
tion φ a set of proof obligations PO(p, φ) whose validity ensures that the program
meets its specification. In this setting, c is a certificate that p satisfies φ (denoted
c : p |= φ) iff c is a set of (logical) certificates such that for every proof obligation
ψ ∈ PO(p, φ), there exists a (logical) certificate d ∈ c that satisfies d |=po ψ, where
|=po is a binary relation between (logical) certificates and proof obligations.

Of course, certificate translation also depends by definition on the format of
certificates, and on the procedure to check that a certificate establishes a property
ψ. Nevertheless, we choose not to commit to a particular certificate infrastructure in
order to study the existence of certificate translators. Instead, we show the existence
of certificate translators for common program optimizations under the assumption
that certificates are closed under a few logical rules that include introduction and
elimination rules for the ∧ and ⇒ connectives and for the ∀ quantifier, as well as
rewritting of equal expressions.

Difficulties. Building a certificate translator for non-optimizing compilation is
relatively simple since proof obligations are preserved up to minor differences. Deal-
ing with optimizations is more challenging because:

- Optimizations that perform arithmetic simplifications such as constant propaga-
tion or common subexpression elimination, do not necessarily preserve verification
conditions. Consider the following piece of code to which constant propagation
is applied:

r1 := 1
{true}
r2 := r1
{r1 = r2}

r1 := 1
{true}
r2 := 1
{r1 = r2}

Proof obligations for the assignment instruction to r2 are true ⇒ r1 = r1 and
true ⇒ r1 = 1 for the original and optimized version respectively. The second
proof obligation is unprovable, since this proof obligation is unrelated to the
sequence of code containing the assignment r1 := 1.

The conditions that justify an optimization opportunity must be propagated
through every intermediate assertion. Therefore, typical analyzers must be ex-
tended into certifying analyzers, which justify analyses upon which the optimiza-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · Gilles Barthe et al.

tions rely by expressing their results in the logic of the PCC architecture, and
produce a certificate of the analysis for each program. Then, we define a weaving
function that take as argument, in addition to the certificate of the original pro-
gram, the certificate produced by the certifying analyzer to produce the certificate
of the optimized program. The process is presented in Figure 1;

- optimizations that eliminate instructions without computational role (assign-
ments to dead registers, nop instructions) may also eliminate information that
is required to prove the program correct. For example, eliminating nop instruc-
tions may lead to delete assertions attached to them, or dead register elimination
may eliminate registers that occur in intermediate assertions of the program.
Considering the following example, after performing constant propagation

x := n;
...

{x = n}
y := x;

...
{x = y}

−→

x := n;
...

{x = n}
y := n;

...
{x = y}

the variable x is dead. However, we cannot simply remove the first assignment
since proof obligations referring to dead registers ({x = n} in this case) cannot
be proved because all hypotheses about these registers would be lost. Thus, in
order to define a certificate translator for dead register elimination, we are led
to propose a different kind of transformation that performs simultaneously dead
variable elimination in instructions and in assertions.

According to the characteristics of their certificate translators, optimizations fall
in one of the following categories:

— PPO/IPO (Preservation of Proof Obligations): PPO deals with transforma-
tions for which the annotations are not rewritten, and where the proof obligations
(for the original and transformed programs) coincide. This category covers trans-
formations such as nonoptimizing compilation and unreachable code elimination;

— IPO (Instantiation of Proof Obligations): IPO deals with transformations
where the annotations and proof obligations for the transformed program are in-
stances of annotations and proof obligations for the original program, thus certifi-
cate translation amounts to instantiating certificates. This category covers dead
register elimination and register allocation;

— SCT (Standard Certificate Translation): SCT deals with transformations for
which the annotations are not rewritten, but where the verification conditions do
not coincide. This category covers transformations such as loop unrolling and in-
lining;

— CTCA (Certificate Translation with Certifying Analyzers): CTCA deals with
transformations for which the annotations need to be rewritten, and for which cer-
tificate translation relies on having certified previously the analysis used by the
transformation. Certifying analyzers are used to produce a certificate that the ana-
lyzer is correct on the source program. This category covers constant propagation,
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 5

Specification of f

Program f

Analyzer
Certifying

Compiler
Optimizing

Specification of fA

(RESA)

Certificate for f̄

Certificate
Translator

Certificate for fACertificate for f

Verification
Interactive

Program f̄
Optimized

TCB

VC Gen

Proof
Checker

Analyzer

Fig. 1. Overall picture of certificate translation

common subexpression elimination, strength reduction, and other optimizations
that rely on arithmetic simplifications.

1.4 Contributions

This paper is an extended version of the conference article [Barthe et al. 2006] on
certificate translation, considering a broader set of program transformations and
providing a detailed fragment of the translation procedure. The main contributions
are:

—an introduction of certificate translation as a means to extend significantly the
scope of PCC to complex security policies;

—the classification of certificate translation for common optimizations, including
constant propagation, loop induction variable strength reduction, dead register
elimination, common subexpression elimination, copy propagation, unreachable
code elimination, register allocation and function inlining. We present each of
the certificate translators for the RTL language.

1.5 Contents

In Section 2 we introduce our proof carrying code setting, including a Register
Transfer Language (RTL) and its verification infrastructure. In Section 3, we

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · Gilles Barthe et al.

comparison / ::= < | ≤ |= | ≥ |>
expressions e ::= n | r | −e | e+ e | e ∗ e | . . .

assertions φ ::= true | e / e | φ ∧ φ | ¬φ | ∀r. φ | . . .
comparisons cmp ::= r / r | r / n

operators op ::= n | r | n+ r | . . .
instr. desc. ins ::= rd := op, L

| rd := f(~r), L
| cmp ? Lt : Lf

| return r
| nop, L

instructions I ::= (φ, ins) | ins

fun. decl F ::= {~r; ϕ; G; ψ; λ; ~Λ}

Fig. 2. Syntax of RTL

present certificate translation for nonoptimizing compilers. In Section 4, we de-
scribe certificate translation for several standard optimizations. In Section 5, we
position our work with respect to other compilation techniques and discuss related
work. We conclude in Section 6.

2. PCC SETTING

2.1 RTL Language

Our Register Transfer Language (RTL) is a low-level, side-effect free, language with
conditional jumps and function calls, extended with annotations drawn from a
suitable assertion language. The choice of the assertion language does not affect
our results, provided assertions are closed under the connectives and operations
that are used by the verification condition generator.

The syntax of expressions, formulas and RTL programs (suitably extended to
accommodate certificates, see Section 2.4), is shown in Figure 2, where n ∈ N and
r ∈ R, with R an infinite set of register names. We let ϕ, φ and ψ range over
assertions.

A program p is defined as a function from RTL function identifiers to function
declarations. RTL functions return integer values. Every program comes equipped
with a special function, namely main, and its declaration. The body of a function
is defined as a mapping G from program labels to instructions, and instructions
are equipped with explicit successors. Hence, the body of a function constitutes
a (closed) directed graph. A mapping from program points to instructions is pre-
ferred, rather than an instruction sequence, to abstract from the details of label
updating when modifying the function code. In the sequel, the distinguished label
Lsp is used as an entry point for every function body. A declaration F for a func-
tion f includes its formal parameters ~r, a precondition ϕ, a (closed) graph code
G, a postcondition ψ, a certificate λ, and a function ~Λ from reachable labels to
certificates (the notion of reachable label is defined below). For clarity, we often
use a subscript f for referring to elements in the declaration of a function f , e.g.
the graph code of a function f as Gf .
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 7

As will be defined below, the VCGen generates one proof obligation for each
program point containing an annotation and one proof obligation for the entry
point Lsp. The component λ is a certificate that attests the validity of the latter
proof obligation and ~Λ maps every program point that contains an assertion to the
certificate of its associated proof obligation.

Formal parameters are represented as a list of registers, from the set R, which
we suppose to be local to f . For specification purposes, we introduce for each
register r in ~r a (pseudo)register r∗, not appearing in the code of the function,
and which represents the initial value of a register declared as formal parameter.
We let R∗ denote the set {r∗ | r ∈ R} and ~r∗ denote a sequence of registers
in R∗. We also introduce, for specification purposes, a (pseudo)register res, not
appearing in the code of the function, and which represents the result or return
value of the function. The annotations ϕ and ψ provide the specification of pre
and postcondition of the function, respectively, and are subject to well-formedness
constraints. The precondition of a function f , also referred as pre(f), is an assertion
in which the only registers to occur are the function formal parameters, hereafter
denoted ~rf ; in other words, the precondition of a function can only talk about the
initial values of its parameters. The postcondition of a function f , also referred as
post(f), is an assertion1 in which the only registers to occur are res and the formal
parameters ~rf

∗; in other words, the postcondition of a function can only talk about
its result and the initial values of its parameters.

A graph code of a function is a partial function from labels to instructions. We
assume that every graph code includes a special label, namely Lsp, corresponding
to the starting label of the function, i.e. the first instruction to be executed when
the method is called. Given a function f and a label L in the domain of its graph
code, we will often use f [L] instead of Gf (L), i.e. the application of graph code of
f to the label L.

An instruction is either an instruction descriptor ins or a pair (φ, ins) consisting
of an annotation φ and an instruction descriptor ins. An instruction descriptor
can be an assignment, a function call, a conditional jump or a return instruction.
Operations on registers are those of standard processors, such as movement of reg-
isters or values into registers rd := r, and arithmetic operations between registers
or between a register and a value. Furthermore, every instruction descriptor carries
explicitly its successor label(s); due to this mechanism, we do not need to include
unconditional jumps, i.e. “goto” instructions, in the language. Immediate succes-
sors of a label L in the graph of a function f are denoted by the set succf (L). We
assume that the graph is closed; and in particular, if L is associated with a return
instruction, succf (L) = ∅.

2.2 Operational Semantics

The operational semantics of RTL is standard. In particular, neither proofs nor
assertions interfere with the semantics. The semantics is defined in Figure 3 as a
big step relation between non terminal states and a terminal state. A non terminal
state is defined as a tuple with two elements: the current instruction and a map ρ

1Notice that a postcondition is not exactly an assertion in the sense that it uses register names
from ~r∗, which do not appear in preconditions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · Gilles Barthe et al.

〈ins, ρ〉 ;f n

〈(φ, ins), ρ〉 ;f n

〈f [L], [ρ | rd 7→ JopKρ]〉 ;f n

〈rd := op, L, ρ〉 ;f n

〈f [Lt], ρ〉 ;f n

〈cmp ? Lt : Lf , ρ〉 ;f n
if J〈cmp〉Kρ

〈f [Lf], ρ〉 ;f n

〈cmp ? Lt : Lf , ρ〉 ;f n
if ¬J〈cmp〉Kρ

〈g[Lsp], [~rg 7→ ρ~r]〉 ;g m 〈f [L′], [ρ | ret 7→ m]〉 ;f n

〈ret := g(~r), L′, ρ〉 ;f n

〈return r, ρ〉 ;f ρr

Fig. 3. Operational Semantics

from local registers to values. The expression [ρ | x 7→ n] stands for the function ρ′

s.t. ρ′y = n if x = y and ρ′y = ρy otherwise.
Let JK be a standard interpretation function that takes an assertion and a map

from registers to values and returns a logical proposition. For clarity, the inter-
pretation J.Kρ∗

ρ refers to two parameters ρ and ρ∗ with disjoint domains R and R∗

respectively. When it is clear from the context that an assertion φ does not contain
registers in R∗, e.g. when φ is a precondition, we may simply write JφKρ instead of
JφKρ∗

ρ .
We say that an assertion is valid, if for every assignment ρ and ρ∗, JφKρ∗

ρ is a valid
logical proposition. Similarly, we define an interpretation function J.K for expres-
sions, that takes the assignments ρ and ρ∗ for registers in R and R∗, respectively.
When an expression e does not contain registers in R∗, e.g. when it is an expression
of the programming language, we may simply write JeKρ instead of JeKρ∗

ρ .

2.3 Verification Condition Generator

Verification condition generators (VCGens) produce the proof obligations that must
be discharged in order to guarantee that the program meets its specification. The
predicate transformer wp is a partial function that computes, from a sufficiently
annotated program, a fully annotated program in which all labels of the program
have an explicit precondition attached to them. To ensure the computability of the
wp function, its domain is restricted to well-annotated programs. This domain can
be characterized by an inductive and decidable definition and does not impose any
specific structure on programs.

Definition 2.1.

— The graph of a function f is closed if for every node all its successors are in
the graph:

closed(f) = ∀L ∈ Gf , succf (L) ⊆ domain(Gf)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 9

wpf (L) = φ if Gf (L) = (φ, ins)

wpf (L) = wpidf (ins) if Gf (L) = ins

wpidf (rd := op, L) = wpf (L)[〈op〉/rd]

wpidf (rd := g(~r), L) = pre(g)[~r/~rg
]

∧(∀res. post(g)[~r/~r∗g] ⇒ wpf (L)[res/rd])

wpidf (cmp ? Lt : Lf) = (〈cmp〉 ⇒ wpf (Lt)) ∧ (¬〈cmp〉 ⇒ wpf (Lf))

wpidf (return r) = post(f)[r/res]

wpidf (nop, L) = wpf (f [L])

Fig. 4. Verification condition generator

— A label L′ is reachable from a label L in f , if L = L′, or if it is the successor
of a label reachable from L:

L ∈ reachablef,L

L′ ∈ reachablef,L ⇒ ∀L′′ ∈ succf (L′), L′′ ∈ reachablef,L

— A label L in a function f reaches annotated labels, if its associated instruction
contains an assertion, or if its associated instruction is a return instruction (in
that case the annotation is the post condition), or if all its immediate successors
reach annotated labels. More precisely, reachAnnotf is defined as the smallest set
that satisfies the following conditions:

f [L] = (φ, ins) ⇒ L ∈ reachAnnotf
f [L] = return r ⇒ L ∈ reachAnnotf
(∀L′ ∈ succf (L), L′ ∈ reachAnnotf) ⇒ L ∈ reachAnnotf

— A function f is well annotated if it is closed and every reachable point from
the starting point Lsp reaches annotated labels. A program p is well annotated if all
its functions are well annotated.

Given a well-annotated program, one can compute an assertion for every label. For
each program point, its associated assertion represents the precondition that a state
must satisfy to guarantee that the function reaches only final states satisfying the
postcondition.

A fully annotated function is computed from a partially annotated function f
using the wpf transformer. The computation proceeds in a modular way, using
annotations from the function f under consideration, as well as the preconditions
and postconditions of functions called by f . The definition of wpf (L) proceeds by
case analysis: if L points to an instruction that carries an assertion φ, then wpf (L)
is set to φ; otherwise, wpf (L) is computed by the function wpidf .

The formal definitions of wpf and wpidf are given in Figure 4, where the expression
e[e

′
/r] stands for the substitution in the expression e of all occurrences of register r by

e′. The definition of wpidf is standard for assignment and conditional jumps, where
〈op〉 and 〈cmp〉 are the obvious interpretation of operators in RTL into expressions in
the language of assertions. For a function invocation, wpidf (rd := g(~r), L) is defined
as a conjunction of the precondition of g, where formal parameters are replaced by

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · Gilles Barthe et al.

introtrue : C(Γ ` true)
axiom(A) : C(Γ ` A) if A ∈ Γ
ring : C(Γ ` n1 = n2) if n1 = n2 is a ring equality

intro∧ : C(Γ ` A) → C(Γ ` B) → C(Γ ` A ∧B)

eliml
∧ : C(Γ ` A ∧B) → C(Γ ` A)

elimr
∧ : C(Γ ` A ∧B) → C(Γ ` B)

intro⇒ : C(Γ;A ` B) → C(Γ ` A⇒ B)
elim⇒ : C(Γ ` A⇒ B) → C(Γ ` A) → C(Γ ` B)

elim= : C(Γ ` e1 = e2) → C(Γ ` A[e1/r]) → C(Γ ` A[e2/r])

subst r e : C(Γ ` A) → C(Γ[e/r] ` A[e/r])

weak∆ : C(Γ ` A) → C(Γ;∆ ` A)

intro∀ : C(Γ ` A) → C(Γ ` ∀r.A) if r is not in Γ

elim∀ : C(Γ ` ∀r.A) → C(Γ ` A)

Fig. 5. Proof Algebra

actual parameters, and of the assertion ∀res. post(g)[~r/~r∗g] ⇒ wpf (L)[res/rd
]. The

second conjunct allows the information in wpf (L) about registers different from rd
to be propagated to other preconditions. In the remainder of the paper, we shall
abuse notation and write wpidf (L) instead of wpidf (ins) if f [L] = ins.

2.4 Certified Programs

Certificates provide a formal representation of proofs, and are used to verify that
the proof obligations generated by the VCGen hold. For the purpose of certificate
translation, we do not need to commit to a specific format for certificates. Instead,
we assume that certificates are closed under specific operations, which are captured
by an abstract notion of proof algebra.

Recall that a judgment is a pair consisting of a list of assertions, called context,
and of an assertion, called goal. A proof algebra is given by a set-valued function
C over judgments, and by a set of operations, all implicitly quantified in the usual
way. The operations are standard (given in Figure 5), to the exception perhaps of
the substitution operator that allows one to substitute selected instances of equals
by equals, and of the operator ring, which establishes all ring equalities that will
be used to justify the optimizations.

In order to remain at an abstract level, we do not provide an algorithm for
checking certificates. Instead, we take C(Γ ` φ) to be the set of valid certificates of
the judgment Γ ` φ. In the sequel, we write λ : Γ ` φ to express that λ is a valid
certificate for Γ ` φ, and use proof as a synonym of valid certificate. Furthermore,
we require the certificate infrastructure to be sound, i.e., if C(Γ ` φ) 6= ∅ then for
all maps ρ, ρ∗, if for every ψ ∈ Γ, JψKρ∗

ρ is valid, then JφKρ∗

ρ is valid.
Finally, we define a certified program as one whose functions are certified, i.e.

carry valid certificates for the proof obligations attached to them.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 11

Definition 2.2.

—A function f with declaration {~r; ϕ; G; ψ; λ; ~Λ} is certified if:
—λ is a proof of ` ϕ⇒ wpf (Lsp)[~r/~r∗],
—~Λ(L) is a proof of ` φ ⇒ wpidf (ins) for all reachable labels L in f such that
f [L] = (φ, ins).

—A program is certified if all its functions are.

2.5 Soundness of PCC Infrastructure

The verification condition generator is sound, i.e. if a certified program p is called
with registers set to values that verify the precondition of the function main, and
it terminates normally, then the final state will verify the postcondition of main.

When considering mutually recursive functions, special care must be taken to
ensure soundness of the VCGen. In this case it is not hard to achieve since we are
only interested in verifying finite executions.

Lemma 2.1. Let p be a certified program. Then, for every function f with dec-
laration {~r; ϕ; G; ψ; λ; ~Λ}, any initial mapping ρ∗ with domain {r∗1 , . . . , r∗k}, any
label L in the domain of Gf and any state ρ, if Jwpf (L)Kρ∗

ρ and 〈f [L], ρ〉 ;f n then
JψKρ∗

[res 7→n].

Proof. Since wp and wpins are defined each one in terms of the other, we prove
the goal of the lemma above simultaneously with a similar goal but under the hy-
pothesis Jwpins

f (L)Kρ∗

ρ . The proof proceeds by rule induction on the derivation of
〈f [L], ρ〉 ;f n. For simplicity, we rely on the following standard results (where
FV (ϕ) stands for the set of unbound variables in ϕ):

i) (Coincidence Lemma). For all states ρ1, ρ2, ρ
∗
1, ρ

∗
2 and assertion ϕ, if for all

x in FV (ϕ)∩R and y in FV (ϕ)∩R∗ we have ρ1x = ρ2x and ρ∗1y = ρ∗2y then
JϕKρ∗1

ρ1 = JϕKρ∗2
ρ2 .

ii) (Substitution Lemma). For all x, c, ϕ and ρ, ρ∗, Jφ[e/x]Kρ∗

ρ = JφKρ∗

[ρ|x7→JeKρ∗ρ]

and Jφ[e/x∗]Kρ∗

ρ = JφK[ρ
∗|x∗ 7→JeKρ∗ρ]

ρ .

—Consider the case s.t. the last rule applied is

〈ins, ρ〉 ;f n

〈(φ, ins), ρ〉 ;f n

then wpf (L) = φ and since f is certified, and the certificate infrastructure is
sound, we have that Jφ ⇒ wpins

f (L)Kρ∗

ρ is valid. Hence, from the hypothesis
Jwpf (L)Kρ∗

ρ and definition of J.K, we have that Jwpins
f (L)Kρ∗

ρ is valid. By I.H. and

the latter condition we get Jψf Kρ∗

[res 7→n]. Notice that this is the only case where we
need to distinguish the hypothesis Jwpins(L)Kρ∗

ρ from Jwp(L)Kρ∗

ρ ; in any other case
wp(L) = wpins(L).

—Assume the last rule applied is

〈f [L′], [ρ | rd 7→ JopKρ∗

ρ]〉 ;f n

〈rd := op, L′, ρ〉 ;f n
.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · Gilles Barthe et al.

By hypothesis and definition of wpf , we have Jwpf (L′)[op/rd
]Kρ∗

ρ . Equivalently, by
substitution lemma Jwpf (L′)Kρ∗

[ρ|rd 7→JopKρ∗ρ]

—Assume the last rule applied involves a function call, i.e. there is a function g
s.t. f [L] = ret := g(~r), L′ and the last rule applied is

〈g[Lsp], [~rg 7→ ρ~r]〉 ;g m 〈f [L′], [ρ | ret 7→ m]〉 ;f n

〈ret := g(~r), L′, ρ〉 ;f n

for some value m. Let ϕg and ψg stand for the preconditions and postcondition
of g respectively. From Jwpf (L)Kρ∗

ρ and definition of J.K, we have Jϕg[~r/~rg
]Kρ∗

ρ .

By coincidence lemma we have then Jϕg[~r/~rg
]K

[r∗g 7→ρr]

[r 7→ρr] , and by substitution lemma

JϕgK
[r∗g 7→ρr]

[rg 7→ρr]. Since g is certified, we have a proof for ϕg ⇒ wpg(Lsp)[~rg/~r∗g
] and

therefore Jwpg(Lsp)[~rg/~r∗g
]K

[r∗g 7→ρr]

[rg 7→ρr]. Again by substitution lemma, Jwpg(Lsp)K
[r∗g 7→ρr]

[rg 7→ρr].

Therefore, by application of I.H., we know that JψgK
[r∗g 7→ρr]

[res 7→m], and then by substi-

tution lemma Jψg[m/res]K
[r∗g 7→ρr]
ρ . From the hypothesis Jwpf (L)Kρ∗

ρ and definition
of J.K, we have that Jψg[~r/~r∗g

]Kρ∗

[ρ|res 7→m] ⇒ Jwpf (L′)[res/ret]Kρ∗[ρ | res 7→ m]. Equiv-

alently by substitution lemma, Jψg[m/res]K
[r∗g 7→ρr]
ρ ⇒ Jwpf (L′)Kρ∗

[ρ|ret7→m], and hence

Jwpf (L′)Kρ∗

[ρ|ret7→m]. From the latter condition and I.H., we get the desired result.

As a corollary, we obtain the following theorem:

Theorem Soundness of VCGen. Suppose that

a) P is a certified program containing a function main, with precondition Φ and
postcondition Ψ,

b) ρ is such that JΦKρ, and
c) 〈main[Lsp], ρ〉 ; n,

then the interpretation JΨK[
~r∗ 7→ρ~r]

[res 7→n] is valid.

3. PRESERVATION OF PROOF OBLIGATIONS

The purpose of this section is to establish preservation of proof obligations for a
nonoptimizing compiler from an imperative language with procedures to RTL. This
result is inspired from earlier work by Barthe, Rezk and Saabas [Barthe et al. 2005].

In this section, we define a simple and structured high-level language, a standard
verification condition generator for this language, and a nonoptimizing compiler
to the RTL language defined before. Then, we show that given the same program
specification, proof obligations for the source program and for its compiled RTL
version coincide.

3.1 Source Language

A program p in the source language is defined as a function from function identifiers
to function declarations. We assume that every program comes equipped with a
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 13

/ ::= < | ≤ |= | ≥ |>| ∧ | ∨
e ::= x | n | −e | e + e | e − e | e ∗ e
c ::= skip | x := e | c; c | while {φ} e / e do c |

if e / e then c else c | y := call f(~x) |
return e

Fig. 6. Syntax of source language

wp(skip, ψ) = ψ
wp(x := e, ψ) = ψ[e/x]
wp(c1; c2, ψ) = wp(c1,wp(c2, ψ))
wp(while {φ} e1 / e2 do c1, ψ) = φ
wp(if e1 / e2 then c1 else c2, ψ) = (〈e1 / e2〉 ⇒ wp(c1, ψ)) ∧ (¬〈e1 / e2〉 ⇒ wp(c2, ψ))

wp(y := call g(~x), ψ) = pre(g)[~x/~xg
]∧

∀res.(post(g)[~x/~x∗g] ⇒ ψ[res/y])

wp(return e, ψ) = ψ[e/res]

Fig. 7. wp for the source language

PO(skip, ψ) = ∅
PO(x := e, ψ) = ∅
PO(c1; c2, ψ) = PO(c2, ψ) ∪ PO(c1,wp(c2, ψ))
PO(while {φ} e1 / e2 do c1, ψ) =

PO(c1, φ) ∪ {φ⇒ (e1 / e2 ⇒ wp(c1, φ)) ∧ (¬(e1 / e2) ⇒ ψ)}
PO(if e1 / e2 then c1 else c2, ψ) = PO(c1, ψ) ∪ PO(c2, ψ)
PO(y := call g(~x), ψ) = ∅
PO(return e, ψ) = ∅

Fig. 8. Proof obligations for the source language

special function identifier, namely main, and its declaration. The declaration of a
function f in the source language has the form: {~x; ϕ; c; ψ; λ; ~Λ}, where c is a
command whose syntax is shown in Figure 6. Every function returns integer values.

As in RTL programs, a function declaration includes its formal parameters ~x,
a precondition ϕ, a postcondition ψ, a certificate λ, and a set of certificates ~Λ.
The source language features the same annotation language as RTL. However, the
only command that has an annotation is the while command. A program is well-
annotated if all its while commands hold annotations. The definition of the VCGen
is made in terms of the function wp, which is overloaded to denote as well a predicate
transformer for the source code, and is given in Figure 7. Certificates for source
level and RTL programs are represented by the same proof algebra.

Definition 3.1.

—A function f with declaration {~x; ϕ; c; ψ; λ; ~Λ} is certified if:
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · Gilles Barthe et al.

—λ is a proof of ` ϕ⇒ wp(c, ψ)[~x/~x∗]
—~Λ contains a proof of ` ϕ for every proof obligation ϕ in PO(c, ψ), where PO

is defined in Figure 8.

—A program is certified if all its functions are.

The semantics of the source language is standard and, thus, omitted.

3.2 Compilation

The compilation function to RTL is standard, except for the while command. There
are two compilation schemes, sketched in Figure 9. The first one, LH : TeUrd,LE

,
is defined for the compilation of source expressions. The resulting code (graph),
that starts at label LH , evaluates the expression e, stores its result in the register
rd and jumps to the continuation label LE . When the expression e is a variable or
constant the compilation scheme simply accesses the corresponding value and stores
the result in rd. For binary operators of the form e1 � e2, the expressions e2 and e1
are first evaluated in order, and the results are respectively stored in fresh registers
r2 and r1. Finally, the code execute the last instruction which performs the binary
operation, storing the result in rd, and jumps to the continuation label LE . It is
important to notice that the compilation scheme is global (and imperative); the
compiler maintains a set of already used labels and registers, and each time the
compiler needs a fresh register (resp. a fresh label) the new register (resp. label)
is added to the set and will not be used later. An important point is that in the
intermediate RTL representation we consider an infinite number of pseudo-registers,
rather than machine registers. In consequence, variables of the source language are
directly mapped to a pseudo register of RTL (sharing the same name.)

The second compilation scheme LH : TcULE
is defined for commands, LH is the

entry point and LE the exit point (i.e. the successor label of the last instruction.)
The skip command is compiled to the nop instruction. The compilation of an
assignment simply uses the compilation of the right member, and stores it in the left
member (i.e. the variable). The compilation of the binary relation of a conditional
statement follows the same scheme than for binary expressions, the two expressions
are evaluated and stored in two fresh registers r1 and r2, then a conditional RTL
instruction evaluates the test and jumps to the label LT , corresponding to the
beginning of the true branch, if the evaluation is positive or to LF otherwise. For
the compilation of while loops, the unusual part is the insertion of an assertion just
before the beginning of the evaluation of the test.

3.3 Preservation of Proof Obligations

The wp of a source code function is syntactically equivalent to the wp of its com-
pilation, provided the variables of the source language and the registers of RTL are
equivalent. For notational convenience, in the following proofs we let the expression
f [L,L′] stand for the subgraph of nodes reachable from label L without traversing
(and not including) the node at label L′.

Lemma 3.1. Let f [L,L′] be a subgraph code of the RTL function f given by
compilation L : TcUL′ of a command c. Then, wp(c, ψ) = wpf (L), where ψ =
wpf (L′).
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 15

Proof. The proof proceeds by structural induction on the command c. For sim-
plicity, we assume the following result about the compilation of expressions:

if f [l, l′] = L : TeUr,L′ then wpf (l) = wpf (l′)[e/r] (1)

—case c = while {φ} e1 / e2 do c. In this case wp(c, ψ) is equal to φ, as well as
wpf (L) by definition of T.U.

—case c = x := e. We have that wp(c, ψ) is equal to ψ[e/x], and thus, to wpf (L′)[e/x]
by hypothesis. From definition of T.U, f [L,L′] = L : TeUr,L′ , and property (1),
we have that wp(c, ψ) is equal to wpf (L).

—case c = c1; c2. By definition of wp, wp(c, ψ) = wp(c1,wp(c2, ψ)). By definition
of TcUL,L′ we have f [L,L′′] = L : Tc1UL′′ and f [L′′, L′] = L′′ : Tc2UL′ , then,
by I.H. wp(c2, ψ) = wpf (L′′). Hence, wp(c, ψ) = wp(c1, ψ′) where ψ′ = wpf (L′′)
and, since again by I.H. we have wp(c1, ψ′) = wpf (L), we get wp(c, ψ) = wpf (L).

Hence, one can prove that proof obligations and certificates are preserved2 along
nonoptimizing compilation.

Lemma 3.2. Let f with declaration {~x; ϕ; c; ψ; λ; ~Λ} be a certified source
function. Then f declared as {~x; ϕ; Lsp : TcUL; ψ; λ; ~Λ} is a certified RTL
function.

Proof. The proof consists in verifying that f and f contain exactly the same
proof obligations. To this end, consider a subprogram c s.t. f [l, l′] = l : TcUl′ and
ψ = wpf (l′). Then, we show by structural induction on c, that the proof obligations
induced by assertions in f [l, l′] correspond to the proof obligations in PO(c, ψ). We
only consider the case c = while {φ} e1 / e2 do c′. The proof obligations in c w.r.t.
ψ are the proof obligations in PO(c′, φ) plus

φ⇒ (e1 / e2 ⇒ wp(c′, φ)) ∧ (¬(e1 / e2) ⇒ ψ) .

By definition of T.U we have

f [l, l′] = l : (φ, nop, lb)
lb : Te2Ur2,l′b
l′b : Te1Ur1,l′′

l′′ : r1 / r2 ? lT : l′

lT : Tc′Ul

Annotations in f [l, l′] are φ plus the annotations in c′. By I.H., proof obligations
in f [lT , l′] are exactly the proof obligations in PO(c′, φ). The annotation φ in l
induces the proof obligation φ ⇒ wpins

f (Lb), that after unfolding of wpf and wpins
f

can be shown to be equal to

φ⇒ (e1 / e2 ⇒ wpf (lT)) ∧ (¬(e1 / e2) ⇒ wpf (l′))

2Strictly speaking, the first ~Λ in the source program is a set, whereas the second ~Λ in the compiled
program is a map, but it is immediate to turn one into the other.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · Gilles Barthe et al.

LH : TxUrd,LE
= LH : rd := x, LE

LH : TnUrd,LE
= LH : rd := n, LE

LH : T−eUrd,LE
= LH : TeUr,L

L : rd := −r, LE

L a fresh label, r a fresh register
LH : Te1 � e2Urd,LE

= LH : Te2Ur2,L2
L2 : Te1Ur1,L1
L1 : rd := r1 � r2, LE

L1 L2 fresh labels, r1 r2 fresh registers
with � = + | ∗ | −

Compilation of source expressions

LH : TskipULE
= LH : nop, LE

LH : Tx := eULE
= LH : TeUx,LE

LH : Tc1; c2ULE
= LH : Tc1UL1

L1 : Tc2ULE

L1 a fresh label
LH : Tif e1 / e2 then c1 else c2ULE

= LH : Te2Ur2,L2
L2 : Te1Ur1,L1
L1 : r1 / r2 ? LT : LF

LT : Tc1ULE

LF : Tc2ULE

L1 L2 LT LF fresh labels, r1 r2 fresh registers
LH : Ty := call f(~x)ULE

= LH : y := f(~x), LE

LH : Twhile {φ} e1 / e2 do cULE
= LH : (φ, nop, LB)

LB : Te2Ur2,L′
B

L′B : Te1Ur1,L

L : r1 / r2 ? LT : LE

LT : TcULH

LB L′B L fresh labels, r1 r2 fresh registers
LH : Treturn eULE

= LH : TeUr,L

L : return r
L a fresh label, r a fresh register

Compilation of source commands

Fig. 9. Compilation of source language to RTL

which, by Lemma 3.1, is equal to

φ⇒ (e1 / e2 ⇒ wp(c′, φ)) ∧ (¬(e1 / e2) ⇒ ψ) .

We have seen in this section that the first phase of a compiler, that translates
a high-level structured program into an RTL representation, preserves verification
conditions if no optimization is applied. In the next section we extend this simple
compiler with standard optimization phases and for each of them we propose a
transformation of the certificate.

4. CERTIFICATE TRANSLATION FOR COMMON OPTIMIZATIONS

This section provides instances of certificate translation for common RTL optimiza-
tions. The order of optimizations is chosen for the clarity of exposition and does
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 17

not necessarily reflect the order in which the optimizations are performed by a
compiler.

4.1 Overview

In a classical compiler, transformations operate on unannotated programs, and
are performed in two phases: first, a data flow analysis gathers information about
the program. Then, on the basis of this information, (blocks of) instructions are
rewritten. Consider for example the following annotated piece of code:

{true}
r1 := n

L : {r1 ≥ n}, L′
L′ : r2 := r1

{r1 = r2}

An analysis may detect, ignoring annotations, that the register r1 always stores the
value n at program points L and L′. Later, a transformation phase optimizes the
code replacing the assignment r2 := r1 by the more efficient r2 := n.

{true}
r1 := n

L : {r1 ≥ n}, L′
L′ : r2 := n

{r1 = r2}

According to Definition 2.2, a certificate for an optimized function f̄ must include
a proof that the precondition of f̄ implies the precondition of its first instruction,
and a proof, for each label L of f̄ , that the assertion at L implies the precondition
of instruction L. In the example, the proof obligations corresponding to the original
fragment of code are true ⇒ n ≥ n and r1 ≥ n⇒ r1 = r1. After the transformation
we have that proof obligations are true ⇒ n ≥ n and r1 ≥ n ⇒ n = r1. Not only
does one of the proof obligations not coincide with the original one (and hence the
original certificate cannot be reused), but it also becomes unprovable.

The above example illustrates that the validity of annotations is not necessarily
preserved by program transformations. In order to maintain their validity, the
original annotations must be strengthened by assertions that capture in a logical
form the results of the analysis that underlies the optimization. Intuitively, the
need to strengthen assertions stems from the fact that semantic preservation of
program transformations must eventually be justified by the conditions returned
by the analysis.

Therefore, optimized programs are defined by augmenting annotations with the
information returned by the analysis, expressed as an assertion and denoted RESA(L)
below.

Definition 4.1. The optimized graph code of a function f is defined as follows:

Gf̄ (L) =
{

(φ ∧ RESA(L), TinsU) if Gf (L) = (φ, ins)
TinsU if Gf (L) = ins

where TinsU is the optimized version of instruction ins. In the sequel, we write φ̄L

for φL ∧ RESA(L).
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · Gilles Barthe et al.

(Note that the above definition is restricted for simplicity to optimizations that do
not modify the graph topology.)

Augmenting an assertion φ into φ∧RESA(L) has two immediate effects. On the
negative side, the inserted condition RESA(L) requires certificates for the new proof
obligations involving the results of the analysis. To solve this issue, an automatic
procedure for certification of the analysis, namely a certifying analyzer, is applied
as a first step, producing the certified program

fA = {~rf ; true; GA; true; λA; ~ΛA}

where GA is a new version of Gf annotated with the results of the analysis, i.e. Gf

such that GA(L) = (RESA(L), ins) for all labels L in f .
On the positive side, strengthening the antecedent enables us to build a proof

for the transformed proof obligations. We illustrate the benefits of strengthen-
ing assertions on the example above, and then elaborate on the transformation of
certificates.

Considering the example again, let us add the assertion r1 = n, used to justify
the transformation, at program point L. Then, the transformed program is suitably
annotated as:

{true}
r1 := n

L : {r1 ≥ n ∧ r1 = n}, L′
L′ : r2 := n

{r1 = r2}
In this case the proof obligation r1 ≥ n ∧ r1 = n ⇒ n = r1 is provable, but still
does not coincide with the original. In such a simple case, one could generate a
certificate for the proof obligation without using the certificate of the original proof
obligation, but in the general case we will need to build a new certificate from the
certificate of the original proof obligation (here r1 ≥ n⇒ r1 = r1).

A systematic approach to generate certificates for f̄ is to define two functions
that transform the certificates for f :

T0 : C(` pre(f) ⇒ wpf (Lsp)[~r/~r∗]) → C(` pre(f̄) ⇒ wpf̄ (Lsp)[~r/~r∗])

Tλ : ∀L, C(` φL ⇒ wpidf (L)) → C(` φ̄L ⇒ wpid
f̄

(L))

where φL is the original assertion at label L, and φ̄L is the augmented assertion at
label L. Here the function T0 transforms the proof that the precondition implies
the assertion at program point Lsp for f into a proof of the same fact for f̄ , and
likewise, the function Tλ transforms for each reachable annotated label L the proof
that its annotation implies the precondition at program point L for f into a proof
of the same fact for f̄ .

The functions T0 and Tλ can be constructed, independently of the optimization
considered, from a function

T ins
L : C(` wpidf (L) ⇒ RESA(L) ⇒ wpid

f
(L))

that associates to every program point L in f , a proof of the following fact: the
original annotation of f (i.e. wpidf (L)) and the hypothesis obtained from the results
of the analysis (i.e. RESA(L)) imply the annotation of f (i.e. wpid

f
(L)).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 19

Let Γ = [wpf (L)] in:

p1:=axiom(wpf (L)) : Γ ` wpf (L)

p2:=eliml
∧(p1) : Γ ` wpf (L)

p3:=elimr
∧(p1) : Γ ` wpfA

(L)

p4:=weakΓ(~Λ(L)) : Γ ` wpf (L) ⇒ wpidf (L)

p5:=elim⇒(p2, p4) : Γ ` wpidf (L)

p6:=weakΓ(T ins
L (L)) : Γ ` wpidf (L) ⇒ wpfA

(L) ⇒ wpid
f

(L)

p7:=elim⇒(p5, p6) : Γ ` wpfA
(L) ⇒ wpid

f
(L)

p8:=elim⇒(p3, p7) : Γ ` wpid
f

(L)

p9:=intro⇒(p8) : ` wpf (L) ⇒ wpid
f

(L)

Fig. 10. Definition of Tλ(~Λ(L)) from T ins
L

The function Tλ is defined using the function T ins
L and the certificate of the

analysis as shown in Figure 10. To define T0, i.e. to generate λ from λ (recall
that λ is a proof of pre(f̄) ⇒ wpf (Lsp)[~rg/~r∗g

]), we reuse λ (i.e. a proof of pre(f) ⇒
wpf (Lsp)[~rg/~r∗g

]), since pre(f) implies wpf (Lsp)[~rg/~r∗g
], and instantiating T ins

L to Lsp

we get a predicate equivalent to wpf (Lsp) ⇒ wpf (Lsp). The reasoning is valid if
we consider that the analysis is computed from the trivial precondition true and
that pre(f̄) is defined equal to pre(f). That is the case for the intraprocedural
analyses considered in this paper. To generalize the framework further to include
interprocedural analyses, one would need to define pre(f̄) as pre(f) ∧ RESA(Lsp).

Whereas the definitions of T0 and Tλ are generic, the function T ins
L must be

defined for each program optimization. It turns out that for many program opti-
mizations it is possible to inductively define T ins

L using the definition of T ins
L1

, . . . ,
T ins

Lk
, where {L1, . . . , Lk} are the successor program points for L. Due to the pres-

ence of loops, T ins
L may be not well defined in the general case. However, we only

consider well-annotated programs, and the definition of well-annotated programs
induces an induction principle with annotated program labels as the base case.

In summary, the definition of a certificate translator for a program optimiza-
tion requires one to define a certifying analyzer, and a function T ins

L with suitable
characteristics. In the rest of this section, we show how to define these for many
common program optimizations.

4.2 Constant Propagation

4.2.1 Description. Constant propagation aims at minimizing run-time evalua-
tion of expressions and access to registers with constant values. It relies on a data
flow analysis that returns a function A with type PP × R → Z⊥ (PP denoting
the set of program points) such that A(L, r) = n indicates that r holds the value n
every time execution reaches the label L. If the analysis cannot infer that a register
r holds a constant value at label L then we write A(L, r) = ⊥.

The definition of constant propagation over a function f can be found in Fig-
ure 11. Exploiting the information provided by A, the optimization consists in
replacing instructions that read registers by equivalent instructions that read con-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · Gilles Barthe et al.

T(φ, ins)UL = (φ ∧ RESA(L), TinsUid
L)

TinsUL = TinsUid
L

Trd := op, L′Uid
L = rd := TopUop

L , L
′

Tcmp ? Lt : Lf Uid
L =

8><>:
nop, Lt when TcmpUcmp

L = true

nop, Lf when TcmpUcmp
L = false

TcmpUcmp
L ? Lt : Lf otherwise

TinsUid
L = ins in any other cases

TrUop
L =

(
n if A(L, r) = n

r otherwise

Tr1 + r2Uop
L =

8>>>>>>>>><>>>>>>>>>:

n if A(L, ri) = ni

and n = n1 + n2

r2 if A(L, r1) = 0

r1 if A(L, r2) = 0

n1 + r2 if A(L, r1) = n1

n2 + r1 if A(L, r2) = n2

r1 + r2 in any other cases

Tr1 / r2Ucmp
L =

8><>:
true if A(L, ri) = ni and n1 / n2

false if A(L, r) = ni and ¬(n1 / n2)

r1 / r2 otherwise

Fig. 11. Constant Propagation

stants. Furthermore, in the case of a conditional instruction, if the truth value
of an integer comparison can be statically determined, it is replaced by a jump
instruction to the corresponding branching point.

For example, if both arguments of an addition operation are known to be equal
to n1 and n2, the operation is directly replaced by an immediate load of the integer
n s.t. n = n1 + n2. If one of the registers is known to hold the value 0 then the
compiler replaces the addition operation by a move instruction. If one register is
known to hold a constant value different from 0 then the compiler uses an immediate
addition operation. Similar kind of optimizations are done for the other arithmetic
operations, but are not shown in Figure 11.

The optimized function f will be such that f [L] = Tf [L]UL for every label L
in the domain of Gf . The transformation of an annotated instruction is defined
as a transformation of the annotation and the transformation of the instruction
descriptor.

4.2.2 Certifying analyzer. We have implemented a certifying analyzer for con-
stant propagation as an extension of the standard analysis algorithm. First, we
attach to each reachable label L the assertion RESA(L):

RESA(L) ≡
∧

A(L,r) 6=⊥

r = A(L, r)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 21

To derive a certificate for the analysis we must, for each reachable label L, generate
a proof for the judgment

` RESA(L) ⇒ wpidfA(L)

After applying elim⇒ (i.e. moving hypothesis to the context), and rewriting equal-
ities from the context in the goal, one is left to prove closed equalities of the form
n = n′ (i.e. n, n′ are constants and do not contain variables). If the assertions
are correct, then the certificate is obtained by applying reflexivity of equality (an
instance of the ring rule of the proof algebra).

4.2.3 Certificate translation. Suppose we have a certified function f with decla-
ration {~rg; ϕ; G; ψ; λ; ~Λ}. After applying constant propagation we get a function

f . We are interested on building its corresponding certificates λ and ~Λ.
To build ~Λ (the set proof obligations generated by the intermediate assertions),

for each instruction of the form f [L] = (φ ∧ RESA(L), ins) we have to find a proof
for ` φ ∧ RESA(L) ⇒ wpid

f
(L). To this end, we rely on an auxiliary function T ins

L

of type

T ins
L : C(` wpidf (L) ⇒ RESA(L) ⇒ wpid

f
(L))

for every label L, and on the function Tλ defined in Section 4.1 to construct a
certificate for ` φ∧RESA(L) ⇒ wpid

f
(L). Furthermore, for every local substitution

of op by TopUop
L performed by the optimization, we require a certificate Top(op, L)

for ` RESA(L) ⇒ 〈op〉 = 〈TopUop
L 〉.

The certificate T ins
L represents the fact that under the hypothesis that the result

of the analysis is correct, if a program state satisfies wpidf (L) then it also satis-
fies wpid

f
(L). The definition of the constructor T ins

L is detailed in Fig. 12 for the
assignment case. In the figure, the auxiliary function TL of type C(` wpf (L) ⇒
RESA(L) ⇒ wpf (L)) is defined equal to T ins

L when f [L] does not contain an asser-
tion. Otherwise, TL has type C(` φ⇒ RESA(L) ⇒ φ∧RESA(L)) for some φ and,
thus, it is trivially defined.

Example 4.1. Consider as an example the following program transformation:

L1 : {r2 ≥ 1}
L2 : r1 := 1
L3 : {r2 ≥ r1 ∧ r1 ≥ 0}
L4 : r3 := r1
L5 : {r2 ≥ r3 ∧ r3 = r1 ∧ r1 ≥ 0}
L6 : r2 := r2 + r3
L7 : nop, L3

−→

L1 : {r2 ≥ 1}
L2 : r1 := 1
L3 : {r2 ≥ r1 ∧ r1 ≥ 0}
L4 : r3 := 1
L5 : {r2 ≥ r3 ∧ r3 = r1 ∧ r1 ≥ 0}
L6 : r2 := r2 + 1
L7 : nop, L3

We have originally a proof obligation generated at L3:

r2 ≥ r1 ∧ r1 ≥ 0 ⇒ r2 ≥ r1 ∧ r1 = r1 ∧ r1 ≥ 0

and a proof obligation at L5:

r2 ≥ r3 ∧ r3 = r1 ∧ r1 ≥ 0 ⇒ r2 + r3 ≥ r1 ∧ r1 ≥ 0 .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · Gilles Barthe et al.

Let

f [L] = r := op, L′

Γ = [φ1; RESA(L)]
φ1 = wpf (L′)[op/rd]

φ2 = RESA(L′)[op/rd]
φ3 = wpf̄ (L′)[op/rd]

in:

p1:=TL(L′) : ` wpf (L′) ⇒ RESA(L′) ⇒ wpf (L′)

p2:=weakΓ(subst rd 〈op〉(p1)) : Γ ` φ1 ⇒ φ2 ⇒ φ3

p3:=axiom(φ1) : Γ ` φ1

p4:=weakΓ(~ΛA(L)) : Γ ` RESA(L) ⇒ φ2

p5:=axiom(RESA(L)) : Γ ` RESA(L)
p6:=elim⇒(p5, p4) : Γ ` Γ ` φ2

p7:=elim⇒(p6, elim⇒(p3, p2)) : Γ ` Γ ` φ3

p8:=weakΓ(Top(op, L)) : Γ ` RESA(L) ⇒ 〈op〉 = 〈TopUop
L 〉

p9:=elim⇒(p5, p8) : Γ ` 〈op〉 = 〈TopUop
L 〉

p10:=elim=(p9, p7) : Γ ` wpf (L′)[〈TopUop
L
〉/rd]

p11:=intro⇒(intro⇒(p10)) : ` wpidf (L) ⇒ RESA(L) ⇒ wpid
f

(L)

Fig. 12. Definition of T ins
L for assignment case

The first proof obligation becomes r2 ≥ r1 ∧ r1 ≥ 0 ⇒ r2 ≥ 1 ∧ 1 = r1 ∧ r1 ≥ 0
after the program transformation. Clearly, in order to obtain a proof of it, it is
necessary to introduce the condition r1 = 1 in the antecedent. This motivates the
need for the hypothesis about the result of the analysis, in this case r1 = 1.

However, this introduction is not always needed. For example, the second condi-
tion becomes r2 ≥ r3∧r3 = r1∧r1 ≥ 0 ⇒ r2 +1 ≥ r1∧r1 ≥ 0 in the optimized code,
and the assertion r1 = 1 is not necessary at L5 in order to prove the verification
condition (unless it is also introduced at L3.)

4.3 Loop Induction Variable Strength Reduction

4.3.1 Description. Loop induction strength reduction aims at reducing the num-
ber of multiplication operations inside a loop, which are commonly more costly
than addition operations. An induction register is a register that is incremented
(or decremented) in each iteration of the loop by a fixed constant value. An induc-
tion register is defined in the loop by an instruction of the form ri := ri + c, where
c is a constant value. A derived induction register is a register that is assigned in
each iteration of the loop the value of a linear function on the induction register.
A derived induction register is defined in the loop by an instruction of the form
rd := b ∗ ri, where b is a constant value. The optimization consists in replacing any
instruction updating a derived induction register rd, made in terms of the basic
induction register ri, by an increment made only in terms of the previous value of
rd. For example, in

Loop : ri := ri + c
rd := b ∗ ri
nop, Loop

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 23

f ′[L′′H] = r′d := b ∗ ri, LH

f ′[LH] = f [LH]
f ′[Li] = ri := ri + c, L′′i
f ′[L′′i] = r′d := r′d + b ∗ c, L′i
f ′[L] =


f [L] if L is any other label inside the loop

f [L][L
′′
H/LH

] if L is a label outside the loop

Fig. 13. Loop Induction: First Transformation Step

ri is a basic induction register with an increment of c, and rd is an induction register
with coefficient b derived from ri. The optimization replaces the assignment rd :=
b ∗ ri by the less costly assignment rd := rd + b ∗ c and introduces the initialization
rd := b ∗ ri just before the head of the loop. In addition to reducing the cost
of the instruction, the live range of the register ri is reduced, enabling further
optimizations.

In the sequel, we follow the simplifying assumption that the loop body contains
a single assignment for each register ri and rd. We assume also that the compiler
has the ability to detect loops and returns a set of labels {L1, . . . , Ln} determining
the loop body, from which the header label LH is the unique entry point.

Let {~x; ϕ; G; ψ; λ; ~Λ} be the declaration for function f . Strength reduction pro-
ceeds in two steps. In the first step, an analysis detects inside the loop an induction
register ri and a derived induction register rd. More precisely, the analysis takes
as input a set of labels {L1, . . . , Ln} (we assume that this set of labels corresponds
to the output of a loop analysis, and that the header label is LH) and provides
the following information: an induction register ri and the label Li in which it is
updated, a derived induction register rd and the label Ld in which its definition
appears, a fresh register name r′d, two new labels L′′i and L′′H not in the domain of
Gf and two constant values b, c that correspond respectively to the coefficient of rd
and the increment of ri. The first transformation step consists in introducing two
assignments to a fresh register r′d, one immediately before the loop header and the
other one immediately after the assignment f [Li] = ri := ri + c, L′i. The output
function at this transformation step is named f ′ and is defined in Figure 13. The
motivation for this transformation phase is to ensure the invariance of the condition
r′d = b∗ ri in the loop body. In the figure, labels L′, L′H , L′i and L′d are respectively
the successor labels for the instructions at L, LH , Li and Ld. To ensure that the
instruction at L′′H is always executed before entering the loop, we update the labels
outside the loop replacing LH with L′′H .

In a second step, an analysis determines the invariance of the condition r′d = b∗ri
and consequently an optimization replaces the assignment to the derived induction
register rd := b ∗ ri by the less costly assignment rd := r′d. We define the optimized
function f as f [Ld] = rd := r′d, L

′
d and f [L] = f ′[L] for every L 6= Ld. In addition,

every annotation inside the loop body is augmented with the condition r′d = b ∗ ri.

4.3.2 Certifying analyzer. Only the analysis of the second step must be certified.
To annotate f ′ with the result of the analysis, we define RESA(L) as r′d = b∗ri if L is
in {L1, . . . , Ln}, as r′d = b∗(ri−c) for L = L′′i and RESA(L) ≡ true in any other case

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · Gilles Barthe et al.

(i.e. when L is a label outside the loop.) Then, we need to create a certificate that
the analysis is correct. The definition of f ′A is given by f ′A[L] = (RESA(L), ins),
where f [L] = ins or f [L] = (φ, ins). Since RESA(L) refers only to registers r′d
and ri, the only interesting proof obligations are those corresponding to program
labels L′′H , Li and L′′i . Interestingly, the certified analyzer must use the fact that
the loop analysis is correct in the sense that one can only enter a loop through its
header. That is, if the loop analysis is not correct, then the certificate cannot be
constructed.

4.3.3 Certificate translation. Certificate translation from a certificate for f into
a certificate for f is also performed in two steps. In the first one, we build a
certificate for f ′ from a certificate for f . Then we build a certificate for f from the
certificate for f ′.

The first translation step is trivial due to preservation of proof obligations. More
precisely, we can show that since r′d is a fresh register and, hence, does not appear
in the code nor in assertions, the introduction of assignments targeting register r′d
does not affect the computation of the function wpidf . Formally, we can prove by
the induction principle induced by the definition of well-annotated programs, that
for every L 6∈ {L′′H , L′′i }, wpidf ′(L) = wpidf (L). Then, since no proof obligations are
introduced at L′′H or L′′i , the set of proof obligation {φ⇒ wpidf ′(L) | f ′[L] = (φ, ins)}
corresponds to the original set of proof obligations {φ⇒ wpidf (L) | f [L] = (φ, ins)}.
Therefore, the original certificate can be reused without modifications.

Certificate translation for the transformation from f ′ to f proceeds as with con-
stant propagation or any certificate translation that requires a certifying analyzer.
That is, we need to give explicitly a proof of wpf (L) ⇒ wpid

f
(L) for each instruction

of the form f [L] = (φ ∧ RESA(L), ins). We can avoid repeating the main process
since it is the same that was specified in the previous section (constant propaga-
tion). However it remains to define T ins

L . Intuitively, the function T ins
L expresses

the fact that for every program point L inside the loop, wpidf ′(L) and wpid
f

(L) are
equivalent, provided the condition r′d = b ∗ ri is valid. In this case, the annotations
for function f ′ corresponding to labels outside the loop are not modified.

T ins
L : C(` wpidf ′(L) ⇒ RESA(L) ⇒ wpid

f
(L))

This function T ins
L is constructed using the induction principle attached to the

definition of well-annotated programs, and then this result is merged with the
original certificate and the certificate of the analysis, to produce a certificate for f .
In Figure 14 we show the definition of T ins

L for the case L = Ld.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 25

Let Γ = [wpid
f ′ (Ld),RESA(Ld)] in

p1:=TL(L′d) : ` wpf ′ (L
′
d) ⇒ wpf ′A

(L′d) ⇒ wpf (L′d)

p2:=subst rd b∗ri(p1) : ` wpid
f ′ (Ld) ⇒ wpid

f ′A
(Ld) ⇒ wpf (L′d)[b∗ri/rd]

p3:=axiom(wpid
f ′ (Ld)) : Γ ` wpid

f ′ (Ld)

p4:=axiom(RESA(Ld)) : Γ ` RESA(Ld)

p5:=weakΓ(~ΛA(Ld)) : Γ ` RESA(Ld) ⇒ wpid
f ′A

(Ld)

p6:=elim⇒(p4, p5) : Γ ` wpid
f ′A

(Ld)

p7:=elim⇒(p3,weakΓ(p2)) : Γ ` wpid
f ′A

(Ld) ⇒ wpf (L′d)[b∗ri/rd]

p8:=elim⇒(p6, p7) : Γ ` wpf (L′d)[b∗ri/rd]

p9:=elim=(p4, p8) : Γ ` wpid
f

(Ld)

T ins
L (Ld):=intro⇒(intro⇒(p9)) : ` wpid

f ′ (Ld) ⇒ RESA(Ld) ⇒ wpid
f

(Ld)

Fig. 14. Definition of T ins
L for the case L = Ld

Example 4.2. Consider the following program, where n ∈ N:

r := 0
ri := 0

Loop : {r = b ∗ ri ∧ ri ≤ n}
ri ≥ n ? Lout

ri := ri + 1
rd := b ∗ ri
r := rd
nop, Loop

Lout : {r = b ∗ n}

One can apply the optimization of this section to reduce the strength of the instruc-
tion updating the derived induction register rd. Focusing on the proof obligation
corresponding to the preservation of the loop invariant, we can extract the interest-
ing fragment

r = b ∗ ri ∧ ri ≤ n ∧ ri < n⇒ b ∗ (ri + 1) = b ∗ (ri + 1) .

If the program is transformed as follows (strength reduction+copy propagation)

r := 0
ri := 0
r′d := 0

Loop : {r = b ∗ ri ∧ ri ≤ n}
ri ≥ n ? Lout

ri := ri + 1
r′d := r′d + b
r := r′d
nop, Loop

Lout : {r = b ∗ n}

the fragment of the proof obligation becomes

r = b ∗ ri ∧ ri ≤ n ∧ ri < n⇒ r′d + b = b ∗ (ri + 1) .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · Gilles Barthe et al.

The condition r′d = b∗ ri is missing in the antecedent, and adding it in is manda-
tory to verify the code. At the same time, this extension of the invariant must be
verified, a task that corresponds to the proof obligations automatically generated by
the certifying analyzer.

4.4 Common Subexpression Elimination

4.4.1 Description. Common subexpression elimination (CSE) aims at reduc-
ing the number of duplicated computations by reusing previously defined and still
available nontrivial expressions: if the same expression is computed at two different
program points, CSE eliminates one of the computations, by replacing the second
operation by an access to the register containing the result of the first evaluation.

CSE is similar to constant propagation, in the sense that the transformation is
triggered by conditions represented by an equality between a register and an ex-
pression. In constant propagation this expression corresponds to a constant value,
whereas in CSE it may be a more complex expression (commonly involving arith-
metic operators). Therefore, the principle behind certificate translation for CSE is
very similar to the one for certificate translation for CP. In the following example

r1 := r2 + r3
r4 := r2 + r3
r1 := r1 + 1
r5 := r2 + r3

−→

r1 := r2 + r3
r4 := r1
r1 := r1 + 1
r5 := r4

the assignment updating the register r4 could be optimized, but after the second
assignment over r1, the availability of the expression r2 + r3 through r1 is lost, and
then the assignment to r5 has to be optimized with r4.

We begin by discussing the certifying analyzer for CSE. The function A with
type PP × R → op⊥ associates to a label L and a register r an RTL expression.
Similarly to constant propagation, the assertion RESA is defined as:

RESA(L) ≡
∧

A(L,r) 6=⊥

r = 〈A(L, r)〉

where 〈A(L, r)〉 is the interpretation into the language of assertions of the informa-
tion returned by the analysis.

The certifying analyzer generates automatically a certificate for fA, where for
every label L, the corresponding annotation will be RESA(L).

We briefly describe the transformation for CSE. For each f [L] of the form r := e,
if there is a register r′ such that r′ 6= r and A(L, r′) = e, we replace the instruction
f [L] by r := r′.

Finally, certificate translation proceeds exactly as with constant propagation,
with the definition of two mutually recursive transfer functions using the induction
principle attached to the definition of reachAnnotf (Definition ??):

T ins
L : ∀L, C(` wpidf (L) ⇒ RESA(L) ⇒ wpid

f
(L))

TL : ∀L, C(` wpf (L) ⇒ RESA(L) ⇒ wpf (L))

Then, these two functions are used to merge the original certificate with the cer-
tificate of the analysis to build a certificate for f .
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 27

Example 4.3. Consider the previous example with intermediate assertions:

{0 ≤ r2 ∧ 0 ≤ r3}
r1 := r2 + r3
{0 ≤ r2 ∧ 0 ≤ r3}
r4 := r2 + r3
{0 ≤ r4 ∧ 0 ≤ r2 ∧ 0 ≤ r3}
r1 := r1 + 1
r5 := r2 + r3
{0 ≤ r5}

→

{0 ≤ r2 ∧ 0 ≤ r3}
r1 := r2 + r3
{0 ≤ r2 ∧ 0 ≤ r3}
r4 := r1
{0 ≤ r4 ∧ 0 ≤ r2 ∧ 0 ≤ r3}
r1 := r1 + 1
r5 := r4
{0 ≤ r5}

If the instruction r4 := r2 + r3 is replaced with r4 := r1, the lack of information
about register r1 on assertions prevents proving the condition 0 ≤ r4 of the third
assertion. Then, we need to propagate r1 = r2 +r3 to the second assertion. Finally,
although there is enough information about register r4 on the second assertion to
prove that 0 ≤ r5 is valid after the assignment, the original proof is done in terms
of r2 and r3. Hence, the need for a general and automatic technique forces us to
introduce the condition r4 = r2 + r3.

The fA and f functions are respectively:

{true}
r1 := r2 + r3
{r1 = r2 + r3}
r4 := r2 + r3
{r4 = r2 + r3}
r1 := r1 + 1
r5 := r2 + r3
{true}

{0 ≤ r2 ∧ 0 ≤ r3}
r1 := r2 + r3
{0 ≤ r2 ∧ 0 ≤ r3 ∧ r1 = r2 + r3}
r4 := r1
{0 ≤ r4 ∧ 0 ≤ r2 ∧ 0 ≤ r3 ∧ r4 = r2 + r3}
r1 := r1 + 1
r5 := r4
{0 ≤ r5}

4.5 Copy Propagation

4.5.1 Description. Copy propagation aims at reducing the live range of variables
defined by move operations, simplifying register allocation at the code generation
phase. It is intended to remove the number of auxiliary register copies that may
be introduced by other optimizations.

Copy propagation searches for occurrences of instructions of the form r1 := r2,
and replaces every occurrence of r1 by r2 (along its successors’ path) until either
r1 or r2 are modified. The original assignment r1 := r2 can be moved forward in
the code until the condition r1 = r2 gets invalidated.

4.5.2 Certificate translation. As with constant propagation, common subex-
pression elimination and many other optimizations, the translation of the certificate
can be made by using a certifying analyzer. First, a special purpose function fA is
generated, fully annotated with the results of the dataflow analysis (e.g. r1 = r2),
and a new certificate is automatically generated validating these auxiliary asser-
tions. Formally, after performing the analysis, the function A : PP × R → R⊥,
such that A(L, r1) = r2 if r1 holds a copy of the value at r2, is used to define

RESA(L) ≡
∧

r∈{r|A(L,r) 6=⊥}

r = A(L, r)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · Gilles Barthe et al.

and to generate a certificate for the analysis, defining for each reachable label L the
certificate

` RESA(L) ⇒ wpidfA(L)

that is later integrated with the certificate of the original program. The function
T ins

L is defined by case analysis. The proof for T ins
L does not represent any further

difficulty with respect to that of constant propagation or common subexpression
elimination.

4.6 Dead Register Elimination

4.6.1 Description. Dead register elimination aims at removing assignments to
registers that will not be needed in the future. As mentioned in the introduction,
we propose a transformation that removes dead assignments while simultaneously
modifying the assertions. Regarding certificate translation, this program transfor-
mation is atypical since it does not follow the scheme consisting of a certifying
analyzer and a definition of the function T ins

L .
Intuitively, a register is live at some execution point if it stores a value that

interferes with the subsequent execution steps. The classical definition is intentional
and overapproximating: a register r is live at label L if r is read at label L or there
is a path from L that reaches a label L′ where r is read and does not go through
an instruction that defines r (including L, but not L′). A register r is read at label
L if it appears as a parameter of a function call, in a conditional jump, in a return
instruction, or on the right side of an assignment to a live register r′.

In the following, we represent with the function L the result of the analysis and
write L(L, r) = > when a register is live at L.

A live range of a register r is a set of sequences of consecutive input or output
edges such that r is live.

The problem with certificate translation for removal of dead registers is that
intermediate assertions can specify conditions over local variables that will never
be used, and hence are dead in the program. Arguably, we may assume that
original assertions only refer to live variables. However, some optimizations can
reduce the live range of variables and, therefore, the occurrence of some registers
may become redundant after previous optimizations steps. For example in the
following optimization

{true}
r1 := 1
{r1 = 1}
r2 := r1
{r2 = 1}

−→

{true}
r1 := 1
{r1 = 1}
r2 := 1
{r2 = 1}

the register r1 becomes dead, but the assignment r1 := 1 cannot be removed since
we have to ensure that r1 = 1 is a valid intermediate assertion.

In order to deal with assertions, we extend the definition of liveness.

Definition Live in assertions. A register r is live in an assertion at label L,
denoted by L(L, r) = >φ, if it is not live at label L but there is a path from L that
reaches a label L′ such that r appears in an assertion at L′ or where r is used to
define a register which is live in an assertion at label L′.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 29

By abuse of notation, we write L(L, r) = ⊥ if r is dead in the code and in
assertions.

In order to deal with registers that are dead in the code but live in assertions,
we rely on the introduction of ghost variables. Ghost variables are expressions
in our language of assertions (we assume that the set of ghost variables names
and the set of register names R are disjoint). We introduce, as part of the RTL
syntax, non-executable ghost assignments, represented as instructions of the form
set v̂ := op, L, where v̂ is a ghost variable. Ghost assignments do not affect the
semantics of RTL, but they affect the calculus of wp in the same way as normal
assignments. At the end of this section we discuss the soundness of the verification
infrastructure in presence of ghost variables.

In the following, if σ is a function mapping registers to expressions, we denote
φσ the result of substituting every free register r in φ by σr.

We propose a transformation, defined by the following equations:

ghostL((φ, ins)) = (φσL, ghostidL (ins))
ghostL(ins) = ghostidL (ins)

where the substitution σL maps r to r̂ if L(L, r) = >φ and deadc(L,L′) = {r |
L(L, r) = >∧L(L′, r) = >φ} and the transformation function ghostidL (ins) is defined
in Figure 15. We use set ~̂r := ~r as syntactic sugar for a sequence of assignments
set r̂i := ri where for each register ri in the sequence ~r, r̂i in ~̂r is its corresponding
ghost variable. Each instruction of f is transformed into a sequence of instructions
for f . Intuitively, it introduces for every instruction ins (with successor L′) at label
L, a ghost assignment set r̂ := r, L′ immediately after L (at a new label L′′) if the
register r is live at L but not live at the immediate successor L′ of L. In addition,
every instruction of the form rd := op is removed if the register rd is not live at L.

4.6.2 Certificate translation. Certificate translation for dead register elimina-
tion falls in the IPO category, i.e. the certificate of the optimized program is an
instance of the certificate of the source program. This is shown by proving that
ghost variable introduction preserves annotations up to substitution of dead vari-
ables.

Lemma 4.1. After applying ghost variable introduction, the transformed function
f satisfies the following property:

∀L,wpf (L) = wpf (L)σL

where σ is the substitution defined above.

Proof. The proof is by the induction principle attached to the definition of
reachAnnot (Definition ??). We only consider some representative cases:

— Case f [L] = (φ, ins). In this case wpf (L) is equal to φσL by definition of
wp and ghost variable introduction. But, since φ is equal to wpf (L), the lemma is
satisfied.

— Case f [L] = nop, L′. By definition of wp, we have that wpf (L) is equal
to wpf (L′), which in turn is equal to wpf (L′)σL′ by inductive hypothesis. Since
wpf (L′) = wpf (L), it remains to prove that σL′ is in fact equal to σL, but this is
the case since the condition of liveness or liveness in assertion is the same for L

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · Gilles Barthe et al.

ghostidL (return r) = return r
ghostidL (rd := f(~r), L′) = L : rd := f(~r), L′′

L′′ : set ~̂t := ~t, L′

ghostidL (nop, L′) = nop, L′

ghostidL (cmp ? L1 : L2) = L : cmp ? L′1 : L′2
L′1 : set ~̂t1 := ~t1, L1

L′2 : set ~̂t2 := ~t2, L2

ghostidL (rd := op, L′) =

8>>><>>>:
nop, L′ if L(L′, rd) = ⊥
set r̂d := opσL, L

′ if L(L′, rd) = >φ˛̨̨̨
˛ L : rd := op, L′′

L′′ : set ~̂t := ~t, L′
if L(L′, rd) = >

where ~t, ~t1 and ~t2 stand respectively for variables in
the sets deadc(L,L′), deadc(L,L1) and deadc(L,L2)

Fig. 15. Ghost Variable Introduction-Dead Register Elimination

and L′ for any register. For example, if L(L′, r) = >, that means that r is read at
label L′ or there is a path π that reaches label L′′ such that r is never assigned. In
the first case, we can propose L → L′ as a path from L that reaches L′ where r is
read. And in the second case we can construct the desired path appending L → L′

to π.

— Case f [L] = rd := op, L′ and L(L′, rd) = >φ. By definition of wp and the
transformation performed we have that wpf (L) is equal to wpf (L′)[opσL/r̂d

], and by
I.H., to wpf (L′)σL′ [opσL/r̂d

]. Now we have to see that

[opσL/r̂d
] ◦ σL′ = σL ◦ [op/rd

] .

To prove this equation we proceed by case analysis. First, consider the application
of the substitutions to register rd, in this case we can see that both expressions are
equivalent to opσL. Now suppose that we apply them to a register r 6= rd. In this
case, if r is in wpf (L′) then it is live or live in assertion on label L′, in which
case, it will also be live or live in assertion, respectively, on label L. If r is live in
assertion on label L, and r occurs free in wpf (L′), then it must also be the case
that r is live in assertion on label L′, because if it is not the case, and r occurs in
wpf (L′), then r must be live on label L′, which implies that is is also live on label
L, and that is a contradiction.

A consequence of this lemma is that if the function f is certified, then it is
possible to reuse the certificate of f to certify f . More precisely, for every label L
s.t. f [L] is of the form (φL, ins) we can obtain a proof of ` φLσL ⇒ wpidf (L)σL

(i.e. of ` wpf (L) ⇒ wpid
f(L)

) by applying subst rule of Figure 5 to the original proof
for ` φL ⇒ wpidf (L).

After ghost variable introduction has been applied, every register that occurs free
in wpf (L) is live at L.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 31

Soundness of Ghost Variable Introduction. To consider the proposed transfor-
mation as an optimizing one, the execution environment must be capable of safely
ignoring ghost assignments. Intuitively, the set of ghost variables do not affect the
state of any other variable nor the control flow (that is because ghost variables do
not appear on ordinary assignments or conditional jumps.) If we define an equiv-
alence relation between steps that only takes into consideration the coincidence
on live variables, it should be clear that two executions starting from different
but equivalent states always reach equivalent intermediate states. Stated in other
words, the domain of ghost variables does not interfere with the domain of standard
variables and, hence, it is safe to slice them out of the standard RTL programs.

Discussion. We can avoid introducing ghost variables if we are able to remove
dead variables from assertions. However, it is not trivial to determine whether a
subassertion can be removed from an invariant. Consider for instance the following
example:

y := 3
x := y

Loop : {φ}
b ? Lout

x := x+ 1
y := 3, Loop

Lout : {x ≥ 0}
where φ is x ≥ 3 ∧ y ≥ 3. Clearly, the assignment y := 3 within the loop and
the subassertion y ≥ 3 may be sliced out from the program. However, in other
examples, it may be the case that the subassertion refers both to dead and live
variables, and hence cannot be removed. Consider the example above but suppose
now that φ is defined as x ≥ y ∧ y ≥ 3. In this case, the condition y ≥ 3 appearing
in the invariant is necessary to prove the invariance of x ≥ y. Thus, φ may not be
simplified.

Example 4.4. Taking as input the short piece of code from the introduction, the
result of the transformation is:

{true}
set r̂1 := 1
{r̂1 = 1}
r2 := 1
{r2 = 1}

4.7 Unreachable Code Elimination

4.7.1 Description. Unreachable code elimination aims at removing instructions
that are never executed.

The optimization described here simply identifies the connected graph of nodes
that can be reached starting from the initial node pointed by Lsp, and removes the
remaining nodes. The existence of unreachable program points may be originated,
for instance, by application of other program optimizations.

We are not considering in this section the detection and removal of redundant
conditional branches. Removing redundant conditional branches can be performed

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · Gilles Barthe et al.

in a previous phase, in which the analysis is required to detect the validity of the
branching condition. For example in

r1 := r2
r1 = r2 ? Lt

[S]
Lt : ...

r1 := r2
nop, Lt

[S]
Lt : ...

the analysis may infer that the fact r1 = r2 is valid immediately before the condi-
tional branch and, in addition, in order to translate the certificate, this condition
must be proved correct. Next, as is common with several optimizations, the func-
tion T ins

L is defined and the proof of the analysis is merged with the original proof
to translate the certificate. Notice that the fragment of code [S] is not removed
since it may be reachable by some other instructions, this transformation is left to
a different program transformation: unreachable code elimination.

The selection of reachable nodes is a straightforward process and translating the
certificate does not represent any difficulty.

4.7.2 Certificate translation. Our definition of VCGen is such that proof obli-
gations are totally independent from unreachable nodes.

Its clear that for any label L reachable from Lsp, wpf (L) = wpf|R
(L), where f|R

is f with its graph code restricted to the set R of reachable labels. Notice that for
the preservation of certificates we require the VCGen to consider only assertions on
reachable labels, as is the case in this paper. Otherwise, if the VCGen considers also
annotations on unreachable labels, the set of proof obligations of the transformed
program is a subset of the proof obligations of the initial program.

4.8 Register Allocation

4.8.1 Description. Register allocation is a code generation phase that intends
to minimize register usage by storing in a single real machine register two or more
temporary registers. That is possible, for instance, for those registers whose live
ranges are disjoint (namely nonoverlapping registers).

We restrict our attention to a certificate translator for node coalescing, abstract-
ing from the complexity of determining the mapping between intermediate and final
registers. For simplicity, we refrain from considering memory spills. The result of
the analysis is represented as a mapping σ with type R 7→ R. The code transfor-
mation rewrites each instruction and assertion by applying the substitution σ given
by the analysis, that maps temporary registers of the intermediate RTL language
to a potentially shared register in the object language.

To ensure correctness of the analysis we require that applying the transformation
induced by this substitution σ is semantics preserving. More precisely, the following
property is desired over the result of the analysis: for any registers r1 and r2, if
σr1 = σr2 then the live ranges of r1 and r2 are disjoint. In addition, we require
that there are no assignments to dead registers. This condition can be fulfilled by
applying ghost variable introduction in a previous phase.

4.8.2 Certificate translation. If the substitution σ returned by the analysis is
correct, i.e. two overlapping registers r1 and r2 are not mapped to the same register,
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 33

then the proof obligations of the original and optimized program coincide up to
variable renaming.

Lemma 4.2. Suppose we have a function f , such that for any register r and
any label L, L(L, r) 6= >φ (all registers in assertions are live). Assume also that
there are no assignments to dead variables. If f is the result of applying register
allocation, then for any label L

wpf (L) = wpf (L)σ

where σ represents the mapping that joins pairs of nonoverlapping registers.

Proof.

— case f [L] = (φ, ins)
By definition of wp and the register replacement, wpf (L) is equal to φσ, which is
equal to wpf (L)σ

— case f [L] = nop, L′

In this case wpf (L) is equal to wpf (L′), and by inductive hypothesis is equal to
wpf (L′)σ, and then to wpf (L)σ.

— case f [L] = return r
wpf (L) is post(f)[σr/res] by definition, but it is clear that this is also equal to
post(f)[r/res]σ. Which by definition is wpf (L)σ.

— case f [L] = rd := g(~r), L′

By definition of wp, we have that wpf (L) is equal to

pre(f)[σ~r/~rg
] ∧ (∀res, post(f)[σ~r/~r∗g] ⇒ wpf (L′)[res/σrd

])

Since σ is the identity for variables occurring in pre(f) or post(f) we have

(pre(f)[~r/~rg
])σ ∧ (∀res, (post(f)[~r/~r∗g])σ ⇒ wpf (L′)[res/σrd

])

and applying inductive hypothesis on wpf (L′) we get

(pre(f)[~r/~rg
])σ ∧ (∀res, (post(f)[~r/~r∗g])σ ⇒ wpf (L′)σ[res/σrd

])

finally, since σres = res, it is clear that the last expression is equal to

(pre(f)[~r/~rg
])σ ∧ (∀res, (post(f)[~r/~r∗g])σ ⇒ (wpf (L′)[res/rd

])σ)

that is exactly wpf (L)σ
— case f [L] = cmp ? Lt : Lf

In this case wpf (L) is cmpσ ⇒ wpf (Lt) ∧ ¬cmpσ ⇒ wpf (Lf) which by inductive
hypothesis is equal to cmpσ ⇒ wpf (Lt)σ ∧¬cmpσ ⇒ wpf (Lf)σ. But this is in fact
wpf (L)σ by definition of wp.

— case f [L] = rd := op, L′

wpf (L) is by definition of wp and the transformation, wpf (L′)[opσ/σrd
]. By inductive

hypothesis, this is also equal to wpf (L′)σ[opσ/σrd
]. If we show that for any variable

r in wpf (L′), [opσ/σrd
](σr) is equal to σ([op/rd

]r) then wpf (L′)σ[opσ/σrd
] is equal to

wpf (L′)[op/rd
]σ, and that is what we want to prove. To prove the equality between

the two mappings, suppose first that r = rd, in this case [opσ/σrd
](σr) is opσ and

is clearly the same for σ([op/rd
]r). In case r 6= rd, σr must be clearly different to

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · Gilles Barthe et al.

f [Lcall] , y := x, Lcall′

f [Lcall′] , (pre(g) ∧Q, nop, Lspg)

f [L] , Tg[L]U if L is in Gg domain

f [Lret′] , post(g)[rd/res] ∧Q, nop, Lret

where:

T(φ, ins)U , (φ ∧Q, TinsU)

Treturn rU , rd := r, Lret′

TinsU , ins if ins 6= return

Fig. 16. Function inlining transformation

σrd, as rd is live in L′ and if r ∈ FV (wpf)(L) then r is also live in L′. Under this
assumption, both sides of the equation are equal to σr.

Conclusion. As with dead register elimination, the proof transformation is just
a renaming using the operator subst to the original certificates, as specified by the
substitution function σ.

4.9 Function Inlining

4.9.1 Description. An immediate motivation of function inlining is reducing
the overhead of the function call. However, its main purpose is to generate new
optimization opportunities.

We do not consider here profitability issues, since it is not the purpose of this
presentation. Indeed, even when the transformation reduces the call overhead and
gives rise to new optimization opportunities, it is possibly undesirable since it may
increase the code size and the number of registers in use. The analysis that follows
is restricted to translating the certificate and does not focus on its profitability.

Suppose we have a function call rd := g(~x), Lret as the instruction f [Lcall]. The
transformation consists of replacing this statement with an assignment to function
g’s formal parameters, followed by the body of the function g where every return
instruction is replaced by a corresponding assignment to the register rd. In this
section we assume for simplicity that the set of registers used by g is disjoint from
those of the function where it will be inlined. Similarly, for notational convenience,
we assume that the functions under consideration do not share program labels, and
that the function g has a unique parameter y.

The transformation is depicted in Figure 16, where Q stands for the assertion
∀res. post(g)[x/y∗] ⇒ wpf (Lret)[res/rd

]. The graph Gg for function g is inserted, with
small changes, in replacement of the function call, and appropriate assignments are
inserted before the function call. Notice that not only the return instructions are
modified, but also the assertions, which are augmented with conditions (Q) that
must be propagated through the complete set of instructions until the end, at label
Lret.

4.9.2 Certificate translation. The wp function is defined for the function call
case propagating the conditions that must be satisfied when the function returns.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 35

The problem with function inlining is that this propagation is lost, when inserting
an arbitrarily big piece of code that may contain assertions. For this reason and for
the purpose of certificate generation, assertions are reinforced with the condition
that we want to propagate (Q).

The assertion Q has the desired property that it cannot be modified by any
instruction in the body of function g, assuming the disjointness of the set of local
registers. In consequence, it is not difficult to prove in this case that the following
property is satisfied:

∀L ∈ domain of Gg. wpidg (L) ∧Q⇒ wpid
f

(L)

Notice that this property is similar to those we get when using an auxiliary
function fA to prove the results of the analysis, but in this case a certifying analyzer
is not necessary since Q is always trivially preserved. Another property that is
satisfied is

∀L ∈ domain of Gf . wpf (L) = wpf (L)

From these two results and the definition of the transformation, we can recon-
struct a new proof for the modified function f . For every label L in the domain
of Gf such that f [L] = (φ, ins), we have that f [L] = (φ, ins) and also that
wpid

f
(L) = wpidf (L), so certificates are simply preserved in this range. For labels in

the domain of Gg, if g[L] = (φ, ins) then f [L] is defined as (φ ∧Q, ins), and using
the proof for wpidg (L) ∧ Q ⇒ wpid

f
(L), and the original proof for φ ⇒ wpidg (L) we

get a certificate for φ ∧Q⇒ wpid
f

(L).
It remains to see the cases for the assertions introduced at labels Lret′ and Lcall′ .

In the latter, the certificate corresponding to the proof obligation related to the
precondition of g is used. The former proof obligation is clearly provable as well.

Proof of auxiliary property.

Proof. We sketch here a proof for the properties stated above. The proof
is performed by simultaneous induction with the order relation induced by the
definition of well-annotated programs, for the following goals:

∀L ∈ domain of Gg. wpg(L) ∧Q⇒ wpf (L)

and

∀L ∈ domain of Gg. wpidg (L) ∧Q⇒ wpid
f

(L) .

— In case g[L] = (φ, ins) the first property is satisfied by definition and the
second one can be proved by case analysis in ins.

— If g[L] = r1 := r2, L
′ then, under the hypothesis that r1 is not a free variable

in Q, we get from the inductive hypothesis wpg(L′) ∧ Q ⇒ wpf (L′), a proof for
wpidg (L) ∧Q⇒ wpid

f
(L) and wpg(L) ∧Q⇒ wpf (L).

— If g[L] = b ? Lt : Lf then we have to prove wpf (L) with the hypothesis
(b ⇒ wpg(Lt) ∧ ¬b ⇒ wpg(Lf)) and Q. By inductive hypothesis we have that
wpg(Lt)∧Q⇒ wpf (Lt) and that wpg(Lf)∧Q⇒ wpf (Lf). Hence, we can construct
a proof for b⇒ wpf (Lt) and ¬b⇒ wpf (Lf).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · Gilles Barthe et al.

— In case g[L] = return r then wpf (L) is equal to post(g)[r/res] ∧Q. And, since
wpg(L) = post(g)[r/res], the consequence is clearly satisfied.

— Since any other instruction is similar and does not represent interesting diffi-
culties, a special treatment is not deserved.

4.10 Summary

In Section 3 we have showed that compiling programs from a high-level language
to an RTL representation preserves proof obligations as long as no optimization is
performed.

In this section we have studied several standard compiler optimizations, and un-
der each particular case, we have showed that proof obligations may be modified
and, thus, that original certificates may not be reused. To solve this difficulty, we
have proposed a variety of techniques, some of them based on the existence of a
certifying analyzer and some others solved by ad-hoc techniques. Optimizations
that rely on a certifying analyzer range from constant propagation or copy propa-
gation, to common subexpression elimination or a loop optimization like induction
variable strength reduction.

When dealing with dead register elimination we have showed a difficulty that
arises when dead registers occur on invariants and we have proposed a transforma-
tion on both the program and the specifications called ghost variable introduction.
Finally, we prove that, after applying this transformation, certificate translation for
the modified proof obligations is quite simple.

We have shown that unreachable code elimination is trivial, and we have also
proposed particular techniques to deal with function inlining and register allocation.
The latter is in fact a simplified version of the standard phase of code generation,
and relies on the simplifying assumption that dead variable elimination has already
been performed.

5. OTHER COMPILATION TECHNIQUES AND RELATED WORK

The purpose of this section is to position our work w.r.t. recent developments in
compilation, such as certified compilers, translation validation, certifying compila-
tion and provable compilation through sound elementary rules. Furthermore, we
also position our work with respect to related work.

5.1 Certifying Compilation

Certifying compilation is an extension of a standard compiler that automatically
generates a proof that the compiled code satisfies some specific properties. A certi-
fying compiler is built from three main components: A preliminary step consists of
propagating basic information, such as the result of type inference, from the source
level to the compiled program. This is in some way convenient since a higher level
of abstraction is more adequate for the inference of particular properties. However,
the goal is to verify properties on the low-level side, with a more concrete execution
environment. Thus, it is not always convenient to limit the analysis over the source
program, since essential information may be lost because of this abstraction.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 37

Another step consists of inferring loop invariants, possible reusing information
inferred about the source program if preserved by the compilation. Notice that
requiring automaticity on loop invariance inference is a significant obstacle that
restricts the complexity of properties that can be considered. Finally a special
purpose VCGen is applied to the result of the compilation to generate a set of
proof obligations, the proof of which ensure that the executable code adheres to
some safety policies. To complete the process, these proof obligations are discharged
by an automatic theorem prover.

Automatic generation of certificates comes at a cost. As said before, required
properties must be restricted to sufficiently simple safety policies. But in addition,
a certifying analyzer may fail to generate a certificate for the output code. However,
it does not affect the soundness of the approach.

In addition to generate a certificate ensuring the correctness of the output code,
certifying compilers may rely on a static analysis phase to remove unnecessary
runtime checks and, thus, improving performance.

The Touchstone compiler [Necula and Lee 1998] is a notable example of certifying
compiler, which generates type-safety certificates for a fragment of C. In Chapter 6
of his thesis [Necula 1998], Necula studies the impact of a particular set of standard
program optimizations on certifying compilation, including some of the optimiza-
tions considered in this paper. For each optimization, an informal analysis is made,
indicating whether the transformation requires reinforcing the program invariants,
or whether the transformation does not change proof obligations. For a particular
set of sufficiently simple proof obligations, Necula shows that if the VCGen prop-
agates proof obligations backwards, then the verification conditions are preserved.
However, he shows that it is not the case with some more sophisticated transfor-
mations like induction variable strength reduction and redundant conditional elim-
ination. The former optimization is a clear example where it becomes necessary
to strengthen invariants in order to keep proof obligations provable. Furthermore,
Necula shows that in both optimizations the associated program certificate must be
modified. While we perform a systematic and implicitly defined transformation of
the certificate, Necula relies on the capability of a theorem prover, possibly modulo
user-provided hints, to discharge the modified proof obligation. Even if delegating
this task to a powerful theorem prover may be feasible for sufficiently simple safety
properties, it is not clear how it scales up to arbitrary functional properties.

There are many commonalities between his work and ours, but also some notable
differences. First, the VCGen used by Necula propagates invariants backwards,
whereas ours generates a proof obligation for each invariant. Second, we assume
that the program comes with its annotations and certificate, and we have not only
to strengthen the annotations, but also to transform the certificate. This is the main
difficulty with respect to Necula’s work: when he observes that the transformation
produces a logically equivalent proof obligation, we have to define a function that
maps proofs of the original proof obligation into proofs of the new proof obligation
after optimization.

5.2 Certified Compilers

Compiler correctness [Guttman and Wand 1995] aims at showing that a compiler
preserves the semantics of programs. Traditionally, semantics preservation is un-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · Gilles Barthe et al.

derstood as the preservation of the input/output behavior of programs; thus most
compiler correctness statements are of the form: if running a program p on an
initial configuration c returns some final result v, then running the corresponding
compiled program TpU on the corresponding initial configuration c′ shall also return
the same final result v.

Because compilers are complex programs, the task of compiler verification can
be daunting; in order to tame the complexity of verification and bring stronger
guarantees on the validity of compiler correctness proofs, certified compilation, see
e.g. [Bertot et al. 2004; Leroy 2006b; Blazy et al. 2006; Strecker 2002], advocates
the use of a proof assistant for machine-checking compiler correctness results. Cer-
tified compilation involves modeling formally the source and target languages, their
semantics, and providing an executable definition T.U of the compiler. Then the
correctness statement is expressed in the language of the proof assistant, and proved
using the logic of the proof assistant. In proof assistants that support the notion
of proof object, the task of turning T.U into a certified compiler amounts to build
a term H of type:

∀p : Program,∀c : Config,∀v : Res, 〈p, c〉 ⇓ v =⇒ 〈TpU, c〉 ⇓ v

Certified compilation is not motivated by mobile code, and has not been exploited
in the context of PCC architectures. In fact, certified compilation is particularly
relevant for the critical software industry, where the code producers and the code
consumers belong to the same entity, or trust each other. Nevertheless, it is possible
to construct certificate translators from certified compilers, as explained below and
suggested independently by Leroy [Leroy 2006b].

Under suitable conditions (evaluation is deterministic, compilation preserves non-
termination and programs do not get stuck), one can prove fromH that the compiler
reflects semantics, i.e. one can build a proof object H ′ that establishes the dual of
preservation of semantics:

∀p : Program,∀c : Config,∀v : Res, 〈TpU, c〉 ⇓ v ⇒ 〈p, c〉 ⇓ v

This proof object may be exploited to transfer evidence from source code pro-
grams to compiled programs. Indeed, assume that we want to prove the following
property for some program p:

∀c : Config,∀v : Res, 〈TpU, c〉 ⇓ v ⇒ R(c, v)

where R(c, v) establishes a formal relation between input configurations and re-
sults. Then, if we have constructed the proof object certp for

∀c : Config,∀v : Res, 〈p, c〉 ⇓ v ⇒ R(c, v)

one can build the proof object certTpU for

λc : Config.λv : Res.λHeval : (〈TpU, c〉 ⇓ v). certp(H ′ p c Heval)
: ∀c : Config,∀v : Res, (〈TpU, c〉 ⇓ v) ⇒ R(c, v)

Thus it is in principle possible to build certificate translators from certified compil-
ers. There are however some drawbacks:

— the certificate certTpU of the compiled program TpU encapsulates the definition
and correctness proof of the compiler, as well as the source code and its certificate.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 39

Hence, the certificate certTpU is very large, and costly to check. Leroy [Leroy 2006b]
has suggested that partial evaluation could be used to eliminate much of the proof of
correctness of the compiler from the certificate, but the applicability of the method
has not been demonstrated;

— traditionally, certified compilers are shown to preserve the input/output be-
havior of programs, thus the approach rules out properties that are expressed with
intermediate assertions or ghost variables. Unfortunately, many interesting prop-
erties of programs must be specified using assertions or ghost variables. Thus the
approach is restrictive. Leroy [Leroy 2006a] has explored means to extend the scope
of compiler correctness results beyond input/output behaviors, but his work does
not cover yet preservation of intermediate assertions.

Compcert [Leroy 2006b; Blazy et al. 2006] is a notable example of a certified mod-
erately optimizing compiler. The Compcert compiler generates PowerPC code for
a significant subset of the C language, and performs several standard optimizations
such as constant propagation, common subexpression elimination, register alloca-
tion and branch tunneling. The compiler is almost completely specified in the Coq
proof assistant, and is accompanied with a proof, in Coq, of a set of lemmas stating
that the generated assembly code is semantically equivalent to the input source
program. The compiler is executable and can be translated to Ocaml with the
extraction mechanism provided by the Coq tool; the performance of the extracted
compiler is very reasonable.

5.3 Translation Validation

Translation validation is an approach to verify program transformation by checking,
for each individual translation, a correspondence between the output and input
programs. It consists mainly of a common model to abstract the semantics of the
input and output programs, and an automatic verification procedure that checks
whether the semantics of the generated program simulates the semantics of the
source program. Since the validation phase is independent of the compiler, i.e. there
is no need to specify and verify the compiler, it does not constrain the evolution of
the compiler.

Verifying correctness of the compilation consists of giving, for each input program,
a proof that the compiled code preserves the semantics of the original one. The
difference with verifying the compiler is that instead of establishing once and for
all that every output code will be equivalent to the source program, the compiler
provides a proof of this equivalence for each compilation result.

Initial work on translation validation [Pnueli et al. 1998] proposed a tool to verify
the correctness for a small set of proof obligations on a restricted subset of target
programs. Necula [Necula 2000] extended this work by implementing a transla-
tion validation infrastructure in the context of a GNU C compiler. It handles the
intermediate phases of a realistic compiler, but the set of optimizations under con-
sideration are reduced to structure preserving transformations. Further results on
translation validation have presented a more comprehensive set of program opti-
mizations [Barrett et al. 2005; Zuck et al. 2002]. These include simple structure
preserving optimizations as well as non structure-preserving transformations such
as loop inversion, loop unrolling, loop fusion and strength reduction. A recent pub-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 · Gilles Barthe et al.

lication [Tristan and Leroy 2008] presents the development of a formally verified
translation validator for instruction scheduling optimizations, specified and verified
in the Coq proof assistant.

As discussed in Section 5.2, it is also possible to construct certificate translators
from translation validation. Again, assuming we have a notion of proof object,
instead of a proof term H such that for any program p:

H : ∀p : Program,∀c : Config,∀v : Res, 〈p, c〉 ⇓ v =⇒ 〈TpU, c〉 ⇓ v

we will have, for every successfully compiled program p, a proof term Hp such that

Hp : ∀c : Config,∀v : Res, 〈p, c〉 ⇓ v =⇒ 〈TpU, c〉 ⇓ v

The same reasoning explained above with respect to certified compilers permits
to build certificate translators from translation validation. This approach has the
advantage that a certificate does not encapsulate a definition of the compiler. How-
ever, since the output program is not verified independently of the source program,
the latter must be delivered as a component of the certificate.

5.4 Provable Optimizations through Sound Elementary Rules

Rhodium [Lerner et al. 2005] is a special purpose framework aimed at specifying
and proving the correctness of program analyses and optimizations. To this end,
Rhodium relies on a domain-specific language for specifying the analysis and trans-
formation by means of local rules. A set of statements define the abstract domain
of the analysis, called dataflow facts, and specifies its meaning as a predicate on
the execution state. Transfer functions of the analysis are specified by the so called
propagation rules, that declare the generation or propagation of dataflow facts
through single edges. They are specified for a generic instantiation of variables and
are local in the sense that they relate only adjacent program nodes. Analyzing the
correctness of each local rule is restricted to verifying it with respect to a single
execution step. Rhodium generates, for each local propagation rule, a proof obliga-
tion in terms of its semantic interpretation, and then submits them to an automatic
prover that attempts to discharge them. Given the validity of every local elemen-
tary rule, the validity of the entire analysis follows by a common property of the
framework (proved once, by hand, and instantiated for any analysis.)

Finally, a set of transformation rules specifies how this inferred data-flow facts are
used to trigger program transformations. In the same spirit, giving a formal proof
for each elementary transformation rule is sufficient to guarantee the correctness of
the whole transformation.

5.5 Proof Transforming Compilation

The Spec# project [Barnett et al. 2005; Leino and Schulte 2004; Leino 2006] defines
an extension of C# with annotations, and a compiler from annotated programs to
annotated .NET files, which can be run using the .NET platform, and checked
against their specifications at run-time or verified statically with an automatic
prover. The Spec# project implicitly assumes some relation between source and
bytecode levels, but does not attempt to formalize this relation. There is no notion
of certificate, and thus no need to transform them. Pavlova and Burdy have fol-
lowed a similar line of work [Burdy and Pavlova 2006] to define a Bytecode Modeling
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 41

Language (BML), and a VCGen for annotated bytecode programs. Annotations
of the Java Modeling Language are translated into BML, and the generated proof
obligations are sent to an automatic theorem prover. They present a partial for-
malization of the relation of verification conditions at source and bytecode levels,
but they do not consider proof transformations. In a recent work, Barthe, Gregoire
and Pavlova [Barthe et al. 2008] establish the preservation of proof obligations from
source Java programs to compiled code, obtained by nonoptimizing compilation.

In a similar spirit, Bannwart and Müller [Bannwart and Müller 2005], provide
Hoare-like logics for significant sequential fragments of Java source code and byte-
code, and illustrate how derivations of correctness can be mapped from source
programs to bytecode programs obtained by nonoptimizing compilation. Müller
and Nordio [Müller and Nordio 2007] have developed a proof transforming pro-
cedure for a Java to Java Bytecode compiler, in particular, dealing with abrupt
termination. They have explained the complications of including a subset of Java
with try-catch, try-finally and break statements, and showed how they may
be handled. More recently, Nordio, Müeller and Meyer have formalized [Nordio
et al. 2008; Nordio et al. 2008], using the Isabelle proof assistant, a proof trans-
forming procedure from a subset of the Eiffel programming language to Microsoft’s
Common Intermediate Language.

Furthermore, there are relevant results on transferring evidence from source
programs to compiled programs in scenarios that use alternative technologies for
establishing program correctness. These results include type-preserving compila-
tion [Barthe et al. 2006; Tarditi et al. 1996], and Rival’s method [Rival 2004] to
translate program invariants generated at source level using abstract interpretation
techniques in order to verify safety properties.

Developing further the approach of describing data-flow analysis as type judg-
ments [Laud et al. 2006], Saabas and Uustalu [Saabas and Uustalu 2006] propose to
extend these type-based methods to describe also program transformations. They
illustrate the feasibility of the method by explaining in detail two particular trans-
formations: Common subexpression elimination and Dead Variable elimination.
They have demonstrated the correctness of both transformations, by derivability of
Hoare logic proofs, but also showed a constructive mechanism to transform a Hoare
proof of the original program to a Hoare proof of the transformed program. How-
ever, it is not clear from the paper how the approach extends to arbitrary program
transformations.

Another instance of proof preserving compilation is the work of Shao et al. [Shao
et al. 2005]. They define a framework to reason and certify programs beyond simple
safety policies but still maintaining properties at a decidable level. In addition, they
show that certificates are preserved after applying CPS and closure conversion.

5.6 Proof Producing Analysis

One key component of a certificate translator is the certifying analyzer. For each
standard optimization we have shown that defining a certifying analyzer is straight-
forward due to the simplicity of the generated proof obligations. It is possible to
define a generic certifying analyzer under mild assumptions on the relation between
the analysis and the verification infrastructure. This is a substantial improvement
if we plan to extend certificate translation to arbitrary semantics preserving trans-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

42 · Gilles Barthe et al.

formations.
The possibility of defining such certifying analyzers has already been studied

independently by Wildmoser, Chaieb and Nipkow [Wildmoser et al. 2005] in the
context of a bytecode language and by Seo, Yang and Yi [Seo et al. 2003] in the
context of a simple imperative language. Seo et al. propose an algorithm that
automatically constructs safety proofs in Hoare logic from abstract interpretation
results.

6. CONCLUDING REMARKS

Certificate translation provides a means to transfer the benefits of source code
verification to code consumers using PCC architectures, extending the scope of
PCC to arbitrarily complex policies.

We have introduced the principles of certificate translation and shown that certifi-
cate translators exist for many common optimizations. For concreteness, we focused
on a particular programming language and set of optimizations. In a subsequent
work [Barthe and Kunz 2008], we use the framework of abstract interpretation to
give a set of sufficient conditions for the existence of certifying analyzers and certifi-
cate translators. This latter work shows that the concept of certificate translation is
potentially applicable in a wide range of settings. To complement these theoretical
underpinnings, we would like to illustrate the practicality of certificate translation
through prototype implementations and case studies. On a more general perspec-
tive, we would also like to consider applications of certificate translation in the
component-based development of security-sensitive software.

REFERENCES

Bannwart, F. Y. and Müller, P. 2005. A program logic for bytecode. Electronic Notes in
Theoretical Computer Science 141, 255–273.

Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and Leino, K. R. M. 2005. Boogie:
A modular reusable verifier for object-oriented programs. In Formal Methods for Components
and Objects. Lecture Notes in Computer Science, vol. 4111. Springer-Verlag.

Barnett, M., Leino, K. R. M., and Schulte, W. 2005. The Spec# programming system:
An overview. In Construction and Analysis of Safe, Secure and Interoperable Smart Devices:
Proceedings of the International Workshop CASSIS 2004, G. Barthe, L. Burdy, M. Huisman,
J.-L. Lanet, and T. Muntean, Eds. Lecture Notes in Computer Science, vol. 3362. Springer-
Verlag, 151–171.

Barrett, C. W., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., and Zuck, L. D. 2005. Tvoc: A
translation validator for optimizing compilers. In CAV, K. Etessami and S. K. Rajamani, Eds.
Number 3576 in Lecture Notes in Computer Science. Springer-Verlag, 291–295.

Barthe, G., Burdy, L., Charles, J., Grégoire, B., Huisman, M., Lanet, J.-L., Pavlova,
M., and Requet, A. 2007. JACK: A tool for validation of security and behaviour of Java
applications. In Formal Methods for Components and Objects: Revised Lectures from the 5th
International Symposium FMCO 2006. Number 4709 in Lecture Notes in Computer Science.
Springer-Verlag, 152–174.

Barthe, G., Grégoire, B., Kunz, C., and Rezk, T. 2006. Certificate translation for optimiz-
ing compilers. In Static Analysis Symposium, K. Yi, Ed. Number 4134 in Lecture Notes in
Computer Science. Springer-Verlag, 301–317.

Barthe, G., Grégoire, B., and Pavlova, M. 2008. Preservation of proof obligations for Java. In
International Joint Conference on Automated Reasoning. Lecture Notes in Computer Science.
Springer-Verlag. To appear.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Certificate Translation for Optimizing Compilers · 43

Barthe, G. and Kunz, C. 2008. Certificate translation in abstract interpretation. In European
Symposium on Programming. Number 4960 in Lecture Notes in Computer Science. Springer-
Verlag, 368–382.

Barthe, G., Naumann, D., and Rezk, T. 2006. Deriving an information flow checker and certi-
fying compiler for Java. In Symposium on Security and Privacy. IEEE Press.

Barthe, G., T.Rezk, and Saabas, A. 2005. Proof obligations preserving compilation. In Work-
shop on Formal Aspects in Security and Trust, T. Dimitrakos, F. Martinelli, P. Ryan, and
S. Schneider, Eds. Number 3866 in Lecture Notes in Computer Science. Springer-Verlag, 112–
126.

Bertot, Y., Grégoire, B., and Leroy, X. 2004. A structured approach to proving compiler
optimizations based on dataflow analysis. In TYPES, J. Filliâtre, C. Paulin-Mohring, and
B. Werner, Eds. Lecture Notes in Computer Science, vol. 3839. Springer, 66–81.

Blazy, S., Dargaye, Z., and Leroy, X. 2006. Formal verification of a c compiler front-end. In
FM, J. Misra, T. Nipkow, and E. Sekerinski, Eds. Lecture Notes in Computer Science, vol.
4085. Springer, 460–475.

Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K., and Poll,
E. 2003. An overview of JML tools and applications. In Workshop on Formal Methods for
Industrial Critical Systems. Electronic Notes in Theoretical Computer Science, vol. 80. Elsevier,
73–89.

Burdy, L. and Pavlova, M. 2006. Java bytecode specification and verification. In Symposium
on Applied Computing. ACM Press, 1835–1839.

Chalin, P., Kiniry, J. R., Leavens, G. T., and Poll, E. 2006. Beyond assertions: Advanced
specification and verification with JML and ESC/Java2. In Formal Methods for Components
and Objects, Springer-Verlag, Ed. Lecture Notes in Computer Science, vol. 4111. 342–363.

Guttman, J. D. and Wand, M. 1995. Special issue on VLISP. Lisp and Symbolic Computa-
tion 8, 1/2 (Mar.).

Laud, P., Uustalu, T., and Vene, V. 2006. Type systems equivalent to data-flow analyses for
imperative languages. Theoretical Computer Science 364, 3, 292–310.

Leino, K. R. M. 2006. Specifying and verifying programs in spec#. In Ershov Memorial Con-
ference, I. Virbitskaite and A. Voronkov, Eds. Lecture Notes in Computer Science, vol. 4378.
Springer, 20.

Leino, K. R. M. and Schulte, W. 2004. Exception safety for c#. In SEFM. IEEE Computer
Society, 218–227.

Lerner, S., Millstein, T., Rice, E., and Chambers, C. 2005. Automated soundness proofs for
dataflow analyses and transformations via local rules. In POPL ’05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, New
York, NY, USA, 364–377.

Leroy, X. 2006a. Coinductive big-step operational semantics. In Programming Languages and
Systems: Proceedings of the 15th European Symposium on Programming, ESOP 2006. Lecture
Notes in Computer Science, vol. 3924. Springer-Verlag, 54–68.

Leroy, X. 2006b. Formal certification of a compiler back-end or: programming a compiler with a
proof assistant. In Principles of Programming Languages, J. G. Morrisett and S. L. P. Jones,
Eds. ACM Press, 42–54.

Müller, P. and Nordio, M. 2007. Proof-transforming compilation of programs with abrupt ter-
mination. In SAVCBS ’07: Proceedings of the 2007 conference on Specification and verification
of component-based systems. ACM, New York, NY, USA, 39–46.

Necula, G. 1998. Compiling with proofs. Ph.D. thesis, Carnegie Mellon University. Available as
Technical Report CMU-CS-98-154.

Necula, G. C. 1997. Proof-carrying code. In Principles of Programming Languages. ACM Press,
New York, NY, USA, 106–119.

Necula, G. C. 2000. Translation validation for an optimizing compiler. ACM SIGPLAN No-
tices 35, 5, 83–94.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

44 · Gilles Barthe et al.

Necula, G. C. and Lee, P. 1998. The design and implementation of a certifying compiler. In
Programming Languages Design and Implementation. Vol. 33. ACM Press, New York, NY,
USA, 333–344.

Nordio, M., Müller, P., and Meyer, B. 2008. Formalizing proof-transforming compilation of
eiffel programs. Tech. Rep. 587, ETH Zurich.

Nordio, M., Müller, P., and Meyer, B. 2008. Proof-transforming compilation of eiffel programs.
In TOOLS-EUROPE, R. Paige, Ed. Lecture Notes in Business and Information Processing.
Springer-Verlag.

Pnueli, A., Singerman, E., and Siegel, M. 1998. Translation validation. In Tools and Algorithms
for the Construction and Analysis of Systems, B. Steffen, Ed. Lecture Notes in Computer
Science, vol. 1384. Springer-Verlag, 151–166.

Rival, X. 2004. Symbolic Transfer Functions-based Approaches to Certified Compilation. In
Principles of Programming Languages. ACM Press, 1–13.

Saabas, A. and Uustalu, T. 2008. Program and proof optimizations with type systems. Journal
of Logic and Algebraic Programming 77, 1–2, 131–154.

Seo, S., Yang, H., and Yi, K. 2003. Automatic Construction of Hoare Proofs from Abstract
Interpretation Results. In Asian Programming Languages and Systems Symposium, A. Ohori,
Ed. Lecture Notes in Computer Science, vol. 2895. Springer-Verlag, 230–245.

Shao, Z., Trifonov, V., Saha, B., and Papaspyrou, N. 2005. A type system for certified binaries.
ACM Trans. Program. Lang. Syst. 27, 1, 1–45.

Strecker, M. 2002. Formal Verification of a Java Compiler in Isabelle. In Conference on Auto-
mated Deduction, A. Voronkov, Ed. Lecture Notes in Computer Science, vol. 2392. Springer-
Verlag, London, UK, 63–77.

Tarditi, D., Morrisett, J. G., Cheng, P., Stone, C., Harper, R., and Lee, P. 1996. TIL: A
type-directed optimizing compiler for ML. In Programming Languages Design and Implemen-
tation. Association of Computing Machinery, 181–192.

Tristan, J. and Leroy, X. 2008. Formal verification of translation validators: a case study on
instruction scheduling optimizations. SIGPLAN Not. 43, 1, 17–27.

Wildmoser, M., Chaieb, A., and Nipkow, T. 2005. Bytecode analysis for proof carrying code.
In Bytecode Semantics, Verification, Analysis and Transformation, F. Spoto, Ed. Electronic
Notes in Theoretical Computer Science, vol. 141. Elsevier.

Zuck, L. D., Pnueli, A., Fang, Y., and Goldberg, B. 2002. Voc: A translation validator for
optimizing compilers. Electronic Notes in Theoretical Computer Science 65, 2.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

