The Coq Proof Assistant Reference Manual

July 20, 2007

Version v8.1 ${ }^{1}$

The Coq Development Team

LogiCal Project

[^0]Vv8.1, July 20, 2007
© © INRIA 1999-2004 (COQ versions 7.x)
© INRIA 2004-2006 (COQ versions 8.x)
This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is presently available at
http: / /www. opencontent. org/openpub). Options A and B of the licence are not elected.

Introduction

This document is the Reference Manual of version v8.1 of the CoQ proof assistant. A companion volume, the CoQ Tutorial, is provided for the beginners. It is advised to read the Tutorial first. A new book [13] on practical uses of the COQ system will be published in 2004 and is a good support for both the beginner and the advanced user.

The CoQ system is designed to develop mathematical proofs, and especially to write formal specifications, programs and to verify that programs are correct with respect to their specification. It provides a specification language named Gallina. Terms of Gallina can represent programs as well as properties of these programs and proofs of these properties. Using the so-called Curry-Howard isomorphism, programs, properties and proofs are formalized in the same language called Calculus of Inductive Constructions, that is a λ-calculus with a rich type system. All logical judgments in CoQ are typing judgments. The very heart of the Coq system is the type-checking algorithm that checks the correctness of proofs, in other words that checks that a program complies to its specification. COQ also provides an interactive proof assistant to build proofs using specific programs called tactics.

All services of the COQ proof assistant are accessible by interpretation of a command language called the vernacular.

COQ has an interactive mode in which commands are interpreted as the user types them in from the keyboard and a compiled mode where commands are processed from a file.

- The interactive mode may be used as a debugging mode in which the user can develop his theories and proofs step by step, backtracking if needed and so on. The interactive mode is run with the coqtop command from the operating system (which we shall assume to be some variety of UNIX in the rest of this document).
- The compiled mode acts as a proof checker taking a file containing a whole development in order to ensure its correctness. Moreover, CoQ's compiler provides an output file containing a compact representation of its input. The compiled mode is run with the coqc command from the operating system.

These two modes are documented in chapter 12.
Other modes of interaction with COQ are possible: through an emacs shell window, an emacs generic user-interface for proof assistant (ProofGeneral [1]) or through a customized interface (PCoq [120]). These facilities are not documented here. There is also a CoQ Integrated Development Environment described in Chapter 14.

How to read this book

This is a Reference Manual, not a User Manual, then it is not made for a continuous reading. However, it has some structure that is explained below.

- The first part describes the specification language, Gallina. Chapters 1 and 2 describe the concrete syntax as well as the meaning of programs, theorems and proofs in the Calculus of Inductive Constructions. Chapter 3 describes the standard library of COQ. Chapter 4 is a mathematical description of the formalism. Chapter 5 describes the module system.
- The second part describes the proof engine. It is divided in five chapters. Chapter 6 presents all commands (we call them vernacular commands) that are not directly related to interactive proving: requests to the environment, complete or partial evaluation, loading and compiling files. How to start and stop proofs, do multiple proofs in parallel is explained in Chapter 7. In Chapter 8, all commands that realize one or more steps of the proof are presented: we call them tactics. The language to combine these tactics into complex proof strategies is given in Chapter 9. Examples of tactics are described in Chapter 10.
- The third part describes how to extend the syntax of CoQ. It corresponds to the Chapter 11.
- In the fourth part more practical tools are documented. First in Chapter 12, the usage of coqc (batch mode) and coqt op (interactive mode) with their options is described. Then, in Chapter 13, various utilities that come with the COQ distribution are presented. Finally, Chapter 14 describes the COQ integrated development environment.

At the end of the document, after the global index, the user can find specific indexes for tactics, vernacular commands, and error messages.

List of additional documentation

This manual does not contain all the documentation the user may need about COQ. Various informations can be found in the following documents:

Tutorial A companion volume to this reference manual, the COQ Tutorial, is aimed at gently introducing new users to developing proofs in COQ without assuming prior knowledge of type theory. In a second step, the user can read also the tutorial on recursive types (document RecTutorial.ps).

Addendum The fifth part (the Addendum) of the Reference Manual is distributed as a separate document. It contains more detailed documentation and examples about some specific aspects of the system that may interest only certain users. It shares the indexes, the page numbers and the bibliography with the Reference Manual. If you see in one of the indexes a page number that is outside the Reference Manual, it refers to the Addendum.

Installation A text file INSTALL that comes with the sources explains how to install CoQ.
The CoQ standard library A commented version of sources of the COQ standard library (including only the specifications, the proofs are removed) is given in the additional document Library.ps.

Credits

COQ is a proof assistant for higher-order logic, allowing the development of computer programs consistent with their formal specification. It is the result of about ten years of research of the Coq project. We shall briefly survey here three main aspects: the logical language in which we write our axiomatizations and specifications, the proof assistant which allows the development of verified mathematical proofs, and the program extractor which synthesizes computer programs obeying their formal specifications, written as logical assertions in the language.

The logical language used by COQ is a variety of type theory, called the Calculus of Inductive Constructions. Without going back to Leibniz and Boole, we can date the creation of what is now called mathematical logic to the work of Frege and Peano at the turn of the century. The discovery of antinomies in the free use of predicates or comprehension principles prompted Russell to restrict predicate calculus with a stratification of types. This effort culminated with Principia Mathematica, the first systematic attempt at a formal foundation of mathematics. A simplification of this system along the lines of simply typed λ-calculus occurred with Church's Simple Theory of Types. The λ-calculus notation, originally used for expressing functionality, could also be used as an encoding of natural deduction proofs. This Curry-Howard isomorphism was used by N. de Bruijn in the Automath project, the first full-scale attempt to develop and mechanically verify mathematical proofs. This effort culminated with Jutting's verification of Landau's Grundlagen in the 1970's. Exploiting this Curry-Howard isomorphism, notable achievements in proof theory saw the emergence of two type-theoretic frameworks; the first one, Martin-Löf's Intuitionistic Theory of Types, attempts a new foundation of mathematics on constructive principles. The second one, Girard's polymorphic λ-calculus F_{ω}, is a very strong functional system in which we may represent higher-order logic proof structures. Combining both systems in a higher-order extension of the Automath languages, T. Coquand presented in 1985 the first version of the Calculus of Constructions, CoC. This strong logical system allowed powerful axiomatizations, but direct inductive definitions were not possible, and inductive notions had to be defined indirectly through functional encodings, which introduced inefficiencies and awkwardness. The formalism was extended in 1989 by T. Coquand and C. Paulin with primitive inductive definitions, leading to the current Calculus of Inductive Constructions. This extended formalism is not rigorously defined here. Rather, numerous concrete examples are discussed. We refer the interested reader to relevant research papers for more information about the formalism, its meta-theoretic properties, and semantics. However, it should not be necessary to understand this theoretical material in order to write specifications. It is possible to understand the Calculus of Inductive Constructions at a higher level, as a mixture of predicate calculus, inductive predicate definitions presented as typed PROLOG, and recursive function definitions close to the language ML.

Automated theorem-proving was pioneered in the 1960's by Davis and Putnam in propositional calculus. A complete mechanization (in the sense of a semi-decision procedure) of classical first-order logic was proposed in 1965 by J.A. Robinson, with a single uniform inference rule called resolution. Resolution relies on solving equations in free algebras (i.e. term structures), using the unification algorithm.

Many refinements of resolution were studied in the 1970's, but few convincing implementations were realized, except of course that PROLOG is in some sense issued from this effort. A less ambitious approach to proof development is computer-aided proof-checking. The most notable proof-checkers developed in the 1970's were LCF, designed by R. Milner and his colleagues at U. Edinburgh, specialized in proving properties about denotational semantics recursion equations, and the Boyer and Moore theorem-prover, an automation of primitive recursion over inductive data types. While the Boyer-Moore theorem-prover attempted to synthesize proofs by a combination of automated methods, LCF constructed its proofs through the programming of tactics, written in a high-level functional meta-language, ML.

The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer and Moore's, is its possibility to extract programs from the constructive contents of proofs. This computational interpretation of proof objects, in the tradition of Bishop's constructive mathematics, is based on a realizability interpretation, in the sense of Kleene, due to C. Paulin. The user must just mark his intention by separating in the logical statements the assertions stating the existence of a computational object from the logical assertions which specify its properties, but which may be considered as just comments in the corresponding program. Given this information, the system automatically extracts a functional term from a consistency proof of its specifications. This functional term may be in turn compiled into an actual computer program. This methodology of extracting programs from proofs is a revolutionary paradigm for software engineering. Program synthesis has long been a theme of research in artificial intelligence, pioneered by R. Waldinger. The Tablog system of Z. Manna and R. Waldinger allows the deductive synthesis of functional programs from proofs in tableau form of their specifications, written in a variety of first-order logic. Development of a systematic programming logic, based on extensions of Martin-Löf's type theory, was undertaken at Cornell U. by the Nuprl team, headed by R. Constable. The first actual program extractor, PX, was designed and implemented around 1985 by S. Hayashi from Kyoto University. It allows the extraction of a LISP program from a proof in a logical system inspired by the logical formalisms of S. Feferman. Interest in this methodology is growing in the theoretical computer science community. We can foresee the day when actual computer systems used in applications will contain certified modules, automatically generated from a consistency proof of their formal specifications. We are however still far from being able to use this methodology in a smooth interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time systems taking advantage of special hardware, debuggers, and the like. We hope that CoQ can be of use to researchers interested in experimenting with this new methodology.

A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its implementation language was CAML, a functional programming language from the ML family designed at INRIA in Rocquencourt. The core of this system was a proof-checker for CoC seen as a typed λ-calculus, called the Constructive Engine. This engine was operated through a high-level notation permitting the declaration of axioms and parameters, the definition of mathematical types and objects, and the explicit construction of proof objects encoded as λ-terms. A section mechanism, designed and implemented by G. Dowek, allowed hierarchical developments of mathematical theories. This high-level language was called the Mathematical Vernacular. Furthermore, an interactive Theorem Prover permitted the incremental construction of proof trees in a top-down manner, subgoaling recursively and backtracking from dead-alleys. The theorem prover executed tactics written in CAML, in the LCF fashion. A basic set of tactics was predefined, which the user could extend by his own specific tactics. This system (Version 4.10) was released in 1989. Then, the system was extended to deal with the new calculus with inductive types by C. Paulin, with corresponding new tactics for proofs by induction. A new standard set of tactics was streamlined, and the vernacular extended for tactics execution. A package to compile programs extracted from proofs to actual computer programs in CAML or some other functional language was designed and implemented by B. Werner. A new user-interface, relying on a CAML-X interface by D.
de Rauglaudre, was designed and implemented by A. Felty. It allowed operation of the theorem-prover through the manipulation of windows, menus, mouse-sensitive buttons, and other widgets. This system (Version 5.6) was released in 1991.

Coq was ported to the new implementation Caml-light of X. Leroy and D. Doligez by D. de Rauglaudre (Version 5.7) in 1992. A new version of CoQ was then coordinated by C. Murthy, with new tools designed by C. Parent to prove properties of ML programs (this methodology is dual to program extraction) and a new user-interaction loop. This system (Version 5.8) was released in May 1993. A Centaur interface CTCoQ was then developed by Y. Bertot from the Croap project from INRIA-Sophia-Antipolis.

In parallel, G. Dowek and H. Herbelin developed a new proof engine, allowing the general manipulation of existential variables consistently with dependent types in an experimental version of COQ (V5.9).

The version V5.10 of CoQ is based on a generic system for manipulating terms with binding operators due to Chet Murthy. A new proof engine allows the parallel development of partial proofs for independent subgoals. The structure of these proof trees is a mixed representation of derivation trees for the Calculus of Inductive Constructions with abstract syntax trees for the tactics scripts, allowing the navigation in a proof at various levels of details. The proof engine allows generic environment items managed in an object-oriented way. This new architecture, due to C. Murthy, supports several new facilities which make the system easier to extend and to scale up:

- User-programmable tactics are allowed
- It is possible to separately verify development modules, and to load their compiled images without verifying them again - a quick relocation process allows their fast loading
- A generic parsing scheme allows user-definable notations, with a symmetric table-driven prettyprinter
- Syntactic definitions allow convenient abbreviations
- A limited facility of meta-variables allows the automatic synthesis of certain type expressions, allowing generic notations for e.g. equality, pairing, and existential quantification.

In the Fall of 1994, C. Paulin-Mohring replaced the structure of inductively defined types and families by a new structure, allowing the mutually recursive definitions. P. Manoury implemented a translation of recursive definitions into the primitive recursive style imposed by the internal recursion operators, in the style of the ProPre system. C. Muñoz implemented a decision procedure for intuitionistic propositional logic, based on results of R. Dyckhoff. J.C. Filliâtre implemented a decision procedure for first-order logic without contraction, based on results of J. Ketonen and R. Weyhrauch. Finally C. Murthy implemented a library of inversion tactics, relieving the user from tedious definitions of "inversion predicates".

Credits: addendum for version 6.1

The present version 6.1 of COQ is based on the V5.10 architecture. It was ported to the new language Objective Caml by Bruno Barras. The underlying framework has slightly changed and allows more conversions between sorts.

The new version provides powerful tools for easier developments.
Cristina Cornes designed an extension of the CoQ syntax to allow definition of terms using a powerful pattern-matching analysis in the style of ML programs.

Amokrane Saïbi wrote a mechanism to simulate inheritance between types families extending a proposal by Peter Aczel. He also developed a mechanism to automatically compute which arguments of a constant may be inferred by the system and consequently do not need to be explicitly written.

Yann Coscoy designed a command which explains a proof term using natural language. Pierre Crégut built a new tactic which solves problems in quantifier-free Presburger Arithmetic. Both functionalities have been integrated to the COQ system by Hugo Herbelin.

Samuel Boutin designed a tactic for simplification of commutative rings using a canonical set of rewriting rules and equality modulo associativity and commutativity.

Finally the organisation of the COQ distribution has been supervised by Jean-Christophe Filliâtre with the help of Judicaël Courant and Bruno Barras.

Lyon, Nov. 18th 1996
Christine Paulin

Credits: addendum for version 6.2

In version 6.2 of COQ, the parsing is done using camlp4, a preprocessor and pretty-printer for CAML designed by Daniel de Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptation of CoQ for camlp4, this work was continued by Bruno Barras who also changed the structure of COQ abstract syntax trees and the primitives to manipulate them. The result of these changes is a faster parsing procedure with greatly improved syntax-error messages. The user-interface to introduce grammar or pretty-printing rules has also changed.

Eduardo Giménez redesigned the internal tactic libraries, giving uniform names to Caml functions corresponding to COQ tactic names.

Bruno Barras wrote new more efficient reductions functions.
Hugo Herbelin introduced more uniform notations in the COQ specification language: the definitions by fixpoints and pattern-matching have a more readable syntax. Patrick Loiseleur introduced userfriendly notations for arithmetic expressions.

New tactics were introduced: Eduardo Giménez improved a mechanism to introduce macros for tactics, and designed special tactics for (co)inductive definitions; Patrick Loiseleur designed a tactic to simplify polynomial expressions in an arbitrary commutative ring which generalizes the previous tactic implemented by Samuel Boutin. Jean-Christophe Filliâtre introduced a tactic for refining a goal, using a proof term with holes as a proof scheme.

David Delahaye designed the Searchlsos tool to search an object in the library given its type (up to isomorphism).

Henri Laulhère produced the COQ distribution for the Windows environment.
Finally, Hugo Herbelin was the main coordinator of the COQ documentation with principal contributions by Bruno Barras, David Delahaye, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin and Patrick Loiseleur.

Christine Paulin

Credits: addendum for version 6.3

The main changes in version V6.3 was the introduction of a few new tactics and the extension of the guard condition for fixpoint definitions.
B. Barras extended the unification algorithm to complete partial terms and solved various tricky bugs related to universes.
D. Delahaye developed the AutoRewrite tactic. He also designed the new behavior of Intro and provided the tacticals First and Solve.
J.-C. Filliâtre developed the Correctness tactic.
E. Giménez extended the guard condition in fixpoints.
H. Herbelin designed the new syntax for definitions and extended the Induction tactic.
P. Loiseleur developed the Quote tactic and the new design of the Auto tactic, he also introduced the index of errors in the documentation.
C. Paulin wrote the Focus command and introduced the reduction functions in definitions, this last feature was proposed by J.-F. Monin from CNET Lannion.

Orsay, Dec. 1999
Christine Paulin

Credits: versions 7

The version V7 is a new implementation started in September 1999 by Jean-Christophe Filliâtre. This is a major revision with respect to the internal architecture of the system. The COQ version 7.0 was distributed in March 2001, version 7.1 in September 2001, version 7.2 in January 2002, version 7.3 in May 2002 and version 7.4 in February 2003.

Jean-Christophe Filliâtre designed the architecture of the new system, he introduced a new representation for environments and wrote a new kernel for type-checking terms. His approach was to use functional data-structures in order to get more sharing, to prepare the addition of modules and also to get closer to a certified kernel.

Hugo Herbelin introduced a new structure of terms with local definitions. He introduced "qualified" names, wrote a new pattern-matching compilation algorithm and designed a more compact algorithm for checking the logical consistency of universes. He contributed to the simplification of COQ internal structures and the optimisation of the system. He added basic tactics for forward reasoning and coercions in patterns.

David Delahaye introduced a new language for tactics. General tactics using pattern-matching on goals and context can directly be written from the COQ toplevel. He also provided primitives for the design of user-defined tactics in CAML.

Micaela Mayero contributed the library on real numbers. Olivier Desmettre extended this library with axiomatic trigonometric functions, square, square roots, finite sums, Chasles property and basic plane geometry.

Jean-Christophe Filliâtre and Pierre Letouzey redesigned a new extraction procedure from CoQ terms to CAML or HASKELL programs. This new extraction procedure, unlike the one implemented in previous version of COQ is able to handle all terms in the Calculus of Inductive Constructions, even involving universes and strong elimination. P. Letouzey adapted user contributions to extract ML programs when it was sensible. Jean-Christophe Filliâtre wrote coqdoc, a documentation tool for CoQ libraries usable from version 7.2.

Bruno Barras improved the reduction algorithms efficiency and the confidence level in the correctness of COQ critical type-checking algorithm.

Yves Bertot designed the SearchPattern and SearchRewrite tools and the support for the PCOQ interface (http://www-sop.inria.fr/lemme/pcoq/).

Micaela Mayero and David Delahaye introduced Field, a decision tactic for commutative fields.
Christine Paulin changed the elimination rules for empty and singleton propositional inductive types.
Loïc Pottier developed Fourier, a tactic solving linear inequalities on real numbers.
Pierre Crégut developed a new version based on reflexion of the Omega decision tactic.
Claudio Sacerdoti Coen designed an XML output for the CoQ modules to be used in the Hypertextual Electronic Library of Mathematics (HELM cf http: / /www.cs.unibo.it/helm).

A library for efficient representation of finite maps using binary trees contributed by Jean Goubault was integrated in the basic theories.

Pierre Courtieu developed a command and a tactic to reason on the inductive structure of recursively defined functions.

Jacek Chrząszcz designed and implemented the module system of COQ whose foundations are in Judicaël Courant's PhD thesis.

The development was coordinated by C. Paulin.
Many discussions within the Démons team and the LogiCal project influenced significantly the design of CoQ especially with J. Courant, J. Duprat, J. Goubault, A. Miquel, C. Marché, B. Monate and B. Werner.

Intensive users suggested improvements of the system : Y. Bertot, L. Pottier, L. Théry, P. Zimmerman from INRIA, C. Alvarado, P. Crégut, J.-F. Monin from France Telecom R \& D.

Orsay, May. 2002
Hugo Herbelin \& Christine Paulin

Credits: version 8.0

CoQ version 8 is a major revision of the CoQ proof assistant. First, the underlying logic is slightly different. The so-called impredicativity of the sort Set has been dropped. The main reason is that it is inconsistent with the principle of description which is quite a useful principle for formalizing mathematics within classical logic. Moreover, even in an constructive setting, the impredicativity of Set does not add so much in practice and is even subject of criticism from a large part of the intuitionistic mathematician community. Nevertheless, the impredicativity of set remains optional for users interested in investigating mathematical developments which rely on it.

Secondly, the concrete syntax of terms has been completely revised. The main motivations were

- a more uniform, purified style: all constructions are now lowercase, with a functional programming perfume (e.g. abstraction is now written fun), and more directly accessible to the novice (e.g. dependent product is now written forall and allows omission of types). Also, parentheses and are no longer mandatory for function application.
- extensibility: some standard notations (e.g. "<" and ">") were incompatible with the previous syntax. Now all standard arithmetic notations $\left(=,+,{ }^{*}, /,<,<=, \ldots\right.$ and more) are directly part of the syntax.

Together with the revision of the concrete syntax, a new mechanism of interpretation scopes permits to reuse the same symbols (typically $+,-, *, /,<,<=$) in various mathematical theories without any ambiguities for COQ, leading to a largely improved readability of COQ scripts. New commands to easily add new symbols are also provided.

Coming with the new syntax of terms, a slight reform of the tactic language and of the language of commands has been carried out. The purpose here is a better uniformity making the tactics and commands easier to use and to remember.

Thirdly, a restructuration and uniformisation of the standard library of COQ has been performed. There is now just one Leibniz' equality usable for all the different kinds of CoQ objects. Also, the set of real numbers now lies at the same level as the sets of natural and integer numbers. Finally, the names of the standard properties of numbers now follow a standard pattern and the symbolic notations for the standard definitions as well.

The fourth point is the release of COQIDE, a new graphical gtk2-based interface fully integrated to CoQ. Close in style from the Proof General Emacs interface, it is faster and its integration with COQ makes interactive developments more friendly. All mathematical Unicode symbols are usable within Coqide.

Finally, the module system of COQ completes the picture of COQ version 8.0. Though released with an experimental status in the previous version 7.4, it should be considered as a salient feature of the new version.

Besides, CoQ comes with its load of novelties and improvements: new or improved tactics (including a new tactic for solving first-order statements), new management commands, extended libraries.

Bruno Barras and Hugo Herbelin have been the main contributors of the reflexion and the implementation of the new syntax. The smart automatic translator from old to new syntax released with COQ is also their work with contributions by Olivier Desmettre.

Hugo Herbelin is the main designer and implementor of the notion of interpretation scopes and of the commands for easily adding new notations.

Hugo Herbelin is the main implementor of the restructuration of the standard library.
Pierre Corbineau is the main designer and implementor of the new tactic for solving first-order statements in presence of inductive types. He is also the maintainer of the non-domain specific automation tactics.

Benjamin Monate is the developer of the CoqIDE graphical interface with contributions by JeanChristophe Filliâtre, Pierre Letouzey, Claude Marché and Bruno Barras.

Claude Marché coordinated the edition of the Reference Manual for COQ V8.0.
Pierre Letouzey and Jacek Chrząszcz respectively maintained the extraction tool and module system of CoQ.

Jean-Christophe Filliâtre, Pierre Letouzey, Hugo Herbelin and contributors from Sophia-Antipolis and Nijmegen participated to the extension of the library.

Julien Narboux built a NSIS-based automatic COQ installation tool for the Windows platform.
Hugo Herbelin and Christine Paulin coordinated the development which was under the responsability of Christine Paulin.

Palaiseau \& Orsay, Apr. 2004
Hugo Herbelin \& Christine Paulin
(updated Apr. 2006)

Credits: version 8.1

CoQ version 8.1 adds various new functionalities.
Benjamin Grégoire implemented an alternative algorithm to check the convertibility of terms in the CoQ type-checker. This alternative algorithm works by compilation to an efficient bytecode that is interpreted in an abstract machine similar to Xavier Leroy's ZINC machine. Convertibility is performed by comparing the normal forms. This alternative algorithm is specifically interesting for proofs by reflection. More generally, it is convenient in case of intensive computations.

Christine Paulin implemented an extension of inductive types allowing recursively non uniform parameters. Hugo Herbelin implemented sort-polymorphism for inductive types.

Claudio Sacerdoti Coen improved the tactics for rewriting on arbitrary compatible equivalence relations. He also generalized rewriting to arbitrary transition systems.

Claudio Sacerdoti Coen added new features to the module system.
Benjamin Grégoire, Assia Mahboubi and Bruno Barras developed a new more efficient and more general simplification algorithm on rings and semi-rings.

Laurent Théry and Bruno Barras developed a new significantly more efficient simplification algorithm on fields.

Hugo Herbelin, Pierre Letouzey, Julien Forest, Julien Narboux and Claudio Sacerdoti Coen added new tactic features.

Hugo Herbelin implemented matching on disjunctive patterns.
New mechanisms made easier the communication between COQ and external provers. Nicolas Ayache and Jean-Christophe Filliâtre implemented connections with the provers CVCL, Simplify and ZENON. Hugo Herbelin implemented an experimental protocol for calling external tools from the tactic language.

Matthieu Sozeau developed RUSSELL, an experimental language to specify the behavior of programs with subtypes.

A mechanism to automatically use some specific tactic to solve unresolved implicit has been implemented by Hugo Herbelin.

Laurent Théry's contribution on strings and Pierre Letouzey and Jean-Christophe Filliâtre's contribution on finite maps have been integrated to the COQ standard library. Pierre Letouzey developed a library about finite sets "à la Objective Caml". With Jean-Marc Notin, he extended the library on lists. Pierre Letouzey's contribution on rational numbers has been integrated and extended..

Pierre Corbineau extended his tactic for solving first-order statements. He wrote a reflection-based intuitionistic tautology solver.

Pierre Courtieu, Julien Forest and Yves Bertot added extra support to reason on the inductive structure of recursively defined functions.

Jean-Marc Notin significantly contributed to the general maintenance of the system. He also took care of coqdoc.

Pierre Castéran contributed to the documentation of (co-)inductive types and suggested improvements to the libraries.

Pierre Corbineau implemented a declarative mathematical proof language, usable in combination with the tactic-based style of proof.

Finally, many users suggested improvements of the system through the Coq-Club mailing list and bug-tracker systems, especially user groups from INRIA Rocquencourt, Radbout University, University of Pennsylvania and Yale University.

Table of contents

I The language 25
1 The Gallina specification language 27
1.1 Lexical conventions 27
1.2 Terms 29
1.2.1 Syntax of terms 29
1.2.2 Types 29
1.2.3 Qualified identifiers and simple identifiers 29
1.2.4 Numerals 29
1.2.5 Sorts 29
1.2.6 Binders 30
1.2.7 Abstractions 32
1.2.8 Products 32
1.2.9 Applications 32
1.2.10 Type cast 32
1.2.11 Inferable subterms 32
1.2.12 Local definitions (let-in) 32
1.2.13 Definition by case analysis 33
1.2.14 Recursive functions 34
1.3 The Vernacular 35
1.3.1 Declarations 36
1.3.2 Definitions 37
1.3.3 Inductive definitions 38
1.3.4 Definition of recursive functions 43
1.3.5 Statement and proofs 47
2 Extensions of Gallina 49
2.1 Record types 49
2.2 Variants and extensions of match 51
2.2.1 Multiple and nested pattern-matching 51
2.2.2 Pattern-matching on boolean values: the if expression 52
2.2.3 Irrefutable patterns: the destructuring let 52
2.2.4 Controlling pretty-printing of match expressions 53
2.3 Advanced recursive functions 55
2.4 Section mechanism 58
2.4.1 Section ident 58
2.4.2 End ident 58
2.5 Module system 59
2.5.1 Module ident 59
2.5.2 End ident 60
2.5.3 Module ident := module_expression 60
2.5.4 Module Type ident 60
2.5.5 End ident 60
2.5.6 Module Type ident := module_type 61
2.5.7 Declare Module ident : module_type 61
2.5.8 Import qualid 64
2.5.9 Print Module ident 65
2.5.10 Print Module Type ident 65
2.5.11 Locate Module qualid 65
2.6 Libraries and qualified names 65
2.6.1 Names of libraries and files 65
2.6.2 Qualified names 66
2.7 Implicit arguments 67
2.7.1 Casual use of implicit arguments 68
2.7.2 Declaration of implicit arguments for a constant 68
2.7.3 Automatic declaration of implicit arguments for a constant 69
2.7.4 Mode for automatic declaration of implicit arguments 70
2.7.5 Controlling strict implicit arguments 70
2.7.6 Controlling contextual implicit arguments 70
2.7.7 Explicit applications 70
2.7.8 Displaying what the implicit arguments are 71
2.7.9 Explicitation of implicit arguments for pretty-printing 71
2.7.10 Interaction with subtyping 71
2.7.11 Canonical structures 71
2.7.12 Implicit types of variables 73
2.8 Coercions 73
2.9 Printing constructions in full 74
2.10 Printing universes 74
3 The CoQ library 75
3.1 The basic library 75
3.1.1 Notations 75
3.1.2 Logic 75
3.1.3 Datatypes 78
3.1.4 Specification 79
3.1.5 Basic Arithmetics 81
3.1.6 Well-founded recursion 83
3.1.7 Accessing the Type level 84
3.2 The standard library 84
3.2.1 Survey 84
3.2.2 Notations for integer arithmetics 85
3.2.3 Peano's arithmetic (nat) 85
3.2.4 Real numbers library 86
3.2.5 List library 88
3.3 Users' contributions 88
4 Calculus of Inductive Constructions 89
4.1 The terms 89
4.1.1 Sorts 90
4.1.2 Constants 90
4.1.3 Terms 91
4.2 Typed terms 92
4.3 Conversion rules 94
4.4 Derived rules for environments 95
4.5 Inductive Definitions 96
4.5.1 Representing an inductive definition 96
4.5.2 Types of inductive objects 99
4.5.3 Well-formed inductive definitions 99
4.5.4 Destructors 103
4.5.5 Fixpoint definitions 107
4.6 Coinductive types 111
4.7 CIC: the Calculus of Inductive Construction with impredicative Set 111
5 The Module System 113
5.1 Modules and module types 113
5.2 Typing Modules 114
II The proof engine 121
6 Vernacular commands 123
6.1 Displaying 123
6.1.1 Print qualid. 123
6.1.2 Print All 123
6.2 Requests to the environment 124
6.2.1 Check term 124
6.2.2 Eval convtactic in term 124
6.2.3 Extraction term 124
6.2.4 Opaque qualid ${ }_{1}$...qualid ${ }_{n}$. 124
6.2.5 Transparent $^{\text {6. }}$ qualid ${ }_{1}$...qualid ${ }_{n}$ 125
6.2.6 Search qualid. 125
6.2.7 SearchAbout qualid. 125
6.2.8 SearchPattern term 126
6.2.9 SearchRewrite term 127
6.2.10 Locate qualid. 127
6.2.11 The WheLP searching tool 128
6.3 Loading files 129
6.3.1 Load ident 129
6.4 Compiled files 129
6.4.1 Require dirpath 129
6.4.2 Print Modules 130
6.4.3 Declare ML Module string 1 .. $\operatorname{string}_{n}$. 130
6.4.4 Print ML Modules 130
6.5 Loadpath 130
6.5.1 Pwd 131
6.5.2 Cd string 131
6.5.3 Add LoadPath string as dirpath 131
6.5.4 Add Rec LoadPath string as dirpath 131
6.5.5 Remove LoadPath string 131
6.5.6 Print LoadPath 131
6.5.7 Add ML Path string 131
6.5.8 Add Rec ML Path string. 132
6.5.9 Print ML Path string 132
6.5.10 Locate File string 132
6.5.11 Locate Library dirpath 132
6.6 States and Reset 132
6.6.1 Reset ident 132
6.6.2 Back 132
6.6.3 Restore State string 133
6.6.4 Write State string 133
6.7 Quitting and debugging 133
6.7.1 Quit 133
6.7.2 Drop 133
6.7.3 Time command 134
6.8 Controlling display 134
6.8.1 Set Silent 134
6.8.2 Unset Silent 134
6.8.3 Set Printing Width integer. 134
6.8.4 Unset Printing Width 134
6.8.5 Test Printing Width 134
6.8.6 Set Printing Depth integer. 134
6.8.7 Unset Printing Depth 134
6.8.8 Test Printing Depth 134
6.9 Controlling the conversion algorithm 134
6.9.1 Set Virtual Machine 135
6.9.2 Unset Virtual Machine 135
6.9.3 Test Virtual Machine 135
7 Proof handling 137
7.1 Switching on/off the proof editing mode 137
7.1.1 Goal form 137
7.1.2 Qed 138
7.1.3 Admitted 138
7.1.4 Theorem ident : form 138
7.1.5 Proof term 139
7.1.6 Abort 139
7.1.7 Suspend 140
7.1.8 Resume 140
7.1.9 Existential num := term 140
7.2 Navigation in the proof tree 140
7.2.1 Undo 140
7.2.2 Set Undo num 141
7.2.3 Unset Undo 141
7.2.4 Restart 141
7.2.5 Focus 141
7.2.6 Unfocus 141
7.3 Displaying information 141
7.3.1 Show 141
7.3.2 Set Hyps Limit num 142
7.3.3 Unset Hyps Limit 142
7.4 $D P L$: A Declarative proof language for Coq (experimental) 143
8 Tactics 145
8.1 Invocation of tactics 145
8.2 Explicit proof as a term 146
8.2.1 exact term 146
8.2.2 refine term 146
8.3 Basics 146
8.3.1 assumption 146
8.3.2 clear ident 147
8.3.3 move ident $_{1}$ after ident ${ }_{2}$ 147
8.3.4 rename ident ${ }_{1}$ into ident $_{2}$ 147
8.3.5 intro 148
8.3.6 apply term 149
8.3.7 set (ident $:=$ term) 150
8.3.8 assert (ident : form) 151
8.3.9 apply term in ident 152
8.3.10 generalize term 153
8.3.11 change term 153
8.3.12 Bindings list 154
8.3.13 evar (ident:term) 154
8.3.14 instantiate (num:= term) 154
8.4 Negation and contradiction 155
8.4.1 absurd term 155
8.4.2 contradiction 155
8.5 Conversion tactics 155
8.5.1 cbv flag 1 ... flag ${ }_{n}$, lazy flag 1 ... flag ${ }_{n}$ and compute 155
8.5.2 red 156
8.5.3 hnf 156
8.5.4 simpl 157
8.5.5 unfold qualid 157
8.5.6 fold term 158
8.5.7 pattern term 158
8.5.8 Conversion tactics applied to hypotheses 158
8.6 Introductions 159
8.6.1 constructor num 159
8.7 Eliminations (Induction and Case Analysis) 160
8.7.1 induction term 160
8.7.2 destruct term 162
8.7.3 intros intro_pattern ... intro_pattern 163
8.7.4 double induction ident $_{1}$ ident $_{2}$ 165
8.7.5 decompose [qualid ${ }_{1}$... qualid ${ }_{n}$] term 165
8.7.6 functional induction (qualid term $_{1}$. .. term ${ }_{n}$). 166
8.8 Equality 167
8.8.1 rewrite term 167
8.8.2 cutrewrite $->$ term $_{1}=$ term $_{2}$ 168
8.8.3 replace term ${ }_{1}$ with term $_{2}$ 168
8.8.4 reflexivity 169
8.8.5 symmetry 169
8.8.6 transitivity term 169
8.8.7 subst ident 169
8.8.8 stepl term 169
8.8.9 f_equal 170
8.9 Equality and inductive sets 170
8.9.1 decide equality 170
8.9.2 compare term term $_{2}$ 170
8.9.3 discriminate ident 171
8.9.4 injection ident 171
8.9.5 simplify_eq ident 173
8.9.6 dependent rewrite -> ident 173
8.10 Inversion 173
8.10.1 inversion ident 173
8.10.2 Derive Inversion ident with $\operatorname{forall}(\vec{x}: \vec{T}), I \vec{t}$ Sort sort 176
8.10.3 functional inversion ident 176
8.10.4 quote ident 177
8.11 Classical tactics 177
8.11.1 classical_left, classical_right 177
8.12 Automatizing 177
8.12.1 auto 177
8.12.2 eauto 178
8.12.3 tauto 179
8.12.4 intuition tactic 180
8.12.5 rtauto 180
8.12.6 firstorder 180
8.12.7 congruence 181
8.12.8 omega 182
8.12.9 ring and ring_simplify term $_{1}$. . . term ${ }_{n}$ 182
8.12.10 field, field_simplify term . . . $^{\text {term }}{ }_{n}$ and field_simplify_eq 182
8.12.11 fourier 183
8.12.12 autorewrite with ident $_{1}$....ident ${ }_{n}$. 183
8.13 Controlling automation 184
8.13.1 The hints databases for auto and eauto 184
8.13.2 Hint databases defined in the COQ standard library 187
8.13.3 Print Hint 187
8.13.4 Hint Rewrite term $_{1}$....term ${ }_{n}$: ident 188
8.13.5 Hints and sections 188
8.13.6 Setting implicit automation tactics 188
8.14 Generation of induction principles with Scheme 189
8.15 Generation of induction principles with Functional Scheme 190
8.16 Simple tactic macros 190
9 The tactic language 191
9.1 Syntax 191
9.2 Semantics 193
9.3 Tactic toplevel definitions 201
9.3.1 Defining $\mathcal{L}_{t a c}$ functions 201
9.3.2 Printing $\mathcal{L}_{\text {tac }}$ tactics 201
9.4 Debugging $\mathcal{L}_{t a c}$ tactics 201
10 Detailed examples of tactics 203
10.1 refine 203
10.2 eapply 204
10.3 Scheme 205
10.3.1 Combined Scheme 206
10.4 Functional Scheme and functional induction 207
10.5 inversion 210
10.6 autorewrite 212
10.7 quote 214
10.7.1 Introducing variables map 215
10.7.2 Combining variables and constants 216
10.8 Using the tactical language 217
10.8.1 About the cardinality of the set of natural numbers 217
10.8.2 Permutation on closed lists 217
10.8.3 Deciding intuitionistic propositional logic 219
10.8.4 Deciding type isomorphisms 220
III User extensions 225
11 Syntax extensions and interpretation scopes 227
11.1 Notations 227
11.1.1 Basic notations 227
11.1.2 Precedences and associativity 228
11.1.3 Complex notations 228
11.1.4 Simple factorization rules 229
11.1.5 Displaying symbolic notations 230
11.1.6 The Infix command 231
11.1.7 Reserving notations 231
11.1.8 Simultaneous definition of terms and notations 232
11.1.9 Displaying informations about notations 232
11.1.10 Locating notations 232
11.1.11 Notations with recursive patterns 233
11.1.12 Notations and binders 234
11.1.13 Summary 235
11.2 Interpretation scopes 235
11.2.1 Global interpretation rules for notations 235
11.2.2 Local interpretation rules for notations 236
11.2.3 The type_scope interpretation scope 237
11.2.4 Interpretation scopes used in the standard library of COQ 237
11.2.5 Displaying informations about scopes 239
11.3 Abbreviations 240
11.4 Tactic Notations 240
IV Practical tools 243
12 The Coq commands 245
12.1 Interactive use (coqtop) 245
12.2 Batch compilation (coqc) 245
12.3 Resource file 246
12.4 Environment variables 246
12.5 Options 246
13 Utilities 249
13.1 Building a toplevel extended with user tactics 249
13.2 Modules dependencies 250
13.3 Creating a Makefile for CoQ modules 250
13.4 Documenting CoQ files with coqdoc 251
13.4.1 Principles 251
13.4.2 Usage 253
13.4.3 The coqdoc LATEX style file 256
13.5 Exporting CoQ theories to XML 257
13.5.1 Practical use of the XML exportation tool 257
13.5.2 Reflection of the logical structure into the file system 257
13.5.3 What is exported? 258
13.5.4 Inner types 258
13.5.5 Interactive exportation commands 258
13.5.6 Applications: rendering, searching and publishing 259
13.5.7 Technical informations 259
13.6 Embedded CoQ phrases inside $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ documents 261
13.7 CoQ and GNU Emacs 262
13.7.1 The CoQ Emacs mode 262
13.7.2 Proof General 262
13.8 Module specification 262
13.9 Man pages 262
14 CoQ Integrated Development Environment 263
14.1 Managing files and buffers, basic edition 263
14.2 Interactive navigation into COQ scripts 264
14.3 Try tactics automatically 265
14.4 Vernacular commands, templates 265
14.5 Queries 266
14.6 Compilation 266
14.7 Customizations 266
14.8 Using unicode symbols 267
14.8.1 Displaying unicode symbols 267
14.8.2 Defining an input method for non ASCII symbols 267
14.8.3 Character encoding for saved files 267
14.9 Building a custom COQIDE with user ML code 268
V Addendum to the Reference Manual 269
15 Extended pattern-matching 275
15.1 Patterns 275
15.2 About patterns of parametric types 278
15.3 Matching objects of dependent types 279
15.3.1 Understanding dependencies in patterns 279
15.3.2 When the elimination predicate must be provided 280
15.4 Using pattern matching to write proofs 281
15.5 Pattern-matching on inductive objects involving local definitions 282
15.6 Pattern-matching and coercions 283
15.7 When does the expansion strategy fail? 283
16 Implicit Coercions 285
16.1 General Presentation 285
16.2 Classes 285
16.3 Coercions 286
16.4 Identity Coercions 286
16.5 Inheritance Graph 287
16.6 Declaration of Coercions 287
16.6.1 Coercion qualid : class $_{1}>->$ class $_{2}$. 287
16.6.2 Identity Coercion ident: class $_{1}>->$ class $_{2}$. 288
16.7 Displaying Available Coercions 289
16.7.1 Print Classes 289
16.7.2 Print Coercions. 289
16.7.3 Print Graph 289
16.7.4 Print Coercion Paths class $_{1}$ class $_{2}$ 289
16.8 Activating the Printing of Coercions 289
16.8.1 Set Printing Coercions 289
16.8.2 Set Printing Coercion qualid. 289
16.9 Classes as Records 290
16.10Coercions and Sections 290
16.11Examples 290
17 Omega: a solver of quantifier-free problems in Presburger Arithmetic 295
17.1 Description of omega 295
17.1.1 Arithmetical goals recognized by omega 295
17.1.2 Messages from omega 296
17.2 Using omega 296
17.3 Technical data 297
17.3.1 Overview of the tactic 297
17.3.2 Overview of the OMEGA decision procedure 297
17.4 Bugs 298
18 Extraction of programs in Objective Caml and Haskell 299
18.1 Generating ML code 299
18.2 Extraction options 300
18.2.1 Setting the target language 300
18.2.2 Inlining and optimizations 300
18.2.3 Realizing axioms 302
18.3 Differences between CoQ and ML type systems 303
18.4 Some examples 304
18.4.1 A detailed example: Euclidean division 304
18.4.2 Another detailed example: Heapsort 306
18.4.3 The Standard Library 309
18.4.4 Extraction's horror museum 309
18.4.5 Users' Contributions 309
19 Program 311
19.1 Elaborating programs 311
19.1.1 Program Definition ident := term. 312
19.1.2 Program Fixpoint ident params \{order\} : type := term 313
19.1.3 Program Lemma ident : type. 314
19.1.4 Solving obligations 314
20 The ring and field tactic families 315
20.1 What does this tactic do? 315
20.2 The variables map 316
20.3 Is it automatic? 316
20.4 Concrete usage in CoQ 316
20.5 Adding a ring structure 318
20.6 How does it work? 321
20.7 Dealing with fields 322
20.8 Adding a new field structure 323
20.9 Legacy implementation 324
20.9.1 legacy ring term ${ }_{1}$... term ${ }_{n}$ 324
20.9.2 Add a ring structure 325
20.9.3 legacy field 327
20.9.4 Add Legacy Field 327
20.10History of ring 327
20.11Discussion 328
21 User defined equalities and relations 329
21.1 Relations and morphisms 329
21.2 Adding new relations and morphisms 331
21.3 Rewriting and non reflexive relations 333
21.4 Rewriting and non symmetric relations 333
21.5 Rewriting in ambiguous setoid contexts 334
21.6 First class setoids and morphisms 335
21.7 Tactics enabled on user provided relations 336
21.8 Printing relations and morphisms 336
21.9 Deprecated syntax and backward incompatibilities 337
Bibliography 339
Global Index 347
Tactics Index 356
Vernacular Commands Index 358
Index of Error Messages 362
List of Figures 365

Part I

The language

Chapter 1

The Gallina specification language

This chapter describes GaLLINA, the specification language of COQ. It allows to develop mathematical theories and to prove specifications of programs. The theories are built from axioms, hypotheses, parameters, lemmas, theorems and definitions of constants, functions, predicates and sets. The syntax of logical objects involved in theories is described in section 1.2. The language of commands, called The Vernacular is described in section 1.3.

In CoQ, logical objects are typed to ensure their logical correctness. The rules implemented by the typing algorithm are described in chapter 4.

About the grammars in the manual

Grammars are presented in Backus-Naur form (BNF). Terminal symbols are set in typewriter font. In addition, there are special notations for regular expressions.

An expression enclosed in square brackets [...] means at most one occurrence of this expression (this corresponds to an optional component).

The notation "entry sep ... sep entry" stands for a non empty sequence of expressions parsed by entry and separated by the literal "sep" ${ }^{1}$.

Similarly, the notation "entry ... entry" stands for a non empty sequence of expressions parsed by the "entry" entry, without any separator between.

At the end, the notation "[entry sep ... sep entry]" stands for a possibly empty sequence of expressions parsed by the "entry" entry, separated by the literal "sep".

1.1 Lexical conventions

Blanks Space, newline and horizontal tabulation are considered as blanks. Blanks are ignored but they separate tokens.

Comments Comments in CoQ are enclosed between ($*$ and $*$), and can be nested. They can contain any character. However, string literals must be correctly closed. Comments are treated as blanks.

Identifiers and access identifiers Identifiers, written ident, are sequences of letters, digits, and $^{\prime}$, that do not start with a digit or ${ }^{\prime}$. That is, they are recognized by the following lexical class:

[^1]```
 first_letter ::= a..z|A..Z|_|unicode-letter
subsequent_letter ::= a..z|A..Z|0..9|_|' | unicode-letter|unicode-id-part
 ident ::= first_letter [subsequent_letter...subsequent_letter]
```

All characters are meaningful. In particular, identifiers are case-sensitive. The entry unicode-letter non-exhaustively includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian, Hangul, Hiragana and Katakana characters, CJK ideographs, mathematical letter-like symbols, hyphens, non-breaking space, ... The entry unicode-id-part non-exhaustively includes symbols for prime letters and subscripts.

Access identifiers, written access_ident, are identifiers prefixed by . (dot) without blank. They are used in the syntax of qualified identifiers.

Natural numbers and integers Numerals are sequences of digits. Integers are numerals optionally preceded by a minus sign.

$$
\begin{aligned}
\text { digit } & ::=0 \ldots 9 \\
\text { num } & ::=\text { digit...digit } \\
\text { integer } & ::=[-] \text { num }
\end{aligned}
$$

Strings Strings are delimited by " (double quote), and enclose a sequence of any characters different from " or the sequence " " to denote the double quote character. In grammars, the entry for quoted strings is string.

Keywords The following identifiers are reserved keywords, and cannot be employed otherwise:

| - | as | at cofix | else | end |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| exists | exists2 | fix | for | forall | fun |
| if | IF | in | let | match | mod |
| Prop | return | Set | then | Type | using |
| where | with |  |  |  |  |

Special tokens The following sequences of characters are special tokens:

| $!$ | $\circ$ | $\&$ | $\& \&$ | $($ | () | $)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $*$ | + | ++ | , | - | $->$ | $\cdot$ |
| .$($ | $\ldots$ | $/$ | $/ \backslash$ | $:$ | $::$ | $:<$ |
| $:=$ | $:>$ | $;$ | $<$ | $<-$ | $<->$ | $<:$ |
| $<=$ | $<>$ | $=$ | $=>$ | $=-D$ | $>$ | $>->$ |
| $>=$ | $?$ | $?=$ | $@$ | $[$ | $\backslash /$ | $]$ |
| $\wedge$ | $\{$ | $\mid$ | $\mid-$ | $\|\mid$ | $\}$ | $\sim$ |

Lexical ambiguities are resolved according to the "longest match" rule: when a sequence of non alphanumerical characters can be decomposed into several different ways, then the first token is the longest possible one (among all tokens defined at this moment), and so on.

### 1.2 Terms

### 1.2.1 Syntax of terms

Figures 1.1 and 1.2 describe the basic set of terms which form the Calculus of Inductive Constructions (also called pCic). The formal presentation of pCIC is given in chapter 4. Extensions of this syntax are given in chapter 2. How to customize the syntax is described in chapter 11.

### 1.2.2 Types

CoQ terms are typed. CoQ types are recognized by the same syntactic class as term. We denote by type the semantic subclass of types inside the syntactic class term.

### 1.2.3 Qualified identifiers and simple identifiers

Qualified identifiers (qualid) denote global constants (definitions, lemmas, theorems, remarks or facts), global variables (parameters or axioms), inductive types or constructors of inductive types. Simple identifiers (or shortly ident) are a syntactic subset of qualified identifiers. Identifiers may also denote local variables, what qualified identifiers do not.

### 1.2.4 Numerals

Numerals have no definite semantics in the calculus. They are mere notations that can be bound to objects through the notation mechanism (see chapter 11 for details). Initially, numerals are bound to Peano's representation of natural numbers (see 3.1.3).

Note: negative integers are not at the same level as num, for this would make precedence unnatural.

### 1.2.5 Sorts

There are three sorts Set, Prop and Type.

- Prop is the universe of logical propositions. The logical propositions themselves are typing the proofs. We denote propositions by form. This constitutes a semantic subclass of the syntactic class term.
- Set is is the universe of program types or specifications. The specifications themselves are typing the programs. We denote specifications by specif. This constitutes a semantic subclass of the syntactic class term.
- Type is the type of Set and Prop

More on sorts can be found in section 4.1.1.

CoQ terms are typed. CoQ types are recognized by the same syntactic class as term. We denote by type the semantic subclass of types inside the syntactic class term.

| term | ::= | forall binderlist, term | (1.2.8) | |
|---|---|---|---|---|
|  | \| | fun binderlist $=>$ term | (1.2.7) |
|  | \| | fix fix_bodies | (1.2.14) |
|  | \| | cofix cofix_bodies | (1.2.14) |
|  | \| | let ident_with_params := term in term | (1.2.12) |
|  | \| | let fix fix_body in term | (1.2.14) |
|  | \| | let cofix cofix_body in term | (1.2.14) |
|  | \| | let ( [name , ... , name]) [dep_ret_type]: = term in term | (1.2.13, 2.2.1) |
|  | - | if term [dep_ret_type] then term el se term | (1.2.13, 2.2.1) |
|  | \| | term : term | (1.2.10) |
|  | , | term -> term | (1.2.8) |
|  | \| | term arg ... arg | (1.2.9) |
|  | \| | @ qualid [term ... term] | (2.7.7) |
|  | \| | term \% ident | (11.2.2) |
|  | 1 | match match_item , ... , match_item [return_type] with [[।] equation \| ... | equation] end | (1.2.13) |
|  | \| | qualid | (1.2.3) |
|  | \| | sort | (1.2.5) |
|  | \| | num | (1.2.4) |
|  | \| | - | (1.2.11) |
| $\arg$ | $\begin{gathered} ::= \\ \mid= \end{gathered}$ | term <br> ( ident $:=$ term ) | (2.7.7) |
| binderlist | $\begin{gathered} ::= \\ \mid \end{gathered}$ | name ... name [: term] <br> binder binderlet ... binderlet | 1.2.6 |
| binder | $\begin{gathered} ::= \\ \mid \end{gathered}$ | ```name ( name ... name : term )``` | 1.2.6 |
| binderlet | $\begin{gathered} ::= \\ \mid \end{gathered}$ | ```binder ( name [: term]:= term )``` | 1.2.6 |
| name | ::= | ident |  |
|  |  |  |  |
| qualid | $\begin{aligned} & ::= \\ & \mid= \end{aligned}$ | ident <br> qualid access_ident |  |
| sort | ::= | Prop \| Set | Type |  |

Figure 1.1: Syntax of terms

### 1.2.6 Binders

Various constructions such as fun, forall, fix and cofix bind variables. A binding is represented by an identifier. If the binding variable is not used in the expression, the identifier can be replaced by the

```
ident_with_params ::= ident [binderlet ... binderlet][: term]
fix_bodies ::= fix_body
 | fix_bodywith fix_body with ... with fix_body for ident
cofix_bodies ::= cofix_body
 | cofix_body with cofix_body with ... with cofix_body for ident
fix_body ::= ident binderlet ... binderlet [annotation] [: term] := term
cofix_body :}:=\mathrm{ ident_with_params }:=\mathrm{ term
annotation ::= { struct ident }
match_item ::= term [as name][in term]
dep_ret_type ::= [as name] return_type
return_type ::= return term
equation ::= mult_pattern | .. | mult_pattern => term
mult_pattern ::= pattern ,... , pattern
pattern ::= qualid pattern ... pattern
 | pattern as ident
 pattern % ident
 qualid
 -
 num
 | (or_pattern , ... , or_pattern)
or_pattern ::= pattern | ... | pattern
```

Figure 1.2: Syntax of terms (continued)
symbol _. When the type of a bound variable cannot be synthesized by the system, it can be specified with the notation (ident : type ). There is also a notation for a sequence of binding variables sharing the same type: ( ident $_{1} \ldots$ ident $_{n}$ : type ).

Some constructions allow the binding of a variable to value. This is called a "let-binder". The entry binderlet of the grammar accepts either a binder as defined above or a let-binder. The notation in the latter case is (ident $:=$ term ). In a let-binder, only one variable can be introduced at the same time. It is also possible to give the type of the variable as follows: ( ident $:$ term $:=$ term ).

Lists of binderlet are allowed. In the case of fun and forall, the first binder of the list cannot be a let-binder, but parentheses can be omitted in the case of a single sequence of bindings sharing the same type (e.g.: fun ( $x$ y $z: A$ ) $\Rightarrow t$ can be shortened in fun $x$ y $z$ : $A=>t$ ).

### 1.2.7 Abstractions

The expression "fun ident : type $=>$ term" defines the abstraction of the variable ident, of type type, over the term term. It denotes a function of the variable ident that evaluates to the expression term (e.g. fun $\mathrm{x}: A \Rightarrow \mathrm{x}$ denotes the identity function on type $A$ ). The keyword fun can be followed by several binders as given in Section 1.2.6. Functions over several variables are equivalent to an iteration of one-variable functions. For instance the expression "fun ident $t_{1} \ldots$ ident $_{n}$ : type $=>$ term" denotes the same function as "fun ident $t_{1}$ : type $=>\ldots$ fun ident ${ }_{n}$ : type $=>$ term". If a let-binder occurs in the list of binders, it is expanded to a local definition (see Section 1.2.12).

### 1.2.8 Products

The expression "forall ident : type, term" denotes the product of the variable ident of type type, over the term term. As for abstractions, forall is followed by a binder list, and products over several variables are equivalent to an iteration of one-variable products. Note that term is intended to be a type.

If the variable ident occurs in term, the product is called dependent product. The intention behind a dependent product forall $x: A, B$ is twofold. It denotes either the universal quantification of the variable $x$ of type $A$ in the proposition $B$ or the functional dependent product from $A$ to $B$ (a construction usually written $\Pi_{x: A}$. $B$ in set theory).

Non dependent product types have a special notation: " $A->B$ " stands for "forall $\quad: A, B$ ". The non dependent product is used both to denote the propositional implication and function types.

### 1.2.9 Applications

The expression term term $_{1}$ denotes the application of term ${ }_{0}$ to term ${ }_{1}$.
The expression term $_{0}$ term $_{1} \ldots$ term $_{n}$ denotes the application of the term term ${ }_{0}$ to the arguments term $_{1} \ldots$ then term $_{n}$. It is equivalent to ( $\ldots\left(\right.$ term $_{0}$ term $\left._{1}\right) \ldots$ ) term ${ }_{n}$ : associativity is to the left.

The notation ( ident $:=$ term ) for arguments is used for making explicit the value of implicit arguments (see Section 2.7.7).

### 1.2.10 Type cast

The expression "term : type" is a type cast expression. It enforces the type of term to be type.

### 1.2.11 Inferable subterms

Expressions often contain redundant pieces of information. Subterms that can be automatically inferred by COQ can be replaced by the symbol "_" and COQ will guess the missing piece of information.

### 1.2.12 Local definitions (let-in)

let ident $:=$ term $_{1}$ in term 2 denotes the local binding of term ${ }_{1}$ to the variable ident in term ${ }_{2}$. There is a syntactic sugar for local definition of functions: let ident binder $_{1} \ldots$ binder $_{n}:=$ term $_{1}$ in term ${ }_{2}$ stands for let ident $:=$ fun binder $_{1} \ldots$ binder $_{n}=>$ term $_{2}$ in term 2 .

### 1.2.13 Definition by case analysis

Objects of inductive types can be destructurated by a case-analysis construction called pattern-matching expression. A pattern-matching expression is used to analyze the structure of an inductive objects and to apply specific treatments accordingly.

This paragraph describes the basic form of pattern-matching. See Section 2.2.1 and Chapter 15 for the description of the general form. The basic form of pattern-matching is characterized by a single match_item expression, a mult_pattern restricted to a single pattern and pattern restricted to the form qualid ident ... ident.

The expression match term ${ }_{0}$ return_type with pattern $_{1}=>$ term $_{1}|\ldots|$ pattern $_{n}=>$ term $_{n}$ end, denotes a pattern-matching over the term term ${ }_{0}$ (expected to be of an inductive type $I$ ). The terms term ${ }_{1} \ldots$ term $_{n}$ are the branches of the pattern-matching expression. Each of pattern ${ }_{i}$ has a form qualid ident ... ident where qualid must denote a constructor. There should be exactly one branch for every constructor of $I$.

The return_type expresses the type returned by the whole match expression. There are several cases. In the non dependent case, all branches have the same type, and the return_type is the common type of branches. In this case, return_type can usually be omitted as it can be inferred from the type of the branches ${ }^{2}$.

In the dependent case, there are three subcases. In the first subcase, the type in each branch may depend on the exact value being matched in the branch. In this case, the whole pattern-matching itself depends on the term being matched. This dependency of the term being matched in the return type is expressed with an "as ident" clause where ident is dependent in the return type. For instance, in the following example:

```
Coq < Inductive bool : Type := true : bool | false : bool.
Coq < Inductive eq (A:Type) (x:A) : A >> Prop := refl_equal : eq A x x.
Coq < Inductive or (A:Prop) (B:Prop) : Prop :=
Coq < | or_introl : A -> or A B
Coq < | or_intror : B -> or A B.
Coq < Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)
Coq < := match b as x return or (eq bool x true) (eq bool x false) with
Coq< | true => or_introl (eq bool true true) (eq bool true false)
Coq < (refl_equal bool true)
Coq< | false => or_intror (eq bool false true) (eq bool false false)
Coq < (refl_equal bool false)
Coq < end.
```

the branches have respective types or (eq bool true true) (eq bool true false) and or (eq bool false true) (eq bool false false) while the whole pattern-matching expression has type or (eq bool b true) (eq bool b false), the identifier $x$ being used to represent the dependency. Remark that when the term being matched is a variable, the as clause can be omitted and the term being matched can serve itself as binding name in the return type. For instance, the following alternative definition is accepted and has the same meaning as the previous one.

```
Coq < Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)
Coq < := match b return or (eq bool b true) (eq bool b false) with
Coq< | true => or_introl (eq bool true true) (eq bool true false)
Coq < (refl_equal bool true)
Coq< | false => or_intror (eq bool false true) (eq bool false false)
```

[^2]```
Coq < (refl_equal bool false)
Coq < end.
```

The second subcase is only relevant for annotated inductive types such as the equality predicate (see section 3.1.2), the order predicate on natural numbers or the type of lists of a given length (see section 15.3). In this configuration, the type of each branch can depend on the type dependencies specific to the branch and the whole pattern-matching expression has a type determined by the specific dependencies in the type of the term being matched. This dependency of the return type in the annotations of the inductive type is expressed using a "in $I \quad \ldots \ldots$ ident $_{1} \ldots$ ident $_{n}$ " clause, where

- I is the inductive type of the term being matched;
- the names ident ${ }_{i}$'s correspond to the arguments of the inductive type that carry the annotations: the return type is dependent on them;
- the _'s denote the family parameters of the inductive type: the return type is not dependent on them.

For instance, in the following example:

```
Coq < Definition sym_equal (A:Type) (x y:A) (H:eq A x y) : eq A y x :=
Coq < match H in eq _ _ z return eq A z x with
Coq < | refl_equal => refl__equal A x
Coq < end.
```

the type of the branch has type eq $A \times x$ because the third argument of eq is x in the type of the pattern refl_equal. On the contrary, the type of the whole pattern-matching expression has type eq A y x because the third argument of eq is y in the type of H. This dependency of the case analysis in the third argument of eq is expressed by the identifier z in the return type.

Finally, the third subcase is a combination of the first and second subcase. In particular, it only applies to pattern-matching on terms in a type with annotations. For this third subcase, both the clauses as and in are available.

There are specific notations for case analysis on types with one or two constructors: "if ... then ... else ..." and "let (... , ... , ...) := ... in ..." (see Sections 2.2.2 and 2.2.3).

1.2.14 Recursive functions

The expression "fix ident binder $_{1}:$ type $_{1}:=$ term $_{1}$ with \ldots with ident ${ }_{n}$ binder $_{n}:$ type $_{n}:=$ term $_{n}$ for ident ${ }_{i}$ " denotes the $i^{\text {th }}$ component of a block of functions defined by mutual well-founded recursion. It is the local counterpart of the Fixpoint command. See Section 1.3.4 for more details. When $n=1$, the "for ident ${ }_{i}$ " clause is omitted.

The expression "cofix ident binder $_{1}$: type ${ }_{1}$ with \ldots with ident ${ }_{n}$ binder $_{n}$: type ${ }_{n}$ for ident ${ }_{i}$ " denotes the $i^{\text {th }}$ component of a block of terms defined by a mutual guarded co-recursion. It is the local counterpart of the CoFixpoint command. See Section 1.3.4 for more details. When $n=1$, the "for ident ${ }_{i}$ " clause is omitted.

The association of a single fixpoint and a local definition have a special syntax: "let fix $f \ldots$: $=\ldots$ in ..." stands for "let $f:=\operatorname{fix} f \ldots$:=... in ...". The same applies for co-fixpoints.

sentence	$\begin{gathered} ::= \\ \mid \\ \mid \\ \mid \end{gathered}$	declaration definition inductive fixpoint statement [proof]			
declaration		declaration_keyword assums .			
declaration_keyword	$\begin{gathered} ::= \\ \mid \\ \mid \\ \mid \end{gathered}$	Axiom\|Conjecture Parameter	Parameters Variable	Variables Hypothesis	Hypotheses
assums		ident ... ident : term binder ... binder			
definition		Definition ident_with_params :=term . Let ident_with_params $:=$ term .			
inductive		Inductive ind_bodywith... with ind_body . CoInductive ind_body with... with ind_body .			
ind_body	::=	ident [binderlet ... binderlet] : term := [[।] ident_with_params \| . .	ident_with_params]		
fixpoint		Fixpoint fix_body with... with fix_body . CoFixpoint cofix_body with... with cofix_body .			
statement	::=	statement_keyword ident [binderlet ... binderlet] : term .			
statement_keyword	::=	Theorem\| Lemma	Definition		
proof	::=	Proof.... Qed.			
		Proof.... Defined.			
		Proof. ... Admitted.			

Figure 1.3: Syntax of sentences

1.3 The Vernacular

Figure 1.3 describes The Vernacular which is the language of commands of GALLINA. A sentence of the vernacular language, like in many natural languages, begins with a capital letter and ends with a dot.

The different kinds of command are described hereafter. They all suppose that the terms occurring in the sentences are well-typed.

1.3.1 Declarations

The declaration mechanism allows the user to specify his own basic objects. Declared objects play the role of axioms or parameters in mathematics. A declared object is an ident associated to a term. A declaration is accepted by CoQ if and only if this term is a correct type in the current context of the declaration and ident was not previously defined in the same module. This term is considered to be the type, or specification, of the ident.

Axiom ident :term .
This command links term to the name ident as its specification in the global context. The fact asserted by term is thus assumed as a postulate.

Error messages:

1. ident already exists

Variants:

1. Parameter ident :term.

Is equivalent to Axiom ident : term
2. Parameter ident ${ }_{1} \ldots$ ident $_{n}:$ term.

Adds n parameters with specification term
3. Parameter (ident ${ }_{1,1} \ldots$ ident $_{1, k_{1}}:$ term $_{1}$) . . (ident ${ }_{n, 1} \ldots$ ident $_{n, k_{n}}:$ term $_{n}$).

Adds n blocks of parameters with different specifications.
4. Conjecture ident :term.

Is equivalent to Axiom ident : term.
Remark: It is possible to replace Parameter by Parameters.

Variable ident :term.
This command links term to the name ident in the context of the current section (see Section 2.4 for a description of the section mechanism). When the current section is closed, name ident will be unknown and every object using this variable will be explicitly parametrized (the variable is discharged). Using the Variable command out of any section is equivalent to Axiom.

Error messages:

1. ident already exists

Variants:

1. Variable ident $_{1} \ldots$ ident $_{n}$:term.

Links term to names ident $t_{1} \ldots$ ident $_{n}$.
2. Variable (ident $t_{1,1} \ldots$ ident $_{1, k_{1}}:$ term $_{1}$) ...(ident ${ }_{n, 1} \ldots$ ident $_{n, k_{n}}:$ term $_{n}$).

Adds n blocks of variables with different specifications.
3. Hypothesis ident :term.

Hypothesis is a synonymous of Variable
Remark: It is possible to replace Variable by Variables and Hypothesis by Hypotheses.
It is advised to use the keywords Axiom and Hypothesis for logical postulates (i.e. when the assertion term is of sort Prop), and to use the keywords Parameter and Variable in other cases (corresponding to the declaration of an abstract mathematical entity).

1.3.2 Definitions

Definitions differ from declarations in allowing to give a name to a term whereas declarations were just giving a type to a name. That is to say that the name of a defined object can be replaced at any time by its definition. This replacement is called δ-conversion (see Section 4.3). A defined object is accepted by the system if and only if the defining term is well-typed in the current context of the definition. Then the type of the name is the type of term. The defined name is called a constant and one says that the constant is added to the environment.

A formal presentation of constants and environments is given in Section 4.2.

```
Definition ident := term.
```

This command binds the value term to the name ident in the environment, provided that term is welltyped.

Error messages:

1. ident already exists

Variants:

1. Definition ident $:$ term $_{1}:=$ term $_{2}$.

It checks that the type of term ${ }_{2}$ is definitionally equal to term ${ }_{1}$, and registers ident as being of type term $_{1}$, and bound to value term $_{2}$.
2. Definition ident binder $_{1} \ldots$ binder $_{n}:$ term $_{1}:=$ term $_{2}$.

This is equivalent to

3. Example ident $:=$ term.

Example ident :term ${ }_{1}:=$ term $_{2}$.
Example ident binder $_{1} \ldots$ binder $_{n}:$ term $_{1}:=$ term $_{2}$.
These are synonyms of the Definition forms.

Error messages:

1. Error: The term "term" has type "type" while it is expected to have type "type"

See also: Sections 6.2.4, 6.2.5, 8.5.5

Let ident $:=$ term.
This command binds the value term to the name ident in the environment of the current section. The name ident disappears when the current section is eventually closed, and, all persistent objects (such as theorems) defined within the section and depending on ident are prefixed by the local definition let ident := term in.

Error messages:

1. ident already exists

Variants:

1. Let ident : term ${ }_{1}:=$ term $_{2}$.

See also: Sections 2.4 (section mechanism), 6.2.4, 6.2.5 (opaque/transparent constants), 8.5.5

1.3.3 Inductive definitions

We gradually explain simple inductive types, simple annotated inductive types, simple parametric inductive types, mutually inductive types. We explain also co-inductive types.

Simple inductive types

The definition of a simple inductive type has the following form:

```
Inductive ident : sort :=
    ident }\mp@subsup{\mp@code{l}}{\mathrm{ : type }}{1
    | ...
    ident 
```

The name ident is the name of the inductively defined type and sort is the universes where it lives. The names ident t_{1}, \ldots, ident $_{n}$ are the names of its constructors and type ${ }_{1}, \ldots$, type $_{n}$ their respective types. The types of the constructors have to satisfy a positivity condition (see Section 4.5.3) for ident. This condition ensures the soundness of the inductive definition. If this is the case, the constants ident, ident $_{1}, \ldots$, ident $_{n}$ are added to the environment with their respective types. Accordingly to the universe where the inductive type lives (e.g. its type sort), COQ provides a number of destructors for ident. Destructors are named ident_ind, ident_rec or ident_rect which respectively correspond to elimination principles on Prop, Set and Type. The type of the destructors expresses structural induction/recursion principles over objects of ident. We give below two examples of the use of the Inductive definitions.

The set of natural numbers is defined as:

```
Coq < Inductive nat : Set :=
Coq < | O : nat
Coq < | S : nat -> nat.
nat is defined
nat_rect is defined
nat_ind is defined
nat_rec is defined
```

The type nat is defined as the least Set containing O and closed by the S constructor. The constants nat, O and S are added to the environment.

Now let us have a look at the elimination principles. They are three of them: nat_ind, nat_rec and nat_rect. The type of nat_ind is:

```
Coq < Check nat_ind.
nat_ind
    : forall P : nat -> Prop,
    P O -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n
```

This is the well known structural induction principle over natural numbers, i.e. the second-order form of Peano's induction principle. It allows to prove some universal property of natural numbers (forall n :nat, $P n$) by induction on n.

The types of nat_rec and nat_rect are similar, except that they pertain to ($\mathrm{P}:$ nat->Set) and ($P:$ nat->Type) respectively. They correspond to primitive induction principles (allowing dependent types) respectively over sorts Set and Type. The constant ident_ind is always provided, whereas ident_rec and ident_rect can be impossible to derive (for example, when ident is a proposition).

Variants:

1. Coq < Inductive nat : Set := O | S (_: nat).

In the case where inductive types have no annotations (next section gives an example of such annotations), a constructor can be defined by only giving the type of its arguments.

Simple annotated inductive types

In an annotated inductive types, the universe where the inductive type is defined is no longer a simple sort, but what is called an arity, which is a type whose conclusion is a sort.

As an example of annotated inductive types, let us define the even predicate:

```
Coq < Inductive even : nat -> Prop :=
Coq < | even_0 : even O
Coq < | even_SS : forall n:nat, even n -> even (S (S n)).
even is defined
even_ind is defined
```

The type nat->Prop means that even is a unary predicate (inductively defined) over natural numbers. The type of its two constructors are the defining clauses of the predicate even. The type of even_ind is:

```
Coq < Check even_ind.
even_ind
    : forall P : nat -> Prop,
        P O ->
        (forall n : nat, even n -> P n -> P (S (S n))) ->
        forall n : nat, even n -> P n
```

From a mathematical point of view it asserts that the natural numbers satisfying the predicate even are exactly in the smallest set of naturals satisfying the clauses even_0 or even_SS. This is why, when we want to prove any predicate P over elements of even, it is enough to prove it for O and to
prove that if any natural number n satisfies P its double successor $(S(S n))$ satisfies also P. This is indeed analogous to the structural induction principle we got for nat.

Error messages:

1. Non strictly positive occurrence of ident in type
2. The conclusion of type is not valid; it must be built from ident

Parametrized inductive types

In the previous example, each constructor introduces a different instance of the predicate even. In some cases, all the constructors introduces the same generic instance of the inductive definition, in which case, instead of an annotation, we use a context of parameters which are binders shared by all the constructors of the definition.

The general scheme is:

```
Inductive ident binder 
```

Parameters differ from inductive type annotations in the fact that the conclusion of each type of constructor term_{i} invoke the inductive type with the same values of parameters as its specification.

A typical example is the definition of polymorphic lists:

```
Coq < Inductive list (A:Set) : Set :=
Coq < | nil : list A
Coq < | cons : A -> list A -> list A.
```

Note that in the type of nil and cons, we write (list A) and not just list. The constants nil and cons will have respectively types:

```
Coq < Check nil.
nil
    : forall A : Set, list A
Coq < Check cons.
cons
    : forall A : Set, A -> list A -> list A
```

Types of destructors are also quantified with (A:Set).

Variants:

1. Coq < Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A).

This is an alternative definition of lists where we specify the arguments of the constructors rather than their full type.

Error messages:

1. The numth argument of ident must be ident' in type

New from CoQ V8.1 The condition on parameters for inductive definitions has been relaxed since COQ V8.1. It is now possible in the type of a constructor, to invoke recursively the inductive definition on an argument which is not the parameter itself.

One can define :

```
Coq < Inductive list2 (A:Set) : Set :=
Coq < | nil2 : list2 A
Coq < | cons2 : A -> list2 (A*A) -> list2 A.
list2 is defined
list2_rect is defined
list2_ind is defined
list2_rec is defined
```

that can also be written by specifying only the type of the arguments:

```
Coq < Inductive list2 (A:Set) : Set := nil2 | cons2 (_:A) (_:list2 (A*A)).
```

But the following definition will give an error:

```
Coq < Inductive listw (A:Set) : Set :=
Coq < | nilw : listw (A*A)
Coq < | consw : A -> listw (A*A) -> listw (A*A).
Error: The lst argument of "listw" must be "A" in "listw (A * A) otype"
```

Because the conclusion of the type of constructors should be listw A in both cases.
A parametrized inductive definition can be defined using annotations instead of parameters but it will sometimes give a different (bigger) sort for the inductive definition and will produce a less convenient rule for case elimination.

See also: Sections 4.5 and 8.7.

Mutually defined inductive types

The definition of a block of mutually inductive types has the form:

```
Inductive ident \(_{1}:\) type \(_{1}:=\)
    ident \(_{1}^{1} \quad: \quad\) type \(_{1}^{1}\)
    | ...
    ident \(_{n_{1}}^{1} \quad: \quad\) type \({ }_{n_{1}}^{1}\)
with
with ident \(_{m}\) : type \(_{m}\) :=
    ident \(_{1}^{m} \quad: \quad\) type \(_{1}^{m}\)
    | ...
    । ident \(_{n_{m}}^{m}\) : type \({ }_{n_{m}}^{m}\).
```

It has the same semantics as the above Inductive definition for each ident t_{1}, \ldots, ident $_{m}$. All names ident t_{1}, \ldots, ident $_{m}$ and ident $1_{1}^{1}, \ldots$, ident $_{n_{m}}^{m}$ are simultaneously added to the environment. Then welltyping of constructors can be checked. Each one of the ident ${ }_{1}, \ldots$, ident $_{m}$ can be used on its own.

It is also possible to parametrize these inductive definitions. However, parameters correspond to a local context in which the whole set of inductive declarations is done. For this reason, the parameters must be strictly the same for each inductive types The extended syntax is:

```
Inductive ident \(_{1}\) params : type \(_{1}:=\)
    ident \(_{1}^{1}\) : type \(_{1}^{1}\)
    | . . .
    | ident \(n_{n_{1}}^{1} \quad: \quad\) type \({ }_{n_{1}}^{1}\)
with
with ident \(_{m}\) params : type \(_{m}:=\)
    ident \(_{1}^{m} \quad: \quad\) type \(_{1}^{m}\)
    \| ...
    ident \(_{n_{m}}^{m} \quad: \quad\) type \(_{n_{m}}^{m}\).
```

Example: The typical example of a mutual inductive data type is the one for trees and forests. We assume given two types A and B as variables. It can be declared the following way.

```
Coq < Variables A B : Set.
Coq < Inductive tree : Set :=
Coq < node : A -> forest -> tree
Coq < with forest : Set :=
Coq < | leaf : B -> forest
Coq < | cons : tree -> forest -> forest.
```

This declaration generates automatically six induction principles. They are respectively called tree_rec, tree_ind, tree_rect, forest_rec, forest_ind, forest_rect. These ones are not the most general ones but are just the induction principles corresponding to each inductive part seen as a single inductive definition.

To illustrate this point on our example, we give the types of tree_rec and forest_rec.

```
Coq < Check tree_rec.
tree_rec
    : forall P : tree -> Set,
        (forall (a : A) (f : forest), P (node a f)) -> forall t : tree, P t
Coq < Check forest_rec.
forest_rec
    : forall P : forest -> Set,
        (forall b : B, P (leaf b)) ->
        (forall (t : tree) (f0 : forest), P f0 -> P (cons t f0)) ->
        forall fl : forest, P fl
```

Assume we want to parametrize our mutual inductive definitions with the two type variables A and B, the declaration should be done the following way:

```
Coq < Inductive tree (A B:Set) : Set :=
Coq < node : A }->\mathrm{ forest A B -> tree A B
Coq < with forest (A B:Set) : Set :=
Coq < | leaf : B -> forest A B
Coq < | cons : tree A B -> forest A B -> forest A B.
```

Assume we define an inductive definition inside a section. When the section is closed, the variables declared in the section and occurring free in the declaration are added as parameters to the inductive definition.

See also: Section 2.4

Co-inductive types

The objects of an inductive type are well-founded with respect to the constructors of the type. In other words, such objects contain only a finite number of constructors. Co-inductive types arise from relaxing this condition, and admitting types whose objects contain an infinity of constructors. Infinite objects are introduced by a non-ending (but effective) process of construction, defined in terms of the constructors of the type.

An example of a co-inductive type is the type of infinite sequences of natural numbers, usually called streams. It can be introduced in CoQ using the CoInductive command:

```
Coq < CoInductive Stream : Set :=
Coq < Seq : nat -> Stream -> Stream.
Stream is defined
```

The syntax of this command is the same as the command Inductive (cf. Section 1.3.3). Notice that no principle of induction is derived from the definition of a co-inductive type, since such principles only make sense for inductive ones. For co-inductive ones, the only elimination principle is case analysis. For example, the usual destructors on streams hd: Stream->nat and tl:Str->Str can be defined as follows:

```
Coq < Definition hd (x:Stream) := let (a,s) := x in a.
hd is defined
Coq < Definition tl (x:Stream) := let (a,s) := x in s.
tl is defined
```

Definition of co-inductive predicates and blocks of mutually co-inductive definitions are also allowed. An example of a co-inductive predicate is the extensional equality on streams:

```
Coq < CoInductive EqSt : Stream -> Stream -> Prop :=
Coq < eqst :
Coq < forall s1 s2:Stream,
Coq< hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.
EqSt is defined
```

In order to prove the extensionally equality of two streams s_{1} and s_{2} we have to construct an infinite proof of equality, that is, an infinite object of type (EqSt $s_{1} s_{2}$). We will see how to introduce infinite objects in Section 1.3.4.

1.3.4 Definition of recursive functions

Definition of functions by recursion over inductive objects

This section describes the primitive form of definition by recursion over inductive objects. See Section 2.3 for more advanced constructions. The command:
allows to define functions by pattern-matching over inductive objects using a fixed point construction. The meaning of this declaration is to define ident a recursive function with arguments specified by the binders in params such that ident applied to arguments corresponding to these binders has type type ${ }_{0}$, and is equivalent to the expression term 0_{0}. The type of the ident is consequently forall params, type $_{0}$ and the value is equivalent to fun params $=>$ term $_{0}$.

To be accepted, a Fixpoint definition has to satisfy some syntactical constraints on a special argument called the decreasing argument. They are needed to ensure that the Fixpoint definition always terminates. The point of the \{struct ident \} annotation is to let the user tell the system which argument decreases along the recursive calls. This annotation may be left implicit for fixpoints where only one argument has an inductive type. For instance, one can define the addition function as :

```
Coq < Fixpoint add (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | O => m
Coq < | S p => S (add p m)
Coq < end.
add is recursively defined
```

The match operator matches a value (here n) with the various constructors of its (inductive) type. The remaining arguments give the respective values to be returned, as functions of the parameters of the corresponding constructor. Thus here when n equals O we return m, and when n equals (S p) we return (S (add p m)).

The match operator is formally described in detail in Section 4.5.4. The system recognizes that in the inductive call (add p m) the first argument actually decreases because it is a pattern variable coming from match n with.

Example: The following definition is not correct and generates an error message:

```
Coq < Fixpoint wrongplus (n m:nat) {struct n} : nat :=
Coq < match m with
Coq < | O => n
Coq< | S p => S (wrongplus n p)
Coq < end.
Coq < Coq < Error:
Recursive definition of wrongplus is ill-formed.
In environment
wrongplus : nat -> nat -> nat
n : nat
m : nat
p : nat
Recursive call to wrongplus has principal argument equal to
"n"
instead of a subterm of n
```

because the declared decreasing argument n actually does not decrease in the recursive call. The function computing the addition over the second argument should rather be written:

```
Coq < Fixpoint plus (n m:nat) {struct m} : nat :=
Coq < match m with
Coq < | O => n
Coq < | S p => S (plus n p)
Coq < end.
```

The ordinary match operation on natural numbers can be mimicked in the following way.

```
Coq < Fixpoint nat_match
Coq < (C:Set) (f0:C) (fS:nat -> C -> C) (n:nat) {struct n} : C :=
Coq < match n with
```

```
Coq < | O => f0
Coq < | S p => fS p (nat_match C f0 fS p)
Coq < end.
```

The recursive call may not only be on direct subterms of the recursive variable n but also on a deeper subterm and we can directly write the function mod 2 which gives the remainder modulo 2 of a natural number.

```
Coq < Fixpoint mod2 (n:nat) : nat :=
Coq < match n with
Coq < | O => O
Coq < | S p => match p with
Coq< | O => S O
Coq < | S q => mod2 q
Coq < end
Coq < end.
```

In order to keep the strong normalization property, the fixed point reduction will only be performed when the argument in position of the decreasing argument (which type should be in an inductive definition) starts with a constructor.

The Fixpoint construction enjoys also the with extension to define functions over mutually defined inductive types or more generally any mutually recursive definitions.

Variants:

1. Fixpoint ident ${ }_{1}$ params $_{1}$:type $_{1}:=$ term $_{1}$
with ...
with ident $_{m}$ params $_{m}:$ type $_{m}:=$ type $_{m}$
Allows to define simultaneously ident ${ }_{1}, \ldots$, ident $_{m}$.
Example: The size of trees and forests can be defined the following way:
```
Coq < Fixpoint tree_size (t:tree) : nat :=
Coq < match t with
Coq < | node a f => S (forest_size f)
Coq < end
Coq < with forest_size (f:forest) : nat :=
Coq < match f with
Coq < | leaf b => 1
Coq < | cons t f' => (tree_size t + forest_size f')
Coq < end.
```

A generic command Scheme is useful to build automatically various mutual induction principles. It is described in Section 8.14.

Definition of recursive objects in co-inductive types

The command:

```
CoFixpoint ident : type 
```

introduces a method for constructing an infinite object of a coinductive type. For example, the stream containing all natural numbers can be introduced applying the following method to the number O (see Section 1.3.3 for the definition of Stream, hd and $t l$):

```
Coq < CoFixpoint from (n:nat) : Stream := Seq n (from (S n)).
from is corecursively defined
```

Oppositely to recursive ones, there is no decreasing argument in a co-recursive definition. To be admissible, a method of construction must provide at least one extra constructor of the infinite object for each iteration. A syntactical guard condition is imposed on co-recursive definitions in order to ensure this: each recursive call in the definition must be protected by at least one constructor, and only by constructors. That is the case in the former definition, where the single recursive call of from is guarded by an application of Seq. On the contrary, the following recursive function does not satisfy the guard condition:

```
Coq < CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream :=
Coq < if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s).
Coq < Coq < Error:
Recursive definition of filter is ill-formed.
In environment
filter : (nat -> bool) -> Stream -> Stream
p : nat -> bool
s : Stream
unguarded recursive call in "filter p (tl s)"
```

The elimination of co-recursive definition is done lazily, i.e. the definition is expanded only when it occurs at the head of an application which is the argument of a case analysis expression. In any other context, it is considered as a canonical expression which is completely evaluated. We can test this using the command Eval, which computes the normal forms of a term:

```
Coq < Eval compute in (from 0).
    = (cofix from (n : nat) : Stream := Seq n (from (S n))) 0
    : Stream
Coq < Eval compute in (hd (from 0)).
    = 0
    : nat
Coq < Eval compute in (tl (from 0)).
    =(cofix from (n : nat) : Stream := Seq n (from (S n))) 1
    : Stream
```


Variants:

1. CoFixpoint ident ${ }_{1}$ params $:$ type $_{1}:=$ term $_{1}$

As for most constructions, arguments of co-fixpoints expressions can be introduced before the $:=$ sign.
2. CoFixpoint ident ${ }_{1}:$ type $_{1}:=$ term $_{1}$
with
with ident $_{m}:$ type $_{m}:=$ term $_{m}$
As in the Fixpoint command (cf. Section 1.3.4), it is possible to introduce a block of mutually dependent methods.

1.3.5 Statement and proofs

A statement claims a goal of which the proof is then interactively done using tactics. More on the proof editing mode, statements and proofs can be found in chapter 7 .

Theorem ident : type.

This command binds type to the name ident in the environment, provided that a proof of type is next given.

After a statement, CoQ needs a proof.

Variants:

1. Lemma ident : type.

Remark ident : type.
Fact ident : type.
Corollary ident : type.
Proposition ident : type.
All these commands are synonymous of Theorem
2. Definition ident : type.

Allow to define a term of type type using the proof editing mode. It behaves as Theorem but is intended for the interactive definition of expression which computational behavior will be used by further commands. See also: 6.2 .5 and 8.5.5.

```
Proof ....Qed.
```

A proof starts by the keyword Proof. Then CoQ enters the proof editing mode until the proof is completed. The proof editing mode essentially contains tactics that are described in chapter 8. Besides tactics, there are commands to manage the proof editing mode. They are described in chapter 7 . When the proof is completed it should be validated and put in the environment using the keyword Qed.

Error message:

1. ident already exists

Remarks:

1. Several statements can be simultaneously opened.
2. Not only other statements but any vernacular command can be given within the proof editing mode. In this case, the command is understood as if it would have been given before the statements still to be proved.
3. Proof is recommended but can currently be omitted. On the opposite, Qed (or Defined, see below) is mandatory to validate a proof.
4. Proofs ended by Qed are declared opaque (see 6.2.4) and cannot be unfolded by conversion tactics (see 8.5). To be able to unfold a proof, you should end the proof by Defined (see below).

Variants:

1. Proof....Defined.

Same as Proof Qed . but the proof is then declared transparent (see 6.2.5), which means it can be unfolded in conversion tactics (see 8.5).
2. ProofSave.

Same as ProofQed .
3. Goal type...Save ident

Same as Lemma ident : type...Save. This is intended to be used in the interactive mode. Conversely to named lemmas, anonymous goals cannot be nested.
4. Proof....Admitted.

Turns the current conjecture into an axiom and exits editing of current proof.

Chapter 2

Extensions of Gallina

GALLINA is the kernel language of COQ. We describe here extensions of the Gallina's syntax.

2.1 Record types

The Record construction is a macro allowing the definition of records as is done in many programming languages. Its syntax is described on figure 2.1. In fact, the Record macro is more general than the usual record types, since it allows also for "manifest" expressions. In this sense, the Record construction allows to define "signatures".

sentence ++= record		
record	::=	Record ident [binderlet ... binderlet] : sort := $\quad[$ ident $]\{$ field ; ... ; field] \} .
field		$\begin{aligned} & \text { name }: \text { type } \\ & \text { name }[: \text { term }]:=\text { term } \end{aligned}$

Figure 2.1: Syntax for the definition of Record
In the expression
Record ident params : sort $:=$ ident $_{0}\left\{\right.$ ident $_{1}:$ term $_{1} ; \ldots$ ident $_{n}:$ term $\left._{n}\right\}$.
the identifier ident is the name of the defined record and sort is its type. The identifier ident ${ }_{0}$ is the name of its constructor. If ident t_{0} is omitted, the default name Build_ident is used. The identifiers ident ${ }_{1}, .$. , $i d e n t_{n}$ are the names of fields and term ${ }_{1}, .$. , term n their respective types. Remark that the type of ident ${ }_{i}$ may depend on the previous ident ${ }_{j}$ (for $j<i$). Thus the order of the fields is important. Finally, params are the parameters of the record.

More generally, a record may have explicitly defined (a.k.a. manifest) fields. For instance, Record ident [params] : sort $:=\left\{\right.$ ident $_{1}:$ type $_{1} ;$ ident $_{2}:=$ term $_{2}$; ident ${ }_{3}:$ type $\left._{3}\right\}$ in which case the correctness of type 3_{3} may rely on the instance term ${ }_{2}$ of ident $_{2}$ and term ${ }_{2}$ in turn may depend on ident ${ }_{1}$.

Example: The set of rational numbers may be defined as:

```
Coq < Record Rat : Set := mkRat
Coq < {sign : bool;
Coq < top : nat;
```

```
Coq < bottom : nat;
Coq < Rat_bottom_cond : 0 <> bottom;
Coq < Rat_irred_cond :
Coq < forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1}.
Rat is defined
Rat_rect is defined
Rat_ind is defined
Rat_rec is defined
sign is defined
top is defined
bottom is defined
Rat_bottom_cond is defined
Rat_irred_cond is defined
```

Remark here that the field Rat_cond depends on the field bottom.
Let us now see the work done by the Record macro. First the macro generates an inductive definition with just one constructor:

```
Inductive ident params :sort :=
\mp@subsup{ident }{0}{( (ident }\mp@subsup{|}{1}{\prime}\mp@subsup{\mathrm{ term }}{1}{}) .. (ident 
```

To build an object of type ident, one should provide the constructor ident ${ }_{0}$ with n terms filling the fields of the record.

As an example, let us define the rational $1 / 2$:

```
Coq < Require Import Arith.
Coq < Theorem one_two_irred :
Coq < forall x y z:nat, x * y = 1 \ x * z = 2 -> x = 1.
Coq < Qed.
Coq < Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
half is defined
Coq < Check half.
half
    : Rat
```

The macro generates also, when it is possible, the projection functions for destructuring an object of type ident. These projection functions have the same name that the corresponding fields. If a field is named "-" then no projection is built for it. In our example:

```
Coq < Eval compute in half.(top).
    = I
    : nat
Coq < Eval compute in half.(bottom).
    = 2
    : nat
Coq < Eval compute in half.(Rat_bottom_cond).
    = O_S 1
    : 0 <> bottom half
```


Figure 2.2: Syntax of Record projections

Warnings:

1. Warning: ident ${ }_{i}$ cannot be defined.

It can happen that the definition of a projection is impossible. This message is followed by an explanation of this impossibility. There may be three reasons:
(a) The name ident $_{i}$ already exists in the environment (see Section 1.3.1).
(b) The body of ident i_{i} uses an incorrect elimination for ident (see Sections 1.3.4 and 4.5.4).
(c) The type of the projections ident t_{i} depends on previous projections which themselves couldn't be defined.

Error messages:

1. A record cannot be recursive

The record name ident appears in the type of its fields.
2. During the definition of the one-constructor inductive definition, all the errors of inductive definitions, as described in Section 1.3.3, may also occur.

See also: Coercions and records in Section 16.9 of the chapter devoted to coercions.
Remark: Structure is a synonym of the keyword Record.
Remark: An experimental syntax for projections based on a dot notation is available. The command to activate it is

```
Set Printing Projections.
```

The corresponding grammar rules are given Figure 2.2. When qualid denotes a projection, the syntax term . (qualid) is equivalent to qualid term, the syntax term . (qualid $\arg _{1} \ldots \quad \arg n$) to qualid $\arg _{1} \ldots \arg _{n}$ term, and the syntax term. (@qualid term t $_{1} \ldots$ term ${ }_{n}$) to @qualid term ${ }_{1}$ \ldots term $_{n}$ term. In each case, term is the object projected and the other arguments are the parameters of the inductive type.

To deactivate the printing of projections, use Unset Printing Projections.

2.2 Variants and extensions of mat ch

2.2.1 Multiple and nested pattern-matching

The basic version of match allows pattern-matching on simple patterns. As an extension, multiple nested patterns or disjunction of patterns are allowed, as in ML-like languages.

The extension just acts as a macro that is expanded during parsing into a sequence of match on simple patterns. Especially, a construction defined using the extended match is generally printed under its expanded form (see Set Printing Matching in section 2.2.4).

See also: chapter 15 .

2.2.2 Pattern-matching on boolean values: the if expression

For inductive types with exactly two constructors and for pattern-matchings expressions which do not depend on the arguments of the constructors, it is possible to use a if ... then ... else notation. For instance, the definition

```
Coq < Definition not (b:bool) :=
Coq < match b with
Coq < | true => false
Coq < | false => true
Coq < end.
not is defined
```

can be alternatively written

```
Coq < Definition not (b:bool) := if b then false else true.
not is defined
```

More generally, for an inductive type with constructors C_{1} and C_{2}, we have the following equivalence
match term [dep_ret_type] with
 end
Here is an example.

```
Coq < Check (fun x (H:{x=0}+{x<>0}) =>
Coq < match H with
Coq < | left _ => true
Coq < | right _ => false
Coq < end).
fun (x : nat) (H: {x=0} + {x <> 0}) => if H then true else false
    : forall x : nat, {x=0} + {x <> 0} -> bool
```

Notice that the printing uses the if syntax because sumbool is declared as such (see section 2.2.4).

2.2.3 Irrefutable patterns: the destructuring let

Closed terms (that is not relying on any axiom or variable) in an inductive type having only one constructor, say foo, have necessarily the form (foo ...). In this case, the match construction can be written with a syntax close to the let ... in ... construction. Expression let (ident $_{1}, \ldots$, ident $_{n}$) : $=$ term $_{0}$ in term $_{1}$ performs case analysis on term ${ }_{0}$ which must be in an inductive type with one constructor with n arguments. Variables ident $t_{1} \ldots$ ident $_{n}$ are bound to the n arguments of the constructor in expression term $_{1}$. For instance, the definition

```
Coq < Definition fst (A B:Set) (H:A * B) := match H with
Coq < | pair x y => x
Coq < end.
fst is defined
```

can be alternatively written

```
Coq < Definition fst (A B:Set) (p:A * B) := let (x, _) := p in x.
fst is defined
```

Note however that reduction is slightly different from regular let . . . in . . . construction since it can occur only if term ${ }_{0}$ can be put in constructor form. Otherwise, reduction is blocked.

The pretty-printing of a definition by matching on a irrefutable pattern can either be done using match or the let construction (see Section 2.2.4).

The general equivalence for an inductive type with one constructors C is

```
    let (ident }\mp@subsup{1}{1}{\prime}...,\mp@subsup{ident }{n}{\prime}\mathrm{ ) [dep_ret_type] := term in term'
\equiv match term [dep_ret_type] with C ident }\mp@subsup{|}{1}{\ldots}..\mp@subsup{ident }{n}{}=> term' end
```


2.2.4 Controlling pretty-printing of mat ch expressions

The following commands give some control over the pretty-printing of mat ch expressions.

Printing nested patterns

The Calculus of Inductive Constructions knows pattern-matching only over simple patterns. It is however convenient to re-factorize nested pattern-matching into a single pattern-matching over a nested pattern. CoQ's printer try to do such limited re-factorization.

```
Set Printing Matching.
```

This tells CoQ to try to use nested patterns. This is the default behavior.

```
Unset Printing Matching.
```

This tells CoQ to print only simple pattern-matching problems in the same way as the CoQ kernel handles them.

```
Test Printing Matching.
```

This tells if the printing matching mode is on or off. The default is on.

Printing of wildcard pattern

Some variables in a pattern may not occur in the right-hand side of the pattern-matching clause. There are options to control the display of these variables.

```
Set Printing Wildcard.
```

The variables having no occurrences in the right-hand side of the pattern-matching clause are just printed using the wildcard symbol "_".

```
Unset Printing Wildcard.
```

The variables, even useless, are printed using their usual name. But some non dependent variables have no name. These ones are still printed using a "_".

```
Test Printing Wildcard.
```

This tells if the wildcard printing mode is on or off. The default is to print wildcard for useless variables.

Printing of the elimination predicate

In most of the cases, the type of the result of a matched term is mechanically synthesisable. Especially, if the result type does not depend of the matched term.

```
Set Printing Synth.
```

The result type is not printed when COQ knows that it can re-synthesise it.

```
Unset Printing Synth.
```

This forces the result type to be always printed.

```
Test Printing Synth.
```

This tells if the non-printing of synthesisable types is on or off. The default is to not print synthesisable types.

Printing matching on irrefutable pattern

If an inductive type has just one constructor, pattern-matching can be written using let ... := ... in ...

```
Add Printing Let ident.
```

This adds ident to the list of inductive types for which pattern-matching is written using a let expression.

```
Remove Printing Let ident.
```

This removes ident from this list.

```
Test Printing Let ident.
```

This tells if ident belongs to the list.

```
Print Table Printing Let.
```

This prints the list of inductive types for which pattern-matching is written using a let expression.
The list of inductive types for which pattern-matching is written using a let expression is managed synchronously. This means that it is sensible to the command Reset.

Printing matching on booleans

If an inductive type is isomorphic to the boolean type, pattern-matching can be written using if ... then ... else ...

Add Printing If ident.
This adds ident to the list of inductive types for which pattern-matching is written using an if expression.

```
Remove Printing If ident.
```

This removes ident from this list.

```
Test Printing If ident.
```

This tells if ident belongs to the list.

```
Print Table Printing If.
```

This prints the list of inductive types for which pattern-matching is written using an if expression.
The list of inductive types for which pattern-matching is written using an if expression is managed synchronously. This means that it is sensible to the command Reset.

Example

This example emphasizes what the printing options offer.

```
Coq < Test Printing Let prod.
Cases on elements of prod are printed using a 'let' form
Coq < Print fst.
fst =
fun (A B : Set) (p:A * B) => let (x, _) := p in x
    : forall A B : Set, A * B -> A
Argument scopes are [type_scope type_scope _]
Coq < Remove Printing Let prod.
Coq < Unset Printing Synth.
Coq < Unset Printing Wildcard.
Coq < Print fst.
fst =
fun (A B : Set) (p:A * B) => let (x, _) return A := p in x
    : forall A B : Set, A * B -> A
Argument scopes are [type_scope type_scope _]
```


2.3 Advanced recursive functions

The experimental command

```
Function ident binder 1...binder }\mp@subsup{\mp@code{N}}{~}{{decrease_annot} : typeo := term
```

can be seen as a generalization of Fixpoint. It is actually a wrapper for several ways of defining a function and other useful related objects, namely: an induction principle that reflects the recursive structure of the function (see 8.7.6), and its fixpoint equality. The meaning of this declaration is to define a function ident, similarly to Fixpoint. Like in Fixpoint, the decreasing argument must be given (unless the function is not recursive), but it must not necessary be structurally decreasing. The point of the \{\} annotation is to name the decreasing argument and to describe which kind of decreasing criteria must be used to ensure termination of recursive calls.

The Function construction enjoys also the with extension to define mutually recursive definitions. However, this feature does not work for non structural recursive functions.

See the documentation of functional induction (section 8.7.6) and Functional Scheme (section 8.15 and 10.4) for how to use the induction principle to easily reason about the function.
Remark: To obtain the right principle, it is better to put rigid parameters of the function as first arguments. For example it is better to define plus like this:

```
Coq < Function plus (m n : nat) {struct n} : nat :=
Coq < match n with
Coq < | 0 => m
Coq < | S p => S (plus m p)
Coq < end.
```

than like this:

```
Coq < Function plus (n m : nat) {struct n} : nat :=
Coq < match n with
Coq < | 0 => m
Coq < | S p => S (plus p m)
Coq < end.
```

Limitations term ${ }_{0}$ must be build as a pure pattern-matching tree (match . . . with) with applications only at the end of each branch. For now dependent cases are not treated.

Error messages:

1. The recursive argument must be specified
2. No argument name ident
3. Cannot use mutual definition with well-founded recursion or measure
4. Cannot define graph for ident... (warning)

The generation of the graph relation ($\mathrm{R} _$ident) used to compute the induction scheme of ident raised a typing error. Only the ident is defined, the induction scheme will not be generated.

This error happens generally when:

- the definition uses pattern matching on dependent types, which Funct ion cannot deal with yet.
- the definition is not a pattern-matching tree as explained above.

5. Cannot define principle(s) for ident... (warning)

The generation of the graph relation ($\mathrm{R} _$ident) succeeded but the induction principle could not be built. Only the ident is defined. Please report.
6. Cannot build functional inversion principle (warning)
functional inversion will not be available for the function.

See also: 8.15, 10.4, 8.7.6
Depending on the $\{\ldots\}$ annotation, different definition mechanisms are used by Function. More precise description given below.

Variants:

1. Function ident binder $_{1} \ldots$ binder $_{n}:$ type $_{0}:=$ term $_{0}$

Defines the not recursive function ident as if declared with Definition. Moreover the following are defined:

- ident_rect, ident_rec and ident_ind, which reflect the pattern matching structure of term $_{0}$ (see the documentation of Inductive 1.3.3);
- The inductive R_ident corresponding to the graph of ident (silently);
- ident_complete and ident_correct which are inversion information linking the function and its graph.

2. Function ident binder $_{1} \ldots$ binder $_{n}$ \{struct ident $\left.{ }_{0}\right\}$: type ${ }_{0}:=$ term $_{0}$

Defines the structural recursive function ident as if declared with Fixpoint. Moreover the following are defined:

- The same objects as above;
- The fixpoint equation of ident: ident_equation.

3. Function ident binder $_{1} \ldots$ binder $_{n}$ \{measure term ${ }_{1}$ ident $\left._{0}\right\}$: type ${ }_{0}:=$ term $_{0}$
4. Function ident binder $_{1} \ldots$ binder $_{n}\left\{\right.$ wf term ident $\left._{0}\right\}$: type ${ }_{0}:=$ term $_{0}$

Defines a recursive function by well founded recursion. The module Recdef of the standard library must be loaded for this feature. The $\}$ annotation is mandatory and must be one of the following:

- $\left\{\right.$ measure term $_{1}$ ident $\left._{0}\right\}$ with ident ${ }_{0}$ being the decreasing argument and term ${ }_{1}$ being a function from type of ident ${ }_{0}$ to nat for which value on the decreasing argument decreases (for the lt order on nat) at each recursive call of term $_{0}$, parameters of the function are bound in term ${ }_{0}$;
- $\left\{\mathrm{wf} \operatorname{term}_{1}\right.$ ident $\left._{0}\right\}$ with ident $_{0}$ being the decreasing argument and term ${ }_{1}$ an ordering relation on the type of ident $_{0}$ (i.e. of type $\mathrm{T}_{\text {ident }_{0}} \rightarrow \mathrm{~T}_{\text {ident }_{0}} \rightarrow$ Prop) for which the decreasing argument decreases at each recursive call of term_{0}. The order must be well founded. parameters of the function are bound in term ${ }_{0}$.

Depending on the annotation, the user is left with some proof obligations that will be used to define the function. These proofs are: proofs that each recursive call is actually decreasing with respect to the given criteria, and (if the criteria is wf) a proof that the ordering relation is well founded.
Once proof obligations are discharged, the following objects are defined:

- The same objects as with the struct;
- The lemma ident_tcc which collects all proof obligations in one property;
- The lemmas ident_terminate and ident_F which is needed to be inlined during extraction of ident.

The way this recursive function is defined is the subject of several papers by Yves Bertot and Antonia Balaa on one hand and Gilles Barthe, Julien Forest, David Pichardie and Vlad Rusu on the other hand.

Remark: Proof obligations are presented as several subgoals belonging to a Lemma ident_tcc.

2.4 Section mechanism

The sectioning mechanism allows to organise a proof in structured sections. Then local declarations become available (see Section 1.3.2).

2.4.1 Section ident

This command is used to open a section named ident.

2.4.2 End ident

This command closes the section named ident. When a section is closed, all local declarations (variables and local definitions) are discharged. This means that all global objects defined in the section are generalised with respect to all variables and local definitions it depends on in the section. None of the local declarations (considered as autonomous declarations) survive the end of the section.

Here is an example :

```
Coq < Section sl.
Coq < Variables x y : nat.
x is assumed
y is assumed
Coq < Let y' := y.
y' is defined
Coq < Definition x' := S x.
x' is defined
Coq < Definition x' := x' + y'.
x" is defined
Coq < Print x'.
x' = S x
    : nat
Coq < End s1.
Coq < Print x'.
x' = fun x : nat => S x
    : nat -> nat
Argument scope is [nat_scope]
Coq < Print x".
x" = fun x y : nat => let y' := y in x' x + y'
    : nat -> nat -> nat
Argument scopes are [nat_scope nat_scope]
```

```
    module_type ::= ident
    | module_type with Definition ident:= term
    module_type with Module ident:= qualid
    module_binding ::= ( ident . . ident : module_type )
    module_bindings ::= module_binding ... module_binding
module_expression ::= qualid ... qualid
```

Figure 2.3: Syntax of modules

Notice the difference between the value of x^{\prime} and $x^{\prime \prime}$ inside section $s 1$ and outside.

Error messages:

1. This is not the last opened section

Remarks:

1. Most commands, like Hint, Notation, option management, ... which appear inside a section are cancelled when the section is closed.

2.5 Module system

The module system provides a way of packaging related elements together, as well as a mean of massive abstraction.

2.5.1 Module ident

This command is used to start an interactive module named ident.

Variants:

1. Module ident module_bindings

Starts an interactive functor with parameters given by module_bindings.
2. Module ident : module_type

Starts an interactive module specifying its module type.
3. Module ident module_bindings : module_type

Starts an interactive functor with parameters given by module_bindings, and output module type module_type.
4. Module ident <: module_type

Starts an interactive module satisfying module_type.
5. Module ident module_bindings <: module_type

Starts an interactive functor with parameters given by module_bindings. The output module type is verified against the module type module_type.
6. Module [Import|Export]

Behaves like Module, but automatically imports or exports the module.

2.5.2 End ident

This command closes the interactive module ident. If the module type was given the content of the module is matched against it and an error is signaled if the matching fails. If the module is basic (is not a functor) its components (constants, inductive types, submodules etc) are now available through the dot notation.

Error messages:

1. No such label ident
2. Signature components for label ident do not match
3. This is not the last opened module

2.5.3 Module ident : = module_expression

This command defines the module identifier ident to be equal to module_expression.

Variants:

1. Module ident module_bindings $:=$ module_expression

Defines a functor with parameters given by module_bindings and body module_expression.
2. Module ident module_bindings : module_type := module_expression

Defines a functor with parameters given by module_bindings (possibly none), and output module type module_type, with body module_expression.
3. Module ident module_bindings <: module_type := module_expression

Defines a functor with parameters given by module_bindings (possibly none) with body module_expression. The body is checked against module_type.

2.5.4 Module Type ident

This command is used to start an interactive module type ident.

Variants:

1. Module Type ident module_bindings

Starts an interactive functor type with parameters given by module_bindings.

2.5.5 End ident

This command closes the interactive module type ident.

Error messages:

1. This is not the last opened module type

2.5.6 Module Type ident := module_type

Defines a module type ident equal to module_type.

Variants:

1. Module Type ident module_bindings $:=$ module_type

Defines a functor type ident specifying functors taking arguments module_bindings and returning module_type.

2.5.7 Declare Module ident : module_type

Declares a module ident of type module_type. This command is available only in module types.

Variants:

1. Declare Module ident module_bindings : module_type

Declares a functor with parameters module_bindings and output module type module_type.
2. Declare Module ident := qualid

Declares a module equal to the module qualid.
3. Declare Module ident <: module_type := qualid

Declares a module equal to the module qualid, verifying that the module type of the latter is a subtype of module_type.
4. Declare Module [Import|Export] ident := qualid

Declares a modules ident of type module_type, and imports or exports it directly.

Example

Let us define a simple module.

```
Coq < Module M.
Interactive Module M started
Coq < Definition T := nat.
T is defined
Coq < Definition x := 0.
x is defined
Coq < Definition y : bool.
1 subgoal
    bool
Coq < exact true.
Proof completed.
Coq < Defined.
exact true.
y is defined
Coq < End M.
Module M is defined
```

Inside a module one can define constants, prove theorems and do any other things that can be done in the toplevel. Components of a closed module can be accessed using the dot notation:

```
Coq < Print M.x.
```

M.X $=0$
: nat

A simple module type:

```
Coq < Module Type SIG.
Interactive Module Type SIG started
Coq < Parameter T : Set.
T is assumed
Coq < Parameter x : T.
x is assumed
Coq < End SIG.
Module Type SIG is defined
```

Inside a module type the proof editing mode is not available. Consequently commands like Definition without body, Lemma, Theorem are not allowed. In order to declare constants, use Axiom and Parameter.

Now we can create a new module from M, giving it a less precise specification: the y component is dropped as well as the body of x .

```
Coq < Module N : SIG with Definition T := nat := M.
Coq < Coq < Module N is defined
Coq < Print N.T.
N.T = nat
    : Set
Coq < Print N.x.
*** [N.X : N.T]
Coq < Print N.y.
User error: N.y not a defined object
```

The definition of N using the module type expression SIG with Definition $T:=n a t$ is equivalent to the following one:

```
Coq < Module Type SIG'.
Coq < Definition T : Set := nat.
Coq < Parameter x : T.
Coq < End SIG'.
Coq < Module N : SIG' := M.
```

If we just want to be sure that the our implementation satisfies a given module type without restricting the interface, we can use a transparent constraint

```
Coq < Module P <: SIG := M.
Module P is defined
Coq < Print P.y.
P.y = true
    : bool
```

Now let us create a functor, i.e. a parametric module

```
Coq < Module Two (X Y: SIG).
Interactive Module Two started
Coq < Definition T := (X.T * Y.T)%type.
Coq < Definition x := (X.x, Y.x).
Coq < End Two.
Module Two is defined
```

and apply it to our modules and do some computations

```
Coq < Module Q := Two M N.
Module Q is defined
Coq < Eval compute in (fst Q.x + snd Q.x).
    =N.x
    : nat
```

In the end, let us define a module type with two sub-modules, sharing some of the fields and give one of its possible implementations:

```
Coq < Module Type SIG2.
Interactive Module Type SIG2 started
Coq < Declare Module M1 : SIG.
Module MI is declared
Coq < Module M2 <: SIG.
Interactive Module M2 started
Coq < Definition T := M1.T.
T is defined
Coq < Parameter x : T.
x is assumed
Coq < End M2.
Module M2 is defined
Coq < End SIG2.
Module Type SIG2 is defined
Coq < Module Mod <: SIG2.
Coq < Module M1.
Coq < Definition T := nat.
Coq < Definition x := 1.
Coq < End M1.
Coq < Module M2 := M.
Coq < End Mod.
Module Mod is defined
```

Notice that M is a correct body for the component M 2 since its T component is equal nat and hence M1. T as specified.

Remarks:

1. Modules and module types can be nested components of each other.
2. When a module declaration is started inside a module type, the proof editing mode is still unavailable.
3. One can have sections inside a module or a module type, but not a module or a module type inside a section.
4. Commands like Hint or Notation can also appear inside modules and module types. Note that in case of a module definition like:
```
Module N : SIG := M.
```

or
Module N : SIG.

End N.
hints and the like valid for N are not those defined in M (or the module body) but the ones defined in SIG.

2.5.8 Import qualid

If qualid denotes a valid basic module (i.e. its module type is a signature), makes its components available by their short names.

Example:

```
Coq < Module Mod.
Interactive Module Mod started
Coq < Definition T:=nat.
T is defined
Coq < Check T.
T
    : Set
Coq < End Mod.
Module Mod is defined
Coq < Check Mod.T.
Mod.T
    : Set
Coq < Check T. (* Incorrect ! *)
Toplevel input, characters 6-7
> Check T.
>
Error: The reference T was not found in the current environment
Coq < Import Mod.
Coq < Check T. (* Now correct *)
T
    : Set
```


Variants:

1. Export qualid

When the module containing the command Export qualid is imported, qualid is imported as well.

Error messages:

1. qualid is not a module

Warnings:

1. Warning: Trying to mask the absolute name qualid !

2.5.9 Print Module ident

Prints the module type and (optionally) the body of the module ident.

2.5.10 Print Module Type ident

Prints the module type corresponding to ident.

2.5.11 Locate Module qualid

Prints the full name of the module qualid.

2.6 Libraries and qualified names

2.6.1 Names of libraries and files

Libraries The theories developed in CoQ are stored in libraries. A library is characterised by a name called root of the library. The standard library of COQ has root name Coq and is known by default when a CoQ session starts.

Libraries have a tree structure. E.g., the Coq library contains the sub-libraries Init, Logic, Arith, Lists, ... The "dot notation" is used to separate the different component of a library name. For instance, the Arith library of CoQ standard library is written "Coq.Arith".

Remark: no blank is allowed between the dot and the identifier on its right, otherwise the dot is interpreted as the full stop (period) of the command!

Physical paths vs logical paths Libraries and sub-libraries are denoted by logical directory paths (written dirpath and of which the syntax is the same as qualid, see 1.2.3). Logical directory paths can be mapped to physical directories of the operating system using the command (see 6.5.3)

```
Add LoadPath physical_path as dirpath.
```

A library can inherit the tree structure of a physical directory by using the -R option to coqtop or the command (see 6.5.4)

```
Add Rec LoadPath physical_path as dirpath.
```

Remark: When used interactively with coqt op command, COQ opens a library called Top.

The file level At some point, (sub-)libraries contain modules which coincide with files at the physical level. As for sublibraries, the dot notation is used to denote a specific module of a library. Typically, Coq. Init. Logic is the logical path associated to the file Logic.v of CoQ standard library. Notice that compilation (see 12) is done at the level of files.

If the physical directory where a file File.v lies is mapped to the empty logical directory path (which is the default when using the simple form of Add LoadP ath or -I option to coqtop), then the name of the module it defines is File.

2.6.2 Qualified names

Modules contain constructions (sub-modules, axioms, parameters, definitions, lemmas, theorems, remarks or facts). The (full) name of a construction starts with the logical name of the module in which it is defined followed by the (short) name of the construction. Typically, the full name Coq.Init.Logic.eq denotes Leibniz' equality defined in the module Logic in the sublibrary Init of the standard library of COQ.

Abstract

Absolute, partially qualified and short names The full name of a library, module, section, definition, theorem, ... is its absolute name. The last identifier (eq in the previous example) is its short name (or sometimes base name). Any suffix of the absolute name is a partially qualified name (e.g. Logic.eq is a partially qualified name for Coq. Init.Logic.eq). Partially qualified names (shortly qualified name) are also built from identifiers separated by dots. They are written qualid in the documentation.

CoQ does not accept two constructions (definition, theorem, ...) with the same absolute name but different constructions can have the same short name (or even same partially qualified names as soon as the full names are different).

Visibility COQ maintains a name table mapping qualified names to absolute names. This table is modified by the commands Require (see 6.4.1), Import and Export (see 2.5.8) and also each time a new declaration is added to the context.

An absolute name is called visible from a given short or partially qualified name when this name suffices to denote it. This means that the short or partially qualified name is mapped to the absolute name in CoQ name table.

It may happen that a visible name is hidden by the short name or a qualified name of another construction. In this case, the name that has been hidden must be referred to using one more level of qualification. Still, to ensure that a construction always remains accessible, absolute names can never be hidden.

Examples:

```
Coq < Check 0.
O
        : nat
Coq < Definition nat := bool.
nat is defined
Coq < Check 0.
O
        : Datatypes.nat
Coq < Check Datatypes.nat.
Datatypes.nat
```

```
    : Set
Coq < Locate nat.
Constant Top.nat
Inductive Coq.Init.Datatypes.nat
    (shorter name to refer to it in current context is Datatypes.nat)
```

Remark: There is also a name table for sublibraries, modules and sections.
Remark: In versions prior to CoQ 7.4, lemmas declared with Remark and Fact kept in their full name the names of the sections in which they were defined. Since CoQ 7.4, they strictly behaves as Theorem and Lemma do.
See also: Command Locate in Section 6.2.10.

Requiring a file A module compiled in a ".vo" file comes with a logical names (e.g. physical file theories/Init/Datatypes.vo in the CoQ installation directory is bound to the logical module Coq.Init.Datatypes). When requiring the file, the mapping between physical directories and logical library should be consistent with the mapping used to compile the file (for modules of the standard library, this is automatic - check it by typing Print LoadPath).

The command Add Rec LoadPath is also available from coqtop and coqc by using option -R.

2.7 Implicit arguments

An implicit argument of a function is an argument which can be inferred from the knowledge of the type of other arguments of the function, or of the type of the surrounding context of the application. Especially, an implicit argument corresponds to a parameter dependent in the type of the function. Typical implicit arguments are the type arguments in polymorphic functions. More precisely, there are several kinds of implicit arguments.

Strict Implicit Arguments. An implicit argument can be either strict or non strict. An implicit argument is said strict if, whatever the other arguments of the function are, it is still inferable from the type of some other argument. Technically, an implicit argument is strict if it corresponds to a parameter which is not applied to a variable which itself is another parameter of the function (since this parameter may erase its arguments), not in the body of a match, and not itself applied or matched against patterns (since the original form of the argument can be lost by reduction).

For instance, the first argument of
cons: forall $A:$ Set, $A \rightarrow$ list $A \rightarrow$ list A
in module List. v is strict because list is an inductive type and A will always be inferable from the type list A of the third argument of cons. On the opposite, the second argument of a term of type
forall P:nat->Prop, forall n:nat, $P n \rightarrow$ ex nat P
is implicit but not strict, since it can only be inferred from the type $\mathrm{P} n$ of the the third argument and if P is e.g. fun _ $=>$ True, it reduces to an expression where n does not occur any longer. The first argument P is implicit but not strict either because it can only be inferred from P n and P is not canonically inferable from an arbitrary n and the normal form of $P n$ (consider e.g. that n is 0 and the third argument has type True, then any P of the form fun $n=>$ match n with 0 => True | _ => anything end would be a solution of the inference problem.

Contextual Implicit Arguments. An implicit argument can be contextual or not. An implicit argument is said contextual if it can be inferred only from the knowledge of the type of the context of the current expression. For instance, the only argument of

```
nil : forall A:Set, list A
```

is contextual. Similarly, both arguments of a term of type

```
forall P:nat->Prop, forall n:nat, P n \/ n = 0
```

are contextual (moreover, n is strict and P is not).

2.7.1 Casual use of implicit arguments

In a given expression, if it is clear that some argument of a function can be inferred from the type of the other arguments, the user can force the given argument to be guessed by replacing it by "_". If possible, the correct argument will be automatically generated.

Error messages:

1. Cannot infer a term for this placeholder

COQ was not able to deduce an instantiation of a "_".

2.7.2 Declaration of implicit arguments for a constant

In case one wants that some arguments of a given object (constant, inductive types, constructors, assumptions, local or not) are always inferred by Coq, one may declare once for all which are the expected implicit arguments of this object. The syntax is

```
Implicit Arguments qualid [ ident ... ident ]
```

where the list of ident is the list of parameters to be declared implicit. After this, implicit arguments can just (and have to) be skipped in any expression involving an application of qualid.

Example:

```
Coq < Inductive list (A:Set) : Set :=
Coq < | nil : list A
Coq < | cons : A -> list A -> list A.
Coq < Check (cons nat 3 (nil nat)).
cons nat 3 (nil nat)
    : list nat
Coq < Implicit Arguments cons [A].
Coq < Implicit Arguments nil [A].
Coq < Check (cons 3 nil).
cons 3 nil
    : list nat
```

Remark: To know which are the implicit arguments of an object, use command Print Implicit (see 2.7.8).

Remark: If the list of arguments is empty, the command removes the implicit arguments of qualid.

2.7.3 Automatic declaration of implicit arguments for a constant

CoQ can also automatically detect what are the implicit arguments of a defined object. The command is just

```
Implicit Arguments qualid.
```

The auto-detection is governed by options telling if strict and contextual implicit arguments must be considered or not (see Sections 2.7.5 and 2.7.6).

Example:

Coq < Inductive list (A:Set) : Set :=
Coq < | nil : list A
Coq < | cons : A $->$ list A $->$ list A.
Coq < Implicit Arguments cons.
Coq < Print Implicit cons.
cons : forall A : Set, $A \rightarrow$ list $A \rightarrow$ list A
Argument A is implicit
Coq < Implicit Arguments nil.
Coq < Print Implicit nil.
nil : forall A : Set, list A
No implicit arguments
Coq < Set Contextual Implicit.
Coq < Implicit Arguments nil.
Coq < Print Implicit nil.
nil : forall A : Set, list A
Argument A is implicit
The computation of implicit arguments takes account of the unfolding of constants. For instance, the variable p below has type (Transitivity R) which is reducible to forall $x, y: U, R x$ y-> forall $z: U, R y z->R x$. As the variables x, y and z appear strictly in body of the type, they are implicit.

```
Coq < Variable X : Type.
Coq < Definition Relation := X -> X -> Prop.
Coq < Definition Transitivity (R:Relation) :=
Coq < forall x y:X, R x y -> forall z:X, R y z -> R x z.
Coq < Variables (R : Relation) (p : Transitivity R).
Coq < Implicit Arguments p.
Coq < Print p.
*** [ p : Transitivity R ]
Expanded type for implicit arguments
p : forall x y : X, R x y -> forall z : X, R y z -> R x z
Arguments x, y, z are implicit
Coq < Print Implicit p.
p : forall x y : X, R x y m forall z : X, R y z -> R x z
Arguments }x,y,z\mathrm{ are implicit
```

```
Coq < Variables (a b c : X) (r1 : R a b) (r2 : R b c).
Coq < Check (p r1 r2).
p rl r2
    : R a c
```


2.7.4 Mode for automatic declaration of implicit arguments

In case one wants to systematically declare implicit the arguments detectable as such, one may switch to the automatic declaration of implicit arguments mode by using the command

```
Set Implicit Arguments.
```

Conversely, one may unset the mode by using Unset Implicit Arguments. The mode is off by default. Auto-detection of implicit arguments is governed by options controlling whether strict and contextual implicit arguments have to be considered or not.

2.7.5 Controlling strict implicit arguments

By default, COQ automatically set implicit only the strict implicit arguments. To relax this constraint, use command

```
Unset Strict Implicit.
```

Conversely, use command Set Strict Implicit to restore the strict implicit mode.
Remark: In versions of COQ prior to version 8.0, the default was to declare the strict implicit arguments as implicit.

2.7.6 Controlling contextual implicit arguments

By default, COQ does not automatically set implicit the contextual implicit arguments. To tell CoQ to infer also contextual implicit argument, use command

```
Set Contextual Implicit.
```

Conversely, use command Unset Contextual Implicit to unset the contextual implicit mode.

2.7.7 Explicit applications

In presence of non strict or contextual argument, or in presence of partial applications, the synthesis of implicit arguments may fail, so one may have to give explicitly certain implicit arguments of an application. The syntax for this is (ident $:=$ term) where ident is the name of the implicit argument and term is its corresponding explicit term. Alternatively, one can locally deactivate the hidding of implicit arguments of a function by using the notation @qualid term . . term $_{n}$. This syntax extension is given Figure 2.4.

Example (continued):

```
Coq < Check (p rl (z:=c)).
prl (z:=C)
    : R b c -> R a c
Coq<Check (p (x:=a) (y:=b) r1 (z:=c) r2).
p r1 r2
    - R a C
```


Figure 2.4: Syntax for explicitations of implicit arguments

2.7.8 Displaying what the implicit arguments are

To display the implicit arguments associated to an object use command

```
Print Implicit qualid.
```


2.7.9 Explicitation of implicit arguments for pretty-printing

By default the basic pretty-printing rules hide the inferable implicit arguments of an application. To force printing all implicit arguments, use command

```
Set Printing Implicit.
```

Conversely, to restore the hidding of implicit arguments, use command

```
Unset Printing Implicit.
```

See also: Set Printing All in section 2.9.

2.7.10 Interaction with subtyping

When an implicit argument can be inferred from the type of more than one of the other arguments, then only the type of the first of these arguments is taken into account, and not an upper type of all of them. As a consequence, the inference of the implicit argument of " $=$ " fails in

```
Coq < Check nat = Prop.
```

but succeeds in

Coq $<$ Check Prop $=$ nat.

2.7.11 Canonical structures

A canonical structure is an instance of a record/structure type that can be used to solve equations involving implicit arguments. Assume that qualid denotes an object (Build_struc $c_{1} \ldots c_{n}$) in the structure struct of which the fields are x_{1}, \ldots, x_{n}. Assume that qualid is declared as a canonical structure using the command

Canonical Structure qualid.

Then, each time an equation of the form $\left(x_{i^{\prime}}\right)={ }_{\beta \delta \iota \zeta} c_{i}$ has to be solved during the type-checking process, qualid is used as a solution. Otherwise said, qualid is canonically used to extend the field c_{i} into a complete structure built on c_{i}.

Canonical structures are particularly useful when mixed with coercions and strict implicit arguments. Here is an example.

```
Coq < Require Import Relations.
Coq < Require Import EqNat.
Coq < Set Implicit Arguments.
Coq < Unset Strict Implicit.
Coq < Structure Setoid : Type :=
Coq < {Carrier :> Set;
Coq < Equal : relation Carrier;
Coq < Prf_equiv : equivalence Carrier Equal}.
Coq < Definition is_law (A B:Setoid) (f:A -> B) :=
Coq < forall x y:A, Equal x y -> Equal (f x) (f y).
Coq < Axiom eq_nat_equiv : equivalence nat eq_nat.
Coq < Definition nat_setoid : Setoid := Build_Setoid eq_nat_equiv.
Coq < Canonical Structure nat_setoid.
```

Thanks to nat_setoid declared as canonical, the implicit arguments A and B can be synthesised in the next statement.

```
Coq < Lemma is_law_S : is_law S.
1 subgoal
```

```
============================
    is_law (A:=nat_setoid) (B:=nat_setoid) S
```

Remark: If a same field occurs in several canonical structure, then only the structure declared first as canonical is considered.

Variants:

1. Canonical Structure ident $:=$ term : type.

Canonical Structure ident $:=$ term.
Canonical Structure ident : type := term.
These are equivalent to a regular definition of ident followed by the declaration
Canonical Structure ident.
See also: more examples in user contribution category (Rocq/ALGEBRA).

Print Canonical Projections.

This displays the list of global names that are components of some canonical structure. For each of them, the canonical structure of which it is a projection is indicated. For instance, the above example gives the following output:

```
Coq < Print Canonical Projections.
nat <- Carrier ( nat_setoid )
eq_nat <- Equal ( nat_setoid )
eq_nat_equiv <- Prf_equiv ( nat_setoid )
```


2.7.12 Implicit types of variables

It is possible to bind variable names to a given type (e.g. in a development using arithmetic, it may be convenient to bind the names n or m to the type nat of natural numbers). The command for that is

```
Implicit Types ident ... ident : type
```

The effect of the command is to automatically set the type of bound variables starting with ident (either ident itself or ident followed by one or more single quotes, underscore or digits) to be type (unless the bound variable is already declared with an explicit type in which case, this latter type is considered).

Example:

```
Coq < Require Import List.
Coq < Implicit Types m n : nat.
Coq< Lemma cons_inj_nat : forall m n l, n : : l = m:: l -> n = m.
1 subgoal
    ============================
    forall m n (l : list nat), n:: l = m:: l -> n =m
Coq < intros m n.
1 subgoal
    m : nat
    n : nat
    =============================
    forall l : list nat, n :: l = m :: l -> n =m
Coq < Lemma cons_inj_bool : forall (m n:bool) l, n :: l = m:: l -> n = m.
1 subgoal
    ============================
        forall (m n : bool) (l : list bool), n :: l =m:: l -> n =m
```


Variants:

1. Implicit Type ident : type

This is useful for declaring the implicit type of a single variable.

2.8 Coercions

Coercions can be used to implicitly inject terms from one class in which they reside into another one. A class is either a sort (denoted by the keyword Sortclass), a product type (denoted by the keyword Funclass), or a type constructor (denoted by its name), e.g. an inductive type or any constant with a type of the form forall $\left(x_{1}: A_{1}\right) . .\left(x_{n}: A_{n}\right), s$ where s is a sort.

Then the user is able to apply an object that is not a function, but can be coerced to a function, and more generally to consider that a term of type A is of type B provided that there is a declared coercion between A and B . The main command is

Coercion qualid : class $_{1}>->$ class $_{2}$.
which declares the construction denoted by qualid as a coercion between class $_{1}$ and class $_{2}$.
More details and examples, and a description of the commands related to coercions are provided in chapter 16.

2.9 Printing constructions in full

Coercions, implicit arguments, the type of pattern-matching, but also notations (see chapter 11) can obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms are sensitive to the implicit arguments). The command

```
Set Printing All.
```

deactivates all high-level printing features such as coercions, implicit arguments, returned type of pattern-matching, notations and various syntactic sugar for pattern-matching or record projections. Otherwise said, Set Printing All includes the effects of the commands Set Printing Implicit, Set Printing Coercions, Set Printing Synth, Unset Printing Projections and Unset Printing Notations. To reactivate the high-level printing features, use the command

```
Unset Printing All.
```


2.10 Printing universes

The following command:

```
Set Printing Universes
```

activates the display of the actual level of each occurrence of Type. See section 4.1.1 for details. This wizard option, in combination with Set Printing All (see section 2.9) can help to diagnose failures to unify terms apparently identical but internally different in the Calculus of Inductive Constructions. To reactivate the display of the actual level of the occurrences of Type, use

```
Unset Printing Universes.
```

The constraints on the internal level of the occurrences of Type (see section 4.1.1) can be printed using the command

```
Print Universes.
```


Chapter 3

The CoQ library

The CoQ library is structured into three parts:
The initial library: it contains elementary logical notions and datatypes. It constitutes the basic state of the system directly available when running COQ;

The standard library: general-purpose libraries containing various developments of COQ axiomatizations about sets, lists, sorting, arithmetic, etc. This library comes with the system and its modules are directly accessible through the Require command (see section 6.4.1);

User contributions: Other specification and proof developments coming from the CoQ users' community. These libraries are available for download at http://coq.inria.fr (see section 3.3).

This chapter briefly reviews these libraries

3.1 The basic library

This section lists the basic notions and results which are directly available in the standard CoQ system ${ }^{1}$.

3.1.1 Notations

This module defines the parsing and pretty-printing of many symbols (infixes, prefixes, etc.). However, it does not assign a meaning to these notations. The purpose of this is to define precedence and associativity of very common notations, and avoid users to use them with other precedence, which may be confusing.

3.1.2 Logic

The basic library of COQ comes with the definitions of standard (intuitionistic) logical connectives (they are defined as inductive constructions). They are equipped with an appealing syntax enriching the (subclass form) of the syntactic class term. The syntax extension is shown on figure 3.2.

Remark: Implication is not defined but primitive (it is a non-dependent product of a proposition over another proposition). There is also a primitive universal quantification (it is a dependent product over a

[^3]| Notation | Precedence | Associativity |
| :---: | :---: | :---: |
| _ <-> _ | 95 | no |
| _ \/ _ | 85 | right |
| - / - | 80 | right |
| ~ | 75 | right |
| - $=$ - | 70 | no |
| $={ }_{-}=$ | 70 | no |
| _ = _ : > _ | 70 | no |
| _ <> _ | 70 | no |
| _ <> _ :> _ | 70 | no |
| - < | 70 | no |
| _ > _ | 70 | no |
| _ $<=$ _ | 70 | no |
| _ > $=$ _ | 70 | no |
| $\ldots<\ldots<$ | 70 | no |
| _ < $\lll{ }_{-}$ | 70 | no |
| - < $=$ - $<$ | 70 | no |
| - < $=$ - $<=$ | 70 | no |
| \sim_{+}^{+} | 50 | left |
| - - - | 50 | left |
| - * - | 40 | left |
| - 1 - | 40 | left |
| - | 35 | right |
| / - | 35 | right |
| $-{ }^{\wedge}$ - | 30 | right |

Figure 3.1: Notations in the initial state

Figure 3.2: Syntax of formulas
proposition). The primitive universal quantification allows both first-order and higher-order quantification.

Propositional Connectives

First, we find propositional calculus connectives:

```
Coq < Inductive True : Prop := I.
Coq < Inductive False : Prop := .
Coq < Definition not (A: Prop) := A -> False.
Coq < Inductive and (A B:Prop) : Prop := conj (_:A) (_:B).
Coq < Section Projections.
Coq < Variables A B : Prop.
Coq < Theorem proj1 : A /\ B -> A.
Coq < Theorem proj2 : A /\ B -> B.
Coq < End Projections.
Coq < Inductive or (A B:Prop) : Prop :=
Coq < | or_introl (_:A)
Coq < | or_intror (_:B).
Coq < Definition iff (P Q:Prop) := (P -> Q) /\ (Q -> P).
Coq < Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R.
```


Quantifiers

Then we find first-order quantifiers:

```
Coq < Definition all (A:Set) (P:A -> Prop) := forall x:A, P x.
Coq < Inductive ex (A: Set) (P:A -> Prop) : Prop :=
Coq < ex_intro (x:A) (_:P x).
Coq < Inductive ex2 (A:Set) (P Q:A -> Prop) : Prop :=
Coq < ex_intro2 (x:A) (_:P x) (_:Q x).
```

The following abbreviations are allowed:

	```ex A (fun x:A => P) ex - (fun x => P) ex2 A (fun x:A => P) (fun x:A => Q) ex2 - (fun x => P) (fun x => Q)```

The type annotation : A can be omitted when A can be synthesized by the system.

## Equality

Then, we find equality, defined as an inductive relation. That is, given a Type A and an x of type A, the predicate (eq A x) is the smallest one which contains $x$. This definition, due to Christine PaulinMohring, is equivalent to define $\mathrm{e} q$ as the smallest reflexive relation, and it is also equivalent to Leibniz' equality.

```
Coq < Inductive eq (A:Type) (x:A) : A >> Prop :=
Coq < refl_equal : eq A x x.
```


## Lemmas

Finally, a few easy lemmas are provided.

```
Coq < Theorem absurd : forall A C:Prop, A -> ~ A -> C.
Coq < Section equality.
Coq < Variables A B : Type.
Coq < Variable f : A -> B.
Coq < Variables x y z : A.
Coq < Theorem sym_eq : x = y -> y = x.
Coq < Theorem trans_eq : x = y -> y = z -> x = z.
Coq < Theorem f_equal : x = y -> f x = f y.
Coq < Theorem sym_not_eq : x <> y -> y <> x.
Coq < End equality.
Coq < Definition eq_ind_r :
Coq < forall (A:Type) (x:A) (P:A -> Prop), P x -> forall y:A, y = x -> P y.
Coq < Definition eq_rec_r :
Coq < forall (A:Type) (x:A) (P:A -> Set), P x -> forall y:A, y = x -> P y.
Coq < Definition eq_rect_r :
Coq < forall (A:Type) (x:A) (P:A -> Type), P x -> forall y:A, y = x -> P y.
Coq < Hint Immediate sym_eq sym_not_eq : core.
```

The theorem $f$ _equal is extended to functions with two to five arguments. The theorem are names f_equal2, f_equal3, f_equal 4 and f_equal5. For instance f_equal3 is defined the following way.

```
Coq < Theorem f_equal3 :
Coq < forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B) (x1 y1:A1) (x2 y2:A2)
Coq < (x3 y3:A3), x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3.
```


### 3.1.3 Datatypes

In the basic library, we find the definition ${ }^{2}$ of the basic data-types of programming, again defined as inductive constructions over the sort Set. Some of them come with a special syntax shown on Figure 3.3.

[^4]

Figure 3.3: Syntax of datatypes and specifications

## Programming

```
Coq < Inductive unit : Set := tt.
Coq < Inductive bool : Set := true | false.
Coq < Inductive nat : Set := O | S (n:nat).
Coq < Inductive option (A:Set) : Set := Some (_:A) | None.
Coq < Inductive identity (A:Type) (a:A) : A -> Type :=
Coq < refl_identity : identity A a a.
```

Note that zero is the letter $O$, and not the numeral 0 .
identity is logically equivalent to equality but it lives in sort Set. Computationaly, it behaves like unit.

We then define the disjoint sum of $A+B$ of two sets $A$ and $B$, and their product $A * B$.

```
Coq < Inductive sum (A B:Set) : Set := inl (_:A) | inr (_:B).
Coq < Inductive prod (A B:Set) : Set := pair (_:A) (_:B).
Coq < Section projections.
Coq < Variables A B : Set.
Coq < Definition fst (H: prod A B) := match H with
Coq < | pair x y => x
Coq < end.
Coq < Definition snd (H: prod A B) := match H with
Coq < | pair x y => y
Coq < end.
Coq < End projections.
```


### 3.1.4 Specification

The following notions ${ }^{3}$ allows to build new datatypes and specifications. They are available with the syntax shown on Figure $3.3^{4}$.

[^5]For instance, given $A$ : Set and $P: A->P r o p$, the construct $\{x: A \mid P x\}$ (in abstract syntax (sig A P)) is a Set. We may build elements of this set as (exist $x$ p) whenever we have a witness $x$ : A with its justification $p: P$.

From such a (exist $x$ p) we may in turn extract its witness $x$ : A (using an elimination construct such as match) but not its justification, which stays hidden, like in an abstract data type. In technical terms, one says that sig is a "weak (dependent) sum". A variant sig2 with two predicates is also provided.

```
Coq < Inductive sig (A:Set) (P:A -> Prop) : Set := exist (x:A) (_:P x).
Coq < Inductive sig2 (A:Set) (P Q:A -> Prop) : Set :=
Coq < exist2 (x:A) (_:P x) (_:Q x).
```

A "strong (dependent) sum" $\{x: A \&(P \quad x)\}$ may be also defined, when the predicate $P$ is now defined as a Set constructor.

```
Coq < Inductive sigS (A:Set) (P:A -> Set) : Set := existS (x:A) (_:P x).
Coq < Section sigSprojections.
Coq < Variable A : Set.
Coq < Variable P : A -> Set.
Coq < Definition projS1 (H:sigS A P) := let (x, h) := H in x.
Coq < Definition projS2 (H:sigS A P) :=
Coq < match H return P (projS1 H) with
Coq < existS x h => h
Coq < end.
Coq < End sigSprojections.
Coq < Inductive sigS2 (A: Set) (P Q:A -> Set) : Set :=
Coq < existS2 (x:A) (__P x) (_:Q x).
```

A related non-dependent construct is the constructive sum $\{A\}+\{B\}$ of two propositions $A$ and $B$.

```
Coq < Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).
```

This sumbool construct may be used as a kind of indexed boolean data type. An intermediate between sumbool and sum is the mixed sumor which combines A: Set and B:Prop in the Set $A+\{B\}$.

```
Coq < Inductive sumor (A:Set) (B:Prop) : Set := inleft (_:A) | inright (_:B).
```

We may define variants of the axiom of choice, like in Martin-Löf's Intuitionistic Type Theory.

```
Coq < Lemma Choice :
Coq < forall (S S':Set) (R:S -> S' -> Prop),
Coq < (forall x:S, {y : S' | R x y}) ->
Coq < {f:S -> S' | forall z:S, R z (f z)}.
Coq < Lemma Choice2 :
Coq < forall (S S':Set) (R:S -> S' -> Set),
Coq < (forall x:S, {y : S' & R x y }) ->
```

```
Coq< {f:S -> S' & forall z:S, R z (f z)}.
Coq < Lemma bool_choice :
Coq < forall (S:Set) (R1 R2:S -> Prop),
Coq < (forall x:S, {R1 x} + {R2 x}) ->
Coq < {f : S -> bool |
Coq < forall x:S, f x = true /\ R1 x \/ f x = false /\ R2 x}.
```

The next constructs builds a sum between a data type $A$ : Set and an exceptional value encoding errors:

```
Coq < Definition Exc := option.
Coq < Definition value := Some.
Coq < Definition error := None.
```

This module ends with theorems, relating the sorts Set and Prop in a way which is consistent with the realizability interpretation.

```
Coq < Definition except := False_rec.
Coq < Notation Except := (except _).
Coq < Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.
Coq < Theorem and_rec :
Coq < forall (A B:Prop) (P:Set), (A -> B -> P) -> A /\ B -> P.
```


### 3.1.5 Basic Arithmetics

The basic library includes a few elementary properties of natural numbers, together with the definitions of predecessor, addition and multiplication ${ }^{5}$. It also provides a scope nat_scope gathering standard notations for common operations $\left(+,{ }^{*}\right)$ and a decimal notation for numbers. That is he can write 3 for (S (S (S O)) ). This also works on the left hand side of a match expression (see for example section 10.1 ). This scope is opened by default.

The following example is not part of the standard library, but it shows the usage of the notations:

```
Coq < Fixpoint even (n:nat) : bool :=
Coq < match n with
Coq < | 0 => true
Coq < | 1 => false
Coq < | S (S n) => even n
Coq < end.
Coq< Theorem eq_S : forall x y:nat, x = y -> S x = S y.
Coq < Definition pred (n:nat) : nat :=
Coq < match n with
Coq < | 0 => 0
Coq < | S u => u
Coq < end.
```

[^6]```
Coq < Theorem pred_Sn : forall m:nat, m = pred (S m).
Coq < Theorem eq_add_S : forall n m:nat, S n = S m -> n = m.
Coq < Hint Immediate eq_add_S : core.
Coq < Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.
Coq < Definition IsSucc (n:nat) : Prop :=
Coq < match n with
Coq < | 0 => False
Coq < | S p => True
Coq < end.
Coq < Theorem O_S : forall n:nat, 0 <> S n.
Coq < Theorem n_Sn : forall n:nat, n <> S n.
Coq < Fixpoint plus (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | 0 => m
Coq < | S p => S (plus p m)
Coq < end.
Coq < Lemma plus_n_O : forall n:nat, n = plus n 0.
Coq < Lemma plus_n_Sm : forall n m:nat, S (plus n m) = plus n (S m).
Coq < Fixpoint mult (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | 0 => 0
Coq < | S p => m + mult p m
Coq < end.
Coq < Lemma mult_n_O : forall n:nat, 0 = mult n 0.
Coq < Lemma mult_n_Sm : forall n m:nat, plus (mult n m) n = mult n (S m).
```

Finally, it gives the definition of the usual orderings $l e, l t, g e$, and $g t$.

```
Coq < Inductive le (n:nat) : nat -> Prop :=
Coq < | le_n : le n n
Coq < | le_S : forall m:nat, le n m -> le n (S m).
Coq < Infix "+" := plus : nat_scope.
Coq < Definition lt (n m:nat) := S n <= m.
Coq < Definition ge (n m:nat) := m <= n.
Coq < Definition gt (n m:nat) := m < n.
```

Properties of these relations are not initially known, but may be required by the user from modules Le and Lt. Finally, Peano gives some lemmas allowing pattern-matching, and a double induction principle.

```
Coq < Theorem nat_case :
Coq < forall (n:nat) (P:nat -> Prop), P O -> (forall m:nat, P (S m)) -> P n.
Coq < Theorem nat_double_ind :
Coq < forall R:nat -> nat -> Prop,
Coq < (forall n:nat, R 0 n) ->
Coq < (forall n:nat, R (S n) 0) ->
Coq < (forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m.
```


3.1.6 Well-founded recursion

The basic library contains the basics of well-founded recursion and well-founded induction ${ }^{6}$.

```
Coq < Section Well_founded.
Coq < Variable A : Set.
Coq < Variable R : A -> A -> Prop.
Coq < Inductive Acc : A -> Prop :=
Coq < Acc_intro : forall x:A, (forall y:A, R y x -> Acc y) -> Acc x.
Coq < Lemma Acc_inv : forall x:A, Acc x -> forall y:A, R y x -> Acc y.
Coq < Section AccRec.
Coq < Variable P : A -> Set.
Coq < Variable F :
Coq < forall x:A,
Coq < (forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x.
Coq < Fixpoint Acc_rec (x:A) (a:Acc x) {struct a} : P x :=
Coq < F x (Acc_inv x a)
Coq< (fun (y:A) (h:R y x) => Acc_rec y (Acc_inv x a y h)).
Coq < End AccRec.
Coq < Definition well_founded := forall a:A, Acc a.
Coq < Hypothesis Rwf : well_founded.
Coq < Theorem well_founded_induction :
Coq < forall P:A -> Set,
Coq < (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
Coq < Theorem well_founded_ind :
Coq < forall P:A -> Prop,
Coq< (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
```

Acc_rec can be used to define functions by fixpoints using well-founded relations to justify termination. Assuming extensionality of the functional used for the recursive call, the fixpoint equation can be proved.

```
Coq < Section FixPoint.
Coq < Variable P : A -> Set.
Coq < Variable F : forall x:A, (forall y:A, R Y x -> P y) -> P x.
Coq < Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=
Coq< F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)).
Coq < Definition Fix (x:A) := Fix_F x (Rwf x).
Coq < Hypothesis F__ext :
Coq < forall (x:A) (f g:forall y:A, R y x -> P y),
Coq< (forall (y:A) (p:R y x), f y p = g y p) -> F x f = F x g.
Coq < Lemma Fix_F_eq :
Coq < forall (x:A) (r:Acc x),
```

[^7]```
Coq< F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)) = Fix_F x r.
Coq < Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.
Coq < Lemma fix_eq : forall x:A, Fix x = F x (fun (y:A) (p:R y x) => Fix y).
Coq < End FixPoint.
Coq < End Well_founded.
```


### 3.1.7 Accessing the Type level

The basic library includes the definitions ${ }^{7}$ of the counterparts of some datatypes and logical quantifiers at the Type level: negation, pair, and properties of identity.

```
Coq < Definition notT (A:Type) := A -> False.
Coq < Inductive prodT (A B:Type) : Type := pairT (_:A) (_:B).
```

At the end, it defines datatypes at the Type level.

### 3.2 The standard library

### 3.2.1 Survey

The rest of the standard library is structured into the following subdirectories:

Logic	Classical logic and dependent equality
Arith	Basic Peano arithmetic
NArith	Basic positive integer arithmetic
ZArith	Basic relative integer arithmetic
Bool	Booleans (basic functions and results)
Lists	Monomorphic and polymorphic lists (basic functions and results), Streams (in-   finite sequences defined with co-inductive types)
Sets	Sets (classical, constructive, finite, infinite, power set, etc.)   FSets
	Specification and implementations of finite sets and finite maps (by lists and   by AVL trees)
IntMap	Representation of finite sets by an efficient structure of map (trees indexed by   binary integers).
Reals	Axiomatization of real numbers (classical, basic functions, integer part, frac-   tional part, limit, derivative, Cauchy series, power series and results,...)
Relations	Relations (definitions and basic results).   Sorting
Sorted list (basic definitions and heapsort correctness).	
Strings	8-bits characters and strings
Wellfounded	Well-founded relations (basic results).

These directories belong to the initial load path of the system, and the modules they provide are compiled at installation time. So they are directly accessible with the command Require (see chapter 6).

The different modules of the COQ standard library are described in the additional document Library.dvi. They are also accessible on the WWW through the CoQ homepage ${ }^{8}$.

[^8]| Notation | Interpretation | Precedence | Associativity |
| :---: | :---: | :---: | :---: |
| - < | Zlt |  |  |
| $x<=y$ | Zle |  |  |
| _ > - | Zgt |  |  |
| $x>=y$ | Zge |  |  |
| $x<y<z$ | $x<y / \backslash y<z$ |  |  |
| $x<y<=z$ | $x<y / \backslash y<=z$ |  |  |
| $x<=y<z$ | $\mathrm{x}<=\mathrm{y} / \backslash \mathrm{y}<\mathrm{z}$ |  |  |
| $\mathrm{x}<=\mathrm{y}<=\mathrm{z}$ | $\mathrm{x}<=\mathrm{y} / \backslash \mathrm{y}<=\mathrm{z}$ |  |  |
| - ? $=$ - | Zcompare | 70 | no |
| _ + | Zplus |  |  |
| - - - | Zminus |  |  |
| _ * - | Zmult |  |  |
| - / - | Zdiv |  |  |
| _ mod | Zmod | 40 | no |
| - | Zopp |  |  |
| $-{ }^{\wedge}-$ | Zpower |  |  |

Figure 3.4: Definition of the scope for integer arithmetics (Z_scope)

### 3.2.2 Notations for integer arithmetics

On figure 3.2.2 is described the syntax of expressions for integer arithmetics. It is provided by requiring and opening the module ZArith and opening scope $Z$ _scope.

Figure 3.2.2 shows the notations provided by Z _scope. It specifies how notations are interpreted and, when not already reserved, the precedence and associativity.

```
Coq < Require Import ZArith.
Coq < Check (2 + 3)%Z.
(2+3)%z
 : Z
Coq < Open Scope Z_scope.
Coq < Check 2 + 3.
2 + 3
 : Z
```


### 3.2.3 Peano's arithmetic (nat)

While in the initial state, many operations and predicates of Peano's arithmetic are defined, further operations and results belong to other modules. For instance, the decidability of the basic predicates are defined here. This is provided by requiring the module Arith.

Figure 3.2.3 describes notation available in scope nat_scope.

Notation	Interpretation
_ <	lt
$x<=y$	le
$>$	$g t$
$x>=y$	ge
$x<y<z$	$x<y / \backslash y<z$
$\mathrm{x}<\mathrm{y}<=\mathrm{z}$	$x<y / \backslash y<=z$
$x<=y<z$	$\mathrm{x}<=\mathrm{y} / \backslash \mathrm{y}<\mathrm{z}$
$\mathrm{x}<=\mathrm{y}<=\mathrm{z}$	$\mathrm{x}<=\mathrm{y} / \backslash \mathrm{y}<=\mathrm{z}$
$\sim^{+}$	plus
- -	minus
- * -	mult

Figure 3.5: Definition of the scope for natural numbers (nat_scope)

Notation	Interpretation
<	Rlt
$x<=y$	Rle
>	Rgt
$x>=y$	Rge
$x<y<z$	$\mathrm{x}<\mathrm{y} / \backslash \mathrm{y}<\mathrm{z}$
$x<y<=z$	$x<y / \backslash y<=z$
$x<=y<z$	$\mathrm{x}<=\mathrm{y} / \backslash \mathrm{y}<\mathrm{z}$
$\mathrm{x}<=\mathrm{y}<=\mathrm{z}$	$\mathrm{x}<=\mathrm{y} / \backslash \mathrm{y}<=\mathrm{z}$
- +	Rplus
- - -	Rminus
*	Rmult
- / -	Rdiv
- -	Ropp
/ -	Rinv
$-^{\wedge}$	pow

Figure 3.6: Definition of the scope for real arithmetics (R_scope)

### 3.2.4 Real numbers library

## Notations for real numbers

This is provided by requiring and opening the module Reals and opening scope $R _s c o p e$. This set of notations is very similar to the notation for integer arithmetics. The inverse function was added.

```
Coq < Require Import Reals.
Coq < Check (2 + 3)%R.
(2 + 3) %R
 : R
Coq < Open Scope R_scope.
Coq < Check 2 + 3.
```

$2+3$
: R

## Some tactics

In addition to the ring, field and fourier tactics (see Chapter 8) there are:

- discrR

Proves that a real integer constant $c_{1}$ is different from another real integer constant $c_{2}$.

```
Coq < Require Import DiscrR.
Coq < Goal 5 <> 0.
Coq < discrR.
Proof completed.
```

- split_Rabs allows to unfold Rabs constant and splits corresponding conjonctions.

```
Coq < Require Import SplitAbsolu.
Coq < Goal forall x:R, x <= Rabs x.
Coq < intro; split_Rabs.
2 subgoals
 x : R
 r : x < 0
 x <= - x
subgoal 2 is:
 x <= x
```

- split_Rmult allows to split a condition that a product is non null into subgoals corresponding to the condition on each operand of the product.

```
Coq < Require Import SplitRmult.
Coq < Goal forall x y z:R, x * y * z <> 0.
Coq < intros; split_Rmult.
3 subgoals
 x : R
 y : R
 z : R
 ==============================
 x <> 0
subgoal 2 is:
 y <> 0
subgoal 3 is:
 z <> 0
```

All this tactics has been written with the tactic language Ltac described in Chapter 9. More details are available in document http://coq.inria.fr/~desmettr/Reals.ps.

Notation	Interpretation	Precedence	Associativity
-++-	app	60	right
$-::-$	cons	60	right

Figure 3.7: Definition of the scope for lists (list_scope)

### 3.2.5 List library

Some elementary operations on polymorphic lists are defined here. They can be accessed by requiring module List.

It defines the following notions:

length	length
head	first element (with default)
tail	all but first element
app	concatenation
rev	reverse
nth	accessing $n$-th element (with default)
map	applying a function
flat_map	applying a function returning lists
fold_left	iterator (from head to tail)
fold_right	iterator (from tail to head)

Table show notations available when opening scope list_scope.

### 3.3 Users' contributions

Numerous users' contributions have been collected and are available at URL coq.inria.fr/ contribs/. On this web page, you have a list of all contributions with informations (author, institution, quick description, etc.) and the possibility to download them one by one. There is a small search engine to look for keywords in all contributions. You will also find informations on how to submit a new contribution.

The users’ contributions may also be obtained by anonymous FTP from site ftp.inria.fr, in directory INRIA/coq/ and searchable on-line at http://coq.inria.fr/contribs-eng. html

## Chapter 4

## Calculus of Inductive Constructions

The underlying formal language of COQ is a Calculus of Constructions with Inductive Definitions. It is presented in this chapter. For COQ version V7, this Calculus was known as the Calculus of (Co)Inductive Constructions (CIC in short). The underlying calculus of COQ version V8.0 and up is a weaker calculus where the sort Set satisfies predicative rules. We call this calculus the Predicative Calculus of (Co)Inductive Constructions (pCIC in short). In section 4.7 we give the extra-rules for CIC. A compiling option of COQ allows to type-check theories in this extended system.

In pCic all objects have a type. There are types for functions (or programs), there are atomic types (especially datatypes)... but also types for proofs and types for the types themselves. Especially, any object handled in the formalism must belong to a type. For instance, the statement "for all $x, P$ " is not allowed in type theory; you must say instead: "for all $x$ belonging to $T, P$ ". The expression " $x$ belonging to $T$ " is written " $x: T$ ". One also says: " $x$ has type $T$ ". The terms of pCiC are detailed in section 4.1.

In pCic there is an internal reduction mechanism. In particular, it allows to decide if two programs are intentionally equal (one says convertible). Convertibility is presented in section 4.3.

The remaining sections are concerned with the type-checking of terms. The beginner can skip them.
The reader seeking a background on the Calculus of Inductive Constructions may read several papers. Giménez and Castéran [63] provide an introduction to inductive and coinductive definitions in Coq. In their book [13], Bertot and Castéran give a precise description of the pCiC based on numerous practical examples. Barras [9], Werner [127] and Paulin-Mohring [111] are the most recent theses dealing with Inductive Definitions. Coquand-Huet [27, 28, 29] introduces the Calculus of Constructions. Coquand-Paulin [30] extended this calculus to inductive definitions. The pCiC is a formulation of type theory including the possibility of inductive constructions, Barendregt [6] studies the modern form of type theory.

### 4.1 The terms

In most type theories, one usually makes a syntactic distinction between types and terms. This is not the case for pCIC which defines both types and terms in the same syntactical structure. This is because the type-theory itself forces terms and types to be defined in a mutual recursive way and also because similar constructions can be applied to both terms and types and consequently can share the same syntactic structure.

Consider for instance the $\rightarrow$ constructor and assume nat is the type of natural numbers. Then $\rightarrow$ is used both to denote nat $\rightarrow$ nat which is the type of functions from nat to nat, and to denote nat $\rightarrow$ Prop which is the type of unary predicates over the natural numbers. Consider abstraction which
builds functions. It serves to build "ordinary" functions as fun $x$ : nat $\Rightarrow$ (mult $x x$ ) (assuming mult is already defined) but may build also predicates over the natural numbers. For instance fun $x$ : nat $\Rightarrow$ $(x=x)$ will represent a predicate $P$, informally written in mathematics $P(x) \equiv x=x$. If $P$ has type nat $\rightarrow$ Prop, $(P x)$ is a proposition, furthermore forall $x:$ nat, $(P x)$ will represent the type of functions which associate to each natural number $n$ an object of type $(P n)$ and consequently represent proofs of the formula " $\forall x . P(x)$ ".

### 4.1.1 Sorts

Types are seen as terms of the language and then should belong to another type. The type of a type is always a constant of the language called a sort.

The two basic sorts in the language of pCIC are Set and Prop.
The sort Prop intends to be the type of logical propositions. If $M$ is a logical proposition then it denotes a class, namely the class of terms representing proofs of $M$. An object $m$ belonging to $M$ witnesses the fact that $M$ is true. An object of type Prop is called a proposition.

The sort Set intends to be the type of specifications. This includes programs and the usual sets such as booleans, naturals, lists etc.

These sorts themselves can be manipulated as ordinary terms. Consequently sorts also should be given a type. Because assuming simply that Set has type Set leads to an inconsistent theory, we have infinitely many sorts in the language of pCic. These are, in addition to Set and Prop a hierarchy of universes Type $(i)$ for any integer $i$. We call $\mathcal{S}$ the set of sorts which is defined by:

$$
\mathcal{S} \equiv\{\operatorname{Prop}, \text { Set }, \operatorname{Type}(i) \mid i \in \mathbb{N}\}
$$

The sorts enjoy the following properties: Prop:Type(0), Set:Type(0) and Type $(i): \operatorname{Type}(i+1)$.
The user will never mention explicitly the index $i$ when referring to the universe Type $(i)$. One only writes Type. The system itself generates for each instance of Type a new index for the universe and checks that the constraints between these indexes can be solved. From the user point of view we consequently have Type :Type.

We shall make precise in the typing rules the constraints between the indexes.

Implementation issues In practice, the Type hierarchy is implemented using algebraic universes. An algebraic universe $u$ is either a variable (a qualified identifier with a number) or a successor of an algebraic universe (an expression $u+1$ ), or an upper bound of algebraic universes (an expression $\max \left(u_{1}, \ldots, u_{n}\right)$ ), or the base universe (the expression 0 ) which corresponds, in the arity of sortpolymorphic inductive types, to the predicative sort Set. A graph of constraints between the universe variables is maintained globally. To ensure the existence of a mapping of the universes to the positive integers, the graph of constraints must remain acyclic. Typing expressions that violate the acyclicity of the graph of constraints results in a Universe inconsistency error (see also section 2.10).

### 4.1.2 Constants

Besides the sorts, the language also contains constants denoting objects in the environment. These constants may denote previously defined objects but also objects related to inductive definitions (either the type itself or one of its constructors or destructors).
Remark. In other presentations of pCIC , the inductive objects are not seen as external declarations but as first-class terms. Usually the definitions are also completely ignored. This is a nice theoretical point
of view but not so practical. An inductive definition is specified by a possibly huge set of declarations, clearly we want to share this specification among the various inductive objects and not to duplicate it. So the specification should exist somewhere and the various objects should refer to it. We choose one more level of indirection where the objects are just represented as constants and the environment gives the information on the kind of object the constant refers to.

Our inductive objects will be manipulated as constants declared in the environment. This roughly corresponds to the way they are actually implemented in the CoQ system. It is simple to map this presentation in a theory where inductive objects are represented by terms.

### 4.1.3 Terms

Terms are built from variables, global names, constructors, abstraction, application, local declarations bindings ("let-in" expressions) and product.

From a syntactic point of view, types cannot be distinguished from terms, except that they cannot start by an abstraction, and that if a term is a sort or a product, it should be a type.

More precisely the language of the Calculus of Inductive Constructions is built from the following rules:

1. the sorts Set, Prop, Type are terms.
2. names for global constants of the environment are terms.
3. variables are terms.
4. if $x$ is a variable and $T, U$ are terms then $\forall x: T, U$ (forall $x: T, U$ in CoQ concrete syntax) is a term. If $x$ occurs in $U, \forall x: T, U$ reads as "for all $x$ of type $T, U$ ". As $U$ depends on $x$, one says that $\forall x: T, U$ is a dependent product. If $x$ doesn't occurs in $U$ then $\forall x: T, U$ reads as "if $T$ then $U$ ". A non dependent product can be written: $T \rightarrow U$.
5. if $x$ is a variable and $T, U$ are terms then $\lambda x: T, U$ (fun $x: T \Rightarrow U$ in CoQ concrete syntax) is a term. This is a notation for the $\lambda$-abstraction of $\lambda$-calculus [8]. The term $\lambda x: T, U$ is a function which maps elements of $T$ to $U$.
6. if $T$ and $U$ are terms then $(T U)$ is a term ( $T U$ in CoQ concrete syntax). The term ( $T U$ ) reads as "T applied to $U$ ".
7. if $x$ is a variable, and $T, U$ are terms then let $x:=T$ in $U$ is a term which denotes the term $U$ where the variable $x$ is locally bound to $T$. This stands for the common "let-in" construction of functional programs such as ML or Scheme.

Notations. Application associates to the left such that $\left(t t_{1} \ldots t_{n}\right)$ represents $\left(\ldots\left(t t_{1}\right) \ldots t_{n}\right)$. The products and arrows associate to the right such that $\forall x: A, B \rightarrow C \rightarrow D$ represents $\forall x: A,(B \rightarrow$ $(C \rightarrow D)$ ). One uses sometimes $\forall x y: A, B$ or $\lambda x y: A, B$ to denote the abstraction or product of several variables of the same type. The equivalent formulation is $\forall x: A, \forall y: A, B$ or $\lambda x: A, \lambda y: A, B$

Free variables. The notion of free variables is defined as usual. In the expressions $\lambda x: T, U$ and $\forall x: T, U$ the occurrences of $x$ in $U$ are bound. They are represented by de Bruijn indexes in the internal structure of terms.

Substitution. The notion of substituting a term $t$ to free occurrences of a variable $x$ in a term $u$ is defined as usual. The resulting term is written $u\{x / t\}$.

### 4.2 Typed terms

As objects of type theory, terms are subjected to type discipline. The well typing of a term depends on an environment which consists in a global environment (see below) and a local context.

Local context. A local context (or shortly context) is an ordered list of declarations of variables. The declaration of some variable $x$ is either an assumption, written $x: T$ ( $T$ is a type) or a definition, written $x:=t: T$. We use brackets to write contexts. A typical example is $[x: T ; y:=u: U ; z: V]$. Notice that the variables declared in a context must be distinct. If $\Gamma$ declares some $x$, we write $x \in \Gamma$. By writing $(x: T) \in \Gamma$ we mean that either $x: T$ is an assumption in $\Gamma$ or that there exists some $t$ such that $x:=t: T$ is a definition in $\Gamma$. If $\Gamma$ defines some $x:=t: T$, we also write $(x:=t: T) \in \Gamma$. Contexts must be themselves well formed. For the rest of the chapter, the notation $\Gamma::(y: T)$ (resp. $\Gamma::(y:=t: T))$ denotes the context $\Gamma$ enriched with the declaration $y: T($ resp. $y:=t: T)$. The notation [] denotes the empty context.

We define the inclusion of two contexts $\Gamma$ and $\Delta$ (written as $\Gamma \subset \Delta$ ) as the property, for all variable $x$, type $T$ and term $t$, if $(x: T) \in \Gamma$ then $(x: T) \in \Delta$ and if $(x:=t: T) \in \Gamma$ then $(x:=t: T) \in \Delta$.

A variable $x$ is said to be free in $\Gamma$ if $\Gamma$ contains a declaration $y: T$ such that $x$ is free in $T$.

Environment. Because we are manipulating global declarations (constants and global assumptions), we also need to consider a global environment $E$.

An environment is an ordered list of declarations of global names. Declarations are either assumptions or "standard" definitions, that is abbreviations for well-formed terms but also definitions of inductive objects. In the latter case, an object in the environment will define one or more constants (that is types and constructors, see section 4.5).

An assumption will be represented in the environment as $\operatorname{Assum}(\Gamma)(c: T)$ which means that $c$ is assumed of some type $T$ well-defined in some context $\Gamma$. An (ordinary) definition will be represented in the environment as $\operatorname{Def}(\Gamma)(c:=t: T)$ which means that $c$ is a constant which is valid in some context $\Gamma$ whose value is $t$ and type is $T$.

The rules for inductive definitions (see section 4.5) have to be considered as assumption rules to which the following definitions apply: if the name $c$ is declared in $E$, we write $c \in E$ and if $c: T$ or $c:=t: T$ is declared in $E$, we write $(c: T) \in E$.

Typing rules. In the following, we assume $E$ is a valid environment wrt to inductive definitions. We define simultaneously two judgments. The first one $E[\Gamma] \vdash t: T$ means the term $t$ is well-typed and has type $T$ in the environment $E$ and context $\Gamma$. The second judgment $\mathcal{W F}(E)[\Gamma]$ means that the environment $E$ is well-formed and the context $\Gamma$ is a valid context in this environment. It also means a third property which makes sure that any constant in $E$ was defined in an environment which is included in $\Gamma^{1}$.

A term $t$ is well typed in an environment $E$ iff there exists a context $\Gamma$ and a term $T$ such that the judgment $E[\Gamma] \vdash t: T$ can be derived from the following rules.

[^9]
## W-E

$$
\mathcal{W} \mathcal{F}([])[[]]
$$

W-S

$$
\frac{E[\Gamma] \vdash T: s \quad s \in \mathcal{S} \quad x \notin \Gamma}{\mathcal{W} \mathcal{F}(E)[\Gamma::(x: T)]} \quad \frac{E[\Gamma] \vdash t: T \quad x \notin \Gamma}{\mathcal{W} \mathcal{F}(E)[\Gamma::(x:=t: T)]}
$$

Def

$$
\frac{E[\Gamma] \vdash t: T \quad c \notin E \cup \Gamma}{\mathcal{W} \mathcal{F}(E ; \operatorname{Def}(\Gamma)(c:=t: T))[\Gamma]}
$$

## Assum

$$
\frac{E[\Gamma] \vdash T: s \quad s \in \mathcal{S} \quad c \notin E \cup \Gamma}{\mathcal{W} \mathcal{F}(E ; \operatorname{Assum}(\Gamma)(c: T))[\Gamma]}
$$

Ax

$$
\begin{gathered}
\frac{\mathcal{W F}(E)[\Gamma]}{E[\Gamma] \vdash \operatorname{Prop}: \operatorname{Type}(p)} \quad \frac{\mathcal{W} \mathcal{F}(E)[\Gamma]}{E[\Gamma] \vdash \operatorname{Set}: \operatorname{Type}(q)} \\
\frac{\mathcal{W F}(E)[\Gamma]}{E[\Gamma] \vdash \operatorname{Type}(i): \operatorname{Type}(j)}
\end{gathered}
$$

Var

$$
\frac{\mathcal{W F}(E)[\Gamma] \quad(x: T) \in \Gamma \text { or }(x:=t: T) \in \Gamma \text { for some } t}{E[\Gamma] \vdash x: T}
$$

## Const

$$
\frac{\mathcal{W F}(E)[\Gamma] \quad(c: T) \in E \text { or }(c:=t: T) \in E \text { for some } t}{E[\Gamma] \vdash c: T}
$$

## Prod

$$
\begin{gathered}
\frac{E[\Gamma] \vdash T: s \quad s \in \mathcal{S} \quad E[\Gamma::(x: T)] \vdash U: \operatorname{Prop}}{E[\Gamma] \vdash \forall x: T, U: \operatorname{Prop}} \\
\frac{E[\Gamma] \vdash T: s \quad s \in\{\operatorname{Prop}, \operatorname{Set}\} \quad E[\Gamma::(x: T)] \vdash U: \text { Set }}{E[\Gamma] \vdash \forall x: T, U: \operatorname{Set}} \\
\frac{E[\Gamma] \vdash T: \operatorname{Type}(i) \quad i \leq k \quad E[\Gamma::(x: T)] \vdash U: \operatorname{Type}(j) \quad j \leq k}{E[\Gamma] \vdash \forall x: T, U: \operatorname{Type}(k)}
\end{gathered}
$$

Lam

$$
\frac{E[\Gamma] \vdash \forall x: T, U: s \quad E[\Gamma::(x: T)] \vdash t: U}{E[\Gamma] \vdash \lambda x: T, t: \forall x: T, U}
$$

App

$$
\frac{E[\Gamma] \vdash t: \forall x: U, T \quad E[\Gamma] \vdash u: U}{E[\Gamma] \vdash(t u): T\{x / u\}}
$$

Let

$$
\frac{E[\Gamma] \vdash t: T \quad E[\Gamma::(x:=t: T)] \vdash u: U}{E[\Gamma] \vdash \operatorname{let} x:=t \operatorname{in} u: U\{x / t\}}
$$

Remark: We may have let $x:=t$ in $u$ well-typed without having $((\lambda x: T, u) t$ ) well-typed (where $T$ is a type of $t$ ). This is because the value $t$ associated to $x$ may be used in a conversion rule (see section 4.3).

### 4.3 Conversion rules

$\beta$-reduction. We want to be able to identify some terms as we can identify the application of a function to a given argument with its result. For instance the identity function over a given type $T$ can be written $\lambda x: T, x$. In any environment $E$ and context $\Gamma$, we want to identify any object $a$ (of type $T$ ) with the application $((\lambda x: T, x) a)$. We define for this a reduction (or a conversion) rule we call $\beta$ :

$$
E[\Gamma] \vdash((\lambda x: T, t) u) \triangleright_{\beta} t\{x / u\}
$$

We say that $t\{x / u\}$ is the $\beta$-contraction of $((\lambda x: T, t) u)$ and, conversely, that $((\lambda x: T, t) u)$ is the $\beta$-expansion of $t\{x / u\}$.

According to $\beta$-reduction, terms of the Calculus of Inductive Constructions enjoy some fundamental properties such as confluence, strong normalization, subject reduction. These results are theoretically of great importance but we will not detail them here and refer the interested reader to [21].
$\iota$-reduction. A specific conversion rule is associated to the inductive objects in the environment. We shall give later on (section 4.5.4) the precise rules but it just says that a destructor applied to an object built from a constructor behaves as expected. This reduction is called $\iota$-reduction and is more precisely studied in [110, 127].
$\delta$-reduction. We may have defined variables in contexts or constants in the global environment. It is legal to identify such a reference with its value, that is to expand (or unfold) it into its value. This reduction is called $\delta$-reduction and shows as follows.

$$
E[\Gamma] \vdash x \triangleright_{\delta} t \quad \text { if }(x:=t: T) \in \Gamma \quad E[\Gamma] \vdash c \triangleright_{\delta} t \quad \text { if }(c:=t: T) \in E
$$

$\zeta$-reduction. Coq allows also to remove local definitions occurring in terms by replacing the defined variable by its value. The declaration being destroyed, this reduction differs from $\delta$-reduction. It is called $\zeta$-reduction and shows as follows.

$$
E[\Gamma] \vdash \text { let } x:=u \text { in } t \triangleright_{\zeta} t\{x / u\}
$$

Convertibility. Let us write $E[\Gamma] \vdash t \triangleright u$ for the contextual closure of the relation $t$ reduces to $u$ in the environment $E$ and context $\Gamma$ with one of the previous reduction $\beta, \iota, \delta$ or $\zeta$.

We say that two terms $t_{1}$ and $t_{2}$ are convertible (or equivalent) in the environment $E$ and context $\Gamma$ iff there exists a term $u$ such that $E[\Gamma] \vdash t_{1} \triangleright \ldots \triangleright u$ and $E[\Gamma] \vdash t_{2} \triangleright \ldots \triangleright u$. We then write $E[\Gamma] \vdash t_{1}={ }_{\beta \delta \iota \zeta} t_{2}$.

The convertibility relation allows to introduce a new typing rule which says that two convertible well-formed types have the same inhabitants.

At the moment, we did not take into account one rule between universes which says that any term in a universe of index $i$ is also a term in the universe of index $i+1$. This property is included into the conversion rule by extending the equivalence relation of convertibility into an order inductively defined by:

1. if $E[\Gamma] \vdash t={ }_{\beta \delta \iota \zeta} u$ then $E[\Gamma] \vdash t \leq_{\beta \delta \iota \zeta} u$,
2. if $i \leq j$ then $E[\Gamma] \vdash \operatorname{Type}(i) \leq_{\beta \delta \iota \zeta} \operatorname{Type}(j)$,
3. for any $i, E[\Gamma] \vdash \operatorname{Prop} \leq_{\beta \delta \iota \zeta}$ Type $(i)$,
4. for any $i, E[\Gamma] \vdash$ Set $\leq_{\beta \delta \iota \zeta} \operatorname{Type}(i)$,
5. if $E[\Gamma] \vdash T={ }_{\beta \delta \iota \zeta} U \quad$ and $\quad E[\Gamma::(x: T)] \vdash T^{\prime} \leq_{\beta \delta \iota \zeta} U^{\prime} \quad$ then $E[\Gamma] \vdash \forall x: T, T^{\prime} \leq_{\beta \delta \iota \zeta} \forall x: U, U^{\prime}$.

The conversion rule is now exactly:

## Conv

$$
\frac{E[\Gamma] \vdash U: s \quad E[\Gamma] \vdash t: T \quad E[\Gamma] \vdash T \leq_{\beta \delta \iota \zeta} U}{E[\Gamma] \vdash t: U}
$$

$\eta$-conversion. An other important rule is the $\eta$-conversion. It is to identify terms over a dummy abstraction of a variable followed by an application of this variable. Let $T$ be a type, $t$ be a term in which the variable $x$ doesn't occurs free. We have

$$
E[\Gamma] \vdash \lambda x: T,(t x) \triangleright t
$$

Indeed, as $x$ doesn't occur free in $t$, for any $u$ one applies to $\lambda x: T,(t x)$, it $\beta$-reduces to $(t u)$. So $\lambda x: T,(t x)$ and $t$ can be identified.
Remark: The $\eta$-reduction is not taken into account in the convertibility rule of COQ.

Normal form. A term which cannot be any more reduced is said to be in normal form. There are several ways (or strategies) to apply the reduction rule. Among them, we have to mention the head reduction which will play an important role (see chapter 8). Any term can be written as $\lambda x_{1}: T_{1}, \ldots \lambda x_{k}: T_{k},\left(t_{0} t_{1} \ldots t_{n}\right)$ where $t_{0}$ is not an application. We say then that $t_{0}$ is the head of $t$. If we assume that $t_{0}$ is $\lambda x: T, u_{0}$ then one step of $\beta$-head reduction of $t$ is:

$$
\lambda x_{1}: T_{1}, \ldots \lambda x_{k}: T_{k},\left(\lambda x: T, u_{0} t_{1} \ldots t_{n}\right) \triangleright \lambda\left(x_{1}: T_{1}\right) \ldots\left(x_{k}: T_{k}\right),\left(u_{0}\left\{x / t_{1}\right\} t_{2} \ldots t_{n}\right)
$$

Iterating the process of head reduction until the head of the reduced term is no more an abstraction leads to the $\beta$-head normal form of $t$ :

$$
t \triangleright \ldots \triangleright \lambda x_{1}: T_{1}, \ldots \lambda x_{k}: T_{k},\left(v u_{1} \ldots u_{m}\right)
$$

where $v$ is not an abstraction (nor an application). Note that the head normal form must not be confused with the normal form since some $u_{i}$ can be reducible.

Similar notions of head-normal forms involving $\delta, \iota$ and $\zeta$ reductions or any combination of those can also be defined.

### 4.4 Derived rules for environments

From the original rules of the type system, one can derive new rules which change the context of definition of objects in the environment. Because these rules correspond to elementary operations in the COQ engine used in the discharge mechanism at the end of a section, we state them explicitly.

Mechanism of substitution. One rule which can be proved valid, is to replace a term $c$ by its value in the environment. As we defined the substitution of a term for a variable in a term, one can define the substitution of a term for a constant. One easily extends this substitution to contexts and environments.

## Substitution Property:

$$
\frac{\mathcal{W F}(E ; \operatorname{Def}(\Gamma)(c:=t: T) ; F)[\Delta]}{\mathcal{W F}(E ; F\{c / t\})[\Delta\{c / t\}]}
$$


#### Abstract

One can modify the context of definition of a constant $c$ by abstracting a constant with respect to the last variable $x$ of its defining context. For doing that, we need to check that the constants appearing in the body of the declaration do not depend on $x$, we need also to modify the reference to the constant $c$ in the environment and context by explicitly applying this constant to the variable $x$. Because of the rules for building environments and terms we know the variable $x$ is available at each stage where $c$ is mentioned.


## Abstracting property:

$$
\frac{\mathcal{W F}(E ; \operatorname{Def}(\Gamma::(x: U))(c:=t: T) ; F)[\Delta] \quad \mathcal{W F}(E)[\Gamma]}{\mathcal{W F}(E ; \operatorname{Def}(\Gamma)(c:=\lambda x: U, t: \forall x: U, T) ; F\{c /(c x)\})[\Delta\{c /(c x)\}]}
$$

Pruning the context. We said the judgment $\mathcal{W} \mathcal{F}(E)[\Gamma]$ means that the defining contexts of constants in $E$ are included in $\Gamma$. If one abstracts or substitutes the constants with the above rules then it may happen that the context $\Gamma$ is now bigger than the one needed for defining the constants in $E$. Because defining contexts are growing in $E$, the minimum context needed for defining the constants in $E$ is the same as the one for the last constant. One can consequently derive the following property.

## Pruning property:

$$
\frac{\mathcal{W F}(E ; \operatorname{Def}(\Delta)(c:=t: T))[\Gamma]}{\mathcal{W F}(E ; \operatorname{Def}(\Delta)(c:=t: T))[\Delta]}
$$

### 4.5 Inductive Definitions

A (possibly mutual) inductive definition is specified by giving the names and the type of the inductive sets or families to be defined and the names and types of the constructors of the inductive predicates. An inductive declaration in the environment can consequently be represented with two contexts (one for inductive definitions, one for constructors).

Stating the rules for inductive definitions in their general form needs quite tedious definitions. We shall try to give a concrete understanding of the rules by precising them on running examples. We take as examples the type of natural numbers, the type of parameterized lists over a type $A$, the relation which states that a list has some given length and the mutual inductive definition of trees and forests.

### 4.5.1 Representing an inductive definition

## Inductive definitions without parameters

As for constants, inductive definitions can be defined in a non-empty context.
We write $\operatorname{lnd}(\Gamma)\left(\Gamma_{I}:=\Gamma_{C}\right)$ an inductive definition valid in a context $\Gamma$, a context of definitions $\Gamma_{I}$ and a context of constructors $\Gamma_{C}$.

Examples. The inductive declaration for the type of natural numbers will be:

$$
\operatorname{Ind}()(\text { nat }: \text { Set }:=O: \text { nat, } S: \text { nat } \rightarrow \text { nat })
$$

In a context with a variable $A$ : Set, the lists of elements in $A$ is represented by:

$$
\operatorname{Ind}(A: \text { Set })(\text { List }: \text { Set }:=\text { nil }: \text { List, cons }: A \rightarrow \text { List } \rightarrow \text { List })
$$

Assuming $\Gamma_{I}$ is $\left[I_{1}: A_{1} ; \ldots ; I_{k}: A_{k}\right]$, and $\Gamma_{C}$ is $\left[c_{1}: C_{1} ; \ldots ; c_{n}: C_{n}\right]$, the general typing rules are, for $1 \leq j \leq k$ and $1 \leq i \leq n:$

$$
\begin{aligned}
& \frac{\operatorname{Ind}(\Gamma)\left(\Gamma_{I}:=\Gamma_{C}\right) \in E}{\left(I_{j}: A_{j}\right) \in E} \\
& \frac{\operatorname{Ind}(\Gamma)\left(\Gamma_{I}:=\Gamma_{C}\right) \in E}{\left(c_{i}: C_{i}\right) \in E}
\end{aligned}
$$

## Inductive definitions with parameters

We have to slightly complicate the representation above in order to handle the delicate problem of parameters. Let us explain that on the example of List. As they were defined above, the type List can only be used in an environment where we have a variable $A$ : Set. Generally one want to consider lists of elements in different types. For constants this is easily done by abstracting the value over the parameter. In the case of inductive definitions we have to handle the abstraction over several objects.

One possible way to do that would be to define the type List inductively as being an inductive family of type Set $\rightarrow$ Set:

$$
\operatorname{Ind}()(\text { List }: \text { Set } \rightarrow \text { Set }:=\text { nil }:(A: \text { Set })(\text { List } A), \text { cons }:(A: \text { Set }) A \rightarrow(\text { List } A) \rightarrow(\text { List } A))
$$

There are drawbacks to this point of view. The information which says that for any $A$, (List $A$ ) is an inductively defined Set has been lost. So we introduce two important definitions.

Inductive parameters, real arguments. An inductive definition $\operatorname{Ind}(\Gamma)\left(\Gamma_{I}:=\Gamma_{C}\right)$ admits $r$ inductive parameters if each type of constructors $(c: C)$ in $\Gamma_{C}$ is such that

$$
C \equiv \forall p_{1}: P_{1}, \ldots, \forall p_{r}: P_{r}, \forall a_{1}: A_{1}, \ldots \forall a_{n}: A_{n},\left(I p_{1} \ldots p_{r} t_{1} \ldots t_{q}\right)
$$

with $I$ one of the inductive definitions in $\Gamma_{I}$. We say that $n$ is the number of real arguments of the constructor $c$.

Context of parameters. If an inductive definition $\operatorname{Ind}(\Gamma)\left(\Gamma_{I}:=\Gamma_{C}\right)$ admits $r$ inductive parameters, then there exists a context $\Gamma_{P}$ of size $r$, such that $\Gamma_{P}=p_{1}: P_{1} ; \ldots ; p_{r}: P_{r}$ and if $(t: A) \in \Gamma_{I}, \Gamma_{C}$ then $A$ can be written as $\forall p_{1}: P_{1}, \ldots \forall p_{r}: P_{r}, A^{\prime}$. We call $\Gamma_{P}$ the context of parameters of the inductive definition and use the notation $\forall \Gamma_{P}, A^{\prime}$ for the term $A$.

Remark. If we have a term $t$ in an instance of an inductive definition $I$ which starts with a constructor $c$, then the $r$ first arguments of $c$ (the parameters) can be deduced from the type $T$ of $t$ : these are exactly the $r$ first arguments of $I$ in the head normal form of $T$.

Examples. The List definition has 1 parameter:

$$
\operatorname{Ind}()(\text { List }: \text { Set } \rightarrow \text { Set }:=\text { nil }:(A: \text { Set })(\text { List } A), \text { cons }:(A: \text { Set }) A \rightarrow(\text { List } A) \rightarrow(\text { List } A))
$$

This is also the case for this more complex definition where there is a recursive argument on a different instance of List:
$\operatorname{Ind}()($ List $:$ Set $\rightarrow$ Set $:=$ nil $:(A:$ Set $)($ List $A)$, cons $:(A:$ Set $) A \rightarrow($ List $A \rightarrow A) \rightarrow($ List $A))$
But the following definition has 0 parameters:

$$
\operatorname{Ind}()(\text { List }: \text { Set } \rightarrow \text { Set }:=\text { nil }:(A: \text { Set })(\text { List } A), \text { cons }:(A: \text { Set }) A \rightarrow(\text { List } A) \rightarrow(\text { List } A * A))
$$

Concrete syntax. In the Coq system, the context of parameters is given explicitly after the name of the inductive definitions and is shared between the arities and the type of constructors. We keep track in the syntax of the number of parameters.

Formally the representation of an inductive declaration will be $\operatorname{Ind}(\Gamma)[p]\left(\Gamma_{I}:=\Gamma_{C}\right)$ for an inductive definition valid in a context $\Gamma$ with $p$ parameters, a context of definitions $\Gamma_{I}$ and a context of constructors $\Gamma_{C}$.

The definition $\operatorname{Ind}(\Gamma)[p]\left(\Gamma_{I}:=\Gamma_{C}\right)$ will be well-formed exactly when $\operatorname{Ind}(\Gamma)\left(\Gamma_{I}:=\Gamma_{C}\right)$ is and when $p$ is (less or equal than) the number of parameters in $\operatorname{Ind}(\Gamma)\left(\Gamma_{I}:=\Gamma_{C}\right)$.

Examples The declaration for parameterized lists is:

$$
\operatorname{Ind}()[1](\text { List }: \text { Set } \rightarrow \text { Set }:=\text { nil }: \forall A: \text { Set, List } A, \text { cons }: \forall A: \text { Set, } A \rightarrow \text { List } A \rightarrow \text { List } A)
$$

The declaration for the length of lists is:

```
Ind()[1](Length : }\forallA:\mathrm{ Set, (List A) }->\mathrm{ nat }->\mathrm{ Prop := Lnil : }\forallA: Set, Length A (nil A) O,
 Lcons: }\forallA:\mathrm{ Set, }\foralla:A,\foralll:(List A),\foralln: nat,(Length Aln) ->(Length A (cons A a l) (S n))
```

The declaration for a mutual inductive definition of forests and trees is:

$$
\begin{aligned}
& \text { Ind }() \text { (tree : Set, forest : Set }:= \\
& \quad \text { node : forest } \rightarrow \text { tree, emptyf : forest, consf : tree } \rightarrow \text { forest } \rightarrow \text { forest })
\end{aligned}
$$

These representations are the ones obtained as the result of the CoQ declaration:

```
Coq < Inductive nat : Set :=
Coq < | O : nat
Coq < | S : nat -> nat.
Coq < Inductive list (A:Set) : Set :=
Coq < | nil : list A
Coq < | cons : A -> list A -> list A.
Coq < Inductive Length (A:Set) : list A -> nat -> Prop :=
Coq < | Lnil : Length A (nil A) O
Coq < | Lcons :
Coq < forall (a:A) (l:list A) (n:nat),
Coq < Length A l n -> Length A (cons A a l) (S n).
Coq < Inductive tree : Set :=
Coq < node : forest -> tree
Coq < with forest : Set :=
Coq < | emptyf : forest
Coq < | consf : tree -> forest -> forest.
```

The CoQ type-checker verifies that all parameters are applied in the correct manner in the conclusion of the type of each constructors :

In particular, the following definition will not be accepted because there is an occurrence of List which is not applied to the parameter variable in the conclusion of the type of cons ${ }^{\prime}$ :

```
Coq < Inductive list' (A:Set) : Set :=
Coq < | nil' : list' A
Coq < | cons' : A -> list' A -> list' (A*A).
Coq < Coq < Error: The lst argument of "list"" must be "A" in
 "A -> list' A -> list' (A * A) otype"
```

Since CoQ version 8.1, there is no restriction about parameters in the types of arguments of constructors. The following definition is valid:

```
Coq < Inductive list' (A:Set) : Set :=
Coq < | nil' : list' A
Coq< | cons' : A -> list' (A ->A) -> list' A.
list' is defined
list'_rect is defined
list'_ind is defined
list'_rec is defined
```


### 4.5.2 Types of inductive objects

We have to give the type of constants in an environment $E$ which contains an inductive declaration.
Ind-Const Assuming $\Gamma_{I}$ is $\left[I_{1}: A_{1} ; \ldots ; I_{k}: A_{k}\right]$, and $\Gamma_{C}$ is $\left[c_{1}: C_{1} ; \ldots ; c_{n}: C_{n}\right]$,

$$
\begin{aligned}
& \frac{\operatorname{Ind}(\Gamma)[p]\left(\Gamma_{I}:=\Gamma_{C}\right) \in E \quad j=1 \ldots k}{\left(I_{j}: A_{j}\right) \in E} \\
& \frac{\operatorname{Ind}(\Gamma)[p]\left(\Gamma_{I}:=\Gamma_{C}\right) \in E \quad i=1 . . n}{\left(c_{i}: C_{i}\right) \in E}
\end{aligned}
$$

Example. We have (List : Set $\rightarrow$ Set $),($ cons $: \forall A:$ Set, $A \rightarrow($ List $A) \rightarrow($ List $A)$, (Length : $\forall A:$ Set, (List $A) \rightarrow$ nat $\rightarrow$ Prop), tree : Set and forest : Set.

From now on, we write List_A instead of (List $A$ ) and Length_A for (Length $A$ ).

### 4.5.3 Well-formed inductive definitions

We cannot accept any inductive declaration because some of them lead to inconsistent systems. We restrict ourselves to definitions which satisfy a syntactic criterion of positivity. Before giving the formal rules, we need a few definitions:

Definitions A type $T$ is an arity of sort $s$ if it converts to the sort $s$ or to a product $\forall x: T, U$ with $U$ an arity of sort $s$. (For instance $A \rightarrow$ Set or $\forall A: \operatorname{Prop}, A \rightarrow$ Prop are arities of sort respectively Set and Prop). A type of constructor of $I$ is either a term $\left(I t_{1} \ldots t_{n}\right)$ or $\forall x: T, C$ with $C$ a type of constructor of $I$.

The type of constructor $T$ will be said to satisfy the positivity condition for a constant $X$ in the following cases:

- $T=\left(X t_{1} \ldots t_{n}\right)$ and $X$ does not occur free in any $t_{i}$
- $T=\forall x: U, V$ and $X$ occurs only strictly positively in $U$ and the type $V$ satisfies the positivity condition for $X$

The constant $X$ occurs strictly positively in $T$ in the following cases:

- $X$ does not occur in $T$
- $T$ converts to ( $X t_{1} \ldots t_{n}$ ) and $X$ does not occur in any of $t_{i}$
- $T$ converts to $\forall x: U, V$ and $X$ does not occur in type $U$ but occurs strictly positively in type $V$
- $T$ converts to ( $I a_{1} \ldots a_{m} t_{1} \ldots t_{p}$ ) where $I$ is the name of an inductive declaration of the form $\operatorname{Ind}(\Gamma)[m]\left(I: A:=c_{1}: \forall p_{1}: P_{1}, \ldots \forall p_{m}: P_{m}, C_{1} ; \ldots ; c_{n}: \forall p_{1}: P_{1}, \ldots \forall p_{m}: P_{m}, C_{n}\right)$ (in particular, it is not mutually defined and it has $m$ parameters) and $X$ does not occur in any of the $t_{i}$, and the (instantiated) types of constructor $C_{i}\left\{p_{j} / a_{j}\right\}_{j=1 \ldots m}$ of $I$ satisfy the nested positivity condition for $X$

The type of constructor $T$ of $I$ satisfies the nested positivity condition for a constant $X$ in the following cases:

- $T=\left(I b_{1} \ldots b_{m} u_{1} \ldots u_{p}\right), I$ is an inductive definition with $m$ parameters and $X$ does not occur in any $u_{i}$
- $T=\forall x: U, V$ and $X$ occurs only strictly positively in $U$ and the type $V$ satisfies the nested positivity condition for $X$

Example $\quad X$ occurs strictly positively in $A \rightarrow X$ or $X * A$ or (list $X$ ) but not in $X \rightarrow A$ or $(X \rightarrow A) \rightarrow A$ nor $($ neg $A)$ assuming the notion of product and lists were already defined and neg is an inductive definition with declaration $\operatorname{Ind}()[A:$ Set $]$ (neg : Set $:=$ neg : $(A \rightarrow$ False $) \rightarrow$ neg $)$. Assuming $X$ has arity nat $\rightarrow$ Prop and ex is the inductively defined existential quantifier, the occurrence of $X$ in (ex nat $\lambda \mathrm{n}:$ nat, $(\mathrm{Xn})$ ) is also strictly positive.

Correctness rules. We shall now describe the rules allowing the introduction of a new inductive definition.

W-Ind Let $E$ be an environment and $\Gamma, \Gamma_{P}, \Gamma_{I}, \Gamma_{C}$ are contexts such that $\Gamma_{I}$ is $\left[I_{1}: \forall \Gamma_{P}, A_{1} ; \ldots ; I_{k}\right.$ : $\left.\forall \Gamma_{P}, A_{k}\right]$ and $\Gamma_{C}$ is $\left[c_{1}: \forall \Gamma_{P}, C_{1} ; \ldots ; c_{n}: \forall \Gamma_{P}, C_{n}\right]$.

$$
\frac{\left(E\left[\Gamma ; \Gamma_{P}\right] \vdash A_{j}: s_{j}^{\prime}\right)_{j=1 \ldots k}\left(E\left[\Gamma ; \Gamma_{I} ; \Gamma_{P}\right] \vdash C_{i}: s_{p_{i}}\right)_{i=1 \ldots n}}{\mathcal{W F}\left(E ; \operatorname{lnd}(\Gamma)[p]\left(\Gamma_{I}:=\Gamma_{C}\right)\right)[\Gamma]}
$$

provided that the following side conditions hold:

- $k>0, I_{j}, c_{i}$ are different names for $j=1 \ldots k$ and $i=1 \ldots n$,
- $p$ is the number of parameters of $\operatorname{lnd}(\Gamma)\left(\Gamma_{I}:=\Gamma_{C}\right)$ and $\Gamma_{P}$ is the context of parameters,
- for $j=1 \ldots k$ we have $A_{j}$ is an arity of sort $s_{j}$ and $I_{j} \notin \Gamma \cup E$,
- for $i=1 \ldots n$ we have $C_{i}$ is a type of constructor of $I_{p_{i}}$ which satisfies the positivity condition for $I_{1} \ldots I_{k}$ and $c_{i} \notin \Gamma \cup E$.

One can remark that there is a constraint between the sort of the arity of the inductive type and the sort of the type of its constructors which will always be satisfied for the impredicative sort (Prop) but may fail to define inductive definition on sort Set and generate constraints between universes for inductive definitions in the Type hierarchy.

Examples. It is well known that existential quantifier can be encoded as an inductive definition. The following declaration introduces the second-order existential quantifier $\exists X . P(X)$.

```
Coq < Inductive exProp (P:Prop->Prop) : Prop
Coq < := exP_intro : forall X:Prop, P X -> exProp P.
```

The same definition on Set is not allowed and fails :

```
Coq < Inductive exSet (P:Set->Prop) : Set
Coq < := exS_intro : forall X:Set, P X -> exSet P.
Coq < Coq < User error: Large non-propositional inductive types must be in Type
```

It is possible to declare the same inductive definition in the universe Type. The exType inductive definition has type $\left(\right.$ Type $_{i} \rightarrow$ Prop) $\rightarrow$ Type $_{j}$ with the constraint that the parameter X of exT_intro has type Type $_{k}$ with $k<j$ and $k \leq i$.

```
Coq < Inductive exType (P:Type->Prop) : Type
Coq < := exT_intro : forall X:Type, P X -> exType P.
```

Sort-polymorphism of inductive families. From COQ version 8.1, inductive families declared in Type are polymorphic over their arguments in Type.

If $A$ is an arity and $s$ a sort, we write $A_{/ s}$ for the arity obtained from $A$ by replacing its sort with $s$. Especially, if $A$ is well-typed in some environment and context, then $A_{/ s}$ is typable by typability of all products in the Calculus of Inductive Constructions. The following typing rule is added to the theory.

Ind-Family Let $\Gamma_{P}$ be a context of parameters $\left[p_{1}: P_{1} ; \ldots ; p_{m^{\prime}}: P_{m^{\prime}}\right]$ and $m \leq m^{\prime}$ be the length of the initial prefix of parameters that occur unchanged in the recursive occurrences of the constructor types. Assume that $\Gamma_{I}$ is $\left[I_{1}: \forall \Gamma_{P}, A_{1} ; \ldots ; I_{k}: \forall \Gamma_{P}, A_{k}\right]$ and $\Gamma_{C}$ is $\left[c_{1}: \forall \Gamma_{P}, C_{1} ; \ldots ; c_{n}\right.$ : $\left.\forall \Gamma_{P}, C_{n}\right]$.
Let $q_{1}, \ldots, q_{r}$, with $0 \leq r \leq m$, be a possibly partial instantiation of the parameters in $\Gamma_{P}$. We have:

$$
\frac{\left\{\begin{array}{l}
\operatorname{lnd}(\Gamma)[p]\left(\Gamma_{I}:=\Gamma_{C}\right) \in E \\
\left(E[\Gamma] \vdash q_{s}: P_{s}^{\prime}\right)_{s=1 \ldots r} \\
\left(E[\Gamma] \vdash E[\Gamma] \vdash P_{s}^{\prime} \leq_{\beta \delta \iota \zeta} P_{s}\left\{x_{u} / q_{u}\right\}_{u=1 \ldots s-1}\right)_{s=1 \ldots r} \\
1 \leq j \leq k
\end{array}\right.}{\left(I_{j} q_{1} \ldots q_{r}: \forall \Gamma_{p}^{r+1},\left(A_{j}\right)_{/ s}\right)}
$$

provided that the following side conditions hold:

- $\Gamma_{P^{\prime}}$ is the context obtained from $\Gamma_{P}$ by replacing, each $P_{s}$ that is an arity with the sort of $P_{s}^{\prime}$, as soon as $1 \leq s \leq r$ (notice that $P_{s}$ arity implies $P_{s}^{\prime}$ arity since $E[\Gamma] \vdash$ $\left.E[\Gamma] \vdash P_{s}^{\prime} \leq_{\beta \delta \iota \zeta} P_{s}\left\{x_{u} / q_{u}\right\}_{u=1 \ldots s-1}\right) ;$
- there are sorts $s_{i}$, for $1 \leq i \leq k$ such that, for $\Gamma_{I^{\prime}}$ obtained from $\Gamma_{I}$ by changing each $A_{i}$ by $\left(A_{i}\right)_{/ s_{i}}$, we have $\left(E\left[\Gamma ; \Gamma_{I^{\prime}} ; \Gamma_{P^{\prime}}\right] \vdash C_{i}: s_{p_{i}}\right)_{i=1 \ldots n}$;
- the sorts are such that all elimination are allowed (see section 4.5.4).

Notice that if $I_{j} q_{1} \ldots q_{r}$ is typable using the rules Ind-Const and App, then it is typable using the rule Ind-Family. Conversely, the extended theory is not stronger than the theory without IndFamily. We get an equiconsistency result by mapping each $\operatorname{Ind}(\Gamma)[p]\left(\Gamma_{I}:=\Gamma_{C}\right)$ occurring into a given derivation into as many fresh inductive types and constructors as the number of different (partial) replacements of sorts, needed for this derivation, in the parameters that are arities. That is, the changes in the types of each partial instance $q_{1} \ldots q_{r}$ can be characterized by the ordered sets of arity sorts among the types of parameters, and to each signature is associated a new inductive definition with fresh names. Conversion is preserved as any (partial) instance $I_{j} q_{1} \ldots q_{r}$ or $C_{i} q_{1} \ldots q_{r}$ is mapped to the names chosen in the specific instance of $\operatorname{Ind}(\Gamma)[p]\left(\Gamma_{I}:=\Gamma_{C}\right)$.

In practice, the rule is used by CoQ only with in case the inductive type is declared with an arity of a sort in the Type hierarchy, and, then, the polymorphism is over the parameters whose type is an arity in the Type hierarchy. The sort $s_{j}$ are then chosen canonically so that each $s_{j}$ is minimal with respect to the hierarchy $\operatorname{Prop}_{u} \subset \operatorname{Set}_{p} \subset$ Type where $\operatorname{Set}_{p}$ is predicative Set, and $\operatorname{Prop}_{u}$ is the sort of small singleton inductive types (i.e. of inductive types with one single constructor and that contains either proofs or inhabitants of singleton types only). More precisely, a small singleton inductive family is set in Prop, a small non singleton inductive family is set in Set (even in case Set is impredicative - see section 4.7), and otherwise in the Type hierarchy.

Note that the side-condition about allowed elimination sorts in the rule Ind-Family is just to avoid to recompute the allowed elimination sorts at each instance of a pattern-matching (see section 4.5.4).

As an example, let us consider the following definition:

```
Coq < Inductive option (A:Type) : Type :=
Coq < | None : option A
Coq < | Some : A -> option A.
```

As the definition is set in the Type hierarchy, it is used polymorphically over its parameters whose types are arities of a sort in the Type hierarchy. Here, the parameter $A$ has this property, hence, if option is applied to a type in Set, the result is in Set. Note that if option is applied to a type in Prop, then, the result is not set in Prop but in Set still. This is because option is not a singleton type (see section 4.5.4) and it would loose the elimination to Set and Type if set in Prop.

```
Coq < Check (fun A:Set => option A).
fun A : Set => option A
 : Set -> Set
Coq < Check (fun A:Prop => option A).
fun A : Prop => option A
 : Prop -> Set
```

Here is another example.

Coq < Inductive prod (A B:Type) : Type := pair : A $->B \rightarrow$ prod A B.
As prod is a singleton type, it will be in Prop if applied twice to propositions, in Set if applied twice to at least one type in Set and none in Type, and in Type otherwise. In all cases, the three kind of eliminations schemes are allowed.

```
Coq < Check (fun A:Set => prod A).
fun A : Set => prod A
```

```
 : Set -> Type -> Set
Coq < Check (fun A:Prop => prod A A).
fun A : Prop => prod A A
 : Prop -> Prop
Coq < Check (fun (A:Prop) (B:Set) => prod A B).
fun (A : Prop) (B : Set) => prod A B
 : Prop -> Set -> Set
Coq < Check (fun (A:Type) (B:Prop) => prod A B).
fun (A : Type) (B : Prop) => prod A B
 : Type -> Prop -> Type
```


### 4.5.4 Destructors

The specification of inductive definitions with arities and constructors is quite natural. But we still have to say how to use an object in an inductive type.

This problem is rather delicate. There are actually several different ways to do that. Some of them are logically equivalent but not always equivalent from the computational point of view or from the user point of view.

From the computational point of view, we want to be able to define a function whose domain is an inductively defined type by using a combination of case analysis over the possible constructors of the object and recursion.

Because we need to keep a consistent theory and also we prefer to keep a strongly normalizing reduction, we cannot accept any sort of recursion (even terminating). So the basic idea is to restrict ourselves to primitive recursive functions and functionals.

For instance, assuming a parameter $A$ : Set exists in the context, we want to build a function length of type List_A $\rightarrow$ nat which computes the length of the list, so such that $($ length $($ nil $A))=\mathrm{O}$ and (length $($ cons $A$ all) $)=(\mathrm{S}($ length $l))$. We want these equalities to be recognized implicitly and taken into account in the conversion rule.

From the logical point of view, we have built a type family by giving a set of constructors. We want to capture the fact that we do not have any other way to build an object in this type. So when trying to prove a property $(P m)$ for $m$ in an inductive definition it is enough to enumerate all the cases where $m$ starts with a different constructor.

In case the inductive definition is effectively a recursive one, we want to capture the extra property that we have built the smallest fixed point of this recursive equation. This says that we are only manipulating finite objects. This analysis provides induction principles.

For instance, in order to prove $\forall l$ : List_A, (Length_A $l$ (length $l$ )) it is enough to prove: (Length_A (nil $A$ ) (length (nil $A)$ )) and
$\forall a: A, \forall l:$ List_A, (Length_A $l($ length $l)) \rightarrow($ Length_A $($ cons $A$ al) (length $($ cons $A$ al) $)$ ). which given the conversion equalities satisfied by length is the same as proving: (Length_A (nil $A$ ) O ) and $\forall a: A, \forall l:$ List_A, (Length_A $l($ length $l)) \rightarrow($ Length_A $($ cons $A$ all $)($ S (length $l))$ ).

One conceptually simple way to do that, following the basic scheme proposed by Martin-Löf in his Intuitionistic Type Theory, is to introduce for each inductive definition an elimination operator. At the logical level it is a proof of the usual induction principle and at the computational level it implements a generic operator for doing primitive recursion over the structure.

But this operator is rather tedious to implement and use. We choose in this version of Coq to factorize the operator for primitive recursion into two more primitive operations as was first suggested
by Th. Coquand in [25]. One is the definition by pattern-matching. The second one is a definition by guarded fixpoints.

The match. . .with . . .end construction.
The basic idea of this destructor operation is that we have an object $m$ in an inductive type $I$ and we want to prove a property $(P m)$ which in general depends on $m$. For this, it is enough to prove the property for $m=\left(c_{i} u_{1} \ldots u_{p_{i}}\right)$ for each constructor of $I$.

The COQ term for this proof will be written :

$$
\text { match } m \text { with }\left(c_{1} x_{11} \ldots x_{1 p_{1}}\right) \Rightarrow f_{1}|\ldots|\left(c_{n} x_{n 1} \ldots x_{n p_{n}}\right) \Rightarrow f_{n} \text { end }
$$

In this expression, if $m$ is a term built from a constructor $\left(c_{i} u_{1} \ldots u_{p_{i}}\right)$ then the expression will behave as it is specified with $i$-th branch and will reduce to $f_{i}$ where the $x_{i 1} \ldots x_{i p_{i}}$ are replaced by the $u_{1} \ldots u_{p}$ according to the $\iota$-reduction.

Actually, for type-checking a match. . . with. . . end expression we also need to know the predicate $P$ to be proved by case analysis. In the general case where $I$ is an inductively defined $n$-ary relation, $P$ is a $n+1$-ary relation: the $n$ first arguments correspond to the arguments of $I$ (parameters excluded), and the last one corresponds to object $m$. COQ can sometimes infer this predicate but sometimes not. The concrete syntax for describing this predicate uses the as. . . in. . . return construction. For instance, let us assume that $I$ is an unary predicate with one parameter. The predicate is made explicit using the syntax :

$$
\text { match } m \text { as } x \text { in } I_{-} a \text { return }(P x) \text { with }\left(c_{1} x_{11} \ldots x_{1 p_{1}}\right) \Rightarrow f_{1}|\ldots|\left(c_{n} x_{n 1} \ldots x_{n p_{n}}\right) \Rightarrow f_{n} \text { end }
$$

The as part can be omitted if either the result type does not depend on $m$ (non-dependent elimination) or $m$ is a variable (in this case, the result type can depend on $m$ ). The in part can be omitted if the result type does not depend on the arguments of $I$. Note that the arguments of $I$ corresponding to parameters must be _, because the result type is not generalized to all possible values of the parameters. The expression after in must be seen as an inductive type pattern. As a final remark, expansion of implicit arguments and notations apply to this pattern.

For the purpose of presenting the inference rules, we use a more compact notation :

$$
\operatorname{case}\left(m,(\lambda a x, P), \lambda x_{11} \ldots x_{1 p_{1}}, f_{1}|\ldots| \lambda x_{n 1} \ldots x_{n p_{n}}, f_{n}\right)
$$

Allowed elimination sorts. An important question for building the typing rule for match is what can be the type of $P$ with respect to the type of the inductive definitions.

We define now a relation $[I: A \mid B]$ between an inductive definition $I$ of type $A$ and an arity $B$. This relation states that an object in the inductive definition $I$ can be eliminated for proving a property $P$ of type $B$.

The case of inductive definitions in sorts Set or Type is simple. There is no restriction on the sort of the predicate to be eliminated.

Notations. The $[I: A \mid B]$ is defined as the smallest relation satisfying the following rules: We write $[I \mid B]$ for $[I: A \mid B]$ where $A$ is the type of $I$.

## Prod

$$
\frac{\left[(I x): A^{\prime} \mid B^{\prime}\right]}{\left[I:(x: A) A^{\prime} \mid(x: A) B^{\prime}\right]}
$$

## Set\& Type

$$
\frac{s_{1} \in\{\text { Set, } \operatorname{Type}(j)\}, s_{2} \in \mathcal{S}}{\left[I: s_{1} \mid I \rightarrow s_{2}\right]}
$$

The case of Inductive definitions of sort Prop is a bit more complicated, because of our interpretation of this sort. The only harmless allowed elimination, is the one when predicate $P$ is also of sort Prop.

## Prop

$$
[I: \text { Prop } \mid I \rightarrow \text { Prop }]
$$

Prop is the type of logical propositions, the proofs of properties $P$ in Prop could not be used for computation and are consequently ignored by the extraction mechanism. Assume $A$ and $B$ are two propositions, and the logical disjunction $A \vee B$ is defined inductively by :

```
Coq < Inductive or (A B:Prop) : Prop :=
Coq < lintro : A }->\mathrm{ or A B | rintro : B -> or A B.
```

The following definition which computes a boolean value by case over the proof of or A B is not accepted :

```
Coq < Definition choice (A B: Prop) (x:or A B) :=
Coq < match x with lintro a => true | rintro b => false end.
Coq < Coq < Error:
Incorrect elimination of "x" in the inductive type "or":
the return type has sort "Set" while it should be "Prop".
Elimination of an inductive object of sort Prop
is not allowed on a predicate in sort set
because proofs can be eliminated only to build proofs.
```

From the computational point of view, the structure of the proof of (or A B) in this term is needed for computing the boolean value.

In general, if $I$ has type Prop then $P$ cannot have type $I \rightarrow$ Set, because it will mean to build an informative proof of type $(P \mathrm{~m})$ doing a case analysis over a non-computational object that will disappear in the extracted program. But the other way is safe with respect to our interpretation we can have $I$ a computational object and $P$ a non-computational one, it just corresponds to proving a logical property of a computational object.

In the same spirit, elimination on $P$ of type $I \rightarrow$ Type cannot be allowed because it trivially implies the elimination on $P$ of type $I \rightarrow$ Set by cumulativity. It also implies that there is two proofs of the same property which are provably different, contradicting the proof-irrelevance property which is sometimes a useful axiom :

```
Coq < Axiom proof_irrelevance : forall (P : Prop) (x y : P), x=y.
proof_irrelevance is assumed
```

The elimination of an inductive definition of type Prop on a predicate $P$ of type $I \rightarrow$ Type leads to a paradox when applied to impredicative inductive definition like the second-order existential quantifier exProp defined above, because it give access to the two projections on this type.

Empty and singleton elimination There are special inductive definitions in Prop for which more eliminations are allowed.

## Prop-extended

$I$ is an empty or singleton definition $s \in \mathcal{S}$

$$
[I: \operatorname{Prop} \mid I \rightarrow s]
$$

A singleton definition has only one constructor and all the arguments of this constructor have type Prop. In that case, there is a canonical way to interpret the informative extraction on an object in that type, such that the elimination on any sort $s$ is legal. Typical examples are the conjunction of noninformative propositions and the equality. If there is an hypothesis $h: a=b$ in the context, it can be used for rewriting not only in logical propositions but also in any type.

```
Coq < Print eq_rec.
eq_rec =
fun (A : Type) (x : A) (P : A -> Set) => eq_rect x P
 : forall (A : Type) (x : A) (P : A -> Set),
 P x -> forall y : A, x = y -> P y
Argument A is implicit
Argument scopes are [type_scope _ _ _ _ _]
Coq < Extraction eq_rec.
(** val eq_rec : 'a1 -> 'a2 -> 'a1 -> 'a2 **)
let eq_rec x f y =
 f
```

An empty definition has no constructors, in that case also, elimination on any sort is allowed.

Type of branches. Let $c$ be a term of type $C$, we assume $C$ is a type of constructor for an inductive definition $I$. Let $P$ be a term that represents the property to be proved. We assume $r$ is the number of parameters.

We define a new type $\{c: C\}^{P}$ which represents the type of the branch corresponding to the $c: C$ constructor.

$$
\begin{array}{ll}
\left\{c:\left(I_{i} p_{1} \ldots p_{r} t_{1} \ldots t_{p}\right)\right\}^{P} & \equiv\left(P t_{1} \ldots t_{p} c\right) \\
\{c: \forall x: T, C\}^{P} & \equiv \forall x: T,\{(c x): C\}^{P}
\end{array}
$$

We write $\{c\}^{P}$ for $\{c: C\}^{P}$ with $C$ the type of $c$.

Examples. For List_A the type of $P$ will be List_A $\rightarrow s$ for $s \in \mathcal{S}$.
$\{(\text { cons } A)\}^{P} \equiv \forall a: A, \forall l:$ List_A, $(P$ (cons $A$ al) $)$.
For Length_A, the type of $P$ will be $\forall l$ : List_A, $\forall n$ : nat, (Length_A $l n) \rightarrow$ Prop and the expression $\{(\text { Lcons } A)\}^{P}$ is defined as:
$\forall a: A, \forall l$ : List_A, $\forall n:$ nat, $\forall h:($ Length_A $l n),(P($ cons $A a l)(\mathrm{S} n)($ Lcons $A$ alnl) $)$.
If $P$ does not depend on its third argument, we find the more natural expression:
$\forall a: A, \forall l:$ List_A, $\forall n:$ nat, $($ Length_A $l n) \rightarrow(P($ cons $A$ al) $(\mathrm{S} n))$.

Typing rule. Our very general destructor for inductive definition enjoys the following typing rule

## match

$$
\frac{E[\Gamma] \vdash c:\left(I q_{1} \ldots q_{r} t_{1} \ldots t_{s}\right) E[\Gamma] \vdash P: B\left[\left(I q_{1} \ldots q_{r}\right) \mid B\right]\left(E[\Gamma] \vdash f_{i}:\left\{\left(c_{p_{i}} q_{1} \ldots q_{r}\right)\right\}^{P}\right)_{i=1 \ldots l}}{E[\Gamma] \vdash \operatorname{case}\left(c, P, f_{1}|\ldots| f_{l}\right):\left(P t_{1} \ldots t_{s} c\right)}
$$

provided $I$ is an inductive type in a declaration $\operatorname{lnd}(\Delta)[r]\left(\Gamma_{I}:=\Gamma_{C}\right)$ with $\Gamma_{C}=\left[c_{1}\right.$ : $\left.C_{1} ; \ldots ; c_{n}: C_{n}\right]$ and $c_{p_{1}} \ldots c_{p_{l}}$ are the only constructors of $I$.

Example. For List and Length the typing rules for the match expression are (writing just $t: M$ instead of $E[\Gamma] \vdash t: M$, the environment and context being the same in all the judgments).

$$
\begin{aligned}
& \frac{l: \text { List_A } P: \text { List_A } \rightarrow s \quad f_{1}:(P(\text { nil } A)) f_{2}: \forall a: A, \forall l: \text { List_A, }(P(\text { cons } A \text { al }))}{\operatorname{case}\left(l, P, f_{1} \mid f_{2}\right):(P l)} \\
& H:(\text { Length_A } L N) \\
& P: \forall l: \text { List_A }, \forall n: \text { nat, (Length_A } l n) \rightarrow \text { Prop } \\
& f_{1}:(P(\text { nil } A) \text { O Lnil) } \\
& \frac{f_{2}: \forall a: A, \forall l: \text { List_A, } \forall n: \text { nat, } \forall h:(\text { Length_A } l n),(P(\operatorname{cons} A a n)(\text { S } n)(\text { Lcons } A \text { aln } h))}{\operatorname{case}\left(H, P, f_{1} \mid f_{2}\right):(P L N H)}
\end{aligned}
$$

Definition of $\iota$-reduction. We still have to define the $\iota$-reduction in the general case.
A $\iota$-redex is a term of the following form:

$$
\operatorname{case}\left(\left(c_{p_{i}} q_{1} \ldots q_{r} a_{1} \ldots a_{m}\right), P, f_{1}|\ldots| f_{l}\right)
$$

with $c_{p_{i}}$ the $i$-th constructor of the inductive type $I$ with $r$ parameters.
The $\iota$-contraction of this term is $\left(f_{i} a_{1} \ldots a_{m}\right)$ leading to the general reduction rule:

$$
\operatorname{case}\left(\left(c_{p_{i}} q_{1} \ldots q_{r} a_{1} \ldots a_{m}\right), P, f_{1}|\ldots| f_{n}\right) \triangleright_{\iota}\left(f_{i} a_{1} \ldots a_{m}\right)
$$

### 4.5.5 Fixpoint definitions

The second operator for elimination is fixpoint definition. This fixpoint may involve several mutually recursive definitions. The basic concrete syntax for a recursive set of mutually recursive declarations is (with $\Gamma_{i}$ contexts) :

$$
\text { fix } f_{1}\left(\Gamma_{1}\right): A_{1}:=t_{1} \text { with } \ldots \text { with } f_{n}\left(\Gamma_{n}\right): A_{n}:=t_{n}
$$

The terms are obtained by projections from this set of declarations and are written

$$
\text { fix } f_{1}\left(\Gamma_{1}\right): A_{1}:=t_{1} \text { with } \ldots \text { with } f_{n}\left(\Gamma_{n}\right): A_{n}:=t_{n} \text { for } f_{i}
$$

In the inference rules, we represent such a term by

$$
\operatorname{Fix} f_{i}\left\{f_{1}: A_{1}^{\prime}:=t_{1}^{\prime} \ldots f_{n}: A_{n}^{\prime}:=t_{n}^{\prime}\right\}
$$

with $t_{i}^{\prime}$ (resp. $A_{i}^{\prime}$ ) representing the term $t_{i}$ abstracted (resp. generalized) with respect to the bindings in the context $\Gamma_{i}$, namely $t_{i}^{\prime}=\lambda \Gamma_{i}, t_{i}$ and $A_{i}^{\prime}=\forall \Gamma_{i}, A_{i}$.

## Typing rule

The typing rule is the expected one for a fixpoint.
Fix

$$
\frac{\left(E[\Gamma] \vdash A_{i}: s_{i}\right)_{i=1 \ldots n} \quad\left(E\left[\Gamma, f_{1}: A_{1}, \ldots, f_{n}: A_{n}\right] \vdash t_{i}: A_{i}\right)_{i=1 \ldots n}}{E[\Gamma] \vdash \operatorname{Fix} f_{i}\left\{f_{1}: A_{1}:=t_{1} \ldots f_{n}: A_{n}:=t_{n}\right\}: A_{i}}
$$

Any fixpoint definition cannot be accepted because non-normalizing terms will lead to proofs of absurdity.

The basic scheme of recursion that should be allowed is the one needed for defining primitive recursive functionals. In that case the fixpoint enjoys a special syntactic restriction, namely one of the arguments belongs to an inductive type, the function starts with a case analysis and recursive calls are done on variables coming from patterns and representing subterms.

For instance in the case of natural numbers, a proof of the induction principle of type

$$
\forall P: \text { nat } \rightarrow \operatorname{Prop},(P \mathrm{O}) \rightarrow(\forall n: \text { nat, }(P n) \rightarrow(P(\mathrm{~S} n))) \rightarrow \forall n: \text { nat, }(P n)
$$

can be represented by the term:

$$
\begin{aligned}
& \lambda P: \text { nat } \rightarrow \operatorname{Prop}, \lambda f:(P \mathrm{O}), \lambda g:(\forall n: \text { nat, }(P n) \rightarrow(P(\mathrm{~S} n))) \\
& \text { Fix } h\{h: \forall n: \text { nat, }(P n):=\lambda n: \text { nat, case }(n, P, f \mid \lambda p: \text { nat, }(g p(h p)))\}
\end{aligned}
$$

Before accepting a fixpoint definition as being correctly typed, we check that the definition is "guarded". A precise analysis of this notion can be found in [60].

The first stage is to precise on which argument the fixpoint will be decreasing. The type of this argument should be an inductive definition.

For doing this the syntax of fixpoints is extended and becomes

$$
\text { Fix } f_{i}\left\{f_{1} / k_{1}: A_{1}:=t_{1} \ldots f_{n} / k_{n}: A_{n}:=t_{n}\right\}
$$

where $k_{i}$ are positive integers. Each $A_{i}$ should be a type (reducible to a term) starting with at least $k_{i}$ products $\forall y_{1}: B_{1}, \ldots \forall y_{k_{i}}: B_{k_{i}}, A_{i}^{\prime}$ and $B_{k_{i}}$ being an instance of an inductive definition.

Now in the definition $t_{i}$, if $f_{j}$ occurs then it should be applied to at least $k_{j}$ arguments and the $k_{j}$-th argument should be syntactically recognized as structurally smaller than $y_{k_{i}}$

The definition of being structurally smaller is a bit technical. One needs first to define the notion of recursive arguments of a constructor. For an inductive definition $\operatorname{Ind}(\Gamma)[r]\left(\Gamma_{I}:=\Gamma_{C}\right)$, the type of a constructor $c$ has the form $\forall p_{1}: P_{1}, \ldots \forall p_{r}: P_{r}, \forall x_{1}: T_{1}, \ldots \forall x_{r}: T_{r},\left(I_{j} p_{1} \ldots p_{r} t_{1} \ldots t_{s}\right)$ the recursive arguments will correspond to $T_{i}$ in which one of the $I_{l}$ occurs.

The main rules for being structurally smaller are the following:
Given a variable $y$ of type an inductive definition in a declaration $\operatorname{Ind}(\Gamma)[r]\left(\Gamma_{I}:=\Gamma_{C}\right)$ where $\Gamma_{I}$ is $\left[I_{1}: A_{1} ; \ldots ; I_{k}: A_{k}\right]$, and $\Gamma_{C}$ is $\left[c_{1}: C_{1} ; \ldots ; c_{n}: C_{n}\right]$. The terms structurally smaller than $y$ are:

- ( $t u), \lambda x: u, t$ when $t$ is structurally smaller than $y$.
- case $\left(c, P, f_{1} \ldots f_{n}\right)$ when each $f_{i}$ is structurally smaller than $y$.

If $c$ is $y$ or is structurally smaller than $y$, its type is an inductive definition $I_{p}$ part of the inductive declaration corresponding to $y$. Each $f_{i}$ corresponds to a type of constructor $C_{q} \equiv$ $\forall p_{1}: P_{1}, \ldots, \forall p_{r}: P_{r}, \forall y_{1}: B_{1}, \ldots \forall y_{k}: B_{k},\left(I a_{1} \ldots a_{k}\right)$ and can consequently be written $\lambda y_{1}: B_{1}^{\prime}, \ldots \lambda y_{k}: B_{k}^{\prime}, g_{i}$. ( $B_{i}^{\prime}$ is obtained from $B_{i}$ by substituting parameters variables) the variables $y_{j}$ occurring in $g_{i}$ corresponding to recursive arguments $B_{i}$ (the ones in which one of the $I_{l}$ occurs) are structurally smaller than $y$.

The following definitions are correct, we enter them using the Fixpoint command as described in section 1.3.4 and show the internal representation.

```
Coq < Fixpoint plus (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | O => m
```

```
Coq < | S p => S (plus p m)
Coq < end.
plus is recursively defined
Coq < Print plus.
plus =
fix plus (n m : nat) {struct n} : nat :=
 match n with
 | O => m
 | S p => S (p + m)
 end
 : nat -> nat -> nat
Coq < Fixpoint lgth (A:Set) (l:list A) {struct l} : nat :=
Coq < match l with
Coq < | nil => O
Coq < | cons a l' => S (lgth A l')
Coq < end.
lgth is recursively defined
Coq < Print lgth.
lgth =
fix lgth (A : Set) (l : list A) {struct l} : nat :=
 match l with
 | nil => O
 | cons _ l' => S (lgth A l')
 end
 : forall A : Set, list A -> nat
Argument scopes are [type_scope _]
Coq < Fixpoint sizet (t:tree) : nat := let (f) := t in S (sizef f)
Coq < with sizef (f:forest) : nat :=
Coq < match f with
Coq < | emptyf => O
Coq < | consf t f => plus (sizet t) (sizef f)
Coq < end.
sizet, sizef are recursively defined
Coq < Print sizet.
sizet =
fix sizet (t : tree) : nat :=
 let (f) := t in S (sizef f)
with sizef (f : forest) : nat :=
 match f with
 | emptyf => O
 | consf t f0 => plus (sizet t) (sizef f0)
 end
for sizet
 : tree -> nat
```


## Reduction rule

Let $F$ be the set of declarations: $f_{1} / k_{1}: A_{1}:=t_{1} \ldots f_{n} / k_{n}: A_{n}:=t_{n}$. The reduction for fixpoints is:

$$
\left(\operatorname{Fix} f_{i}\{F\} a_{1} \ldots a_{k_{i}}\right) \triangleright_{\iota} t_{i}\left\{\left(f_{k} / \operatorname{Fix} f_{k}\{F\}\right)_{k=1 \ldots n}\right\}
$$

when $a_{k_{i}}$ starts with a constructor. This last restriction is needed in order to keep strong normalization and corresponds to the reduction for primitive recursive operators.

We can illustrate this behavior on examples.

```
Coq < Goal forall n m:nat, plus (S n) m = S (plus n m).
1 subgoal
 forall n m: nat, plus (S n) m=S (plus n m)
Coq < reflexivity.
Proof completed.
Coq < Abort.
Current goal aborted
Coq < Goal forall f:forest, sizet (node f) = S (sizef f).
1 subgoal
 =============================
 forall f : forest, sizet (node f) =S (sizef f)
Coq < reflexivity.
Proof completed.
Coq < Abort.
Current goal aborted
```

But assuming the definition of a son function from tree to forest:

```
Coq < Definition sont (t:tree) : forest
Coq < := let (f) := t in f.
sont is defined
```

The following is not a conversion but can be proved after a case analysis.

```
Coq < Goal forall t:tree, sizet t = S (sizef (sont t)).
Coq < Coq < I subgoal
 =============================
 forall t : tree, sizet t =S (sizef (sont t))
Coq < reflexivity. (** this one fails **)
Toplevel input, characters 0-11
> reflexivity.
> ^^^^^^^^^^^
Error: Impossible to unify "S (sizef (sont t))" with "sizet t"
Coq < destruct t.
1 subgoal
 f : forest
 ============================
 sizet (node f) =S (sizef (sont (node f)))
Coq < reflexivity.
Proof completed.
```


## Mutual induction

The principles of mutual induction can be automatically generated using the Scheme command described in section 8.14.

### 4.6 Coinductive types

The implementation contains also coinductive definitions, which are types inhabited by infinite objects. More information on coinductive definitions can be found in [61, 62, 63].

### 4.7 Cic: the Calculus of Inductive Construction with impredicative Set

CoQ can be used as a type-checker for Cic, the original Calculus of Inductive Constructions with an impredicative sort Set by using the compiler option -impredicative-set.

For example, using the ordinary coqt op command, the following is rejected.

```
Coq < Definition id: Set := forall X:Set,X->X.
Coq < Coq < Coq < Coq < Toplevel input, characters 192-202
> Definition id: Set := forall X:Set,X->X.
> ^^^^^^^^^^
Error: The term "forall X : Set, X -> X" has type "Type"
 while it is expected to have type "Set"
```

while it will type-check, if one use instead the coqtop -impredicative-set command.
The major change in the theory concerns the rule for product formation in the sort Set, which is extended to a domain in any sort :

Prod

$$
\frac{E[\Gamma] \vdash T: s \quad s \in \mathcal{S} \quad E[\Gamma::(x: T)] \vdash U: \text { Set }}{E[\Gamma] \vdash \forall x: T, U: \text { Set }}
$$

This extension has consequences on the inductive definitions which are allowed. In the impredicative system, one can build so-called large inductive definitions like the example of second-order existential quantifier (exSet).

There should be restrictions on the eliminations which can be performed on such definitions. The eliminations rules in the impredicative system for sort Set become :

Set

$$
\frac{s \in\{\text { Prop, Set }\}}{[I: \operatorname{Set} \mid I \rightarrow s]} \quad \frac{I \text { is a small inductive definition } \quad s \in\{\text { Type }(i)\}}{[I: \operatorname{Set} \mid I \rightarrow s]}
$$

## Chapter 5

## The Module System

The module system extends the Calculus of Inductive Constructions providing a convenient way to structure large developments as well as a mean of massive abstraction.

### 5.1 Modules and module types

Access path. It is denoted by $p$, it can be either a module variable $X$ or, if $p^{\prime}$ is an access path and $i d$ an identifier, then $p^{\prime} . i d$ is an access path.

Structure element. It is denoted by $\operatorname{Impl}$ and is either a definition of a constant, an assumption, a definition of an inductive or a definition of a module or a module type abbreviation.

Module expression. It is denoted by $M$ and can be:

- an access path $p$
- a structure Struct $I m p l ; \ldots ;$ Impl End
- a functor Functor $(X: T) M^{\prime}$, where $X$ is a module variable, $T$ is a module type and $M^{\prime}$ is a module expression
- an application of access paths $p^{\prime} p^{\prime \prime}$

Signature element. It is denoted by Spec, it is a specification of a constant, an assumption, an inductive, a module or a module type abbreviation.

Module type, denoted by $T$ can be:

- a module type name
- an access path $p$
- a signature Sig Spec;...;Spec End
- a functor type Funsig $\left(X: T^{\prime}\right) T^{\prime \prime}$, where $T^{\prime}$ and $T^{\prime \prime}$ are module types

Module definition, written $\operatorname{Mod}(X: T:=M)$ can be a structure element. It consists of a module variable $X$, a module type $T$ and a module expression $M$.

Module specification, written $\operatorname{ModS}(X: T)$ or $\operatorname{ModSEq}(X: T==p)$ can be a signature element or a part of an environment. It consists of a module variable $X$, a module type $T$ and, optionally, a module path $p$.

Module type abbreviation, written $\operatorname{ModType}(S:=T)$, where $S$ is a module type name and $T$ is a module type.

### 5.2 Typing Modules

In order to introduce the typing system we first slightly extend the syntactic class of terms and environments given in section 4.1. The environments, apart from definitions of constants and inductive types now also hold any other signature elements. Terms, apart from variables, constants and complex terms, include also access paths.

We also need additional typing judgments:

- $E[] \vdash \mathcal{W} \mathcal{F}(T)$, denoting that a module type $T$ is well-formed,
- $E[] \vdash M: T$, denoting that a module expression $M$ has type $T$ in environment $E$.
- E[] $\vdash$ Impl : Spec, denoting that an implementation Impl verifies a specification Spec
- $E[] \vdash T_{1}<: T_{2}$, denoting that a module type $T_{1}$ is a subtype of a module type $T_{2}$.
- $E[] \vdash$ Spec $_{1}<:$ Spec $_{2}$, denoting that a specification Spec $_{1}$ is more precise that a specification Spec $_{2}$.

The rules for forming module types are the following:

## WF-SIG

$$
\frac{\left.\mathcal{W F}\left(E ; E^{\prime}\right)\right]}{E[] \vdash \mathcal{W F}\left(\operatorname{Sig} E^{\prime} \operatorname{End}\right)}
$$

## WF-FUN

$$
\frac{E ; \operatorname{ModS}(X: T)] \downharpoonleft \vdash \mathcal{W} \mathcal{F}\left(T^{\prime}\right)}{E[] \vdash \mathcal{W} \mathcal{F}\left(\operatorname{Funsig}(X: T) T^{\prime}\right)}
$$

Rules for typing module expressions:

## MT-STRUCT

$$
\left.\begin{array}{c}
E[] \vdash \mathcal{W F}\left(\text { Sig }_{\text {Spec }}^{1} ;\right.
\end{array} \ldots ; \text { Spec }_{n} \text { End }\right) \text {. }
$$

## MT-FUN

$$
\frac{E ; \operatorname{ModS}(X: T)[] \vdash M: T^{\prime}}{E[] \vdash \operatorname{Functor}(X: T) M: \operatorname{Funsig}(X: T) T^{\prime}}
$$

## MT-APP

$$
\begin{gathered}
E[] \vdash p: \text { Funsig }\left(X_{1}: T_{1}\right) \ldots \text { Funsig }\left(X_{n}: T_{n}\right) T^{\prime} \\
E[] \vdash p_{i}: T_{i}\left\{X_{1} / p_{1} \ldots X_{i-1} / p_{i-1}\right\} \text { for } i=1 \ldots n \\
\hline E[] \vdash p p_{1} \ldots p_{n}: T^{\prime}\left\{X_{1} / p_{1} \ldots X_{n} / p_{n}\right\}
\end{gathered}
$$

## MT-SUB

$$
\frac{E[] \vdash M: T \quad E[] \vdash T<: T^{\prime}}{E[] \vdash M: T^{\prime}}
$$

## MT-STR

$$
\frac{E[] \vdash p: T}{E[] \vdash p: T / p}
$$

The last rule, called strengthening is used to make all module fields manifestly equal to themselves. The notation $T / p$ has the following meaning:

- if $T=\operatorname{Sig} \operatorname{Spec}_{1} ; \ldots ; \operatorname{Spec}_{n}$ End then $T / p=\operatorname{Sig} \operatorname{Spec}_{1} / p ; \ldots ; \operatorname{Spec}_{n} / p$ End where Spec $/ p$ is defined as follows:
- $\operatorname{Def}()(c:=U: t) / p=\operatorname{Def}()(c:=U: t)$
- $\operatorname{Assum}()(c: U) / p=\operatorname{Def}()(c:=p . c: U)$
- $\operatorname{ModS}(X: T) / p=\operatorname{ModSEq}(X: T / p \cdot X==p \cdot X)$
$-\operatorname{ModSEq}\left(X: T==p^{\prime}\right) / p=\operatorname{ModSEq}\left(X: T / p==p^{\prime}\right)$
$-\operatorname{Ind}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right) / p=\operatorname{Ind}_{p}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)$
$-\operatorname{Ind}_{p^{\prime}}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right) / p=\operatorname{Ind}_{p^{\prime}}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)$
- if $T=\operatorname{Funsig}\left(X: T^{\prime}\right) T^{\prime \prime}$ then $T / p=T$
- if $T$ is an access path or a module type name, then we have to unfold its definition and proceed according to the rules above.

The notation $\operatorname{Ind}_{p}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)$ denotes an inductive definition that is definitionally equal to the inductive definition in the module denoted by the path $p$. All rules which have $\operatorname{Ind}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)$ as premises are also valid for $\operatorname{Ind}_{p}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)$. We give the formation rule for $\operatorname{Ind}_{p}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)$ below as well as the equality rules on inductive types and constructors.

The module subtyping rules:

## MSUB-SIG

$$
\begin{aligned}
& E ; \operatorname{Spec}_{1} ; \ldots ; \operatorname{Spec}_{n}[] \vdash \operatorname{Spec}_{\sigma(i)}<: \operatorname{Spec}_{i}^{\prime} \text { for } i=1 . . m \\
& \frac{\sigma:\{1 \ldots m\} \rightarrow\{1 \ldots n\} \text { injective }}{E[] \vdash \operatorname{Sig} \operatorname{Spec}_{1} ; \ldots ; \text { Spec }_{n} \text { End }<: \operatorname{Sig}_{\text {Spec }}^{1} ; \ldots ; \text { Spec }_{m}^{\prime} \text { End }}
\end{aligned}
$$

## MSUB-FUN

$$
\frac{E[] \vdash T_{1}^{\prime}<: T_{1} \quad E ; \operatorname{ModS}\left(X: T_{1}^{\prime}\right)[] \vdash T_{2}<: T_{2}^{\prime}}{E[] \vdash \operatorname{Funsig}\left(X: T_{1}\right) T_{2}<: \text { Funsig }\left(X: T_{1}^{\prime}\right) T_{2}^{\prime}}
$$

Specification subtyping rules:

## ASSUM-ASSUM

$$
\frac{E[] \vdash U_{1} \leq_{\beta \delta \iota \zeta} U_{2}}{E[] \vdash \text { Assum }()\left(c: U_{1}\right)<: \text { Assum }()\left(c: U_{2}\right)}
$$

## DEF-ASSUM

$$
\frac{E[] \vdash U_{1} \leq_{\beta \delta \iota \zeta} U_{2}}{E[] \vdash \operatorname{Def}()\left(c:=t: U_{1}\right)<: \operatorname{Assum}()\left(c: U_{2}\right)}
$$

## ASSUM-DEF

$$
\frac{E[] \vdash U_{1} \leq_{\beta \delta \iota \zeta} U_{2} \quad E[] \vdash c={ }_{\beta \delta \iota \zeta} t_{2}}{E[] \vdash \operatorname{Assum}()\left(c: U_{1}\right)<: \operatorname{Def}()\left(c:=t_{2}: U_{2}\right)}
$$

## DEF-DEF

$$
\frac{E[] \vdash U_{1} \leq_{\beta \delta \iota \zeta} U_{2} \quad E[] \vdash t_{1}={ }_{\beta \delta \iota \zeta} t_{2}}{E[] \vdash \operatorname{Def}()\left(c:=t_{1}: U_{1}\right)<: \operatorname{Def}()\left(c:=t_{2}: U_{2}\right)}
$$

## IND-IND

$$
\frac{E[] \vdash \Gamma_{P}={ }_{\beta \delta \iota \zeta} \Gamma_{P}^{\prime} \quad E\left[\Gamma_{P}\right] \vdash \Gamma_{C}={ }_{\beta \delta \iota \zeta} \Gamma_{C}^{\prime} \quad E\left[\Gamma_{P} ; \Gamma_{C}\right] \vdash \Gamma_{I}={ }_{\beta \delta \iota \zeta} \Gamma_{I}^{\prime}}{E[] \vdash \operatorname{Ind}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)<: \operatorname{lnd}()\left[\Gamma_{P}^{\prime}\right]\left(\Gamma_{C}^{\prime}:=\Gamma_{I}^{\prime}\right)}
$$

## INDP-IND

$$
\frac{E[] \vdash \Gamma_{P}={ }_{\beta \delta \iota \zeta} \Gamma_{P}^{\prime} \quad E\left[\Gamma_{P}\right] \vdash \Gamma_{C}={ }_{\beta \delta \iota \zeta} \Gamma_{C}^{\prime} \quad E\left[\Gamma_{P} ; \Gamma_{C}\right] \vdash \Gamma_{I}={ }_{\beta \delta \iota \zeta} \Gamma_{I}^{\prime}}{E[] \vdash \operatorname{lnd}_{p}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right) \quad<: \operatorname{lnd}()\left[\Gamma_{P}^{\prime}\right]\left(\Gamma_{C}^{\prime}:=\Gamma_{I}^{\prime}\right)}
$$

## INDP-INDP

$$
\left.\frac{E[] \vdash \Gamma_{P}={ }_{\beta \delta \iota \zeta} \Gamma_{P}^{\prime} \quad E\left[\Gamma_{P}\right] \vdash \Gamma_{C}={ }_{\beta \delta \iota \zeta} \Gamma_{C}^{\prime}}{} \quad E\left[\Gamma_{P} ; \Gamma_{C}\right] \vdash \Gamma_{I}={ }_{\beta \delta \iota \zeta} \Gamma_{I}^{\prime} \quad E[] \vdash p=\beta \delta \iota \zeta p^{\prime}\right]
$$

## MODS-MODS

$$
\frac{E[] \vdash T_{1}<: T_{2}}{E[] \vdash \operatorname{ModS}\left(m: T_{1}\right)<: \operatorname{ModS}\left(m: T_{2}\right)}
$$

## MODEQ-MODS

$$
\frac{E[] \vdash T_{1}<: T_{2}}{E[] \vdash \operatorname{ModSEq}\left(m: T_{1}==p\right)<: \operatorname{ModS}\left(m: T_{2}\right)}
$$

## MODS-MODEQ

$$
\frac{E[] \vdash T_{1}<: T_{2} \quad E[] \vdash m={ }_{\beta \delta \iota \zeta} p_{2}}{E[] \vdash \operatorname{ModS}\left(m: T_{1}\right)<: \operatorname{ModSEq}\left(m: T_{2}==p_{2}\right)}
$$

MODEQ-MODEQ

$$
\frac{E[] \vdash T_{1}<: T_{2} \quad E[] \vdash p_{1}=\beta \delta \iota \zeta p_{2}}{E[] \vdash \operatorname{ModSEq}\left(m: T_{1}==p_{1}\right)<: \operatorname{ModSEq}\left(m: T_{2}==p_{2}\right)}
$$

## MODTYPE-MODTYPE

$$
\frac{E[] \vdash T_{1}<: T_{2} \quad E[] \vdash T_{2}<: T_{1}}{E[] \vdash \operatorname{ModType}\left(S:=T_{1}\right)<: \operatorname{ModType}\left(S:=T_{2}\right)}
$$

Verification of the specification

## IMPL-SPEC

$$
\begin{gathered}
\mathcal{W F}(E ; \text { Spec })[] \\
\text { Spec is one of Def, Assum, Ind, ModType } \\
E[] \vdash \text { Spec : Spec }
\end{gathered}
$$

MOD-MODS

$$
\frac{\mathcal{W F}(E ; \operatorname{ModS}(m: T))]] \quad E[] \vdash M: T}{E[] \vdash \operatorname{Mod}(m: T:=M): \operatorname{ModS}(m: T)}
$$

## MOD-MODEQ

$$
\frac{\mathcal{W} \mathcal{F}(E: \operatorname{ModSEq}(m: T==p))]\left[\quad E[] \vdash p={ }_{\beta \delta \iota \iota} p^{\prime}\right.}{E[] \vdash \operatorname{Mod}\left(m: T:=p^{\prime}\right): \operatorname{ModSEq}\left(m: T==p^{\prime}\right)}
$$

New environment formation rules

## WF-MODS

$$
\frac{\mathcal{W} \mathcal{F}(E)[] \quad E[] \vdash \mathcal{W} \mathcal{F}(T)}{\mathcal{W F}(E ; \operatorname{ModS}(m: T))[]}
$$

## WF-MODEQ

$$
\frac{\mathcal{W F}(E)[] \quad E[] \vdash p: T}{\mathcal{W} \mathcal{F}(E, \operatorname{ModSEq}(m: T==p))]}
$$

## WF-MODTYPE

$$
\frac{\mathcal{W} \mathcal{F}(E)[] \quad E[] \vdash \mathcal{W} \mathcal{F}(T)}{\mathcal{W} \mathcal{F}(E, \operatorname{ModType}(S:=T))[]}
$$

## WF-IND

$$
\begin{gathered}
\mathcal{W F}\left(E ; \operatorname{Ind}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)\right)[] \\
E\left[\vdash p: \operatorname{Sig} \operatorname{Spec}_{1} ; \ldots ; \operatorname{Spec}_{n} ; \operatorname{lnd}()\left[\Gamma_{P}^{\prime}\right]\left(\Gamma_{C}^{\prime}:=\Gamma_{I}^{\prime}\right) ; \ldots\right. \text { End : } \\
E[] \vdash \operatorname{Ind}()\left[\Gamma_{P}^{\prime}\right]\left(\Gamma_{C}^{\prime}:=\Gamma_{I}^{\prime}\right)\{p . l / l\}_{l \in \operatorname{labels}\left(\text { Spec }_{1}, \ldots ; \text { Specen }\right)<: \operatorname{Ind}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)}^{\left.\left.\mathcal{W F}\left(E ; \operatorname{lnd}_{p}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)\right)\right]\right]}
\end{gathered}
$$

Component access rules

## ACC-TYPE

$$
\begin{aligned}
& \frac{E[\Gamma] \vdash p: \operatorname{Sig}^{\text {Spec }_{1} ; \ldots ; \text { Spec }_{i} ; \text { Assum }()(c: U) ; \ldots \text { End }}}{E[\Gamma] \vdash p \cdot c: U\{p . l / l\}_{l \in \operatorname{labels}\left(S p e c_{1} ; \ldots ; \text { Spec }_{i}\right)}} \\
& \frac{E[\Gamma] \vdash p: \operatorname{Sig} \text { Spec }_{1} ; \ldots ; \text { Spec }_{i} ; \operatorname{Def}()(c:=t: U) ; \ldots \text { End }}{E[\Gamma] \vdash p . c: U\{p . l / l\}_{l \in \operatorname{labels}\left(\text { Spec }_{1} ; \ldots ; \text { Spec }_{i}\right)}}
\end{aligned}
$$

ACC-DELTA Notice that the following rule extends the delta rule defined in section 4.3

$$
\frac{E[\Gamma] \vdash p: \operatorname{Sig} \text { Spec }_{1} ; \ldots ; \text { Spec }_{i} ; \operatorname{Def}()(c:=t: U) ; \ldots \text { End }}{E[\Gamma] \vdash p . c \triangleright{ }_{\delta} t\{p . l / l\}_{l \in \text { labels }\left(\text { Spec }_{1} ; \ldots ; \text { Spec }_{i}\right)}}
$$

In the rules below we assume $\Gamma_{P}$ is $\left[p_{1}: P_{1} ; \ldots ; p_{r}: P_{r}\right], \Gamma_{I}$ is $\left[I_{1}: A_{1} ; \ldots ; I_{k}: A_{k}\right]$, and $\Gamma_{C}$ is $\left[c_{1}: C_{1} ; \ldots ; c_{n}: C_{n}\right]$

## ACC-IND

$$
\begin{aligned}
& \frac{E[\Gamma] \vdash p: \text { Sig } \text { Spec }_{1} ; \ldots ; \text { Spec }_{i} ; \operatorname{Ind}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right) ; \ldots \text { End }}{E[\Gamma] \vdash p . I_{j}:\left(p_{1}: P_{1}\right) \ldots\left(p_{r}: P_{r}\right) A_{j}\{p . l / l\}_{l \in \text { labels }\left(\text { Spec }_{1}, \ldots ; \text { Spec }_{i}\right)}} \\
& \frac{E[\Gamma] \vdash p: \operatorname{Sig}_{\operatorname{Spec}}^{1} ;}{} ; \ldots ; \text { Spec }_{i} ; \operatorname{Ind}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right) ; \ldots \text { End }{ }_{E[\Gamma] \vdash p . c_{m}:\left(p_{1}: P_{1}\right) \ldots\left(p_{r}: P_{r}\right) C_{m}\left\{I_{j} /\left(I_{j} p_{1} \ldots p_{r}\right)\right\}_{j=1 \ldots k}\{p . l / l\}_{l \in \text { labels }\left(\text { Spec }_{1} ; \ldots ; \text { Spec }_{i}\right)}}^{\text {. }}
\end{aligned}
$$

## ACC-INDP

$$
\begin{aligned}
& \frac{E[] \vdash p: \operatorname{Sig} \text { Spec }_{1} ; \ldots ; \text { Spec }_{n} ; \operatorname{Ind}_{p^{\prime}}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right) ; \ldots \text { End }}{E\left[\vdash \vdash \text { I I }_{i} \triangleright_{\delta} p^{\prime} . I_{i}\right.} \\
& \frac{E\left[\downarrow \vdash p: \operatorname{Sig} \text { Spec }_{1} ; \ldots ; \text { Spec }_{n} ; \operatorname{lnd}_{p^{\prime}}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right) ; \ldots\right. \text { End }}{E[] \vdash p . c_{i} \triangleright_{\delta} p^{\prime} . c_{i}}
\end{aligned}
$$

## ACC-MOD

$$
\begin{aligned}
& \frac{E[\Gamma] \vdash p: \operatorname{Sig}_{\text {Spec }_{1} ; \ldots ; \text { Spec }_{i} ; \operatorname{ModS}(m: T) ; \ldots \text { End }}^{\left.E[\Gamma] \vdash p . m: T\{p . l / l\}_{l \in \text { labels }\left(\text { Spec }_{1} ; \ldots ;\right. \text { Spec }}^{i} \text { }\right)}}{\text {. }} \\
& \frac{E[\Gamma] \vdash p: \operatorname{Sig} \operatorname{Spec}_{1} ; \ldots ; \text { Spec }_{i} ; \operatorname{ModSEq}\left(m: T==p^{\prime}\right) ; \ldots \text { End }}{E[\Gamma] \vdash p . m: T\{p . l / l\}_{l \in \text { labels }\left(\text { Spec }_{1} ; \ldots ; \text { Spec }_{i}\right)}}
\end{aligned}
$$

## ACC-MODEQ

$$
\frac{E[\Gamma] \vdash p: \operatorname{Sig} \operatorname{Spec}_{1} ; \ldots ; \text { Spec }_{i} ; \operatorname{ModSEq}\left(m: T==p^{\prime}\right) ; \ldots \text { End }}{E[\Gamma] \vdash p \cdot m \triangleright_{\delta} p^{\prime}\{p . l / l\}_{l \in \text { labels }\left(\text { Spec }_{1}, \ldots ; S p e c_{i}\right)}}
$$

## ACC-MODTYPE

The function labels () is used to calculate the set of label of the set of specifications. It is defined by labels $\left(\operatorname{Spec}_{1} ; \ldots ; \operatorname{Spec}_{n}\right)=\operatorname{labels}\left(\operatorname{Spec}_{1}\right) \cup \ldots ; \cup \operatorname{labels}\left(\right.$ Spec $\left._{n}\right)$ where labels $(S p e c)$ is defined as follows:

- $\operatorname{labels}(\operatorname{Assum}(\Gamma)(c: U))=\{c\}$,
- labels $(\operatorname{Def}(\Gamma)(c:=t: U))=\{c\}$,
- $\operatorname{labels}\left(\operatorname{lnd}(\Gamma)\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)\right)=\operatorname{dom}\left(\Gamma_{C}\right) \cup \operatorname{dom}\left(\Gamma_{I}\right)$,
- $\operatorname{labels}(\operatorname{ModS}(m: T))=\{m\}$,
- labels $(\operatorname{ModSEq}(m: T==M))=\{m\}$,
- $\operatorname{labels}(\operatorname{ModType}(S:=T))=\{S\}$

Environment access for modules and module types

## ENV-MOD

$$
\frac{\mathcal{W F}\left(E ; \operatorname{ModS}(m: T) ; E^{\prime}\right)[\Gamma]}{E ; \operatorname{ModS}(m: T) ; E^{\prime}[\Gamma] \vdash m: T}
$$

$$
\frac{\mathcal{W F}\left(E ; \operatorname{ModSEq}(m: T==p) ; E^{\prime}\right)[\Gamma]}{E ; \operatorname{ModSEq}(m: T==p) ; E^{\prime}[\Gamma] \vdash m: T}
$$

## ENV-MODEQ

$$
\frac{\mathcal{W} \mathcal{F}\left(E ; \operatorname{ModSEq}(m: T==p) ; E^{\prime}\right)[\Gamma]}{E ; \operatorname{ModSEq}(m: T==p) ; E^{\prime}[\Gamma] \vdash m \triangleright_{\delta} p}
$$

## ENV-MODTYPE

$$
\frac{\mathcal{W F}\left(E ; \operatorname{ModType}(S:=T) ; E^{\prime}\right)[\Gamma]}{E ; \operatorname{ModType}(S:=T) ; E^{\prime}[\Gamma] \vdash S \triangleright_{\delta} T}
$$

## ENV-INDP

$$
\begin{aligned}
& \frac{\left.\mathcal{W F}\left(E ; \operatorname{Ind}_{p}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)\right)\right]}{E ; \operatorname{lnd}_{p}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)[] \vdash I_{i} \triangleright_{\delta} p \cdot I_{i}} \\
& \frac{\left.\left.\mathcal{W F}\left(E ; \operatorname{lnd}_{p}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)\right)\right]\right]}{E ; \operatorname{lnd}_{p}()\left[\Gamma_{P}\right]\left(\Gamma_{C}:=\Gamma_{I}\right)[] \vdash c_{i} \triangleright_{\delta} p \cdot c_{i}}
\end{aligned}
$$

## Part II

## The proof engine

## Chapter 6

## Vernacular commands

### 6.1 Displaying

### 6.1.1 Print qualid.

This command displays on the screen informations about the declared or defined object referred by qualid.

## Error messages:

1. qualid not a defined object

## Variants:

1. Print Term qualid.

This is a synonym to Print qualid when qualid denotes a global constant.
2. About qualid.

This displays various informations about the object denoted by qualid: its kind (module, constant, assumption, inductive, constructor, abbreviation...), long name, type, implicit arguments and argument scopes.

### 6.1.2 Print All.

This command displays informations about the current state of the environment, including sections and modules.

## Variants:

1. Inspect num.

This command displays the num last objects of the current environment, including sections and modules.
2. Print Section ident.
should correspond to a currently open section, this command displays the objects defined since the beginning of this section.

### 6.2 Requests to the environment

### 6.2.1 Check term.

This command displays the type of term. When called in proof mode, the term is checked in the local context of the current subgoal.

### 6.2.2 Eval convtactic in term.

This command performs the specified reduction on term, and displays the resulting term with its type. The term to be reduced may depend on hypothesis introduced in the first subgoal (if a proof is in progress).

See also: section 8.5.

### 6.2.3 Extraction term.

This command displays the extracted term from term. The extraction is processed according to the distinction between Set and Prop; that is to say, between logical and computational content (see section 4.1.1). The extracted term is displayed in Objective Caml syntax, where global identifiers are still displayed as in CoQ terms.

## Variants:

1. Recursive Extraction qualid ${ }_{1}$... qualid ${ }_{n}$.

Recursively extracts all the material needed for the extraction of globals qualid ${ }_{1} \ldots$ qualid $_{n}$.

See also: chapter 18 .

### 6.2.4 Opaque qualid ${ }_{1}$...qualid ${ }_{n}$.

This command tells not to unfold the the constants qualid ${ }_{1} \ldots$ qualid $_{n}$ in tactics using $\delta$-conversion. Unfolding a constant is replacing it by its definition. Opaque can only apply on constants originally defined as Transparent.

Constants defined by a proof ended by Qed are automatically stamped as Opaque and can no longer be considered as Transparent. This is to keep with the usual mathematical practice of proof irrelevance: what matters in a mathematical development is the sequence of lemma statements, not their actual proofs. This distinguishes lemmas from the usual defined constants, whose actual values are of course relevant in general.

See also: sections 8.5, 8.12, 7.1.4

## Error messages:

1. The reference qualid was not found in the current environment There is no constant referred by qualid in the environment. Nevertheless, if you asked Opaque foo bar and if bar does not exist, foo is set opaque.
6.2.5 Transparent qualid ${ }_{1} \ldots$. . qualid $_{n}$.

This command is the converse of Opaque and can only apply on constants originally defined as Transparent to restore their initial behaviour after an Opaque command.

The constants automatically declared transparent are the ones defined by a proof ended by Defined, or by a Definition or Local with an explicit body.

Warning: Transparent and Opaque are not synchronous with the reset mechanism. If a constant was transparent at point $A$, if you set it opaque at point $B$ and reset to point $A$, you return to state of point A with the difference that the constant is still opaque. This can cause changes in tactic scripts behaviour.

At section or module closing, a constant recovers the status it got at the time of its definition.

## Error messages:

1. The reference qualid was not found in the current environment There is no constant referred by qualid in the environment.

See also: sections 8.5, 8.12, 7.1.4

### 6.2.6 Search qualid.

This command displays the name and type of all theorems of the current context whose statement's conclusion has the form (qualid t1 . . tn). This command is useful to remind the user of the name of library lemmas. Error messages:

1. The reference qualid was not found in the current environment There is no constant in the environment named qualid.

## Variants:

1. Search qualid inside module ${ }_{1}$... $\operatorname{module}_{n}$.

This restricts the search to constructions defined in modules module ${ }_{1} \ldots$ module $_{n}$.
2. Search qualid outside module $_{1}$... $\operatorname{module}_{n}$.

This restricts the search to constructions not defined in modules module ${ }_{1} \ldots$ module $_{n}$.

## Error messages:

(a) Module/section module not found No module module has been required (see section 6.4.1).

### 6.2.7 SearchAbout qualid.

This command displays the name and type of all objects (theorems, axioms, etc) of the current context whose statement contains qualid. This command is useful to remind the user of the name of library lemmas.

## Error messages:

1. The reference qualid was not found in the current environment There is no constant in the environment named qualid.

## Variants:

1. SearchAbout [ qualid-or-string ... qualid-or-string ]. where qualid-or-string is a qualid or a string.
This extension of SearchAbout searches for all objects whose statement mentions all of qualid of the list and whose name contains all string of the list.

## Example:

```
Coq < Require Import ZArith.
Coq < SearchAbout [Zmult Zplus "distr"].
weak_Zmult_plus_distr_r:
 forall (p : positive) (n m : Z),
 (Zpos p * (n + m))%Z = (Zpos p * n + Zpos p * m) %Z
zmult_plus_distr_r:
 forall n m p:Z, (n* (m + p))%Z = (n*m + n * p)%Z
Zmult_plus_distr_l:
 forall n m p : Z, ((n + m) * p)%Z = (n * p + m * p)%Z
OmegaLemmas.fast_Zmult_plus_distr_l:
 forall (n m p : Z) (P : Z -> Prop),
 P (n * p + m * p)%Z -> P ((n + m) * p) %Z
```

2. SearchAbout term inside module ${ }_{1}$... module $_{n}$.

SearchAbout [ qualid-or-string ... qualid-or-string ] inside module $_{1}$... module $_{n}$.
This restricts the search to constructions defined in modules module $_{1} \ldots$ module $_{n}$.
3. SearchAbout term outside module ${ }_{1} .$. module $_{n}$.

SearchAbout [ qualid-or-string ... qualid-or-string ] outside module ${ }_{1} .$. module $_{n}$.
This restricts the search to constructions not defined in modules module ${ }_{1} \ldots$ module $_{n}$.

### 6.2.8 SearchPattern term.

This command displays the name and type of all theorems of the current context whose statement's conclusion matches the expression term where holes in the latter are denoted by "_".

```
Coq < Require Import Arith.
Coq < SearchPattern (_ + _ = _ + _).
plus_comm: forall n m : nat, n + m = m + n
plus_Snm_nSm: forall n m : nat, S n + m = n + S m
plus_assoc: forall n m p : nat, n + (m + p) = n + m + p
plus_permute: forall n m p : nat, n + (m + p) = m + (n + p)
plus_assoc_reverse: forall n m p : nat, n + m + p = n + (m + p)
plus_permute_2_in_4:
 forall n m p q : nat, n +m + (p + q) = n + p + (m + q)
```

Patterns need not be linear: you can express that the same expression must occur in two places by using pattern variables '? ident".

```
Coq < Require Import Arith.
Coq < SearchPattern (?X1 + _ = _ + ?X1).
plus_comm: forall n m : nat, n + m = m + n
```


## Variants:

1. SearchPattern term inside module $_{1}$. . module $_{n}$.

This restricts the search to constructions defined in modules module ${ }_{1} \ldots$ module $_{n}$.
2. SearchPattern term outside module $_{1}$. . . module $_{n}$.

This restricts the search to constructions not defined in modules module ${ }_{1} \ldots$ module $_{n}$.

### 6.2.9 SearchRewrite term.

This command displays the name and type of all theorems of the current context whose statement's conclusion is an equality of which one side matches the expression term=. Holes in term are denoted by "-".

```
Coq < Require Import Arith.
```

Coq < SearchRewrite (_ + _ + _).
plus_assoc: forall $n m p: n a t, n+(m+p)=n+m+p$
plus_assoc_reverse: forall $n m p: n a t, n+m+p=n+(m+p)$
plus_permute_2_in_4:
forall $n m p q:$ nat, $n+m+(p+q)=n+p+(m+q)$

## Variants:

1. SearchRewrite term inside module $_{1}$... module $_{n}$.

This restricts the search to constructions defined in modules module ${ }_{1} \ldots$ module $_{n}$.
2. SearchRewrite term outside module $_{1}$. . module $_{n}$.

This restricts the search to constructions not defined in modules module ${ }_{1} \ldots$ module $_{n}$.

### 6.2.10 Locate qualid.

This command displays the full name of the qualified identifier qualid and consequently the COQ module in which it is defined.

```
Coq < Locate nat.
Inductive Coq.Init.Datatypes.nat
Coq < Locate Datatypes.O.
Constructor Coq.Init.Datatypes.O
 (shorter name to refer to it in current context is O)
Coq < Locate Init.Datatypes.o.
Constructor Coq.Init.Datatypes.O
 (shorter name to refer to it in current context is O)
Coq < Locate Coq.Init.Datatypes.O.
Constructor Coq.Init.Datatypes.O
 (shorter name to refer to it in current context is O)
Coq < Locate I.Dont.Exist.
No object of suffix I.Dont.Exist
```

See also: Section 11.1.10

### 6.2.11 The WHELP searching tool

WhELP is an experimental searching and browsing tool for the whole COQ library and the whole set of COQ user contributions. WHELP requires a browser to work. WhELP has been developed at the University of Bologna as part of the HELM ${ }^{1}$ and MoWGLI ${ }^{2}$ projects. It can be invoked directly from the COQ toplevel or from COQIDE, assuming a graphical environment is also running. The browser to use can be selected by setting the environment variable COQREMOTEBROWSER. If not explicitly set, it defaults to netscape -remote "OpenURL(\%s)" or C:<br>PROGRA~1<br>INTERN~1<br>IEXPLORE \%s, depending on the underlying operating system (in the command, the string $\% \mathrm{~s}$ serves as metavariable for the url to open).

The Whelp commands are:

Whelp Locate "reg_expr".
This command opens a browser window and displays the result of seeking for all names that match the regular expression reg_expr in the COQ library and user contributions. The regular expression can contain the special operators are * and ? that respectively stand for an arbitrary substring and for exactly one character.

Variant: Whelp Locate ident.
This is equivalent to Whelp Locate "ident".

Whelp Match pattern.
This command opens a browser window and displays the result of seeking for all statements that match the pattern pattern. Holes in the pattern are represented by the wildcard character "_".

## Whelp Instance pattern.

This command opens a browser window and displays the result of seeking for all statements that are instances of the pattern pattern. The pattern is here assumed to be an universally quantified expression.

Whelp Elim qualid.
This command opens a browser window and displays the result of seeking for all statements that have the "form" of an elimination scheme over the type denoted by qualid.

## Whelp Hint term.

This command opens a browser window and displays the result of seeking for all statements that can be instantiated so that to prove the statement term.

Variant: Whelp Hint.
This is equivalent to Whelp Hint goal where goal is the current goal to prove. Notice that CoQ does not send the local environment of definitions to the WHELP tool so that it only works on requests strictly based on, only, definitions of the standard library and user contributions.

[^10]
### 6.3 Loading files

COQ offers the possibility of loading different parts of a whole development stored in separate files. Their contents will be loaded as if they were entered from the keyboard. This means that the loaded files are ASCII files containing sequences of commands for CoQ's toplevel. This kind of file is called a script for CoQ. The standard (and default) extension of CoQ's script files is .v.

### 6.3.1 Load ident .

This command loads the file named ident . v, searching successively in each of the directories specified in the loadpath. (see section 6.5)

## Variants:

1. Load string.

Loads the file denoted by the string string, where string is any complete filename. Then the $\sim$ and . . abbreviations are allowed as well as shell variables. If no extension is specified, COQ will use the default extension . v
2. Load Verbose ident., Load Verbose string

Display, while loading, the answers of CoQ to each command (including tactics) contained in the loaded file See also: section 6.8.1

## Error messages:

1. Can't find file ident on loadpath

### 6.4 Compiled files

This feature allows to build files for a quick loading. When loaded, the commands contained in a compiled file will not be replayed. In particular, proofs will not be replayed. This avoids a useless waste of time.

Remark: A module containing an opened section cannot be compiled.

### 6.4.1 Require dirpath.

This command looks in the loadpath for a file containing module dirpath, then loads and opens (imports) its contents. More precisely, if dirpath splits into a library dirpath dirpath' and a module name ident, then the file ident. vo is searched in a physical path mapped to the logical path dirpath'.

TODO: effect on the name table.
If the module required has already been loaded, CoQ simply opens it (as Import dirpath would do it).

If a module $A$ contains a command Require $B$ then the command Require $A$ loads the module $B$ but does not open it (See the Require Export variant below).

## Variants:

1. Require Export qualid.

This command acts as Require qualid. But if a module $A$ contains a command Require Export $B$, then the command Require $A$ opens the module $B$ as if the user would have typed RequireB.
2. Require qualid string.

Specifies the file to load as being string but containing module qualid which is then opened.
These different variants can be combined.

## Error messages:

1. Cannot load ident: no physical path bound to dirpath
2. Can't find module toto on loadpath

The command did not find the file toto.vo. Either toto.v exists but is not compiled or toto. vo is in a directory which is not in your LoadPath (see section 6.5).
3. Bad magic number

The file ident . vo was found but either it is not a COQ compiled module, or it was compiled with an older and incompatible version of COQ.

See also: chapter 12

### 6.4.2 Print Modules.

This command shows the currently loaded and currently opened (imported) modules.
6.4.3 Declare ML Module string . . $_{1}$ string $_{n}$.

This commands loads the Objective Caml compiled files string ${ }_{1} \ldots$ string $_{n}$ (dynamic link). It is mainly used to load tactics dynamically. The files are searched into the current Objective Caml loadpath (see the command Add ML Path in the section 6.5). Loading of Objective Caml files is only possible under the bytecode version of coqt op (i.e. coqtop called with options -byte, see chapter 12).

## Error messages:

1. File not found on loadpath : string
2. Loading of ML object file forbidden in a native Coq

### 6.4.4 Print ML Modules.

This print the name of all ObJective CAML modules loaded with Declare ML Module. To know from where these module were loaded, the user should use the command Locate File (see page 132)

### 6.5 Loadpath

There are currently two loadpaths in CoQ. A loadpath where seeking COQ files (extensions . v or . vo or .vi) and one where seeking Objective Caml files. The default loadpath contains the directory "." denoting the current directory and mapped to the empty logical path (see section 2.6.2).

### 6.5.1 Pwd.

This command displays the current working directory.

### 6.5.2 Cd string .

This command changes the current directory according to string which can be any valid path.

## Variants:

1. Cd.

Is equivalent to Pwd .
6.5.3 Add LoadPath string as dirpath .

This command adds the path string to the current CoQ loadpath and maps it to the logical directory dirpath, which means that every file M. v physically lying in directory string becomes accessible through logical name "dirpath . m ".

Remark: Add LoadPath also adds string to the current ML loadpath.

## Variants:

1. Add LoadPath string.

Performs as Add LoadPath string as dirpath but for the empty directory path.

### 6.5.4 Add Rec LoadPath string as dirpath.

This command adds the directory string and all its subdirectories to the current COQ loadpath. The top directory string is mapped to the logical directory dirpath while any subdirectory pdir is mapped to logical directory dirpath . pdir and so on.

Remark: Add Rec LoadPath also recursively adds string to the current ML loadpath.

## Variants:

1. Add Rec LoadPath string.

Works as Add Rec LoadPath string as dirpath but for the empty logical directory path.
6.5.5 Remove LoadPath string.

This command removes the path string from the current CoQ loadpath.
6.5.6 Print LoadPath.

This command displays the current COQ loadpath.
6.5.7 Add ML Path string.

This command adds the path string to the current Objective Caml loadpath (see the command Declare ML Module in the section 6.4).

Remark: This command is implied by Add LoadPath string as dirpath.
6.5.8 Add Rec ML Path string.

This command adds the directory string and all its subdirectories to the current Objective Caml loadpath (see the command Declare ML Module in the section 6.4).

Remark: This command is implied by Add Rec LoadPath string as dirpath.

### 6.5.9 Print ML Path string.

This command displays the current Objective Caml loadpath. This command makes sense only under the bytecode version of coqtop, i.e. using option -byte (see the command Declare ML Module in the section 6.4).

### 6.5.10 Locate File string.

This command displays the location of file string in the current loadpath. Typically, string is a . cmo or .vo or .v file.

### 6.5.11 Locate Library dirpath .

This command gives the status of the CoQ module dirpath. It tells if the module is loaded and if not searches in the load path for a module of logical name dirpath.

### 6.6 States and Reset

### 6.6.1 Reset ident.

This command removes all the objects in the environment since ident was introduced, including ident. ident may be the name of a defined or declared object as well as the name of a section. One cannot reset over the name of a module or of an object inside a module.

## Error messages:

1. ident: no such entry

### 6.6.2 Back.

This commands undoes all the effects of the last vernacular command. This does not include commands that only access to the environment like those described in the previous sections of this chapter (for instance Require and Load can be undone, but not Check and Locate). Commands read from a vernacular file are considered as a single command.

## Variants:

1. Back $n$

Undoes $n$ vernacular commands.

## Error messages:

1. Reached begin of command history

Happens when there is vernacular command to undo.
6.6.3 Restore State string.

Restores the state contained in the file string.

## Variants:

1. Restore State ident

Equivalent to Restore State "ident.coq".
2. Reset Initial.

Goes back to the initial state (like after the command coqtop, when the interactive session began). This command is only available interactively.

### 6.6.4 Write State string.

Writes the current state into a file string for use in a further session. This file can be given as the inputstate argument of the commands coqtop and coqc.

## Variants:

1. Write State ident

Equivalent to Write State "ident.coq". The state is saved in the current directory (see 131).

### 6.7 Quitting and debugging

### 6.7.1 Quit.

This command permits to quit CoQ.

### 6.7.2 Drop.

This is used mostly as a debug facility by CoQ's implementors and does not concern the casual user. This command permits to leave CoQ temporarily and enter the Objective Caml toplevel. The Objective Caml command:

```
#use "include";;
```

add the right loadpaths and loads some toplevel printers for all abstract types of CoQ- section_path, identfifiers, terms, judgements, .... You can also use the file base_include instead, that loads only the pretty-printers for section_paths and identifiers. You can return back to COQ with the command:
go(); ;

## Warnings:

1. It only works with the bytecode version of CoQ (i.e. coqtop called with option -byte, see page 245).
2. You must have compiled COQ from the source package and set the environment variable COQTOP to the root of your copy of the sources (see section 12.4).
6.7.3 Time command.

This command executes the vernac command command and display the time needed to execute it.

### 6.8 Controlling display

### 6.8.1 Set Silent.

This command turns off the normal displaying.

### 6.8.2 Unset Silent.

This command turns the normal display on.

### 6.8.3 Set Printing Width integer.

This command sets which left-aligned part of the width of the screen is used for display.

### 6.8.4 Unset Printing Width.

This command resets the width of the screen used for display to its default value (which is 78 at the time of writing this documentation).

### 6.8.5 Test Printing Width.

This command displays the current screen width used for display.

### 6.8.6 Set Printing Depth integer.

This command sets the nesting depth of the formatter used for pretty-printing. Beyond this depth, display of subterms is replaced by dots.

### 6.8.7 Unset Printing Depth.

This command resets the nesting depth of the formatter used for pretty-printing to its default value (at the time of writing this documentation, the default value is 50 ).

### 6.8.8 Test Printing Depth.

This command displays the current nesting depth used for display.

### 6.9 Controlling the conversion algorithm

CoQ comes with two algorithms to check the convertibility of types (see section 4.3). The first algorithm lazily compares applicative terms while the other is a brute-force but efficient algorithm that first normalizes the terms before comparing them. The second algorithm is based on a bytecode representation of terms similar to the bytecode representation used in the ZINC virtual machine [85]. It is specially useful for intensive computation of algebraic values, such as numbers, and for reflexion-based tactics.

### 6.9.1 Set Virtual Machine

This activates the bytecode-based conversion algorithm.

### 6.9.2 Unset Virtual Machine

This deactivates the bytecode-based conversion algorithm.

### 6.9.3 Test Virtual Machine

This tells if the bytecode-based conversion algorithm is activated. The default behavior is to have the bytecode-based conversion algorithm deactivated.

See also: sections 8.5.1 and 12.5.

## Chapter 7

## Proof handling

In CoQ's proof editing mode all top-level commands documented in chapter 6 remain available and the user has access to specialized commands dealing with proof development pragmas documented in this section. He can also use some other specialized commands called tactics. They are the very tools allowing the user to deal with logical reasoning. They are documented in chapter 8 .
When switching in editing proof mode, the prompt Coq < is changed into ident < where ident is the declared name of the theorem currently edited.

At each stage of a proof development, one has a list of goals to prove. Initially, the list consists only in the theorem itself. After having applied some tactics, the list of goals contains the subgoals generated by the tactics.

To each subgoal is associated a number of hypotheses we call the local_context of the goal. Initially, the local context is empty. It is enriched by the use of certain tactics (see mainly section 8.3.5).

When a proof is achieved the message Proof completed is displayed. One can then store this proof as a defined constant in the environment. Because there exists a correspondence between proofs and terms of $\lambda$-calculus, known as the Curry-Howard isomorphism [70, 6, 66, 73], CoQ stores proofs as terms of Cic. Those terms are called proof terms.

It is possible to edit several proofs at the same time: see section 7.1.8
Error message: When one attempts to use a proof editing command out of the proof editing mode, CoQ raises the error message : No focused proof.

### 7.1 Switching on/off the proof editing mode

### 7.1.1 Goal form.

This command switches CoQ to editing proof mode and sets form as the original goal. It associates the name Unnamed_thm to that goal.

## Error messages:

1. the term form has type ... which should be Set, Prop or Type

See also: section 7.1.4

### 7.1.2 Qed.

This command is available in interactive editing proof mode when the proof is completed. Then Qed extracts a proof term from the proof script, switches back to COQ top-level and attaches the extracted proof term to the declared name of the original goal. This name is added to the environment as an Opaque constant.

## Error messages:

1. Attempt to save an incomplete proof
2. Sometimes an error occurs when building the proof term, because tactics do not enforce completely the term construction constraints.

The user should also be aware of the fact that since the proof term is completely rechecked at this point, one may have to wait a while when the proof is large. In some exceptional cases one may even incur a memory overflow.

## Variants:

1. Defined.

Defines the proved term as a transparent constant.
2. Save.

Is equivalent to Qed.
3. Save ident.

Forces the name of the original goal to be ident. This command (and the following ones) can only be used if the original goal has been opened using the Goal command.
4. Save Theorem ident.

Save Lemma ident.
Save Remark ident.
Save Fact ident.
Are equivalent to Save ident .

### 7.1.3 Admitted.

This command is available in interactive editing proof mode to give up the current proof and declare the initial goal as an axiom.

### 7.1.4 Theorem ident : form.

This command switches to interactive editing proof mode and declares ident as being the name of the original goal form. When declared as a Theorem, the name ident is known at all section levels: Theorem is a global lemma.

## Error messages:

1. the term form has type ... which should be Set, Prop or Type
2. identalready exists

The name you provided already defined. You have then to choose another name.

## Variants:

1. Lemma ident : form.

It is equivalent to Theorem ident : form.
2. Remark ident : form.

Fact ident : form.
Used to have a different meaning, but are now equivalent to Theorem ident : form. They are kept for compatibility.
3. Definition ident : form.

Analogous to Theorem, intended to be used in conjunction with Defined (see 1 ) in order to define a transparent constant.
4. Let ident : form.

Analogous to Definition except that the definition is turned into a local definition on objects depending on it after closing the current section.

### 7.1.5 Proof term.

This command applies in proof editing mode. It is equivalent to exact term; Save. That is, you have to give the full proof in one gulp, as a proof term (see section 8.2.1).

## Variant: Proof.

Is a noop which is useful to delimit the sequence of tactic commands which start a proof, after a Theorem command. It is a good practice to use Proof. as an opening parenthesis, closed in the script with a closing Qed.

See also: Proof with tactic. in section 8.13.6.

### 7.1.6 Abort.

This command cancels the current proof development, switching back to the previous proof development, or to the COQ toplevel if no other proof was edited.

## Error messages:

1. No focused proof (No proof-editing in progress)

## Variants:

1. Abort ident.

Aborts the editing of the proof named ident.
2. Abort All.

Aborts all current goals, switching back to the CoQ toplevel.

### 7.1.7 Suspend.

This command applies in proof editing mode. It switches back to the CoQ toplevel, but without canceling the current proofs.

### 7.1.8 Resume.

This commands switches back to the editing of the last edited proof.

## Error messages:

1. No proof-editing in progress

## Variants:

1. Resume ident.

Restarts the editing of the proof named ident. This can be used to navigate between currently edited proofs.

## Error messages:

1. No such proof

### 7.1.9 Existential num := term.

This command allows to instantiate an existential variable. num is an index in the list of uninstantiated existential variables displayed by Show Existentials. (described in section 7.3.1)

This command is intented to be used to instantiate existential variables when the proof is completed but some uninstantiated existential variables remain. To instantiate existential variables during proof edition, you should use the tactic instantiate.

See also: instantiate (num := term). in section 8.3.14.

### 7.2 Navigation in the proof tree

### 7.2.1 Undo.

This command cancels the effect of the last tactic command. Thus, it backtracks one step.

## Error messages:

1. No focused proof (No proof-editing in progress)
2. Undo stack would be exhausted

## Variants:

1. Undo num.

Repeats Undo num times.

### 7.2.2 Set Undo num.

This command changes the maximum number of Undo's that will be possible when doing a proof. It only affects proofs started after this command, such that if you want to change the current undo limit inside a proof, you should first restart this proof.

### 7.2.3 Unset Undo.

This command resets the default number of possible Undo commands (which is currently 12).

### 7.2.4 Restart.

This command restores the proof editing process to the original goal.

## Error messages:

1. No focused proof to restart

### 7.2.5 Focus.

This focuses the attention on the first subgoal to prove and the printing of the other subgoals is suspended until the focused subgoal is solved or unfocused. This is useful when there are many current subgoals which clutter your screen.

## Variant:

1. Focus num.

This focuses the attention on the num ${ }^{\text {th }}$ subgoal to prove.

### 7.2.6 Unfocus.

Turns off the focus mode.

### 7.3 Displaying information

### 7.3.1 Show.

This command displays the current goals.

## Variants:

1. Show num.

Displays only the num-th subgoal.
Error messages:
(a) No such goal
(b) No focused proof
2. Show Implicits.

Displays the current goals, printing the implicit arguments of constants.
3. Show Implicits num.

Same as above, only displaying the num-th subgoal.
4. Show Script.

Displays the whole list of tactics applied from the beginning of the current proof. This tactics script may contain some holes (subgoals not yet proved). They are printed under the form <Your Tactic Text here>.
5. Show Tree.

This command can be seen as a more structured way of displaying the state of the proof than that provided by Show Script. Instead of just giving the list of tactics that have been applied, it shows the derivation tree constructed by then. Each node of the tree contains the conclusion of the corresponding sub-derivation (i.e. a goal with its corresponding local context) and the tactic that has generated all the sub-derivations. The leaves of this tree are the goals which still remain to be proved.
6. Show Proof.

It displays the proof term generated by the tactics that have been applied. If the proof is not completed, this term contain holes, which correspond to the sub-terms which are still to be constructed. These holes appear as a question mark indexed by an integer, and applied to the list of variables in the context, since it may depend on them. The types obtained by abstracting away the context from the type of each hole-placer are also printed.
7. Show Conjectures.

It prints the list of the names of all the theorems that are currently being proved. As it is possible to start proving a previous lemma during the proof of a theorem, this list may contain several names.
8. Show Intro.

If the current goal begins by at least one product, this command prints the name of the first product, as it would be generated by an anonymous Intro. The aim of this command is to ease the writing of more robust scripts. For example, with an appropriate Proof General macro, it is possible to transform any anonymous Intro into a qualified one such as Intro y13. In the case of a non-product goal, it prints nothing.
9. Show Intros.

This command is similar to the previous one, it simulates the naming process of an Intros.
10. Show Existentials

It displays the set of all uninstantiated existential variables in the current proof tree, along with the type and the context of each variable.

### 7.3.2 Set Hyps Limit num.

This command sets the maximum number of hypotheses displayed in goals after the application of a tactic. All the hypotheses remains usable in the proof development.

### 7.3.3 Unset Hyps Limit.

This command goes back to the default mode which is to print all available hypotheses.

## 7.4 $D P L$ : A Declarative proof language for $\operatorname{Coq}$ (experimental)

An implementation of the $D P L$ declarative proof language by Pierre Corbineau at the Radboud University Nijmegen (The Netherlands) is included in Coq.

Due to the experimental nature and hence the potentially unstable semantics of the language, its documentation is not included here. However, it can be found at :
http://www.cs.ru.nl/~corbineau/mmode.html

## Chapter 8

## Tactics

A deduction rule is a link between some (unique) formula, that we call the conclusion and (several) formulas that we call the premises. Indeed, a deduction rule can be read in two ways. The first one has the shape: "if I know this and this then I can deduce this". For instance, if I have a proof of $A$ and a proof of $B$ then I have a proof of $A \wedge B$. This is forward reasoning from premises to conclusion. The other way says: "to prove this I have to prove this and this". For instance, to prove $A \wedge B$, I have to prove $A$ and I have to prove $B$. This is backward reasoning which proceeds from conclusion to premises. We say that the conclusion is the goal to prove and premises are the subgoals. The tactics implement backward reasoning. When applied to a goal, a tactic replaces this goal with the subgoals it generates. We say that a tactic reduces a goal to its subgoal(s).

Each (sub)goal is denoted with a number. The current goal is numbered 1 . By default, a tactic is applied to the current goal, but one can address a particular goal in the list by writing n:tactic which means "apply tactic tactic to goal number n". We can show the list of subgoals by typing Show (see Section 7.3.1).

Since not every rule applies to a given statement, every tactic cannot be used to reduce any goal. In other words, before applying a tactic to a given goal, the system checks that some preconditions are satisfied. If it is not the case, the tactic raises an error message.

Tactics are build from atomic tactics and tactic expressions (which extends the folklore notion of tactical) to combine those atomic tactics. This chapter is devoted to atomic tactics. The tactic language will be described in chapter 9 .

There are, at least, three levels of atomic tactics. The simplest one implements basic rules of the logical framework. The second level is the one of derived rules which are built by combination of other tactics. The third one implements heuristics or decision procedures to build a complete proof of a goal.

### 8.1 Invocation of tactics

A tactic is applied as an ordinary command. If the tactic does not address the first subgoal, the command may be preceded by the wished subgoal number as shown below:

```
tactic_invocation ::= num : tactic .
 | tactic.
```


### 8.2 Explicit proof as a term

### 8.2.1 exact term

This tactic applies to any goal. It gives directly the exact proof term of the goal. Let T be our goal, let p be a term of type $U$ then exact $p$ succeeds iff $T$ and $U$ are convertible (see Section 4.3).

## Error messages:

1. Not an exact proof

## Variants:

1. eexact term

This tactic behaves like exact but is able to handle terms with meta-variables.

### 8.2.2 refine term

This tactic allows to give an exact proof but still with some holes. The holes are noted "_".

## Error messages:

1. invalid argument: the tactic refine doesn't know what to do with the term you gave.
2. Refine passed ill-formed term: the term you gave is not a valid proof (not easy to debug in general). This message may also occur in higher-level tactics, which call refine internally.
3. Cannot infer a term for this placeholder there is a hole in the term you gave which type cannot be inferred. Put a cast around it.

An example of use is given in section 10.1.

### 8.3 Basics

Tactics presented in this section implement the basic typing rules of CIC given in Chapter 4.

### 8.3.1 assumption

This tactic applies to any goal. It implements the "Var" rule given in Section 4.2. It looks in the local context for an hypothesis which type is equal to the goal. If it is the case, the subgoal is proved. Otherwise, it fails.

## Error messages:

1. No such assumption

## Variants:

1. eassumption

This tactic behaves like assumption but is able to handle goals with meta-variables.

### 8.3.2 clear ident

This tactic erases the hypothesis named ident in the local context of the current goal. Then ident is no more displayed and no more usable in the proof development.

## Variants:

1. clear ident $_{1}$... ident $_{n}$

This is equivalent to clear ident $_{1}$. ... clear ident ${ }_{n}$.
2. clearbody ident

This tactic expects ident to be a local definition then clears its body. Otherwise said, this tactic turns a definition into an assumption.
3. clear - ident $_{1}$... ident $_{n}$

This tactic clears all hypotheses except the ones depending in the hypotheses named ident ${ }_{1} \ldots$ ident $_{n}$ and in the goal.
4. clear

This tactic clears all hypotheses except the ones depending in goal.

## Error messages:

1. ident not found
2. ident is used in the conclusion
3. ident is used in the hypothesis ident'

### 8.3.3 move ident $_{1}$ after ident $_{2}$

This moves the hypothesis named ident $t_{1}$ in the local context after the hypothesis named ident ${ }_{2}$.
If ident $t_{1}$ comes before ident ${ }_{2}$ in the order of dependences, then all hypotheses between ident $_{1}$ and ident ${ }_{2}$ which (possibly indirectly) depend on ident ${ }_{1}$ are moved also.

If ident ${ }_{1}$ comes after ident $_{2}$ in the order of dependences, then all hypotheses between ident $_{1}$ and ident $_{2}$ which (possibly indirectly) occur in ident ${ }_{1}$ are moved also.

## Error messages:

1. ident $_{i}$ not found
2. Cannot move ident ${ }_{1}$ after ident $_{2}$ : it occurs in ident ${ }_{2}$
3. Cannot move ident $t_{1}$ after ident $_{2}$ : it depends on ident ${ }_{2}$

### 8.3.4 rename ident $_{1}$ into ident $_{2}$

This renames hypothesis ident ${ }_{1}$ into ident $_{2}$ in the current context ${ }^{1}$

## Error messages:

1. ident $2_{2}$ not found
2. ident ${ }_{2}$ is already used
[^11]
### 8.3.5 intro

This tactic applies to a goal which is either a product or starts with a let binder. If the goal is a product, the tactic implements the "Lam" rule given in Section $4.2^{2}$. If the goal starts with a let binder then the tactic implements a mix of the "Let" and "Conv".

If the current goal is a dependent product forall $x: T, U$ (resp let $x:=t$ in $U$ ) then intro puts $x: T(\operatorname{resp} x:=t)$ in the local context. The new subgoal is $U$.

If the goal is a non dependent product $T \rightarrow U$, then it puts in the local context either H $n: T$ (if $T$ is of type Set or Prop) or $\mathrm{X} n: T$ (if the type of $T$ is Type). The optional index $n$ is such that $\mathrm{H} n$ or X $n$ is a fresh identifier. In both cases the new subgoal is $U$.

If the goal is neither a product nor starting with a let definition, the tactic intro applies the tactic red until the tactic intro can be applied or the goal is not reducible.

## Error messages:

1. No product even after head-reduction
2. ident is already used

## Variants:

1. intros

Repeats intro until it meets the head-constant. It never reduces head-constants and it never fails.
2. intro ident

Applies int ro but forces ident to be the name of the introduced hypothesis.
Error message: name ident is already used
Remark: If a name used by intro hides the base name of a global constant then the latter can still be referred to by a qualified name (see 2.6.2).
3. intros ident $_{1}$. . ident $_{n}$

Is equivalent to the composed tactic intro ident ${ }_{1}$; . . . ; intro ident ${ }_{n}$.
More generally, the intros tactic takes a pattern as argument in order to introduce names for components of an inductive definition or to clear introduced hypotheses; This is explained in 8.7.3.
4. intros until ident

Repeats intro until it meets a premise of the goal having form (ident : term ) and discharges the variable named ident of the current goal.

Error message: No such hypothesis in current goal
5. intros until num

Repeats intro until the num-th non-dependent product. For instance, on the subgoal forall $x y: n a t, x=y \rightarrow y=x$ the tactic intros until 1 is equivalent to intros $x y H$, as $x=y \rightarrow y=x$ is the first non-dependent product. And on the subgoal forall $x y z: n a t, x=y \rightarrow y=x$ the tactic intros until 1 is equivalent

[^12]to intros $x \mathrm{y} \mathrm{z}$ as the product on z can be rewritten as a non-dependent product: forall $x y: n a t$, nat $->x=y ~->y=x$

Error message: No such hypothesis in current goal
Happens when num is 0 or is greater than the number of non-dependent products of the goal.
6. intro after ident

Applies intro but puts the introduced hypothesis after the hypothesis ident in the hypotheses.

## Error messages:

(a) No product even after head-reduction
(b) No such hypothesis: ident
7. intro ident ${ }_{1}$ after ident $_{2}$

Behaves as previously but ident $_{1}$ is the name of the introduced hypothesis. It is equivalent to intro ident ${ }_{1}$; move ident $1_{1}$ after ident ${ }_{2}$.

## Error messages:

(a) No product even after head-reduction
(b) No such hypothesis: ident

### 8.3.6 apply term

This tactic applies to any goal. The argument term is a term well-formed in the local context. The tactic apply tries to match the current goal against the conclusion of the type of term. If it succeeds, then the tactic returns as many subgoals as the number of non dependent premises of the type of term. The tactic apply relies on first-order pattern-matching with dependent types. See pattern in section 8.5 .7 to transform a second-order pattern-matching problem into a first-order one.

## Error messages:

1. Impossible to unify ... with ...

The apply tactic failed to match the conclusion of term and the current goal. You can help the apply tactic by transforming your goal with the change or pattern tactics (see sections 8.5.7, 8.3.11).
2. generated subgoal term' has metavariables in it

This occurs when some instantiations of premises of term are not deducible from the unification. This is the case, for instance, when you want to apply a transitivity property. In this case, you have to use one of the variants below:

## Variants:

1. apply term with term $_{1}$... term $n$

Provides apply with explicit instantiations for all dependent premises of the type of term which do not occur in the conclusion and consequently cannot be found by unification. Notice that term $\ldots$ term $_{n}$ must be given according to the order of these dependent premises of the type of term.

Error message: Not the right number of missing arguments
2. apply term with $\left(\operatorname{ref}_{1}:=\right.$ term $\left._{1}\right) \ldots\left(\operatorname{ref}_{n}:=\right.$ term $\left._{n}\right)$

This also provides apply with values for instantiating premises. But variables are referred by names and non dependent products by order (see syntax in Section 8.3.12).
3. eapply term

The tactic eapply behaves as apply but does not fail when no instantiation are deducible for some variables in the premises. Rather, it turns these variables into so-called existential variables which are variables still to instantiate. An existential variable is identified by a name of the form ? $n$ where $n$ is a number. The instantiation is intended to be found later in the proof.

An example of use of eapply is given in Section 10.2.
4. lapply term

This tactic applies to any goal, say G. The argument term has to be well-formed in the current context, its type being reducible to a non-dependent product $A \rightarrow B$ with $B$ possibly containing products. Then it generates two subgoals B->G and A. Applying lapply $H$ (where $H$ has type $A->B$ and $B$ does not start with a product) does the same as giving the sequence cut $B$. 2 :apply H. where cut is described below.

Warning: When term contains more than one non dependent product the tactic lapply only takes into account the first product.

### 8.3.7 set ( ident $:=$ term )

This replaces term by ident in the conclusion or in the hypotheses of the current goal and adds the new definition ident $:=$ term to the local context. The default is to make this replacement only in the conclusion.

## Variants:

1. set ( ident $:=$ term $)$ in *
set ( ident $:=$ term $)$ in * $\mid-$ *

This behaves as above but substitutes term everywhere in the goal (both in conclusion and hypotheses).
2. set ( ident $:=$ term $)$ in * $\mid-$

This behaves the same but substitutes term in the hypotheses only (not in the conclusion).
3. set ( ident $:=$ term $)$ in $\mid-\star$

This is equivalent to set ( ident $:=$ term ), i.e. it substitutes term in the conclusion only.
4. set ( ident ${ }_{0}:=$ term ) in ident ${ }_{1}$

This behaves the same but substitutes term only in the hypothesis named ident ${ }_{1}$.
5. set $\left(\right.$ ident $_{0}:=$ term $)$ in ident ${ }_{1}$ at num ${ }_{1} \ldots$ num $_{n}$

This notation allows to specify which occurrences of term have to be substituted in the hypothesis named ident ${ }_{1}$. The occurrences are numbered from left to right and are meaningful on a pure expression using no implicit argument, notation or coercion. A negative occurrence number means
an occurrence which should not be substituted. As an exception of the left-to-right order, the occurrences in the return subexpression of a match are considered before the occurrences in the matched term.

For expressions using notations, or hiding implicit arguments or coercions, it is recommended to make explicit all occurrences in order by using Set Printing All (see section 2.9).
6. set ( ident $:=$ term ) in $\mid-$ * at num $1_{1} \ldots$ num $_{n}$

This allows to specify which occurrences of the conclusion are concerned.
7. set ( ident $_{0}:=$ term ) in ident ${ }_{1}$ at num $_{1}^{1} \ldots$ num $_{n_{1}}^{1}, \ldots$ ident $_{m}$ at num ${ }_{1}^{m} \ldots$ num $_{n_{m}}^{m}$

It substitutes term at occurrences num $_{1}^{i} \ldots$ num $_{n_{i}}^{i}$ of hypothesis ident ${ }_{i}$. Each at part is optional.
8. set ( ident $_{0}:=$ term ) in ident $t_{1}$ at num $_{1}^{1} \ldots$ num $_{n_{1}}^{1}, \ldots$ ident $_{m}$ at num $1_{1}^{m} \ldots$ num $_{n_{m}}^{m} \mid-$ * at num ${ }_{1}^{\prime} \ldots$ num $n_{n}^{\prime}$
This is the more general form which combines all the previous possibilities.
9. set term

This behaves as set (ident $:=$ term ) but ident is generated by CoQ. This variant is available for the forms with in too.
10. pose ( ident := term )

This adds the local definition ident $:=$ term to the current context without performing any replacement in the goal or in the hypotheses.
11. pose term

This behaves as pose ( ident $:=$ term ) but ident is generated by CoQ.
8.3.8 assert ( ident : form )

This tactic applies to any goal. assert ( H : U) adds a new hypothesis of name H asserting U to the current goal and opens a new subgoal $U^{3}$. The subgoal $U$ comes first in the list of subgoals remaining to prove.

## Error messages:

1. Not a proposition or a type

Arises when the argument form is neither of type Prop, Set nor Type.

## Variants:

1. assert form

This behaves as assert (ident : form ) but ident is generated by CoQ.
2. assert ( ident $:=$ term )

This behaves as assert (ident : type); [exact termlidtac] where type is the type of term.

[^13]3. cut form

This tactic applies to any goal. It implements the non dependent case of the "App" rule given in Section 4.2. (This is Modus Ponens inference rule.) cut $U$ transforms the current goal $T$ into the two following subgoals: $U \rightarrow T$ and $U$. The subgoal $U \rightarrow T$ comes first in the list of remaining subgoal to prove.
4. assert form by tactic

This tactic behaves like assert but tries to apply tactic to any subgoals generated by assert.
5. assert form as ident

This tactic behaves like assert (ident : form).
6. pose proof term as ident

This tactic behaves like assert (ident: T by exact term where T is the type of term.

### 8.3.9 apply term in ident

This tactic applies to any goal. The argument term is a term well-formed in the local context and the argument ident is an hypothesis of the context. The tactic apply term in ident tries to match the conclusion of the type of ident against a non dependent premises of the type of term, trying them from right to left. If it succeeds, the statement of hypothesis ident is replaced by the conclusion of the type of term. The tactic also returns as many subgoals as the number of other non dependent premises in the type of term and of the non dependent premises of the type of ident. The tactic apply . . . in relies on first-order pattern-matching with dependent types.

## Error messages:

1. Statement without assumptions

This happens if the type of term has no non dependent premise.
2. Unable to apply

This happens if the conclusion of ident does not match any of the non dependent premises of the type of term.

## Variants:

1. apply term , ... , term in ident

This applies each of term in sequence in ident.
2. apply term with bindings_list , ... , term with bindings_list in ident

This does the same but uses the bindings in each bindings_list to instanciate the parameters of the corresponding type of term (see syntax of bindings in Section 8.3.12).

### 8.3.10 generalize term

This tactic applies to any goal. It generalizes the conclusion w.r.t. one subterm of it. For example:

```
Coq < Show.
1 subgoal
 x : nat
 y : nat
 ===============================
 0<=x + y+y
Coq < generalize (x + y + y).
1 subgoal
 x : nat
 y : nat
 ==============================
 forall n : nat, 0 <= n
```

If the goal is $G$ and $t$ is a subterm of type $T$ in the goal, then generalize $t$ replaces the goal by forall ( $\mathrm{x}: T$ ), $G^{\prime}$ where $G^{\prime}$ is obtained from $G$ by replacing all occurrences of $t$ by x . The name of the variable (here n ) is chosen accordingly to $T$.

## Variants:

1. generalize term $_{1} \ldots$ term $_{n}$

Is equivalent to generalize $\operatorname{term}_{n} ; \ldots$; generalize term $_{1}$. Note that the sequence of term ${ }_{i}$ 's are processed from $n$ to 1 .
2. generalize dependent term

This generalizes term but also all hypotheses which depend on term. It clears the generalized hypotheses.
3. revert term I . . term $_{n}$

This is equivalent to a generalize followed by a clear.

### 8.3.11 change term

This tactic applies to any goal. It implements the rule "Conv" given in section 4.3. change U replaces the current goal T with U providing that U is well-formed and that T and U are convertible.

## Error messages:

1. Not convertible

## Variants:

1. change term 1 with term ${ }_{2}$

This replaces the occurrences of term ${ }_{1}$ by term $_{2}$ in the current goal. The terms term ${ }_{1}$ and term ${ }_{2}$ must be convertible.
2. change term ${ }_{1}$ at num $_{1} \ldots$ num $_{i}$ with term ${ }_{2}$

This replaces the occurrences numbered num $_{1} \ldots$ num $_{i}$ of $\operatorname{term}_{1}$ by term ${ }_{2}$ in the current goal. The terms term ${ }_{1}$ and term $m_{2}$ must be convertible.

Error message: Too few occurrences
3. change term in ident
4. change term ${ }_{1}$ with term 2 in ident
5. change term ${ }_{1}$ at num $_{1} \ldots$ num $_{i}$ with term ${ }_{2}$ in ident

This applies the change tactic not to the goal but to the hypothesis ident.

See also: 8.5

### 8.3.12 Bindings list

A bindings list is generally used after the keyword with in tactics. The general shape of a bindings list is $\left(\operatorname{ref}_{1}:=\operatorname{term}_{1}\right) \ldots\left(\operatorname{ref}_{n} \quad:=\operatorname{term}_{n}\right)$ where ref is either an ident or a num. It is used to provide a tactic with a list of values $\left(\operatorname{term}_{1}, \ldots\right.$, term $\left._{n}\right)$ that have to be substituted respectively to ref ${ }_{1}$, $\ldots, \operatorname{ref}_{n}$. For all $i \in[1 \ldots n]$, if $\operatorname{ref}_{i}$ is ident ${ }_{i}$ then it references the dependent product ident $t_{i}: T$ (for some type T ); if ref $_{i}$ is num ${ }_{i}$ then it references the num ${ }_{i}$-th non dependent premise.

A bindings list can also be a simple list of terms term term $_{2} \quad \ldots$ term $_{n}$. In that case the references to which these terms correspond are determined by the tactic. In case of elim (see section 5) the terms should correspond to all the dependent products in the type of term while in the case of apply only the dependent products which are not bound in the conclusion of the type are given.

### 8.3.13 evar (ident:term)

The evar tactic creates a new local definition named ident with type term in the context. The body of this binding is a fresh existential variable.

### 8.3.14 instantiate (num:= term)

The instant iate tactic allows to solve an existential variable with the term term. The num argument is the position of the existential variable from right to left in the conclusion. This cannot be the number of the existential variable since this number is different in every session.

## Variants:

1. instantiate (num:=term) in ident
2. instantiate (num:=term) in (Value of ident)
3. instantiate (num:=term) in (Type of ident)

These allow to refer respectively to existential variables occurring in a hypothesis or in the body or the type of a local definition.

### 8.4 Negation and contradiction

### 8.4.1 absurd term

This tactic applies to any goal. The argument term is any proposition $P$ of type Prop. This tactic applies False elimination, that is it deduces the current goal from False, and generates as subgoals $\sim P$ and $P$. It is very useful in proofs by cases, where some cases are impossible. In most cases, $P$ or $\sim P$ is one of the hypotheses of the local context.

### 8.4.2 contradiction

This tactic applies to any goal. The contradiction tactic attempts to find in the current context (after all intros) one which is equivalent to False. It permits to prune irrelevant cases. This tactic is a macro for the tactics sequence intros; elimtype False; assumption.

## Error messages:

1. No such assumption

### 8.5 Conversion tactics

This set of tactics implements different specialized usages of the tactic change.
All conversion tactics (including change) can be parameterized by the parts of the goal where the conversion can occur. The specification of such parts are called clauses. It can be either the conclusion, or an hypothesis. In the case of a defined hypothesis it is possible to specify if the conversion should occur on the type part, the body part or both (default).

Clauses are written after a conversion tactic (tactics set 8.3.7, rewrite 8.8.1, replace 8.8.3 and autorewrite 8.12 .12 also use clauses) and are introduced by the keyword in. If no clause is provided, the default is to perform the conversion only in the conclusion.

The syntax and description of the various clauses follows:
in $\mathbf{H}_{1} \ldots \mathbf{H}_{n}$ I- only in hypotheses $H_{1} \ldots H_{n}$
in $\mathbf{H}_{1} \ldots \mathbf{H}_{n}$ I- $\boldsymbol{*}$ in hypotheses $H_{1} \ldots H_{n}$ and in the conclusion
in * 1- in every hypothesis
in * (equivalent to in * $1-$ *) everywhere
in (type of $H_{1}$ ) (value of $H_{2}$ ) ... I- in type part of $H_{1}$, in the value part of $H_{2}$, etc.
For backward compatibility, the notation in $H_{1} \ldots H_{n}$ performs the conversion in hypotheses $H_{1} \ldots H_{n}$.

### 8.5.1 cbv flag ch $_{1} \ldots$ flag $_{n}$, lazy flag l $_{1} \ldots$ flag $_{n}$ and compute

These parameterized reduction tactics apply to any goal and perform the normalization of the goal according to the specified flags. Since the reduction considered in COQ include $\beta$ (reduction of functional application), $\delta$ (unfolding of transparent constants, see 6.2.5), $\iota$ (reduction of Cases, Fix and CoFix expressions) and $\zeta$ (removal of local definitions), every flag is one of beta, delta, iota, zeta,
$\left[\right.$ qualid $_{1} \ldots$ qualid $\left._{k}\right]$ and $-\left[\right.$ qualid $_{1} \ldots$ qualid $\left._{k}\right]$. The last two flags give the list of constants to unfold, or the list of constants not to unfold. These two flags can occur only after the delta flag. If alone (i.e. not followed by $\left[\right.$ qualid $_{1} \ldots$ qualid $\left._{k}\right]$ or $-\left[\right.$ qualid $_{1} \ldots$ qualid $\left._{k}\right]$ ), the delta flag means that all constants must be unfolded. However, the delta flag does not apply to variables bound by a let-in construction whose unfolding is controlled by the zeta flag only.

The goal may be normalized with two strategies: lazy (lazy tactic), or call-by-value (cbv tactic). The lazy strategy is a call-by-need strategy, with sharing of reductions: the arguments of a function call are partially evaluated only when necessary, but if an argument is used several times, it is computed only once. This reduction is efficient for reducing expressions with dead code. For instance, the proofs of a proposition $\exists_{T} x . P(x)$ reduce to a pair of a witness $t$, and a proof that $t$ verifies the predicate $P$. Most of the time, $t$ may be computed without computing the proof of $P(t)$, thanks to the lazy strategy.

The call-by-value strategy is the one used in ML languages: the arguments of a function call are evaluated first, using a weak reduction (no reduction under the $\lambda$-abstractions). Despite the lazy strategy always performs fewer reductions than the call-by-value strategy, the latter should be preferred for evaluating purely computational expressions (i.e. with few dead code).

## Variants:

1. compute

This tactic is an alias for cbv beta delta iota zeta.
2. vm_compute

This tactic evaluates the goal using the optimized call-by-value evaluation bytecode-based virtual machine. This algorithm is dramatically more efficient than the algorithm used for the cbv tactic, but it cannot be fine-tuned. It is specially interesting for full evaluation of algebraic objects. This includes the case of reflexion-based tactics.

## Error messages:

1. Delta must be specified before

A list of constants appeared before the delta flag.

### 8.5.2 red

This tactic applies to a goal which has the form forall (x:T1)...(xk:Tk), c t1 ... tn where $c$ is a constant. If $c$ is transparent then it replaces $c$ with its definition (say $t$ ) and then reduces ( t t $\ldots$ tn) according to $\beta \iota \zeta$-reduction rules.

## Error messages:

1. Not reducible

### 8.5.3 hnf

This tactic applies to any goal. It replaces the current goal with its head normal form according to the $\beta \delta \iota \zeta$-reduction rules. hnf does not produce a real head normal form but either a product or an applicative term in head normal form or a variable.

Example: The term forall n:nat, (plus (S n) (S n)) is not reduced by hnf.
Remark: The $\delta$ rule only applies to transparent constants (see section 6.2.4 on transparency and opacity).

### 8.5.4 simpl

This tactic applies to any goal. The tactic simpl first applies $\beta \iota$-reduction rule. Then it expands transparent constants and tries to reduce $\mathrm{T}^{\prime}$ according, once more, to $\beta \iota$ rules. But when the $\iota$ rule is not applicable then possible $\delta$-reductions are not applied. For instance trying to use simpl on (plus $\mathrm{n} O)=\mathrm{n}$ does change nothing.

## Variants:

1. simpl term

This applies simpl only to the occurrences of term in the current goal.
2. simpl term at num $_{1}$... num $_{i}$

This applies simpl only to the $\operatorname{num}_{1}, \ldots$, num $_{i}$ occurrences of term in the current goal.
Error message: Too few occurrences
3. simpl ident

This applies simpl only to the applicative subterms whose head occurrence is ident.
4. simpl ident at num $_{1}$... num ${ }_{i}$

This applies simpl only to the num $_{1}, \ldots$, num $_{i}$ applicative subterms whose head occurrence is ident.

### 8.5.5 unfold qualid

This tactic applies to any goal. The argument qualid must denote a defined transparent constant or local definition (see Sections 1.3.2 and 6.2.5). The tactic unfold applies the $\delta$ rule to each occurrence of the constant to which qualid refers in the current goal and then replaces it with its $\beta \iota$-normal form.

## Error messages:

1. qualid does not denote an evaluable constant

## Variants:

1. unfold qualid ${ }_{1}$, ..., qualid ${ }_{n}$

Replaces simultaneously qualid ${ }_{1}, \ldots$, qualid $_{n}$ with their definitions and replaces the current goal with its $\beta \iota$ normal form.
2. unfold qualid ${ }_{1}$ at $\operatorname{num}_{1}^{1}, \ldots, \operatorname{num}_{i}^{1}, \ldots$, qualid $_{n}$ at num $_{1}^{n} \ldots$ num $_{j}^{n}$

The lists num $1_{1}^{1}, \ldots$, num $_{i}^{1}$ and num $_{1}^{n}, \ldots$, num $_{j}^{n}$ specify the occurrences of qualid ${ }_{1}, \ldots$, qualid $_{n}$ to be unfolded. Occurrences are located from left to right.

Error message: bad occurrence number of qualid $i_{i}$
Error message: qualid ${ }_{i}$ does not occur

### 8.5.6 fold term

This tactic applies to any goal. The term term is reduced using the red tactic. Every occurrence of the resulting term in the goal is then replaced by term.

## Variants:

1. fold term ${ }_{1} \ldots$ term $_{n}$

Equivalent to fold term f $_{1} \ldots$; fold term ${ }_{n}$.

### 8.5.7 pattern term

This command applies to any goal. The argument term must be a free subterm of the current goal. The command pattern performs $\beta$-expansion (the inverse of $\beta$-reduction) of the current goal (say T ) by

1. replacing all occurrences of term in $T$ with a fresh variable
2. abstracting this variable
3. applying the abstracted goal to term

For instance, if the current goal $T$ is expressible has $\phi(t)$ where the notation captures all the instances of $t$ in $\phi(t)$, then pattern $t$ transforms it into (fun $\mathrm{x}: A \Rightarrow \phi(\mathrm{x})$ ) $t$. This command can be used, for instance, when the tactic apply fails on matching.

## Variants:

1. pattern term at num ${ }_{1} \ldots$ num $_{n}$

Only the occurrences $n u m_{1} \ldots$ num $_{n}$ of term will be considered for $\beta$-expansion. Occurrences are located from left to right.
2. pattern term ${ }_{1}, \ldots$, term $_{m}$

Starting from a goal $\phi\left(t_{1} \ldots t_{m}\right)$, the tactic pattern $t_{1}, \ldots, t_{m}$ generates the equivalent goal (fun ( $\mathrm{x}_{1}: A_{1}$ ) $\ldots\left(\mathrm{x}_{m}: A_{m}\right) \Rightarrow \phi\left(\mathrm{x}_{1} \ldots \mathrm{x}_{m}\right)$ ) $t_{1} \ldots t_{m}$.
If $t_{i}$ occurs in one of the generated types $A_{j}$ these occurrences will also be considered and possibly abstracted.
3. pattern term ${ }_{1}$ at $\operatorname{num}_{1}^{1} \ldots$ num $_{n_{1}}^{1}, \ldots$, term $_{m}$ at num $_{1}^{m} \ldots$ num $_{n_{m}}^{m}$

This behaves as above but processing only the occurrences num ${ }_{1}^{1}, \ldots$, num $_{i}^{1}$ of $\operatorname{term}_{1}, \ldots$, num $_{1}^{m}$, $\ldots$, num $_{j}^{m}$ of term $_{m}$ starting from term $_{m}$.

### 8.5.8 Conversion tactics applied to hypotheses

conv_tactic in $_{\text {ident }}^{1} \ldots \ldots$ ident $_{n}$
Applies the conversion tactic conv_tactic to the hypotheses ident ${ }_{1}, \ldots$, ident $_{n}$. The tactic conv_tactic is any of the conversion tactics listed in this section.

If ident $t_{i}$ is a local definition, then ident $_{i}$ can be replaced by (Type of ident $_{i}$ ) to address not the body but the type of the local definition. Example: unfold not in (Type of H1) (Type of H3).

## Error messages:

1. No such hypothesis: ident.

### 8.6 Introductions

Introduction tactics address goals which are inductive constants. They are used when one guesses that the goal can be obtained with one of its constructors' type.

### 8.6.1 constructor num

This tactic applies to a goal such that the head of its conclusion is an inductive constant (say I). The argument num must be less or equal to the numbers of constructor(s) of I. Let ci be the i-th constructor of $I$, then constructor $i$ is equivalent to intros; apply ci.

## Error messages:

1. Not an inductive product
2. Not enough constructors

## Variants:

1. constructor

This tries constructor 1 then constructor $2, \ldots$, then constructor $n$ where $n$ if the number of constructors of the head of the goal.
2. constructor num with bindings_list

Let ci be the i-th constructor of I, then constructor i with bindings_list is equivalent to intros; apply ci with bindings_list.

Warning: the terms in the bindings_list are checked in the context where constructor is executed and not in the context where apply is executed (the introductions are not taken into account).
3. split

Applies if I has only one constructor, typically in the case of conjunction $A \wedge B$. Then, it is equivalent to constructor 1 .
4. exists bindings_list

Applies if I has only one constructor, for instance in the case of existential quantification $\exists x \cdot P(x)$. Then, it is equivalent to intros; constructor 1 with bindings_list.
5. left, right

Apply if I has two constructors, for instance in the case of disjunction $A \vee B$. Then, they are respectively equivalent to constructor 1 and constructor 2 .
6. left bindings_list, right bindings_list, split bindings_list

As soon as the inductive type has the right number of constructors, these expressions are equivalent to the corresponding constructor $i$ with bindings_list.
7. econstructor

This tactic behaves like constructor but is able to introduce existential variables if an instanciation for a variable cannot be found (cfeapply). The tactics eexists, esplit, eleft and eright follows the same behaviour.

### 8.7 Eliminations (Induction and Case Analysis)

Elimination tactics are useful to prove statements by induction or case analysis. Indeed, they make use of the elimination (or induction) principles generated with inductive definitions (see Section 4.5).

### 8.7.1 induction term

This tactic applies to any goal. The type of the argument term must be an inductive constant. Then, the tactic induction generates subgoals, one for each possible form of term, i.e. one for each constructor of the inductive type.

The tactic induction automatically replaces every occurrences of term in the conclusion and the hypotheses of the goal. It automatically adds induction hypotheses (using names of the form IHn1) to the local context. If some hypothesis must not be taken into account in the induction hypothesis, then it needs to be removed first (you can also use the tactics elim or simple induction, see below).

There are particular cases:

- If term is an identifier ident denoting a quantified variable of the conclusion of the goal, then induction ident behaves as intros until ident; induction ident
- If term is a num, then induction num behaves as intros until num followed by induction applied to the last introduced hypothesis.

Remark: For simple induction on a numeral, use syntax induction (num) (not very interesting anyway).

## Example:

```
Coq < Lemma induction_test : forall n:nat, n = n -> n <= n.
1 subgoal
 ============================
 forall n : nat, }n=n->n<=
Coq < intros n H.
1 subgoal
 n : nat
 H:n = n
 ============================
 n<= n
Coq < induction n.
2 subgoals
 H : O = 0
 ============================
 0<= 0
subgoal 2 is:
 Sn<=Sn
```


## Error messages:

1. Not an inductive product
2. Cannot refine to conclusions with meta-variables

As induction uses apply, see Section 8.3 .6 and the variant elim . . . with . . . below.

## Variants:

1. induction term as intro_pattern

This behaves as induction term but uses the names in intro_pattern to names the variables introduced in the context. The intro_pattern must have the form [ $p_{11} \ldots p_{1 n_{1}} \mid \ldots$ | $p_{m 1}$ $\left.\ldots p_{m n_{m}}\right]$ with $m$ being the number of constructors of the type of term. Each variable introduced by induction in the context of the $i^{t h}$ goal gets its name from the list $p_{i 1} \ldots p_{i n_{i}}$ in order. If there are not enough names, induction invents names for the remaining variables to introduce. More generally, the $p$ 's can be any introduction patterns (see Section 8.7.3). This provides a concise notation for nested induction.

Remark: for an inductive type with one constructor, the pattern notation $\left(p_{1}, \ldots, p_{n}\right)$ can be used instead of [ $p_{1} \ldots p_{n}$ ].
2. induction term using qualid

This behaves as induction term but using the induction scheme of name qualid. It does not expect that the type of term is inductive.
3. induction term $_{1} \ldots$ term $_{n}$ using qualid
where qualid is an induction principle with complex predicates (like the ones generated by function induction).
4. induction term as intro_pattern using qualid

This combines induction term using qualid and induction term as intro_pattern.
5. elim term

This is a more basic induction tactic. Again, the type of the argument term must be an inductive constant. Then according to the type of the goal, the tactic elim chooses the right destructor and applies it (as in the case of the apply tactic). For instance, assume that our proof context contains n : nat, assume that our current goal is $T$ of type Prop, then elim $n$ is equivalent to apply nat_ind with $(\mathrm{n}:=\mathrm{n})$. The tactic elim does not affect the hypotheses of the goal, neither introduces the induction loading into the context of hypotheses.
6. elim term
also works when the type of term starts with products and the head symbol is an inductive definition. In that case the tactic tries both to find an object in the inductive definition and to use this inductive definition for elimination. In case of non-dependent products in the type, subgoals are generated corresponding to the hypotheses. In the case of dependent products, the tactic will try to find an instance for which the elimination lemma applies.
7. elim term with term ${ }_{1}$... term ${ }_{n}$

Allows the user to give explicitly the values for dependent premises of the elimination schema. All arguments must be given.

Error message: Not the right number of dependent arguments
8. elim term with $\operatorname{ref}_{1}:=$ term $_{1} \ldots \operatorname{ref}_{n}:=$ term $_{n}$

Provides also elim with values for instantiating premises by associating explicitly variables (or non dependent products) with their intended instance.
9. elim term ${ }_{1}$ using term 2

Allows the user to give explicitly an elimination predicate term ${ }_{2}$ which is not the standard one for the underlying inductive type of $\operatorname{term}_{1}$. Each of the term ${ }_{1}$ and term ${ }_{2}$ is either a simple term or a term with a bindings list (see 8.3.12).
10. elimtype form

The argument form must be inductively defined. elimtype I is equivalent to cut I. intro Hn ; elim Hn; clear Hn. Therefore the hypothesis Hn will not appear in the context(s) of the subgoal(s). Conversely, if $t$ is a term of (inductive) type I and which does not occur in the goal then elim $t$ is equivalent to elimtype $I ; 2$ e exact $t$.

Error message: Impossible to unify ... with ...
Arises when form needs to be applied to parameters.
11. simple induction ident

This tactic behaves as intros until ident; elim ident when ident is a quantified variable of the goal.
12. simple induction num

This tactic behaves as intros until num; elim ident where ident is the name given by intros until num to the num-th non-dependent premise of the goal.

### 8.7.2 destruct term

The tactic destruct is used to perform case analysis without recursion. Its behavior is similar to induction except that no induction hypothesis is generated. It applies to any goal and the type of term must be inductively defined. There are particular cases:

- If term is an identifier ident denoting a quantified variable of the conclusion of the goal, then destruct ident behaves as intros until ident; destruct ident
- If term is a num, then destruct num behaves as intros until num followed by destruct applied to the last introduced hypothesis.

Remark: For destruction of a numeral, use syntax destruct (num) (not very interesting anyway).

## Variants:

1. destruct term as intro_pattern

This behaves as destruct term but uses the names in intro_pattern to names the variables introduced in the context. The intro_pattern must have the form [ $p_{11} \ldots p_{1 n_{1}}|\ldots| p_{m 1}$ $\left.\ldots p_{m n_{m}}\right]$ with $m$ being the number of constructors of the type of term. Each variable introduced by destruct in the context of the $i^{\text {th }}$ goal gets its name from the list $p_{i 1} \ldots p_{i n_{i}}$ in order. If there
are not enough names, destruct invents names for the remaining variables to introduce. More generally, the $p$ 's can be any introduction patterns (see Section 8.7.3). This provides a concise notation for nested destruction.

Remark: for an inductive type with one constructor, the pattern notation $\left(p_{1}, \ldots, p_{n}\right)$ can be used instead of [ $p_{1} \ldots p_{n}$ ].
2. pose proof term as intro_pattern

This tactic behaves like destruct term as intro_pattern.
3. destruct term using qualid

This is a synonym of induction term using qualid.
4. destruct term as intro_pattern using qualid

This is a synonym of induction term using qualid as intro_pattern.
5. case term

The tactic case is a more basic tactic to perform case analysis without recursion. It behaves as elim term but using a case-analysis elimination principle and not a recursive one.
6. case_eq term

The tactic case_eq is a variant of the case tactic that allow to perform case analysis on a term without completely forgetting its original form. This is done by generating equalities between the original form of the term and the outcomes of the case analysis.
7. case term with term ${ }_{1}$... term ${ }_{n}$

Analogous to elim . . . with above.
8. simple destruct ident

This tactic behaves as intros until ident; case ident when ident is a quantified variable of the goal.
9. simple destruct num

This tactic behaves as intros until num; case ident where ident is the name given by intros until num to the num-th non-dependent premise of the goal.

### 8.7.3 intros intro_pattern ... intro_pattern

The tactic intros applied to introduction patterns performs both introduction of variables and case analysis in order to give names to components of an hypothesis.

An introduction pattern is either:

- the wildcard:
- the pattern ?
- a variable
- a disjunction of lists of patterns: $\left[\begin{array}{lllllllll}p_{11} & \ldots & p_{1 m_{1}} & \mid & \ldots & \mid & p_{11} & \ldots & p_{n m_{n}}\end{array}\right]$
- a conjunction of patterns: $\left(p_{1}, \ldots, p_{n}\right)$

The behavior of intros is defined inductively over the structure of the pattern given as argument:

- introduction on the wildcard do the introduction and then immediately clear (cf 8.3.2) the corresponding hypothesis;
- introduction on ? do the introduction, and let Coq choose a fresh name for the variable;
- introduction on a variable behaves like described in 8.3.5;
- introduction over a list of patterns $p_{1} \ldots p_{n}$ is equivalent to the sequence of introductions over the patterns namely: intros $p_{1} ; \ldots$; intros $p_{n}$, the goal should start with at least $n$ products;
- introduction over a disjunction of list of patterns $\left[p_{11} \ldots p_{1 m_{1}} \mid \ldots\right.$ | $p_{11} \ldots$ $p_{n m_{n}}$ ]. It introduces a new variable $X$, its type should be an inductive definition with $n$ constructors, then it performs a case analysis over $X$ (which generates $n$ subgoals), it clears $X$ and performs on each generated subgoals the corresponding intros $p_{i 1} \ldots p_{i m_{i}}$ tactic;
- introduction over a conjunction of patterns $\left(p_{1}, \ldots, p_{n}\right)$, it introduces a new variable $X$, its type should be an inductive definition with 1 constructor with (at least) $n$ arguments, then it performs a case analysis over $X$ (which generates 1 subgoal with at least $n$ products), it clears $X$ and performs an introduction over the list of patterns $p_{1} \ldots p_{n}$.

Remark: The pattern $\left(p_{1}, \ldots, p_{n}\right)$ is a synonym for the pattern $\left[p_{1} \ldots p_{n}\right]$, i.e. it corresponds to the decomposition of an hypothesis typed by an inductive type with a single constructor.

```
Coq < Lemma intros_test : forall A B C:Prop, A \/ B /\ C -> (A -> C) -> C.
1 subgoal
 forall A B C : Prop, A \/ B /\ C -> (A -> C) -> C
Coq < intros A B C [a| [_ c]] f.
2 subgoals
 A : Prop
 B : Prop
 C : Prop
 a : A
 f : A -> C
 ==============================
 C
subgoal 2 is:
 C
Coq < apply (f a).
1 subgoal
 A : Prop
 B : Prop
 C : Prop
 c : C
 f : A -> C
```

```
 C
Coq < exact c.
Proof completed.
Coq < Qed.
intros A B C [al (_, c)] f.
 apply (f a).
exact c.
intros_test is defined
```


### 8.7.4 double induction ident ${ }_{1}$ ident $_{2}$

This tactic applies to any goal. If the variables ident ${ }_{1}$ and ident $_{2}$ of the goal have an inductive type, then this tactic performs double induction on these variables. For instance, if the current goal is forall $n \mathrm{~m}$ :nat, $\mathrm{P} n \mathrm{~m}$ then, double induction $\mathrm{n} m$ yields the four cases with their respective inductive hypotheses. In particular the case for ( $\mathrm{P}(\mathrm{S} \mathrm{n}$ ) ( S m )) with the induction hy-


Remark: When the induction hypothesis ( $\mathrm{P}\left(\mathrm{S} \mathrm{n}\right.$ ) m ) is not needed, induction ident ${ }_{1}$; destruct ident ${ }_{2}$ produces more concise subgoals.

## Variant:

1. double induction num $_{1}$ num $_{2}$

This applies double induction on the $n u m_{1}^{\text {th }}$ and $n u m_{2}^{\text {th }}$ non dependent premises of the goal. More generally, any combination of an ident and an num is valid.

### 8.7.5 decompose [ qualid ${ }_{1}$... qualid ${ }_{n}$ ] term

This tactic allows to recursively decompose a complex proposition in order to obtain atomic ones. Example:

```
Coq < Lemma ex1 : forall A B C:Prop, A /\ B /\ C \/ B /\ C \/ C /\ A -> C.
1 subgoal
 ===========================
 forall A B C : Prop, A \ B \ C \/ B \ C \/ C \\A -> C
Coq < intros A B C H; decompose [and or] H; assumption.
Proof completed.
Coq < Qed.
```

decompose does not work on right-hand sides of implications or products.

## Variants:

1. decompose sum term This decomposes sum types (like or).
2. decompose record term This decomposes record types (inductive types with one constructor, like and and exists and those defined with the Record macro, see p. 49).

### 8.7.6 functional induction (qualid term l $_{1}$... term ${ }_{n}$ ).

The experimental tactic functional induction performs case analysis and induction following the definition of a function. It makes use of a principle generated by Function (section 2.3) or Functional Scheme (section 8.15).

```
Coq < Functional Scheme minus_ind := Induction for minus Sort Prop.
minus_equation is defined
minus_ind is defined
Coq <
Coq < Lemma le_minus : forall n m:nat, (n - m <= n).
1 subgoal
 ============-=-=====
 forall n m : nat, n -m <= n
Coq < intros n m.
1 subgoal
 n : nat
 m : nat
 =============================
 n -m <= n
Coq < functional induction (minus n m); simpl; auto.
Proof completed.
Coq < Qed.
```

Remark: (qualid term ${ }_{1} \ldots$ term $_{n}$ ) must be a correct full application of qualid. In particular, the rules for implicit arguments are the same as usual. For example use @qualid if you want to write implicit arguments explicitly.

Remark: Parenthesis over qualid... term $_{n}$ are mandatory.
Remark: functional induction ( $f$ x1 $x 2 x 3$ ) is actually a wrapper for induction $x 1$ $x 2 \mathrm{x} 3$ ( $\mathrm{f} x 1 \mathrm{x} 2 \mathrm{x} 3$ ) using qualid followed by a cleaning phase, where qualid is the induction principle registered for $f$ (by the Function (section 2.3) or Functional Scheme (section 8.15) command) corresponding to the sort of the goal. Therefore functional induction may fail if the induction scheme (qualid) is not defined. See also section 2.3 for the function terms accepted by Function.

Remark: There is a difference between obtaining an induction scheme for a function by using Function (section 2.3) and by using Functional Scheme after a normal definition using Fixpoint or Definition. See 2.3 for details.

See also: 2.3,8.15,10.4, 8.10.3

## Error messages:

1. Cannot find induction information on qualid
2. Not the right number of induction arguments

## Variants:

1. functional induction (qualid term $_{1} \ldots$ term $_{n}$ ) using term ${ }_{m+1}$ with term $_{n+1}$. . .term ${ }_{m}$
Similar to Induction and elim (section 8.7), allows to give explicitly the induction principle and the values of dependent premises of the elimination scheme, including predicates for mutual induction when qualidis mutually recursive.
2. functional induction (qualid term I $_{1} \ldots$ term $_{n}$ ) using term ${ }_{m+1}$ with ref $f_{1}$
$:=\operatorname{term}_{n+1} \ldots \operatorname{ref}_{m}:=$ term $_{n}$
Similar to induction and elim (section 8.7).
3. All previous variants can be extended by the usual as intro_pattern construction, similarly for example to induction and elim (section 8.7).

### 8.8 Equality

These tactics use the equality eq:forall A:Type, A->A->Prop defined in file Logic.v (see Section 3.1.2). The notation for eq $T t u$ is simply $t=u$ dropping the implicit type of $t$ and $u$.

### 8.8.1 rewrite term

This tactic applies to any goal. The type of term must have the form
$\left(x_{1}: A_{1}\right) \quad \ldots\left(x_{n}: A_{n}\right)$ eqterm $_{1}$ term $_{2}$.
where eq is the Leibniz equality or a registered setoid equality.
Then rewrite term replaces every occurrence of term ${ }_{1}$ by term 2 in the goal. Some of the variables $\mathrm{x}_{1}$ are solved by unification, and some of the types $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}$ become new subgoals.

Remark: In case the type of term ${ }_{1}$ contains occurrences of variables bound in the type of term, the tactic tries first to find a subterm of the goal which matches this term in order to find a closed instance term ${ }_{1}^{\prime}$ of $t e r m_{1}$, and then all instances of $t e r m_{1}^{\prime}$ will be replaced.

## Error messages:

1. The term provided does not end with an equation
2. Tactic generated a subgoal identical to the original goal This happens if term $_{1}$ does not occur in the goal.

## Variants:

1. rewrite -> term

Is equivalent to rewrite term
2. rewrite <- term

Uses the equality term ${ }_{1}=$ term $_{2}$ from right to left
3. rewrite term in clause

Analogous to rewrite term but rewriting is done following clause (similarly to 8.5). For instance:

- rewrite H in H 1 will rewrites H in the hypothesis H 1 instead of the current goal.
- rewrite $H$ in $H 1, H 2$ l- * means rewrite $H$; rewrite $H$ in H1; rewrite H in H 2 . In particular a failure will happen if any of these three simplier tactics fails.
- rewrite $H$ in * $\mid-$ will do rewrite $H$ in $H_{i}$ for all hypothesis $H_{i}$ <> H. A success will happen as soon as at least one of these simplier tactics succeeds.
- rewrite $H$ in * is a combination of rewrite $H$ and rewrite $H$ in * $\|$-that succeeds if at least one of these two tactics succeeds.

4. rewrite -> term in clause

Behaves as rewrite term in clause.
5. rewrite <- term in clause

Uses the equality term ${ }_{1}=$ term $_{2}$ from right to left to rewrite in clause as explained above.

### 8.8.2 cutrewrite -> term ${ }_{1}=$ term $_{2}$

This tactic acts like replace term $_{1}$ with term $_{2}$ (see below).

### 8.8.3 replace term ${ }_{1}$ with term ${ }_{2}$

This tactic applies to any goal. It replaces all free occurrences of term ${ }_{1}$ in the current goal with $\operatorname{term}_{2}$ and generates the equality $\operatorname{term}_{2}=\operatorname{term}_{1}$ as a subgoal. This equality is automatically solved if it occurs amongst the assumption, or if its symmetric form occurs. It is equivalent to cut term $_{2}=$ term $_{1}$; [intro Hn; rewrite <- Hn; clear Hn| assumption || symmetry; try assumption].

## Error messages:

1. terms do not have convertible types

## Variants:

1. replace term ${ }_{1}$ with term ${ }_{2}$ by tactic

This acts as replace term ${ }_{1}$ with term ${ }_{2}$ but try to solve the generated subgoal term $_{2}=$ term $_{1}$ using tactic.
2. replace term

Replace term with term' using the first assumption which type has the form term=term' or term' $=$ term
3. replace -> term

Replace term with term' using the first assumption which type has the form term=term'
4. replace <- term

Replace term with term' using the first assumption which type has the form term' $=$ term
5. replace term ${ }_{1}$ with term ${ }_{2}$ clause
replace term ${ }_{1}$ with term ${ }_{2}$ clause by tactic
replace term clause

```
replace -> term clause
replace -> term clause
```

Act as before but the replacements take place in clause 8.5 an not only in the conclusion of the goal.
The clause arg must not contain any type of nor value of.

### 8.8.4 reflexivity

This tactic applies to a goal which has the form $t=u$. It checks that $t$ and $u$ are convertible and then solves the goal. It is equivalent to apply refl_equal.

## Error messages:

1. The conclusion is not a substitutive equation
2. Impossible to unify ... with ..

### 8.8.5 symmetry

This tactic applies to a goal which has the form $t=u$ and changes it into $u=t$.
Variant: symmetry in ident
If the statement of the hypothesis ident has the form $t=u$, the tactic changes it to $u=t$.

### 8.8.6 transitivity term

This tactic applies to a goal which has the form $t=u$ and transforms it into the two subgoals $t=t e r m$ and term $=u$.

### 8.8.7 subst ident

This tactic applies to a goal which has ident in its context and (at least) one hypothesis, say H, of type ident $=\mathrm{t}$ or $\mathrm{t}=$ ident. Then it replaces ident by t everywhere in the goal (in the hypotheses and in the conclusion) and clears ident and $H$ from the context.

Remark: When several hypotheses have the form ident=t or $t=i d e n t$, the first one is used.

## Variants:

1. subst ident $_{1}$. . . ident ${ }_{n}$

Is equivalent to subst ident $_{1} ;$. . ; subst ident $_{n}$.
2. subst

Applies subst repeatedly to all identifiers from the context for which an equality exists.

### 8.8.8 stepl term

This tactic is for chaining rewriting steps. It assumes a goal of the form " $R$ term $_{1}$ term ${ }_{2}$ " where $R$ is a binary relation and relies on a database of lemmas of the form forall $x y z, R x y->e q x z->R z$ $y$ where $e q$ is typically a setoid equality. The application of stepl term then replaces the goal by " $R$ term term ${ }_{2}$ " and adds a new goal stating "eq term term ${ }_{1}$ ".

Lemmas are added to the database using the command

```
Declare Left Step term.
```

The tactic is especially useful for parametric setoids which are not accepted as regular setoids for rewrite and setoid_replace (see chapter 21).

## Variants:

1. stepl termn by tactic

This applies stepl term then applies tactic to the second goal.
2. stepr term
stepr term by tactic
This behaves as stepl but on the right-hand-side of the binary relation. Lemmas are expected to be of the form "forall $x y z, R x y->$ eq $y z->R x z$ " and are registered using the command

```
Declare Right Step term.
```

8.8.9 f_equal

This tactic applies to a goal of the form $f a_{1} \ldots a_{n}=f^{\prime} a_{1}^{\prime} \ldots a_{n}^{\prime}$. Using $f$ _equal on such a goal leads to subgoals $f=f^{\prime}$ and $a_{1}=a_{1}^{\prime}$ and so on up to $a_{n}=a_{n}^{\prime}$. Amongst these subgoals, the simple ones (e.g. provable by reflexivity or congruence) are automatically solved by $f$ _equal.

Remark: f_equal currently handles goals with only up to 5 arguments (i.e. $n \leq 5$ ).

### 8.9 Equality and inductive sets

We describe in this section some special purpose tactics dealing with equality and inductive sets or types. These tactics use the equality eq:forall (A:Type), A->A->Prop, simply written with the infix symbol $=$.

### 8.9.1 decide equality

This tactic solves a goal of the form forall $x y: R,\{x=y\}+\{\sim x=y\}$, where $R$ is an inductive type such that its constructors do not take proofs or functions as arguments, nor objects in dependent types.

## Variants:

1. decide equality term $_{1}$ term $_{2}$.

Solves a goal of the form $\left\{\right.$ term $_{1}=$ term $\left._{2}\right\}+\left\{\sim\right.$ term $_{1}=$ term $\left._{2}\right\}$.

### 8.9.2 compare term ${ }_{1}$ term $_{2}$

This tactic compares two given objects term $_{1}$ and term 2 of an inductive datatype. If $G$ is the current goal, it leaves the sub-goals term $_{1}=$ term $_{2}->G$ and $\sim$ term $_{1}=$ term $_{2}->G$. The type of term ${ }_{1}$ and term ${ }_{2}$ must satisfy the same restrictions as in the tactic decide equality.

### 8.9.3 discriminate ident

This tactic proves any goal from an absurd hypothesis stating that two structurally different terms of an inductive set are equal. For example, from the hypothesis $\left.\left(\begin{array}{ll}S \quad(S O\end{array}\right)\right)=\left(\begin{array}{ll}S & O\end{array}\right)$ we can derive by absurdity any proposition. Let ident be a hypothesis of type term ${ }_{1}=$ term ${ }_{2}$ in the local context, term ${ }_{1}$ and $t^{2} \mathrm{rm}_{2}$ being elements of an inductive set. To build the proof, the tactic traverses the normal forms ${ }^{4}$ of $t^{2} \mathrm{~m}_{1}$ and term ${ }_{2}$ looking for a couple of subterms $u$ and $w$ ( $u$ subterm of the normal form of term ${ }_{1}$ and w subterm of the normal form of term 2 ), placed at the same positions and whose head symbols are two different constructors. If such a couple of subterms exists, then the proof of the current goal is completed, otherwise the tactic fails.

Remark: If ident does not denote an hypothesis in the local context but refers to an hypothesis quantified in the goal, then the latter is first introduced in the local context using intros until ident.

## Error messages:

1. ident Not a discriminable equality
occurs when the type of the specified hypothesis is not an equation.

## Variants:

1. discriminate num

This does the same thing as intros until num then discriminate ident where ident is the identifier for the last introduced hypothesis.
2. discriminate

It applies to a goal of the form $\sim \operatorname{term}_{1}=$ term $_{2}$ and it is equivalent to: unfold not; intro ident; discriminate ident.

## Error messages:

(a) No discriminable equalities
occurs when the goal does not verify the expected preconditions.

### 8.9.4 injection ident

The in jection tactic is based on the fact that constructors of inductive sets are injections. That means that if $c$ is a constructor of an inductive set, and if $\left(c \overrightarrow{t_{1}}\right)$ and $\left(c \overrightarrow{t_{2}}\right)$ are two terms that are equal then $\overrightarrow{t_{1}}$ and $\overrightarrow{t_{2}}$ are equal too.

If ident is an hypothesis of type term $_{1}=$ term $_{2}$, then injection behaves as applying injection as deep as possible to derive the equality of all the subterms of term ${ }_{1}$ and term ${ }_{2}$ placed in the same positions. For example, from the hypothesis $\binom{S}{(S n)}=(S \quad(S \quad(S m))$ we may derive $n=(S$ $m)$. To use this tactic term ${ }_{1}$ and $t_{2} \mathrm{trm}_{2}$ should be elements of an inductive set and they should be neither explicitly equal, nor structurally different. We mean by this that, if $n_{1}$ and $n_{2}$ are their respective normal forms, then:

- $\mathrm{n}_{1}$ and $\mathrm{n}_{2}$ should not be syntactically equal,
- there must not exist any couple of subterms $u$ and $w$, $u$ subterm of $n_{1}$ and $w$ subterm of $n_{2}$, placed in the same positions and having different constructors as head symbols.

[^14]If these conditions are satisfied, then, the tactic derives the equality of all the subterms of term ${ }_{1}$ and $t^{t e r m} m_{2}$ placed in the same positions and puts them as antecedents of the current goal.
Example: Consider the following goal:

```
Coq < Inductive list : Set :=
Coq < | nil : list
Coq < | cons : nat -> list -> list.
Coq < Variable P : list -> Prop.
Coq < Show.
1 subgoal
 l : list
 n : nat
 H : P nil
 HO : cons n l = cons 0 nil
 ===============================
 P I
Coq < injection H0.
1 subgoal
 l : list
 n : nat
 H : P nil
 HO : cons n l = cons O nil
 ==============================
 l = nil -> n = 0 -> P l
```

Beware that injection yields always an equality in a sigma type whenever the injected object has a dependent type.
Remark: If ident does not denote an hypothesis in the local context but refers to an hypothesis quantified in the goal, then the latter is first introduced in the local context using intros until ident.

## Error messages:

1. ident is not a projectable equality occurs when the type of the hypothesis $i d$ does not verify the preconditions.
2. Not an equation occurs when the type of the hypothesis $i d$ is not an equation.

## Variants:

1. injection num

This does the same thing as intros until num then injection ident where ident is the identifier for the last introduced hypothesis.
2. injection

If the current goal is of the form term $_{1}<>$ term $_{2}$, the tactic computes the head normal form of the goal and then behaves as the sequence: unfold not; intro ident; injection ident.

Error message: goal does not satisfy the expected preconditions
3. injection ident as intro_pattern ... intro_pattern
injection num as intro_pattern ... intro_pattern
injection as intro_pattern ... intro_pattern

These variants apply intros intro_pattern ... intro_pattern after the call to injection.

### 8.9.5 simplify_eq ident

Let ident be the name of an hypothesis of type term $_{1}=$ term $_{2}$ in the local context. If term ${ }_{1}$ and $t^{t e r m}{ }_{2}$ are structurally different (in the sense described for the tactic discriminate), then the tactic simplify_eq behaves as discriminate ident otherwise it behaves as injection ident.

Remark: If ident does not denote an hypothesis in the local context but refers to an hypothesis quantified in the goal, then the latter is first introduced in the local context using intros until ident.

## Variants:

1. simplify_eq num

This does the same thing as intros until num then simplify_eq ident where ident is the identifier for the last introduced hypothesis.
2. simplify_eq If the current goal has form $\sim t_{1}=t_{2}$, then this tactic does hnf; intro ident; simplify_eq ident.

### 8.9.6 dependent rewrite -> ident

This tactic applies to any goal. If ident has type (existS A B a b) =(existS A B a' $\mathrm{b}^{\prime}$ ) in the local context (i.e. each term of the equality has a sigma type $\{a: A \&(B a)\}$ ) this tactic rewrites a into $a^{\prime}$ and $b$ into $b^{\prime}$ in the current goal. This tactic works even if $B$ is also a sigma type. This kind of equalities between dependent pairs may be derived by the injection and inversion tactics.

## Variants:

1. dependent rewrite <- ident

Analogous to dependent rewrite -> but uses the equality from right to left.

### 8.10 Inversion

### 8.10.1 inversion ident

Let the type of ident in the local context be $(I \vec{t})$, where $I$ is a (co)inductive predicate. Then, inversion applied to ident derives for each possible constructor $c_{i}$ of $(I \vec{t})$, all the necessary conditions that should hold for the instance ( $I \vec{t}$ ) to be proved by $c_{i}$.

Remark: If ident does not denote an hypothesis in the local context but refers to an hypothesis quantified in the goal, then the latter is first introduced in the local context using intros until ident.

## Variants:

1. inversion num

This does the same thing as intros until num then inversion ident where ident is the identifier for the last introduced hypothesis.
2. inversion_clear ident

This behaves as inversion and then erases ident from the context.
3. inversion ident as intro_pattern

This behaves as inversion but using names in intro_pattern for naming hypotheses. The intro_pattern must have the form $\left[p_{11} \ldots p_{1 n_{1}}|\ldots| p_{m 1} \ldots p_{m n_{m}}\right]$ with $m$ being the number of constructors of the type of ident. Be careful that the list must be of length $m$ even if inversion discards some cases (which is precisely one of its roles): for the discarded cases, just use an empty list (i.e. $n_{i}=0$ ).
The arguments of the $i^{\text {th }}$ constructor and the equalities that inversion introduces in the context of the goal corresponding to the $i^{\text {th }}$ constructor, if it exists, get their names from the list $p_{i 1}$ $\ldots p_{i n_{i}}$ in order. If there are not enough names, induction invents names for the remaining variables to introduce. In case an equation splits into several equations (because inversion applies in ject ion on the equalities it generates), the corresponding name $p_{i j}$ in the list must be replaced by a sublist of the form $\left[p_{i j 1} \ldots p_{i j q}\right]$ (or, equivalently, $\left(p_{i j 1}, \ldots, p_{i j q}\right)$ ) where $q$ is the number of subequations obtained from splitting the original equation. Here is an example.

```
Coq < Inductive contains0 : list nat -> Prop :=
Coq < | in_hd : forall l, contains0 (0 :: l)
Coq < | in_tl : forall l b, contains0 l -> contains0 (b :: l).
contains0 is defined
contains0_ind is defined
Coq < Goal forall l:list nat, contains0 (1 :: l) -> contains0 l.
1 subgoal
============================
 forall l : list nat, contains0 (1 :: l) -> contains0 l
Coq < intros l H; inversion H as [| l' p Hl' [Heqp Heql']].
I subgoal
l : list nat
H : containsO (1 :: l)
l' : list nat
p : nat
Hl' : containsO l
Heqp : p = 1
Heql' : I' = I
===========================
 contains0 I
```

4. inversion num as intro_pattern

This allows to name the hypotheses introduced by inversion num in the context.
5. inversion_clear ident as intro_pattern

This allows to name the hypotheses introduced by inversion_clear in the context.
6. inversion ident in ident ${ }_{1} \ldots$ ident $_{n}$

Let ident $t_{1} \ldots$ ident $_{n}$, be identifiers in the local context. This tactic behaves as generalizing ident ${ }_{1}$ $\ldots$ ident ${ }_{n}$, and then performing inversion.
7. inversion ident as intro_pattern in ident ${ }_{1} \ldots$ ident $_{n}$

This allows to name the hypotheses introduced in the context by inversion ident in ident ${ }_{1} \ldots$ ident ${ }_{n}$.
8. inversion_clear ident in ident ${ }_{1} \ldots$ ident $_{n}$

Let ident $t_{1} \ldots$ ident $_{n}$, be identifiers in the local context. This tactic behaves as generalizing ident ${ }_{1}$ $\ldots$ ident $_{n}$, and then performing inversion_clear.
9. inversion_clear ident as intro_pattern in ident ${ }_{1} \ldots$ ident $_{n}$

This allows to name the hypotheses introduced in the context by inversion_clear ident in ident $_{1} \ldots$ ident $_{n}$.
10. dependent inversion ident

That must be used when ident appears in the current goal. It acts like inversion and then substitutes ident for the corresponding term in the goal.
11. dependent inversion ident as intro_pattern

This allows to name the hypotheses introduced in the context by dependent inversion ident.
12. dependent inversion_clear ident

Like dependent inversion, except that ident is cleared from the local context.
13. dependent inversion_clear identas intro_pattern

This allows to name the hypotheses introduced in the context by dependent inversion_clear ident
14. dependent inversion ident with term

This variant allow to give the good generalization of the goal. It is useful when the system fails to generalize the goal automatically. If ident has type $(I \vec{t})$ and $I$ has type forall $(\vec{x}: \vec{T})$, $s$, then term must be of type $I: \operatorname{forall}(\vec{x}: \vec{T}), I \vec{x} \rightarrow s^{\prime}$ where $s^{\prime}$ is the type of the goal.
15. dependent inversion ident as intro_pattern with term

This allows to name the hypotheses introduced in the context by dependent inversion ident with term.
16. dependent inversion_clear ident with term

Like dependent inversion ... with but clears identfrom the local context.
17. dependent inversion_clear ident as intro_pattern with term

This allows to name the hypotheses introduced in the context by dependent inversion_clear ident with term.
18. simple inversion ident

It is a very primitive inversion tactic that derives all the necessary equalities but it does not simplify the constraints as inversion do.
19. simple inversion ident as intro_pattern

This allows to name the hypotheses introduced in the context by simple inversion.
20. inversion ident using ident ${ }^{\prime}$

Let ident have type $(I \vec{t})$ ( $I$ an inductive predicate) in the local context, and ident ${ }^{\prime}$ be a (dependent) inversion lemma. Then, this tactic refines the current goal with the specified lemma.
21. inversion ident using ident ${ }^{\prime}$ in ident $t_{1} \ldots$ ident $_{n}$

This tactic behaves as generalizing ident $t_{1} \ldots$ ident $_{n}$, then doing inversionidentusing ident ${ }^{\prime}$.

See also: 10.5 for detailed examples
8.10.2 Derive Inversion ident with forall $(\vec{x}: \vec{T}), I \vec{t}$ Sort sort

This command generates an inversion principle for the inversion ... using tactic. Let $I$ be an inductive predicate and $\vec{x}$ the variables occurring in $\vec{t}$. This command generates and stocks the inversion lemma for the sort sort corresponding to the instance forall $(\vec{x}: \vec{T}), I \vec{t}$ with the name ident in the global environment. When applied it is equivalent to have inverted the instance with the tactic inversion.

## Variants:

1. Derive Inversion_clear ident with forall $(\vec{x}: \vec{T}), I \vec{t}$ Sort sort

When applied it is equivalent to having inverted the instance with the tactic inversion replaced by the tactic inversion_clear.
2. Derive Dependent Inversion ident with forall $(\vec{x}: \vec{T}), I \vec{t}$ Sort sort

When applied it is equivalent to having inverted the instance with the tactic dependent inversion.
3. Derive Dependent Inversion_clear ident with forall $(\vec{x}: \vec{T}), I \vec{t}$ Sort sort

When applied it is equivalent to having inverted the instance with the tactic dependent inversion_clear.

See also: 10.5 for examples

### 8.10.3 functional inversion ident

functional inversion is a highly experimental tactic which performs inversion on hypothesis ident of the form qualid term $_{1} \ldots$ term $_{n}=$ term or term $=$ qualid term $H_{1} \ldots$ term $_{n}$ where qualid must have been defined using Function (section 2.3).

## Error messages:

1. Hypothesis identmust contain at least one Function
2. Cannot find inversion information for hypothesis ident This error may be raised when some inversion lemma failed to be generated by Function.

## Variants:

1. functional inversion num

This does the same thing as intros until num then functional inversion ident where ident is the identifier for the last introduced hypothesis.
2. functional inversion ident qualid
functional inversion num qualid
In case the hypothesis ident(or num) has a type of the form qualid term $_{1}$. . .term ${ }_{n}=$ qualid $_{2}$ term $_{n+1} \ldots$ term $_{n+m}$ where qualid ${ }_{1}$ and qualid ${ }_{2}$ are valid candidates to functional inversion, this variant allows to chose which must be inverted.

### 8.10.4 quote ident

This kind of inversion has nothing to do with the tactic inversion above. This tactic does change (ident $t$ ), where $t$ is a term build in order to ensure the convertibility. In other words, it does inversion of the function ident. This function must be a fixpoint on a simple recursive datatype: see 10.7 for the full details.

## Error messages:

1. quote: not a simple fixpoint

Happens when quote is not able to perform inversion properly.

## Variants:

1. quote ident [ ident ${ }_{1}$...ident ${ }_{n}$ ]

All terms that are build only with ident ${ }_{1} \ldots$ ident $_{n}$ will be considered by quote as constants rather than variables.

### 8.11 Classical tactics

In order to ease the proving process, when the Classical module is loaded. A few more tactics are available. Make sure to load the module using the Require Import command.

### 8.11.1 classical_left, classical_right

The tactics classical_left and classical_right are the analog of the left and right but using classical logic. They can only be used for disjunctions. Use classical_left to prove the left part of the disjunction with the assumption that the negation of right part holds. Use classical_left to prove the right part of the disjunction with the assumption that the negation of left part holds.

### 8.12 Automatizing

### 8.12.1 auto

This tactic implements a Prolog-like resolution procedure to solve the current goal. It first tries to solve the goal using the assumption tactic, then it reduces the goal to an atomic one using intros and introducing the newly generated hypotheses as hints. Then it looks at the list of tactics associated to the
head symbol of the goal and tries to apply one of them (starting from the tactics with lower cost). This process is recursively applied to the generated subgoals.

By default, auto only uses the hypotheses of the current goal and the hints of the database named core.

## Variants:

1. auto num

Forces the search depth to be num. The maximal search depth is 5 by default.
2. auto with ident ${ }_{1} \ldots$ ident $_{n}$

Uses the hint databases ident $_{1} \ldots$ ident $_{n}$ in addition to the database core. See Section 8.13.1 for the list of pre-defined databases and the way to create or extend a database. This option can be combined with the previous one.
3. auto with *

Uses all existing hint databases, minus the special database v62. See Section 8.13.1
4. auto using lemma,$\ldots$, lemma $_{n}$

Uses lemma,$\ldots$, lemma $_{n}$ in addition to hints (can be conbined with the with ident option).
5. trivial

This tactic is a restriction of auto that is not recursive and tries only hints which cost is 0 . Typically it solves trivial equalities like $X=X$.
6. trivial with ident $_{1}$... ident ${ }_{n}$
7. trivial with *

Remark: auto either solves completely the goal or else leave it intact. auto and trivial never fail.
See also: Section 8.13.1

### 8.12.2 eauto

This tactic generalizes auto. In contrast with the latter, eauto uses unification of the goal against the hints rather than pattern-matching (in other words, it uses eapply instead of apply). As a consequence, eaut o can solve such a goal:

```
Coq < Hint Resolve ex_intro.
Warning: the hint: eapply ex_intro will only be used by eauto
Coq < Goal forall P:nat }->>\mathrm{ Prop, P 0 -> exists n, P n.
1 subgoal
 ============================
 forall PO : nat }->>\mathrm{ Prop, PO 0 -> exists n : nat, PO n
Coq < eauto.
Proof completed.
```

Note that ex_intro should be declared as an hint.
See also: Section 8.13.1

### 8.12.3 tauto

This tactic implements a decision procedure for intuitionistic propositional calculus based on the contraction-free sequent calculi LJT* of Roy Dyckhoff [50]. Note that tauto succeeds on any instance of an intuitionistic tautological proposition. tauto unfolds negations and logical equivalence but does not unfold any other definition.

The following goal can be proved by tauto whereas auto would fail:

```
Coq < Goal forall (x:nat) (P:nat }->\mathrm{ Prop), x = 0 \/ P x -> x <> 0 -> P x.
1 subgoal
 forall (x : nat) (P0 : nat -> Prop), x = 0 \/ PO x -> x <> 0 -> PO x
Coq < intros.
1 subgoal
 x : nat
 PO : nat -> Prop
 H : x = 0 \/ PO x
 HO : X <> 0
 PO X
Coq < tauto.
Proof completed.
```

Moreover, if it has nothing else to do, taut o performs introductions. Therefore, the use of intros in the previous proof is unnecessary. tauto can for instance prove the following:

```
Coq < (* auto would fail *)
Coq < Goal forall (A:Prop) (P:nat -> Prop),
Coq < A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ A -> P x.
1 subgoal
 =============================
 forall (A : Prop) (PO : nat -> Prop),
 A \/ (forall x : nat, ~ A -> PO x) -> forall x : nat, ~ A -> P0 x
Coq <
Coq < tauto.
Proof completed.
```

Remark: In contrast, tauto cannot solve the following goal

```
Coq < Goal forall (A:Prop) (P:nat -> Prop),
Coq < A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ ~ (A \/ P x).
```

because (forall x:nat, $\sim A->P$ x) cannot be treated as atomic and an instantiation of $x$ is necessary.

### 8.12.4 intuition tactic

The tactic intuition takes advantage of the search-tree built by the decision procedure involved in the tactic tauto. It uses this information to generate a set of subgoals equivalent to the original one (but simpler than it) and applies the tactic tactic to them [96]. If this tactic fails on some goals then intuition fails. In fact, tauto is simply intuition fail.

For instance, the tactic intuition auto applied to the goal

```
(forall (x:nat), P x)/\B -> (forall (y:nat),P y)/\ P O \/B/\ P O
```

internally replaces it by the equivalent one:
(forall (x:nat), $P$ x), $B \mid-P O$
and then uses auto which completes the proof.
Originally due to César Muñoz, these tactics (tauto and intuition) have been completely reengineered by David Delahaye using mainly the tactic language (see chapter 9). The code is now quite shorter and a significant increase in performances has been noticed. The general behavior with respect to dependent types, unfolding and introductions has slightly changed to get clearer semantics. This may lead to some incompatibilities.

## Variants:

1. intuition

Is equivalent to intuition auto with *.

### 8.12.5 rtauto

The rtaut o tactic solves propositional tautologies similarly to what tauto does. The main difference is that the proof term is built using a reflection scheme applied to a sequent calculus proof of the goal. The search procedure is also implemented using a different technique.

Users should be aware that this difference may result in faster proof-search but slower proofchecking, and rtauto might not solve goals that tauto would be able to solve (e.g. goals involving universal quantifiers).

### 8.12.6 firstorder

The tactic firstorder is an experimental extension of tauto to first-order reasoning, written by Pierre Corbineau. It is not restricted to usual logical connectives but instead may reason about any first-order class inductive definition.

## Variants:

1. firstorder tactic

Tries to solve the goal with tactic when no logical rule may apply.
2. firstorder with ident ${ }_{1}$... ident ${ }_{n}$

Adds lemmas ident ${ }_{1} \ldots$ ident $_{n}$ to the proof-search environment.
3. firstorder using ident ${ }_{1}$... ident $_{n}$

Adds lemmas in auto hints bases ident ${ }_{1} \ldots$ ident $_{n}$ to the proof-search environment.
Proof-search is bounded by a depth parameter which can be set by typing the Set Firstorder Depth $n$ vernacular command.

### 8.12.7 congruence

The tactic congruence, by Pierre Corbineau, implements the standard Nelson and Oppen congruence closure algorithm, which is a decision procedure for ground equalities with uninterpreted symbols. It also include the constructor theory (see 8.9.4 and 8.9.3). If the goal is a non-quantified equality, congruence tries to prove it with non-quantified equalities in the context. Otherwise it tries to infer a discriminable equality from those in the context. Alternatively, congruence tries to prove that an hypothesis is equal to the goal or to the negation of another hypothesis.
congruence is also able to take advantage of hypotheses stating quantified equalities, you have to provide a bound for the number of extra equalities generated that way. Please note that one of the memebers of the equality must contain all the quantified variables in order for congruence to match against it.

```
Coq < Theorem T:
Coq< a=(f a) -> (g b (f a))=(f (f a)) -> (g a b)=(f (g b a)) -> (g a b)=a.
```

1 subgoal

```
 ============================
 a=fa a > gb (f a) = f (fa) -> gabb=f(gba) -> gab b = a
Coq < intros.
1 subgoal
 H : a = f a
 HO : gb (f a) = f (f a)
 H1:gab : f f (gb a)
 =============================
 g a b = a
Coq < congruence.
Proof completed.
Coq < Theorem inj : f = pair a -> Some (f c) = Some (f d) -> C=d.
1 subgoal
```



```
 f = pair (B:=A) a -> Some (f C) = Some (f d) -> c = d
Coq < intros.
1 subgoal
 H : f = pair (B:=A) a
 HO : Some (f c) = Some (f d)
 ====-======-=
 c = d
Coq < congruence.
Proof completed.
```


## Variants:

1. congruence $n$

Tries to add at most $n$ instances of hypotheses satting quantifiesd equalities to the problem in order to solve it. A bigger value of $n$ does not make success slower, only failure. You might consider adding some lemmata as hypotheses using assert in order for congruence to use them.

## Variants:

1. congruence with term $_{1}$... term $n_{n}$

Adds term ${ }_{1} \ldots$ term $_{n}$ to the pool of terms used by congruence. This helps in case you have partially applied constructors in your goal.

## Error messages:

1. I don't know how to handle dependent equality

The decision procedure managed to find a proof of the goal or of a discriminable equality but this proof couldn't be built in Coq because of dependently-typed functions.
2. I couldn't solve goal

The decision procedure didn't find any way to solve the goal.
3. Goal is solvable by congruence but some arguments are missing. Try "congruence with ...", replacing metavariables by arbitrary terms.
The decision procedure could solve the goal with the provision that additional arguments are supplied for some partially applied constructors. Any term of an appropriate type will allow the tactic to successfully solve the goal. Those additional arguments can be given to congruence by filling in the holes in the terms given in the error message, using the with variant described below.

### 8.12.8 omega

The tactic omega, due to Pierre Crégut, is an automatic decision procedure for Presburger arithmetic. It solves quantifier-free formulas built with $\sim, \backslash /, / \backslash,->$ on top of equalities and inequalities on both the type nat of natural numbers and Z of binary integers. This tactic must be loaded by the command Require Import Omega. See the additional documentation about omega (chapter 17).

### 8.12.9 ring and ring_simplify term 1 $_{1}$. . term ${ }_{n}$

The ring tactic solves equations upon polynomial expressions of a ring (or semi-ring) structure. It proceeds by normalizing both hand sides of the equation (w.r.t. associativity, commutativity and distributivity, constant propagation) and comparing syntactically the results.
ring_simplify applies the normalization procedure described above to the terms given. The tactic then replaces all occurrences of the terms given in the conclusion of the goal by their normal forms. If no term is given, then the conclusion should be an equation and both hand sides are normalized.

See chapter 20 for more information on the tactic and how to declare new ring structures.

$$
\text { 8.12.10 field, field_simplify } \operatorname{term}_{1} . . \text { term }{ }_{n} \text { and field_simplify_eq }
$$

The field tactic is built on the same ideas as ring: this is a reflexive tactic that solves or simplifies equations in a field structure. The main idea is to reduce a field expression (which is an extension of ring expressions with the inverse and division operations) to a fraction made of two polynomial expressions.

Tactic field is used to solve subgoals, whereas field_simplify term ${ }_{1}$. . term $n$ replaces the provided terms by their reducted fraction. field_simplify_eq applies when the conclusion is an equation: it simplifies both hand sides and multiplies so as to cancel denominators. So it produces an equation without division nor inverse.

All of these 3 tactics may generate a subgoal in order to prove that denominators are different from zero.

See chapter 20 for more information on the tactic and how to declare new field structures.

## Example:

```
Coq < Require Import Reals.
Coq < Goal forall x y:R,
Coq < (x * Y > 0) %R ->
Coq< (x * (1 / x + x / (x + y))) %R =
Coq}< ((-1/y) * y * (-x* (x / (x + y)) - 1)) %R.
Coq < intros; field.
1 subgoal
 x : R
 y : R
 H : (x * Y > 0) %R
 ============================
 (x+y) %}R<<0%R/\y<>0%R/\x<> 0%
```

See also: file contrib/setoid_ring/RealField.v for an example of instantiation, theory theories/Reals for many examples of use of field.

### 8.12.11 fourier

This tactic written by Loïc Pottier solves linear inequations on real numbers using Fourier's method [59]. This tactic must be loaded by Require Import Fourier.

## Example:

```
Coq < Require Import Reals.
Coq < Require Import Fourier.
Coq < Goal forall x y:R, (x < y) %R -> (y + 1 >= x - 1) %R.
Coq < intros; fourier.
Proof completed.
```


### 8.12.12 autorewrite with ident ${ }_{1}$....ident ${ }_{n}$.

This tactic ${ }^{5}$ carries out rewritings according the rewriting rule bases ident ${ }_{1} \ldots$ ident $_{n}$.
Each rewriting rule of a base ident ${ }_{i}$ is applied to the main subgoal until it fails. Once all the rules have been processed, if the main subgoal has progressed (e.g., if it is distinct from the initial main goal) then the rules of this base are processed again. If the main subgoal has not progressed then the next base is processed. For the bases, the behavior is exactly similar to the processing of the rewriting rules.

The rewriting rule bases are built with the Hint Rewrite vernacular command.
Warning: This tactic may loop if you build non terminating rewriting systems.

## Variant:

[^15]1. autorewrite with ident $_{1}$....ident ${ }_{n}$ using tactic

Performs, in the same way, all the rewritings of the bases $i d e n t_{1} \ldots$ ident $_{n}$ applying tactic to the main subgoal after each rewriting step.
2. autorewrite with ident $_{1}$....ident ${ }_{n}$ in qualid

Performs all the rewritings in hypothesis qualid.
3. autorewrite with ident $_{1}$....ident ${ }_{n}$ in qualid

Performs all the rewritings in hypothesis qualid applying tactic to the main subgoal after each rewriting step.
4. autorewrite with ident $_{1}$. . ident $_{n}$ in clause Performs all the rewritings in the clause clause.
The clause arg must not contain any type of nor value of.

See also: section 8.13.4 for feeding the database of lemmas used by autorewrite.
See also: section 10.6 for examples showing the use of this tactic.

### 8.13 Controlling automation

### 8.13.1 The hints databases for auto and eauto

The hints for auto and eauto are stored in databases. Each database maps head symbols to a list of hints. One can use the command Print Hint ident to display the hints associated to the head symbol ident (see 8.13.3). Each hint has a cost that is an nonnegative integer, and a pattern. The hints with lower cost are tried first. A hint is tried by auto when the conclusion of the current goal matches its pattern. The general command to add a hint to some database ident ${ }_{1}, \ldots$, ident $_{n}$ is:

Hint hint_definition : ident $_{1} \ldots$ ident $_{n}$
where hint_definition is one of the following expressions:

- Resolve term

This command adds apply term to the hint list with the head symbol of the type of term. The cost of that hint is the number of subgoals generated by apply term.
In case the inferred type of term does not start with a product the tactic added in the hint list is exact term. In case this type can be reduced to a type starting with a product, the tactic apply term is also stored in the hints list.

If the inferred type of term does contain a dependent quantification on a predicate, it is added to the hint list of eapply instead of the hint list of apply. In this case, a warning is printed since the hint is only used by the tactic eauto (see 8.12.2). A typical example of hint that is used only by eauto is a transitivity lemma.

## Error messages:

1. Bound head variable

The head symbol of the type of term is a bound variable such that this tactic cannot be associated to a constant.
2. term cannot be used as a hint

The type of term contains products over variables which do not appear in the conclusion. A typical example is a transitivity axiom. In that case the apply tactic fails, and thus is useless.

## Variants:

1. Resolve term ${ }_{1} \ldots$ term $_{m}$

Adds each Resolve term ${ }_{i}$.

- Immediate term

This command adds apply term; trivial to the hint list associated with the head symbol of the type of identin the given database. This tactic will fail if all the subgoals generated by apply term are not solved immediately by the trivial tactic which only tries tactics with cost 0 .
This command is useful for theorems such that the symmetry of equality or $n+1=m+1 \rightarrow$ $n=m$ that we may like to introduce with a limited use in order to avoid useless proof-search.

The cost of this tactic (which never generates subgoals) is always 1 , so that it is not used by trivial itself.

## Error messages:

1. Bound head variable
2. term cannot be used as a hint

## Variants:

1. Immediate term $_{1} \ldots$ term $_{m}$

Adds each Immediate term . $^{\text {. }}$

- Constructors ident

If ident is an inductive type, this command adds all its constructors as hints of type Resolve. Then, when the conclusion of current goal has the form (ident . . .), auto will try to apply each constructor.

## Error messages:

1. ident is not an inductive type
2. ident not declared

## Variants:

1. Constructors ident ${ }_{1} \ldots$ ident $_{m}$

Adds each Constructors ident ${ }_{i}$.

## - Unfold qualid

This adds the tactic unfold qualid to the hint list that will only be used when the head constant of the goal is ident. Its cost is 4 .

## Variants:

1. Unfold ident ${ }_{1} \ldots$ ident $_{m}$

Adds each Unfold ident ${ }_{i}$.

- Extern num pattern $=>$ tactic

This hint type is to extend auto with tactics other than apply and unfold. For that, we must specify a cost, a pattern and a tactic to execute. Here is an example:

```
Hint Extern 4 ~(?=?) => discriminate.
```

Now, when the head of the goal is a disequality, auto will try discriminate if it does not succeed to solve the goal with hints with a cost less than 4.
One can even use some sub-patterns of the pattern in the tactic script. A sub-pattern is a question mark followed by an ident, like ? X1 or ? X2. Here is an example:

```
Coq < Require Import List.
Coq < Hint Extern 5 ({?X1 = ?X2} + {?X1 <> ?X2}) =>
Coq < generalize X1 X2; decide equality : eqdec.
Coq < Goal
Coq < forall a b:list (nat * nat), {a = b} + {a <> b}.
1 subgoal
 forall a b : list (nat * nat), {a=b} + {a<>b}
Coq < info auto with eqdec.
 == intro a; intro b; generalize a b; decide equality;
 generalize al p; decide equality.
 generalize bl n0; decide equality.
 generalize a3 n; decide equality.
Proof completed.
```

Remark: There is currently (in the v8.1 release) no way to do pattern-matching on hypotheses.

## Variants:

1. Hint hint_definition

No database name is given : the hint is registered in the core database.
2. Hint Local hint_definition $:$ ident $_{1} \ldots$ ident $_{n}$

This is used to declare hints that must not be exported to the other modules that require and import the current module. Inside a section, the option Local is useless since hints do not survive anyway to the closure of sections.
3. Hint Local hint_definition

Idem for the core database.

### 8.13.2 Hint databases defined in the CoQ standard library

Several hint databases are defined in the CoQ standard library. The actual content of a database is the collection of the hints declared to belong to this database in each of the various modules currently loaded. Especially, requiring new modules potentially extend a database. At CoQ startup, only the core and v62 databases are non empty and can be used.
core This special database is automatically used by auto. It contains only basic lemmas about negation, conjunction, and so on from. Most of the hints in this database come from the Init and Logic directories.
arith This database contains all lemmas about Peano's arithmetic proven in the directories Init and Arith
zarith contains lemmas about binary signed integers from the directories theories/ZArith. When required, the module Omega also extends the database zarith with a high-cost hint that calls omega on equations and inequations in nat or $Z$.
bool contains lemmas about booleans, mostly from directory theories/Bool.
datatypes is for lemmas about lists, streams and so on that are mainly proven in the Lists subdirectory.
sets contains lemmas about sets and relations from the directories Sets and Relations.
There is also a special database called v62. It collects all hints that were declared in the versions of CoQ prior to version 6.2 .4 when the databases core, arith, and so on were introduced. The purpose of the database v62 is to ensure compatibility with further versions of Coq for developments done in versions prior to 6.2 .4 (auto being replaced by auto with v62). The database v62 is intended not to be extended (!). It is not included in the hint databases list used in the auto with $*$ tactic.

Furthermore, you are advised not to put your own hints in the core database, but use one or several databases specific to your development.

### 8.13.3 Print Hint

This command displays all hints that apply to the current goal. It fails if no proof is being edited, while the two variants can be used at every moment.

## Variants:

1. Print Hint ident

This command displays only tactics associated with ident in the hints list. This is independent of the goal being edited, to this command will not fail if no goal is being edited.
2. Print Hint *

This command displays all declared hints.
3. Print HintDb ident

This command displays all hints from database ident.
8.13.4 Hint Rewrite term ${ }_{1}$...term ${ }_{n}$ : ident

This vernacular command adds the terms term ${ }_{1} \ldots$ term $_{n}$ (their types must be equalities) in the rewriting base ident with the default orientation (left to right). Notice that the rewriting bases are distinct from the auto hint bases and that auto does not take them into account.

This command is synchronous with the section mechanism (see 2.4): when closing a section, all aliases created by Hint Rewrite in that section are lost. Conversely, when loading a module, all Hint Rewrite declarations at the global level of that module are loaded.

## Variants:

1. Hint Rewrite $->$ term $_{1}$...term $n$ : ident

This is strictly equivalent to the command above (we only make explicit the orientation which otherwise defaults to $->$ ).
2. Hint Rewrite $<-$ term $_{1} \ldots$ term $_{n}:$ ident

Adds the rewriting rules term ${ }_{1} \ldots$ term $_{n}$ with a right-to-left orientation in the base ident.
3. Hint Rewrite term $_{1}$...term ${ }_{n}$ using tactic : ident

When the rewriting rules term ${ }_{1} \ldots$ term $_{n}$ in ident will be used, the tactic tactic will be applied to the generated subgoals, the main subgoal excluded.
4. Print Rewrite HintDb ident

This command displays all rewrite hints contained in ident.

### 8.13.5 Hints and sections

Hints provided by the Hint commands are erased when closing a section. Conversely, all hints of a module A that are not defined inside a section (and not defined with option Local) become available when the module A is imported (using e.g. Require Import A.).

### 8.13.6 Setting implicit automation tactics

Proof with tactic.
This command may be used to start a proof. It defines a default tactic to be used each time a tactic command tactic ${ }_{1}$ is ended by ". . .". In this case the tactic command typed by the user is equivalent to tactic $_{1} ;$ tactic.

See also: Proof. in section 7.1.5.

Declare Implicit Tactic tactic.
This command declares a tactic to be used to solve implicit arguments that COQ does not know how to solve by unification. It is used every time the term argument of a tactic has one of its holes not fully resolved.

Here is an example:

```
Coq < Parameter quo : nat -> forall n:nat, n<>0 -> nat.
quo is assumed
Coq < Notation "x // y" := (quo x y _) (at level 40).
```

```
Coq <
Coq < Declare Implicit Tactic assumption.
Coq < Goal forall n m,m<>0 -> {q:nat & {r| q * m + r = n } }.
1 subgoal
 forall n m : nat, m <> 0 -> {q: nat & {r: nat | q* m + r = n}}
Coq < intros.
1 subgoal
 n : nat
 m : nat
 H : m <> 0
 =============================
 {q: nat & {r: nat | q * m +r=n}}
Coq < exists (n // m).
1 subgoal
 n : nat
 m : nat
 H : m <> 0
 ============================
 {r : nat / n //m*m m r = n}
```

The tactic exists ( $\mathrm{n} / / \mathrm{m}$ ) did not fail. The hole was solved by assumption so that it behaved as exists (quo n m H ).

### 8.14 Generation of induction principles with Scheme

The Scheme command is a high-level tool for generating automatically (possibly mutual) induction principles for given types and sorts. Its syntax follows the schema:

```
Scheme ident
with
 ...
with ident }\mp@subsup{m}{m}{:= Induction for ident'm Sort sort }\mp@subsup{m}{m}{
```

where ident' ${ }_{1} \ldots$ ident' ${ }_{m}$ are different inductive type identifiers belonging to the same package of mutual inductive definitions. This command generates ident $t_{1} \ldots$ ident ${ }_{m}$ to be mutually recursive definitions. Each term ident $_{i}$ proves a general principle of mutual induction for objects in type term ${ }_{i}$.

## Variants:

1. Scheme ident ${ }_{1}$ := Minimality for ident' ${ }_{1}$ Sort sort ${ }_{1}$ with
with ident ${ }_{m}$ := Minimality for ident' ${ }_{m}$ Sort sort $_{m}$
Same as before but defines a non-dependent elimination principle more natural in case of inductively defined relations.

See also: 10.3
See also: Section 10.3

### 8.15 Generation of induction principles with Functional Scheme

The Functional Scheme command is a high-level experimental tool for generating automatically induction principles corresponding to (possibly mutually recursive) functions. Its syntax follows the schema:

```
Functional Scheme ident }\mp@subsup{\mp@code{l}}{\mathrm{ := Induction for ident'1 Sort sort}}{1
with
with ident }\mp@subsup{m}{m}{:= Induction for ident'm Sort sort }\mp@subsup{m}{m}{
```

where ident' ${ }_{1} \ldots$ ident' ${ }_{m}$ are different mutually defined function names (they must be in the same order as when they were defined). This command generates the induction principles ident $t_{1} \ldots$ ident $_{m}$, following the recursive structure and case analyses of the functions ident' ${ }_{1} \ldots$ ident' ${ }_{m}$.

Functional Scheme There is a difference between obtaining an induction scheme by using Functional Scheme on a function defined by Function or not. Indeed Function generally produces smaller principles, closer to the definition written by the user.

See also: Section 10.4

### 8.16 Simple tactic macros

A simple example has more value than a long explanation:

```
Coq < Ltac Solve := simpl; intros; auto.
Solve is defined
Coq < Ltac ElimBoolRewrite b H1 H2 :=
Coq < elim b; [intros; rewrite H1; eauto | intros; rewrite H2; eauto].
ElimBoolRewrite is defined
```

The tactics macros are synchronous with the COQ section mechanism: a tactic definition is deleted from the current environment when you close the section (see also 2.4) where it was defined. If you want that a tactic macro defined in a module is usable in the modules that require it, you should put it outside of any section.

The chapter 9 gives examples of more complex user-defined tactics.

## Chapter 9

## The tactic language

This chapter gives a compact documentation of Ltac, the tactic language available in CoQ. We start by giving the syntax, and next, we present the informal semantics. If you want to know more regarding this language and especially about its fundations, you can refer to [37]. Chapter 10 is devoted to giving examples of use of this language on small but also with non-trivial problems.

### 9.1 Syntax

The syntax of the tactic language is given Figures 9.1 and 9.2. See page 27 for a description of the BNF metasyntax used in these grammar rules. Various already defined entries will be used in this chapter: entries natural, integer, ident, qualid, term, cpattern and atomic_tactic represent respectively the natural and integer numbers, the authorized identificators and qualified names, CoQ's terms and patterns and all the atomic tactics described in chapter 8 . The syntax of cpattern is the same as that of terms, but there can be specific variables like ? id where id is a ident or _, which are metavariables for pattern matching. ?id allows us to keep instantiations and to make constraints whereas _ shows that we are not interested in what will be matched. On the right hand side, they are used without the question mark.

The main entry of the grammar is expr. This language is used in proof mode but it can also be used in toplevel definitions as shown in Figure 9.3.

## Remarks:

1. The infix tacticals "... || ..." and "... ; ..." are associative.
2. As shown by the figure, tactical।। binds more than the prefix tacticalstry, repeat, do, info and abstract which themselves bind more than the postfix tactical ". . . ; [ . . ]" which binds more than "... ; ...".

For instance

$$
\text { try repeat } \text { tactic }_{1}| | \text { tactic }_{2} ; \text { tactic }_{3} ;\left[\text { tactic }_{31}|\ldots| \text { tactic }_{3 n}\right] ; \text { tactic }_{4} .
$$

is understood as

```
(try (repeat (tactic | || tactic 2)));
((\mp@subsup{tactic}{3}{\prime};[\mp@subsup{\operatorname{tactic}}{31}{}|...|\mp@subsup{\mathrm{ tactic }}{3n}{}]);\mp@subsup{\mathrm{ tactic }}{4}{}).
```

```
expr ::= expr ; expr
 | expr ; [expr | ... | expr]
 | tacexpr 3
tacexpr3 ::= do (natural | ident) tacexpr3
 | info tacexpr3
 progress tacexpr3
 repeat tacexpr_
 try tacexpr3
 tacexpr}\mp@subsup{}{2}{
tacexpr }\mp@subsup{\mp@code{2}}{2}{\prime:== tacexpr | | | tacexpr
 | tacexpr
tacexpr
 let let_clause with... with let_clause in atom
 let rec rec_clause with... with rec_clause in expr
 match goal with context_rule | ... | context_rule end
 match reverse goal with context_rule |... | context_rule end
 match expr with match_rule | ... | match_rule end
 lazymatch goal with context_rule |... | context_rule end
 lazymatch reverse goal with context_rule | ... | context_rule end
 lazymatch expr with match_rule | ... | match_rule end
 abstract atom
 abstract atom using ident
 first [expr | ... | expr]
 solve [expr | ... | expr]
 idtac [message_token ... message_token]
 fail [natural][message_token ... message_token]
 fresh | fresh string
 context ident [term]
 eval redexpr in term
 type of term
 external string string tacarg ... tacarg
 constr : term
 atomic_tactic
 qualid tacarg ... tacarg
 atom
```



```
message_token::= string | term | integer
```

Figure 9.1: Syntax of the tactic language

tacarg	$::=$	qualid   ()   ltac : atom   term	
let_clause	::=	ident [name ... name] : e expr	
rec_clause	::=	ident name ... name : = expr	
context_rule		```context_hyps,... , context_hyps \|-cpattern => expr	- cpattern => expr _ => expr```
context_hyps	::=	name : cpattern	
match_rule	: $=$	$\begin{aligned} & \text { cpattern => expr } \\ & \text { context [ident] [ cpattern ] => expr } \\ & -=>\text { expr } \end{aligned}$	

Figure 9.2: Syntax of the tactic language (continued)

| top | $::=$ Ltac ltac_def with $\ldots$ with ltac_def |
| :--- | :--- | :--- |
| ltac_def | $::=$ ident [ident $\ldots$ ident] $:=$ expr |

Figure 9.3: Tactic toplevel definitions

### 9.2 Semantics

Tactic expressions can only be applied in the context of a goal. The evaluation yields either a term, an integer or a tactic. Intermediary results can be terms or integers but the final result must be a tactic which is then applied to the current goal.

There is a special case for match goal expressions of which the clauses evaluate to tactics. Such expressions can only be used as end result of a tactic expression (never as argument of a local definition or of an application).

The rest of this section explains the semantics of every construction of Ltac.

## Sequence

A sequence is an expression of the following form:

```
expr (; expr }\mp@subsup{\mp@code{2}}{2}{
```

$\operatorname{expr}_{1}$ and expr ${ }_{2}$ are evaluated to $v_{1}$ and $v_{2} . v_{1}$ and $v_{2}$ must be tactic values. $v_{1}$ is then applied and $v_{2}$ is applied to every subgoal generated by the application of $v_{1}$. Sequence is left-associative.

## General sequence

We can generalize the previous sequence operator as
expr ${ }_{0} ; ~\left[\operatorname{expr}_{1}|\ldots|\right.$ expr $\left._{n}\right]$
$\operatorname{expr}_{i}$ is evaluated to $v_{i}$, for $i=0, \ldots, n$. $v_{0}$ is applied and $v_{i}$ is applied to the $i$-th generated subgoal by the application of $v_{0}$, for $=1, \ldots, n$. It fails if the application of $v_{0}$ does not generate exactly $n$ subgoals.

Variant: If no tactic is given for the $i$-th generated subgoal, it behaves as if the tactic idtac were given. For instance, split ; [ | auto ] is a shortcut for split ; [ idtac | auto ].

## For loop

There is a for loop that repeats a tactic num times:
do num expr
expr is evaluated to $v . v$ must be a tactic value. $v$ is applied num times. Supposing num $>1$, after the first application of $v, v$ is applied, at least once, to the generated subgoals and so on. It fails if the application of $v$ fails before the num applications have been completed.

## Repeat loop

We have a repeat loop with:

```
repeat expr
```

expr is evaluated to $v . v$ must be a tactic value. $v$ is applied until it fails. Supposing $n>1$, after the first application of $v, v$ is applied, at least once, to the generated subgoals and so on. It stops when it fails for all the generated subgoals. It never fails.

## Error catching

We can catch the tactic errors with:

```
try expr
```

expr is evaluated to $v . v$ must be a tactic value. $v$ is applied. If the application of $v$ fails, it catches the error and leaves the goal unchanged. If the level of the exception is positive, then the exception is re-raised with its level decremented.

## Detecting progress

We can check if a tactic made progress with:

```
progress expr
```

expr is evaluated to $v . v$ must be a tactic value. $v$ is applied. If the application of $v$ produced one subgoal equal to the initial goal (up to syntactical equality), then an error of level 0 is raised.
Error message: Failed to progress

## Branching

We can easily branch with the following structure:

```
expr}\mp@subsup{|}{1}{|| expr}\mp@subsup{2}{2}{
```

expr $r_{1}$ and expr ${ }_{2}$ are evaluated to $v_{1}$ and $v_{2}$. $v_{1}$ and $v_{2}$ must be tactic values. $v_{1}$ is applied and if it fails to progress then $v_{2}$ is applied. Branching is left-associative.

## First tactic to work

We may consider the first tactic to work (i.e. which does not fail) among a panel of tactics:

$$
\text { first }\left[\operatorname{expr}_{1}|\ldots| \operatorname{expr}_{n}\right]
$$

expr $r_{i}$ are evaluated to $v_{i}$ and $v_{i}$ must be tactic values, for $i=1, \ldots, n$. Supposing $n>1$, it applies $v_{1}$, if it works, it stops else it tries to apply $v_{2}$ and so on. It fails when there is no applicable tactic.

Error message: No applicable tactic

## Solving

We may consider the first to solve (i.e. which generates no subgoal) among a panel of tactics:

```
solve [expr | | .. | expr n]
```

expr $i_{i}$ are evaluated to $v_{i}$ and $v_{i}$ must be tactic values, for $i=1, \ldots, n$. Supposing $n>1$, it applies $v_{1}$, if it solves, it stops else it tries to apply $v_{2}$ and so on. It fails if there is no solving tactic.

Error message: Cannot solve the goal

## Identity

The constant idtac is the identity tactic: it leaves any goal unchanged but it appears in the proof script.
Variant: idtac message_token ... message_token
This prints the given tokens. Strings and integers are printed literally. If a term is given, it is printed, its variables being interpreted in the current environment. In particular, if a variable is given, its value is printed.

## Failing

The tactic fail is the always-failing tactic: it does not solve any goal. It is useful for defining other tacticals since it can be catched by try or match goal.

## Variants:

1. fail $n$

The number $n$ is the failure level. If no level is specified, it defaults to 0 . The level is used by try and match goal. If 0 , it makes match goal considering the next clause (backtracking). If non zero, the current match goal block or try command is aborted and the level is decremented.
2. fail message_token ... message_token

The given tokens are used for printing the failure message.
3. fail $n$ message_token ... message_token

This is a combination of the previous variants.

Error message: Tactic Failure message (level n).

## Local definitions

Local definitions can be done as follows:

```
let ident }\mp@subsup{|}{1}{}:=\mp@subsup{e}{\mathrm{ expr}}{1
with ident }\mp@subsup{\mp@code{m}}{2}{}=\mp@subsup{e}{expr}{2
with ident n}:=\mp@subsup{e}{expr}{n}\mathrm{ in
expr
```

each $\operatorname{expr}_{i}$ is evaluated to $v_{i}$, then, expr is evaluated by substituting $v_{i}$ to each occurrence of ident ${ }_{i}$, for $i=1, \ldots, n$. There is no dependencies between the $\operatorname{expr}_{i}$ and the ident ${ }_{i}$.

Local definitions can be recursive by using let rec instead of let. Only functions can be defined by recursion, so at least one argument is required.

## Application

An application is an expression of the following form:

$$
\text { qualid } \operatorname{tacarg}_{1} \ldots \operatorname{tacarg}_{n}
$$

The reference qualid must be bound to some defined tactic definition expecting at least $n$ arguments. The expressions expr $r_{i}$ are evaluated to $v_{i}$, for $i=1, \ldots, n$.

## Function construction

A parameterized tactic can be built anonymously (without resorting to local definitions) with:

$$
\text { fun ident }_{1} \ldots \text { ident }_{n}=>\operatorname{expr}
$$

Indeed, local definitions of functions are a syntactic sugar for binding a $f u n$ tactic to an identifier.

## Pattern matching on terms

We can carry out pattern matching on terms with:

```
match expr with
cpattern}1=> expr 1
| cpattern }2=> expr 2
| cpattern
| _ => expr n}n+
end
```

The expr is evaluated and should yield a term which is matched (non-linear first order unification) against cpattern $_{1}$ then expr ${ }_{1}$ is evaluated into some value by substituting the pattern matching instantiations to the metavariables. If the matching with cpattern $_{1}$ fails, cpattern $_{2}$ is used and so on. The pattern matches any term and shunts all remaining patterns if any. If expr $r_{1}$ evaluates to a tactic and the match expression is in position to be applied to a goal (e.g. it is not bound to a variable by a let in, then this tactic is applied. If the tactic succeeds, the list of resulting subgoals is the result of the match expression. On the opposite, if it fails, the next pattern is tried. If all clauses fail (in particular, there is no pattern _) then a no-matching error is raised.

## Error messages:

1. No matching clauses for match

No pattern can be used and, in particular, there is no _ pattern.
2. Argument of match does not evaluate to a term

This happens when expr does not denote a term.

## Variants:

1. There is a special form of patterns to match a subterm against the pattern:
context ident [ cpattern ]
It matches any term which one subterm matches cpattern. If there is a match, the optional ident is assign the "matched context", that is the initial term where the matched subterm is replaced by a hole. The definition of context in expressions below will show how to use such term contexts.

If the evaluation of the right-hand-side of a valid match fails, the next matching subterm is tried. If no further subterm matches, the next clause is tried. Matching subterms are considered top-bottom and from left to right (with respect to the raw printing obtained by setting option Printing All, see section 2.9).

```
Coq < Ltac f x :=
Coq < match x with
Coq < context f [S ?X] =>
Coq < idtac X; (* To display the evaluation order *)
Coq < assert (p := refl_equal 1 : X=1); (* To filter the case X=1 *)
Coq < let x:= context f[O] in assert (x=O) (* To observe the context *)
Coq < end.
f is defined
Coq < Goal True.
1 subgoal
 True
Coq < f (3+4).
 2
 1
2 subgoals
 p : 1 = 1
 ===============================
 1 + 4 = 0
subgoal 2 is:
 True
```

2. Using lazymatch instead of match has an effect if the right-hand-side of a clause returns a tactic. With match, the tactic is applied to the current goal (and the next clause is tried if it fails). With lazymatch, the tactic is directly returned as the result of the whole lazymatch block without being first tried to be applied to the goal. Typically, if the lazymatch block is bound to some variable $x$ in a let in, then tactic expression gets bound to the variable $x$.

## Pattern matching on goals

We can make pattern matching on goals using the following expression:

```
match goal with
 | hyp 1,1,\ldots, hyp (,\mp@subsup{m}{1}{}
 | hyp 2,1,\ldots, hyp 2,\mp@subsup{m}{2}{}}\quad|-\mp@subsup{\mathrm{ cpattern }}{2}{}=> \mp@subsup{\mathrm{ expr }}{2}{
 | hyp n,1,\ldots,\mp@subsup{hyp}{n,\mp@subsup{m}{n}{}}{}\quad|-\mp@subsup{\mathrm{ cpattern }}{n}{\prime}=> \mp@subsup{\operatorname{expr}}{n}{}
 |_ => expr n
end
```

If each hypothesis pattern $h y p_{1, i}$, with $i=1, \ldots, m_{1}$ is matched (non-linear first order unification) by an hypothesis of the goal and if cpattern $_{1}$ is matched by the conclusion of the goal, then expr ${ }_{1}$ is evaluated to $v_{1}$ by substituting the pattern matching to the metavariables and the real hypothesis names bound to the possible hypothesis names occurring in the hypothesis patterns. If $v_{1}$ is a tactic value, then it is applied to the goal. If this application fails, then another combination of hypotheses is tried with the same proof context pattern. If there is no other combination of hypotheses then the second proof context pattern is tried and so on. If the next to last proof context pattern fails then expr ${ }_{n+1}$ is evaluated to $v_{n+1}$ and $v_{n+1}$ is applied. Note also that matching against subterms (using the context ident [ cpattern ]) is available and may itself induce extra backtrackings.

Error message: No matching clauses for match goal
No clause succeeds, i.e. all matching patterns, if any, fail at the application of the right-hand-side.
It is important to know that each hypothesis of the goal can be matched by at most one hypothesis pattern. The order of matching is the following: hypothesis patterns are examined from the right to the left (i.e. $h y p_{i, m_{i}}$ before $h y p_{i, 1}$ ). For each hypothesis pattern, the goal hypothesis are matched in order (fresher hypothesis first), but it possible to reverse this order (older first) with the match reverse goal with variant.
Variant: Using lazymatch instead of match has an effect if the right-hand-side of a clause returns a tactic. With match, the tactic is applied to the current goal (and the next clause is tried if it fails). With lazymatch, the tactic is directly returned as the result of the whole lazymatch block without being first tried to be applied to the goal. Typically, if the lazymatch block is bound to some variable $x$ in a let in, then tactic expression gets bound to the variable $x$.

```
Coq < Ltac test_lazy :=
Coq < lazymatch goal with
Coq < | _ => idtac "here"; fail
Coq < | _ => idtac "wasn't lazy"; trivial
Coq < end.
test_lazy is defined
Coq < Ltac test_eager :=
Coq < match goal with
Coq < | _ => idtac "here"; fail
Coq < | _ => idtac "wasn't lazy"; trivial
Coq < end.
test_eager is defined
Coq < Goal True.
1 subgoal
```

```
 True
Coq < test_lazy || idtac "was lazy".
 here
 was lazy
1 subgoal
 =============================
 True
Coq < test_eager || idtac "was lazy".
 here
 wasn't lazy
Proof completed.
```


## Filling a term context

The following expression is not a tactic in the sense that it does not produce subgoals but generates a term to be used in tactic expressions:

```
context ident [expr]
```

ident must denote a context variable bound by a cont ext pattern of a mat ch expression. This expression evaluates replaces the hole of the value of ident by the value of expr.

Error message: not a context variable

## Generating fresh hypothesis names

Tactics sometimes have to generate new names for hypothesis. Letting the system decide a name with the intro tactic is not so good since it is very awkward to retrieve the name the system gave. The following expression returns an identifier:

```
fresh component ... component
```

It evaluates to an identifier unbound in the goal. This fresh identifier is obtained by concatenating the value of the component's (each of them is, either an ident which has to refer to a name, or directly a name denoted by a string). If the resulting name is already used, it is padded with a number so that it becomes fresh. If no component is given, the name is a fresh derivative of the name H .

## Computing in a constr

Evaluation of a term can be performed with:
eval redexpr in term
where redexpr is a reduction tactic among red, hnf, compute, simpl, cbv, lazy, unfold, fold, pattern.

## Type-checking a term

The following returns the type of term:

```
type of term
```


## Accessing tactic decomposition

Tactical "info expr" is not really a tactical. For elementary tactics, this is equivalent to expr. For complex tactic like auto, it displays the operations performed by the tactic.

## Proving a subgoal as a separate lemma

From the outside "abstract expr" is the same as solve expr. Internally it saves an auxiliary lemma called ident_subproof $n$ where ident is the name of the current goal and $n$ is chosen so that this is a fresh name.

This tactical is useful with tactics such as omega or discriminate that generate huge proof terms. With that tool the user can avoid the explosion at time of the Save command without having to cut manually the proof in smaller lemmas.

## Variants:

1. abstract expr using ident.

Give explicitly the name of the auxiliary lemma.

Error message: Proof is not complete

## Calling an external tactic

The tactic external allows to run an executable outside the COQ executable. The communication is done via an XML encoding of constructions. The syntax of the command is

```
external "command" "request" tacarg ... tacarg
```

The string command, to be interpreted in the default execution path of the operating system, is the name of the external command. The string request is the name of a request to be sent to the external command. Finally the list of tactic arguments have to evaluate to terms. An XML tree of the following form is sent to the standard input of the external command.

```
<REQUEST req="request">
the XML tree of the first argument
the XML tree of the last argument
</REQUEST>
```

Conversely, the external command must send on its standard output an XML tree of the following forms:

```
<TERM>
```

the XML tree of a term
</TERM>
or
<CALL uri="ltac_qualified_ident">
the XML tree of a first argument
the XML tree of a last argument
</CALL>
where Itac_qualified_ident is the name of a defined $\mathcal{L}_{\text {tac }}$ function and each subsequent XML tree is recursively a CALL or a TERM node.

The Document Type Definition (DTD) for terms of the Calculus of Inductive Constructions is the one developed as part of the MoWGLI European project. It can be found in the file dev/doc/cic.dtd of the CoQ source archive.

An example of parser for this DTD, written in the Objective Caml - Camlp4 language, can be found in the file parsing/g_xml.ml4 of the COQ source archive.

### 9.3 Tactic toplevel definitions

### 9.3.1 Defining $\mathcal{L}_{\text {tac }}$ functions

Basically, $\mathcal{L}_{\text {tac }}$ toplevel definitions are made as follows:

This defines a new $\mathcal{L}_{t a c}$ function that can be used in any tactic script or new $\mathcal{L}_{\text {tac }}$ toplevel definition.
Remark: The preceding definition can equivalently be written:

$$
\text { Ltac ident }:=\text { fun ident }_{1} \ldots \text { ident }_{n}=>\text { expr }
$$

Recursive and mutual recursive function definitions are also possible with the syntax:

```
Ltac ident }\mp@subsup{\mathrm{ ident }}{1,1}{}\ldots\mp@subsup{\mathrm{ ident }}{1,\mp@subsup{m}{1}{}}{}:=\mp@subsup{e}{\mathrm{ expr }}{1
with ident }\mp@subsup{\mp@code{ident }}{2,1}{}\ldots\mathrm{ .. ident 2,m2
..
with ident }\mp@subsup{\mathrm{ ident }}{n,1}{}\ldots\mp@subsup{\mathrm{ ident }}{n,\mp@subsup{m}{n}{}}{}:=\mp@subsup{\operatorname{expr}}{n}{
```


### 9.3.2 Printing $\mathcal{L}_{\text {tac }}$ tactics

Defined $\mathcal{L}_{\text {tac }}$ functions can be displayed using the command

```
Print Ltac qualid.
```


### 9.4 Debugging $\mathcal{L}_{\text {tac }}$ tactics

The $\mathcal{L}_{\text {tac }}$ interpreter comes with a step-by-step debugger. The debugger can be activated using the command

```
Set Ltac Debug.
```

and deactivated using the command

```
Unset Ltac Debug.
```

To know if the debugger is on, use the command Test Ltac Debug. When the debugger is activated, it stops at every step of the evaluation of the current $\mathcal{L}_{\text {tac }}$ expression and it prints information on what it is doing. The debugger stops, prompting for a command which can be one of the following:
simple newline: go to the next step
h: get help
$\mathrm{x}: \quad$ exit current evaluation
$\mathrm{s}: \quad$ continue current evaluation without stopping
rn: advance $n$ steps further

## Chapter 10

## Detailed examples of tactics

This chapter presents detailed examples of certain tactics, to illustrate their behavior.

## $\mathbf{1 0 . 1}$ refine

This tactic applies to any goal. It behaves like exact with a big difference : the user can leave some holes (denoted by _ or (_:type)) in the term. refine will generate as many subgoals as they are holes in the term. The type of holes must be either synthesized by the system or declared by an explicit cast like ( $\backslash_{-}$: nat->Prop). This low-level tactic can be useful to advanced users.

## Example:

```
Coq < Inductive Option : Set :=
Coq < | Fail : Option
Coq < | Ok : bool -> Option.
Coq < Definition get : forall x:Option, x <> Fail -> bool.
1 subgoal
 forall x : Option, x <> Fail -> bool
Coq < refine
Coq < (fun x:Option =>
Coq < match x return x <> Fail -> bool with
Coq < | Fail =>
Coq < | Ok b => fun _ => b
Coq < end).
1 subgoal
 x : Option
 =============================
 Fail <> Fail -> bool
Coq < intros; absurd (Fail = Fail); trivial.
Proof completed.
Coq < Defined.
```


## 10.2 eapply

Example: Assume we have a relation on nat which is transitive:

```
Coq < Variable R : nat -> nat -> Prop.
Coq < Hypothesis Rtrans : forall x y z:nat, R x y -> R y z -> R x z.
Coq < Variables n m p : nat.
Coq < Hypothesis Rnm : R n m.
Coq < Hypothesis Rmp : R m p.
```

Consider the goal ( $R \mathrm{n} p$ ) provable using the transitivity of $R$ :

```
Coq < Goal R n p.
```

The direct application of Rtrans with apply fails because no value for y in Rtrans is found by apply:

```
Coq < apply Rtrans.
Unnamed_thm < Unnamed_thm < Toplevel input, characters 144-156
> apply Rtrans.
> ^^^^^^^^^^^^
Error: generated subgoal "R n ?17" has metavariables in it
```

A solution is to rather apply (Rtrans $n \mathrm{~m} \mathrm{p}$ ).

```
Coq < apply (Rtrans n m p).
2 subgoals
 R n m
subgoal 2 is:
 R m p
```

More elegantly, apply Rtrans with ( $y:=m$ ) allows to only mention the unknown $m$ :

```
Coq <
Coq < apply Rtrans with (y := m).
2 subgoals
 =============================
 R n m
subgoal 2 is:
 R m p
```

Another solution is to mention the proof of ( $\mathrm{R} \times \mathrm{y}$ ) in Rtrans...

```
Coq <
Coq < apply Rtrans with (1 := Rnm).
1 subgoal
 =============================
 Rmp
```

... or the proof of $\binom{\mathrm{R}}{\mathrm{y}}$ :

```
Coq <
Coq < apply Rtrans with (2 := Rmp).
1 subgoal
 =============================
 R n m
```

On the opposite, one can use eapply which postpone the problem of finding $m$. Then one can apply the hypotheses Rnm and Rmp. This instantiates the existential variable and completes the proof.

```
Coq < eapply Rtrans.
2 subgoals
 R n ?5
subgoal 2 is:
 R ?5 p
Coq < apply Rnm.
1 subgoal
 =============================
 R m p
Coq < apply Rmp.
Proof completed.
```


### 10.3 Scheme

## Example 1: Induction scheme for tree and forest

The definition of principle of mutual induction for tree and forest over the sort Set is defined by the command:

```
Coq < Inductive tree : Set :=
Coq < node : A -> forest -> tree
Coq < with forest : Set :=
Coq < | leaf : B -> forest
Coq < | cons : tree -> forest -> forest.
Coq <
Coq < Scheme tree_forest_rec := Induction for tree Sort Set
Coq < with forest_tree_rec := Induction for forest Sort Set.
```

You may now look at the type of tree_forest_rec:

```
Coq < Check tree_forest_rec.
tree_forest_rec
 : forall (P : tree -> Set) (P0 : forest -> Set),
 (forall (a : A) (f : forest), PO f -> P (node a f)) ->
 (forall b : B, PO (leaf b)) ->
 (forall t : tree, P t -> forall fl : forest, P0 fl -> P0 (cons t fl)) ->
 forall t : tree, P t
```

This principle involves two different predicates for trees and forests; it also has three premises each one corresponding to a constructor of one of the inductive definitions.

The principle tree_forest_rec shares exactly the same premises, only the conclusion now refers to the property of forests.

```
Coq < Check forest_tree_rec.
forest_tree_rec
 : forall (P : tree -> Set) (P0 : forest -> Set),
 (forall (a : A) (f : forest), PO f -> P (node a f)) ->
 (forall b : B, PO (leaf b)) ->
 (forall t : tree, P t -> forall fl : forest, PO fl -> PO (cons t fl)) ->
 forall f2 : forest, PO f2
```


## Example 2: Predicates odd and even on naturals

Let odd and even be inductively defined as:

```
Coq < Inductive odd : nat -> Prop :=
Coq < oddS : forall n:nat, even n -> odd (S n)
Coq < with even : nat -> Prop :=
Coq < | evenO : even 0
Coq < | evenS : forall n:nat, odd n -> even (S n).
```

The following command generates a powerful elimination principle:

```
Coq < Scheme odd_even := Minimality for odd Sort Prop
Coq < with even_odd := Minimality for even Sort Prop.
odd_even, even_odd are recursively defined
```

The type of odd_even for instance will be:

```
Coq < Check odd_even.
odd_even
 : forall P PO : nat -> Prop,
 (forall n : nat, even n -> PO n -> P (S n)) ->
 PO O ->
 (forall n : nat, odd n -> P n -> PO (S n)) ->
 forall n : nat, odd n -> P n
```

The type of even_odd shares the same premises but the conclusion is ( $n$ : nat) (even $n$ ) -> (Q n).

### 10.3.1 Combined Scheme

We can define the induction principles for trees and forests using:

```
Coq < Scheme tree_forest_ind := Induction for tree Sort Prop
Coq < with forest_tree_ind := Induction for forest Sort Prop.
Toplevel input, characters 40-44
> Scheme tree_forest_ind := Induction for tree Sort Prop
>
Error: The reference tree was not found in the current environment
```

Then we can build the combined induction principle:

```
Coq < Combined Scheme tree_forest_mutind from tree_forest_ind, forest_tree_ind.
Toplevel input, characters 55-56
> Combined Scheme tree_forest_mutind from tree_forest_ind, forest_tree_ind.
>
Syntax error: '.' or '...' expected after [tactic:tactic] (in [subgoal_command])
```

The type of tree_forest_mutrec will be:

```
Coq < Check tree_forest_mutind.
Toplevel input, characters 6-24
> Check tree_forest_mutind.
> ^^^^^^^^^^^^^^^^^^^^
Error: The reference tree_forest_mutind was not found in the current
environment
```


### 10.4 Functional Scheme and functional induction

## Example 1: Induction scheme for div2

We define the function $\operatorname{div} 2$ as follows:

```
Coq < Require Import Arith.
Coq < Fixpoint div2 (n:nat) : nat :=
Coq < match n with
Coq < | O => 0
Coq < | S O => 0
Coq < | S (S n') => S (div2 n')
Coq < end.
```

The definition of a principle of induction corresponding to the recursive structure of div2 is defined by the command:

```
Coq < Functional Scheme div2_ind := Induction for div2 Sort Prop.
div2_equation is defined
div2_ind is defined
```

You may now look at the type of div2_ind:

```
Coq < Check div2_ind.
div2_ind
 : forall P : nat -> nat -> Prop,
 (forall n : nat, n = 0 -> P 0 0) ->
 (forall n nO : nat, n = S nO -> n0 = 0 -> P 1 0) ->
 (forall n n0 : nat,
 n = S nO ->
 forall n' : nat,
 n0 = S n' -> P n' (div2 n') -> P (S (S n')) (S (div2 n'))) ->
 forall n : nat, P n (div2 n)
```

We can now prove the following lemma using this principle:

```
Coq < Lemma div2_le' : forall n:nat, div2 n <= n.
Coq < intro n.
Coq < pattern n , (div2 n).
Coq < apply div2_ind; intros.
3 subgoals
```

```
 n : nat
```

    n : nat
    n0 : nat
    n0 : nat
    e : n0 = 0
    e : n0 = 0
    ============================
    ============================
        0<= 0
        0<= 0
    subgoal 2 is:
subgoal 2 is:
0 <= 1
0 <= 1
subgoal 3 is:
subgoal 3 is:
S (div2 n')}<=S (S n'
S (div2 n')}<=S (S n'
Coq < auto with arith.
Coq < simpl; auto with arith.
Coq < simpl; auto with arith.
Coq < Qed.

```
Coq < Qed.
```

We can use directly the functional induction (8.7.6) tactic instead of the pattern/apply trick:

```
Coq < Reset div2_le'.
Coq < Lemma div2_le : forall n:nat, div2 n <= n.
Coq < intro n.
Coq < functional induction (div2 n).
3 subgoals
 =============================
 0 <= 0
subgoal 2 is:
 0<= 1
subgoal 3 is:
 S (div2 n') <= S (S n')
Coq < auto with arith.
Coq < auto with arith.
Coq < auto with arith.
Coq < Qed.
```

Remark: There is a difference between obtaining an induction scheme for a function by using Function (section 2.3) and by using Functional Scheme after a normal definition using Fixpoint or Definition. See 2.3 for details.

Example 2: Induction scheme for tree_size
We define trees by the following mutual inductive type:

```
Coq < Variable A : Set.
Coq < Inductive tree : Set :=
Coq < node : A -> forest -> tree
Coq < with forest : Set :=
Coq < | empty : forest
Coq < | cons : tree -> forest -> forest.
```

We define the function tree_size that computes the size of a tree or a forest. Note that we use Function which generally produces better principles.

```
Coq < Function tree_size (t:tree) : nat :=
Coq < match t with
Coq < | node A f => S (forest_size f)
Coq < end
Coq < with forest_size (f:forest) : nat :=
Coq < match f with
Coq < | empty => 0
Coq < | cons t f' => (tree_size t + forest_size f')
Coq < end.
```

Remark: Function generates itself non mutual induction principles tree_size_ind and forest_size_ind:

```
Coq < Check tree_size_ind.
tree_size_ind
 : forall P : tree -> nat -> Prop,
 (forall (t : tree) (A : A) (f : forest),
 t = node A f -> P (node A f) (S (forest_size f))) ->
 forall t : tree, P t (tree_size t)
```

The definition of mutual induction principles following the recursive structure of tree_size and forest_size is defined by the command:

Coq < Functional Scheme tree_size_ind2 := Induction for tree_size Sort Prop
Coq < with forest_size_ind2 := Induction for forest_size Sort Prop.

You may now look at the type of tree_size_ind2:

```
Coq < Check tree_size_ind2.
tree_size_ind2
 : forall (P : tree -> nat -> Prop) (PO : forest -> nat -> Prop),
 (forall (t : tree) (A : A) (f : forest),
 t = node A f ->
 PO f (forest_size f) -> P (node A f) (S (forest_size f))) ->
 (forall fO: forest, f0 = empty -> PO empty 0) ->
 (forall (fl : forest) (t : tree) (f' : forest),
 f1 = cons t f' ->
 P t (tree_size t) ->
 PO f' (forest_size f') ->
 P0 (cons t f') (tree_size t + forest_size f')) ->
 forall t : tree, P t (tree_size t)
```


## $\mathbf{1 0 . 5}$ inversion

## Generalities about inversion

When working with (co)inductive predicates, we are very often faced to some of these situations:

- we have an inconsistent instance of an inductive predicate in the local context of hypotheses. Thus, the current goal can be trivially proved by absurdity.
- we have a hypothesis that is an instance of an inductive predicate, and the instance has some variables whose constraints we would like to derive.

The inversion tactics are very useful to simplify the work in these cases. Inversion tools can be classified in three groups:

1. tactics for inverting an instance without stocking the inversion lemma in the context; this includes the tactics (dependent) inversion and (dependent) inversion_clear.
2. commands for generating and stocking in the context the inversion lemma corresponding to an instance; this includes Derive (Dependent) Inversion and Derive (Dependent) Inversion_clear.
3. tactics for inverting an instance using an already defined inversion lemma; this includes the tactic inversion ...using.

As inversion proofs may be large in size, we recommend the user to stock the lemmas whenever the same instance needs to be inverted several times.

## Example 1: Non-dependent inversion

Let's consider the relation Le over natural numbers and the following variables:

```
Coq < Inductive Le : nat -> nat -> Set :=
Coq < | LeO : forall n:nat, Le 0 n
Coq< | LeS : forall n m:nat, Le n m -> Le (S n) (S m).
Coq < Variable P : nat -> nat -> Prop.
Coq < Variable Q : forall n m:nat, Le n m -> Prop.
```

For example, consider the goal:

```
Coq < Show.
1 subgoal
 n : nat
 m : nat
 H : Le (S n) m
 =============================
 Pnm
```

To prove the goal we may need to reason by cases on $H$ and to derive that $m$ is necessarily of the form $\left(S m_{0}\right)$ for certain $m_{0}$ and that $\left(L e n m_{0}\right)$. Deriving these conditions corresponds to prove that the only possible constructor of (Le ( S n ) m) is LeS and that we can invert the -> in the type of LeS. This inversion is possible because Le is the smallest set closed by the constructors LeO and LeS.

```
Coq < inversion_clear H.
1 subgoal
 n : nat
 m : nat
 m0 : nat
 HO : Le n mO
 =============================
 Pn (S mO)
```

Note that $m$ has been substituted in the goal for ( $\mathrm{S} \mathrm{m0}$ ) and that the hypothesis (Le $\mathrm{n} \mathrm{m0}$ ) has been added to the context.

Sometimes it is interesting to have the equality $m=\left(\begin{array}{ll}\mathrm{S} \mathrm{m0}\end{array}\right)$ in the context to use it after. In that case we can use inversion that does not clear the equalities:

```
Coq < Undo.
Coq < inversion H.
1 subgoal
```

```
n : nat
```

n : nat
m : nat
m : nat
H : Le (S n) m
H : Le (S n) m
n0 : nat
n0 : nat
m0 : nat
m0 : nat
H1 : Le n m0
H1 : Le n m0
HO : nO = n
HO : nO = n
H2 : S mO = m
H2 : S mO = m
=============================
=============================
P n (S m0)

```
 P n (S m0)
```


## Example 2: Dependent Inversion

Let us consider the following goal:

Coq < Show.
1 subgoal

```
n : nat
m : nat
H : Le (S n) m
=================-=-=-=====
 Q (S n) mH
```

As H occurs in the goal, we may want to reason by cases on its structure and so, we would like inversion tactics to substitute $H$ by the corresponding term in constructor form. Neither Inversion nor Inversion_clear make such a substitution. To have such a behavior we use the dependent inversion tactics:

```
Coq < dependent inversion_clear H.
```

1 subgoal
$n$ : nat

```
m : nat
m0 : nat
l : Le n m0
==============================
 Q (S n) (S m0) (LeS n m0 l)
```

Note that H has been substituted by (LeS $\mathrm{n} \mathrm{m0} \mathrm{l)} \mathrm{and} \mathrm{mby} \mathrm{( } \mathrm{~m} 0$ ).

## Example 3: using already defined inversion lemmas

For example, to generate the inversion lemma for the instance ( $\mathrm{Le}(\mathrm{S} \mathrm{n}$ ) m) and the sort Prop we do:

```
Coq < Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort
Coq < Prop.
Coq < Check leminv.
leminv
 : forall (n m : nat) (P : nat -> nat -> Prop),
 (forall m0 : nat, Le n m0 -> P n (S mO)) -> Le (S n) m -> P n m
```

Then we can use the proven inversion lemma:

```
Coq < Show.
1 subgoal
 n : nat
 m : nat
 H : Le (S n) m
 P n m
Coq < inversion H using leminv.
1 subgoal
 n : nat
 m : nat
 H : Le (S n) m
 ============================
 forall m0 : nat, Le n m0 -> P n (S m0)
```


## 10.6 autorewrite

Here are two examples of autorewrite use. The first one (Ackermann function) shows actually a quite basic use where there is no conditional rewriting. The second one (Mac Carthy function) involves conditional rewritings and shows how to deal with them using the optional tactic of the Hint Rewrite command.

## Example 1: Ackermann function

```
Coq < Require Import Arith.
Coq < Variable Ack :
Coq < nat -> nat -> nat.
```

```
Coq < Axiom Ack0 :
Coq < forall m:nat, Ack 0 m=S m.
Coq < Axiom Ackl : forall n:nat, Ack (S n) 0 = Ack n 1.
Coq < Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m).
Coq < Hint Rewrite Ack0 Ack1 Ack2 : base0.
Coq < Lemma ResAck0 :
Coq < Ack 3 2 = 29.
1 subgoal
 Ack 3 2 = 29
Coq < autorewrite with base0 using try reflexivity.
Proof completed.
```


## Example 2: Mac Carthy function

```
Coq < Require Import Omega.
Coq < Variable g :
Coq < nat -> nat -> nat.
Coq < Axiom g0 :
Coq < forall m:nat, g 0 m = m.
Coq < Axiom
Coq < g1 :
Coq < forall n m:nat,
Coq< (n>0) -> (m>100) -> g n m = g (pred n) (m - 10).
Coq < Axiom
Coq < g2 :
Coq < forall n m:nat,
Coq< (n>0) -> (m <= 100) -> g n m = g (S n) (m + 11).
Coq < Hint Rewrite g0 g1 g2 using omega : base1.
Coq < Lemma Resg0 :
Coq < g 1 110= 100.
1 subgoal
 ===========================
 g1110=100
Coq < autorewrite with basel using reflexivity || simpl.
Proof completed.
Coq < Lemma Resg1 : g 1 95=91.
1 subgoal
 =============================
 9 1 95=91
Coq < autorewrite with basel using reflexivity || simpl.
Proof completed.
```


## 10.7 quote

The tactic quote allows to use Barendregt's so-called 2-level approach without writing any ML code. Suppose you have a language $L$ of 'abstract terms' and a type $A$ of 'concrete terms' and a function $f$ : $L \rightarrow$ A. If $L$ is a simple inductive datatype and $f$ a simple fixpoint, quote $f$ will replace the head of current goal by a convertible term of the form ( $f t$ ). L must have a constructor of type: A $->L$.

Here is an example:

```
Coq < Require Import Quote.
Coq < Parameters A B C : Prop.
A is assumed
B is assumed
C is assumed
Coq < Inductive formula : Type :=
Coq < | f_and : formula -> formula -> formula (* binary constructor *)
Coq < | f_or : formula -> formula -> formula
Coq < | f_not : formula -> formula (* unary constructor *)
Coq < | f_true : formula (* 0-ary constructor *)
Coq < | f_const : Prop -> formula (* contructor for constants *).
formula is defined
formula_rect is defined
formula_ind is defined
formula_rec is defined
Coq < Fixpoint interp_f (f:
Coq < formula) : Prop :=
Coq < match f with
Coq < | f_and f1 f2 => interp_f f1 /\ interp_f f2
Coq < | f_or f1 f2 => interp_f f1 \/ interp_f f2
Coq < | f_not f1 => ~ interp_f fl
Coq < | f_true => True
Coq < | f_const c => c
Coq < end.
interp_f is recursively defined
Coq < Goal A /\ (A \/ True) /\ ~ B /\ (A <-> A).
1 subgoal
 A/\ (A \/ True) /\ ~ B/\ (A<-> A)
Coq < quote interp_f.
1 subgoal
```

```
 interp_f
```

    interp_f
        (f_and (f_const A)
        (f_and (f_const A)
            (f_and (f_or (f_const A) f_true)
            (f_and (f_or (f_const A) f_true)
                    (f_and (f_not (f_const B)) (f_const (A <-> A)))))
    ```
 (f_and (f_not (f_const B)) (f_const (A <-> A)))))
```

The algorithm to perform this inversion is: try to match the term with right-hand sides expression of f. If there is a match, apply the corresponding left-hand side and call yourself recursively on sub-terms.

If there is no match, we are at a leaf: return the corresponding constructor (here $f$ _const) applied to the term.

## Error messages:

1. quote: not a simple fixpoint

Happens when quote is not able to perform inversion properly.

### 10.7.1 Introducing variables map

The normal use of quote is to make proofs by reflection: one defines a function simplify : formula -> formula and proves a theorem simplify_ok: (f:formula) (interp_f (simplify f)) -> (interp_f f). Then, one can simplify formulas by doing:

```
quote interp_f.
apply simplify_ok.
compute.
```

But there is a problem with leafs: in the example above one cannot write a function that implements, for example, the logical simplifications $A \wedge A \rightarrow A$ or $A \wedge \neg A \rightarrow$ False. This is because the Prop is impredicative.

It is better to use that type of formulas:

```
Coq < Inductive formula : Set :=
Coq < | f_and : formula -> formula -> formula
Coq < | f_or : formula -> formula -> formula
Coq < | f_not : formula -> formula
Coq < | f_true : formula
Coq < | f_atom : index -> formula.
formula is defined
formula_rect is defined
formula_ind is defined
formula_rec is defined
```

index is defined in module quote. Equality on that type is decidable so we are able to simplify $A \wedge A$ into $A$ at the abstract level.

When there are variables, there are bindings, and quote provides also a type (varmap A) of bindings from index to any set A, and a function varmap_find to search in such maps. The interpretation function has now another argument, a variables map:

```
Coq < Fixpoint interp_f (vm:
Coq < varmap Prop) (f:formula) {struct f} : Prop :=
Coq < match f with
Coq < | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
Coq < | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
Coq < | f_not f1 => ~ interp_f vm f1
Coq < | f_true => True
Coq < | f_atom i => varmap_find True i vm
Coq< end.
interp_f is recursively defined
```

quote handles this second case properly:

```
Coq < Goal A /\ (B \/ A) /\ (A \/ ~ B).
1 subgoal
 A \ (B\ \ A) \ (A \/ ~ B
Coq < quote interp_f.
1 subgoal
 interp_f
 (Node_vm B (Node_vm A (Empty_vm Prop) (Empty_vm Prop)) (Empty_vm Prop))
 (f_and (f_atom (Left_idx End_idx))
 (f_and (f_or (f_atom End_idx) (f_atom (Left_idx End_idx)))
 (f_or (f_atom (Left_idx End_idx)) (f_not (f_atom End_idx)))))
```

It builds $v m$ and $t$ such that ( $f \mathrm{vm} t$ ) is convertible with the conclusion of current goal.

### 10.7.2 Combining variables and constants

One can have both variables and constants in abstracts terms; that is the case, for example, for the ring tactic (chapter 20). Then one must provide to quote a list of constructors of constants. For example, if the list is [ OS S ] then closed natural numbers will be considered as constants and other terms as variables.

Example:

```
Coq < Inductive formula : Type :=
Coq < | f_and : formula -> formula -> formula
Coq < | f_or : formula }->\mathrm{ formula }->\mathrm{ formula
Coq < | f_not : formula -> formula
Coq < | f_true : formula
Coq < | f_const : Prop -> formula (* constructor for constants *)
Coq < | f_atom : index -> formula.
Coq < Fixpoint interp_f
Coq < (vm: (* constructor for variables *)
Coq < varmap Prop) (f:formula) {struct f} : Prop :=
Coq < match f with
Coq< | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
Coq < | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
Coq < | f_not f1 => ~ interp_f vm fl
Coq < | f_true => True
Coq < | f_const c => c
Coq < | f_atom i => varmap_find True i vm
Coq < end.
Coq < Goal
Coq}<A/\(A \/ True) /\ ~ B /\ (C <-> C)
Coq < quote interp_f [A B].
1 subgoal
 interp_f (Node_vm (C <-> C) (Empty_vm Prop) (Empty_vm Prop))
```

```
(f_and (f_const A)
 (f_and (f_or (f_const A) f_true)
 (f_and (f_not (f_const B)) (f_atom End_idx))))
Coq < Undo.
1 subgoal
```

```
 A/\ (A \/ True) /\ ~ B \ (C <-> C)
```

        A/\ (A \/ True) /\ ~ B \ (C <-> C)
    Coq < quote interp_f [ B C iff ].
Coq < quote interp_f [ B C iff ].
1 subgoal

```
1 subgoal
```

```
 interp_f (Node_vm A (Empty_vm Prop) (Empty_vm Prop))
```

    interp_f (Node_vm A (Empty_vm Prop) (Empty_vm Prop))
        (f_and (f_atom End_idx)
        (f_and (f_atom End_idx)
            (f_and (f_or (f_atom End_idx) f_true)
            (f_and (f_or (f_atom End_idx) f_true)
                (f_and (f_not (f_const B)) (f_const (C <-> C)))))
    ```
 (f_and (f_not (f_const B)) (f_const (C <-> C)))))
```

Warning: Since function inversion is undecidable in general case, don't expect miracles from it!
See also: comments of source file tactics/contrib/polynom/quote.ml
See also: the ring tactic (Chapter 20)

### 10.8 Using the tactical language

### 10.8.1 About the cardinality of the set of natural numbers

A first example which shows how to use the pattern matching over the proof contexts is the proof that natural numbers have more than two elements. The proof of such a lemma can be done as follows:

```
Coq < Lemma card_nat :
Coq < ~ (exists x : nat, exists y : nat, forall z:nat, x = z \/ y = z).
Coq < Proof.
Coq < red; intros (x, (y, Hy)).
Coq < elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;
Coq < match goal with
Coq < | [_:(?a = ?b),_:(?a = ?c) |- _] =>
Coq < cut (b = c); [discriminate | apply trans_equal with a; auto]
Coq < end.
Coq < Qed.
```

We can notice that all the (very similar) cases coming from the three eliminations (with three distinct natural numbers) are successfully solved by a match goal structure and, in particular, with only one pattern (use of non-linear matching).

### 10.8.2 Permutation on closed lists

Another more complex example is the problem of permutation on closed lists. The aim is to show that a closed list is a permutation of another one.

First, we define the permutation predicate as shown in table 10.1.

```
Coq < Section Sort.
Coq < Variable A : Set.
Coq < Inductive permut : list A -> list A -> Prop :=
Coq < | permut_refl : forall l, permut l l
Coq < | permut_cons :
Coq < forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1)
Coq < | permut_append : forall a l, permut (a :: l) (l ++ a :: nil)
Coq < | permut_trans :
Coq < forall lO l1 l2, permut lO l1 -> permut l1 l2 -> permut l0 l2.
Coq < End Sort.
```

Figure 10.1: Definition of the permutation predicate

```
Coq < Ltac Permut n :=
Coq < match goal with
Coq < | |- (permut _ ?l ?l) => apply permut_refl
Coq < | |- (permut _ (?a :: ?l1) (?a :: ?l2)) =>
Coq < let newn := eval compute in (length l1) in
Coq < (apply permut_cons; Permut newn)
Coq < | |- (permut ?A (?a :: ?l1) ?l2) =>
Coq < match eval compute in n with
Coq < | 1 => fail
Coq < | _ =>
Coq < let l1' := constr:(l1 ++ a :: nil) in
Coq < (apply (permut_trans A (a :: l1) l1' l2);
Coq < [apply permut_append | compute; Permut (pred n)])
Coq < end
Coq < end.
Permut is defined
Coq < Ltac PermutProve :=
Coq < match goal with
Coq < | |- (permut _ ?l1 ?l2) =>
Coq < match eval compute in (length l1 = length l2) with
Coq < | (?n = ?n) => Permut n
Coq < end
Coq < end.
PermutProve is defined
```

Figure 10.2: Permutation tactic

A more complex example is the problem of permutation on closed lists. The aim is to show that a closed list is a permutation of another one. First, we define the permutation predicate as shown on Figure 10.1.

Next, we can write naturally the tactic and the result can be seen on Figure 10.2. We can notice that we use two toplevel definitions PermutProve and Permut. The function to be called is PermutProve which computes the lengths of the two lists and calls Permut with the length if the two lists have the same length. Permut works as expected. If the two lists are equal, it concludes. Otherwise, if the lists have identical first elements, it applies Permut on the tail of the lists. Finally, if the lists have different first elements, it puts the first element of one of the lists (here the second one which
appears in the permut predicate) at the end if that is possible, i.e., if the new first element has been at this place previously. To verify that all rotations have been done for a list, we use the length of the list as an argument for Permut and this length is decremented for each rotation down to, but not including, 1 because for a list of length $n$, we can make exactly $n-1$ rotations to generate at most $n$ distinct lists. Here, it must be noticed that we use the natural numbers of COQ for the rotation counter. On Figure 9.1, we can see that it is possible to use usual natural numbers but they are only used as arguments for primitive tactics and they cannot be handled, in particular, we cannot make computations with them. So, a natural choice is to use CoQ data structures so that CoQ makes the computations (reductions) by eval compute in and we can get the terms back by match.

With PermutProve, we can now prove lemmas as follows:

```
Coq < Lemma permut_ex1 :
Coq < permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).
Coq < Proof. PermutProve. Qed.
Coq < Lemma permut_ex2 :
Coq < permut nat
Coq< (0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 : 0 nil)
Coq< (0 :: 2 :: 4 :: 6 :: 8 :: 9 : % 7 : : 5 :: 3 :: 1 :: nil).
Coq < Proof. PermutProve. Qed.
```


### 10.8.3 Deciding intuitionistic propositional logic

The pattern matching on goals allows a complete and so a powerful backtracking when returning tactic values. An interesting application is the problem of deciding intuitionistic propositional logic. Considering the contraction-free sequent calculi LJT* of Roy Dyckhoff ([50]), it is quite natural to code such a tactic using the tactic language as shown on Figures 10.3 and 10.4. The tactic Axioms tries to conclude using usual axioms. The tactic DS implif applies all the reversible rules of Dyckhoff's system. Finally, the tactic TautoProp (the main tactic to be called) simplifies with DSimplif, tries to conclude with Axioms and tries several paths using the backtracking rules (one of the four Dyckhoff's rules for the left implication to get rid of the contraction and the right or).

For example, with TautoProp, we can prove tautologies like those:

```
Coq < Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B.
Coq < Proof. TautoProp. Qed.
Coq < Lemma tauto_ex2 :
Coq < forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.
Coq < Proof. TautoProp. Qed.
```

```
Coq < Ltac Axioms :=
Coq < match goal with
Coq < | |- True => trivial
Coq < | _:False | - _ => elimtype False; assumption
Coq < | _:?A |- ?A => auto
Coq < end.
Axioms is defined
```

Figure 10.3: Deciding intuitionistic propositions (1)

```
Coq < Ltac DSimplif :=
Coq < repeat
Coq < (intros;
Coq < match goal with
Coq < | id: (~ _) | _ _ => red in id
Coq < | id:(_ /\ _) | - _ =>
Coq < elim id; do 2 intro; clear id
Coq < | id:(_ \/ _) |- _ =>
Coq < elim id; intro; clear id
Coq < | id:(?A /\ ?B -> ?C) |- _ =>
Coq < cut (A -> B -> C);
Coq < [intro | intros; apply id; split; assumption]
Coq < | id:(?A \/ ?B -> ?C) | - _ =>
Coq < cut (B -> C);
Coq < [cut (A -> C);
Coq < [intros; clear id
Coq < | intro; apply id; left; assumption]
Coq < | intro; apply id; right; assumption]
Coq < | id0:(?A -> ?B),idl:?A | _ _ =>
Coq < cut B; [intro; clear idO | apply idO; assumption]
Coq < | |- (_ /\ _) => split
Coq < | | - (~ _) => red
Coq < end).
DSimplif is defined
Coq < Ltac TautoProp :=
Coq < DSimplif;
Coq < Axioms ||
Coq < match goal with
Coq < | id:((?A -> ?B) -> ?C) | _ _ =>
Coq < cut (B -> C);
Coq < [intro; cut (A -> B);
Coq < [intro; cut C;
Coq < [intro; clear id | apply id; assumption]
Coq < | clear id]
Coq < | intro; apply id; intro; assumption]; TautoProp
Coq < | id:(~ ?A -> ?B) | _ _ =>
Coq < cut (False -> B);
Coq < [intro; cut (A -> False);
Coq < [intro; cut B;
Coq < [intro; clear id | apply id; assumption]
Coq < | clear id]
Coq < | intro; apply id; red; intro; assumption]; TautoProp
Coq < | | (_ \/ _) => (left; TautoProp) || (right; TautoProp)
Coq < end.
TautoProp is defined
```

Figure 10.4: Deciding intuitionistic propositions (2)

### 10.8.4 Deciding type isomorphisms

A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we choose to use the isomorphisms of the simply typed $\lambda$-calculus with Cartesian product and unit type (see, for

```
Coq < Open Scope type_scope.
Coq < Section Iso_axioms.
Coq < Variables A B C : Set.
Coq < Axiom Com : A * B = B * A.
Coq < Axiom Ass : A * (B*C) = A * B * C.
Coq < Axiom Cur : (A * B -> C) = (A -> B -> C).
Coq < Axiom Dis : (A -> B * C) = (A -> B) * (A -> C).
Coq < Axiom P_unit : A * unit = A.
Coq < Axiom AR_unit : (A -> unit) = unit.
Coq < Axiom AL_unit : (unit -> A) = A.
Coq < Lemma Cons : B = C - A * B = A * C.
Coq < Proof.
Coq < intro Heq; rewrite Heq; apply refl_equal.
Coq < Qed.
Coq < End Iso_axioms.
```

Figure 10.5: Type isomorphism axioms
example, [39]). The axioms of this $\lambda$-calculus are given by table 10.5 .
A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we choose to use the isomorphisms of the simply typed $\lambda$-calculus with Cartesian product and unit type (see, for example, [39]). The axioms of this $\lambda$-calculus are given on Figure 10.5.

The tactic to judge equalities modulo this axiomatization can be written as shown on Figures 10.6 and 10.7. The algorithm is quite simple. Types are reduced using axioms that can be oriented (this done by MainSimplif). The normal forms are sequences of Cartesian products without Cartesian product in the left component. These normal forms are then compared modulo permutation of the components (this is done by CompareStruct). The main tactic to be called and realizing this algorithm is IsoProve.

Here are examples of what can be solved by IsoProve.

```
Coq < Lemma isos_ex1 :
Coq < forall A B:Set, A * unit * B = B * (unit * A).
Coq < Proof.
Coq < intros; IsoProve.
Coq < Qed.
Coq <
Coq < Lemma isos_ex2 :
Coq < forall A B C:Set,
Coq < (A * unit }->B* (C*unit)) =
Coq < (A * unit }->(\textrm{C}->>\mathrm{ unit) * C) * (unit -> A -> B).
Coq < Proof.
Coq < intros; IsoProve.
```

```
Coq < Ltac DSimplif trm :=
Coq < match trm with
Coq < | (?A * ?B * ?C) =>
Coq < rewrite <- (Ass A B C); try MainSimplif
Coq < | (?A * ?B -> ?C) =>
Coq < rewrite (Cur A B C); try MainSimplif
Coq < | (?A -> ?B * ?C) =>
Coq < rewrite (Dis A B C); try MainSimplif
Coq < | (?A * unit) =>
Coq < rewrite (P_unit A); try MainSimplif
Coq < | (unit * ?B) =>
Coq < rewrite (Com unit B); try MainSimplif
Coq < | (?A -> unit) =>
Coq < rewrite (AR_unit A); try MainSimplif
Coq < | (unit -> ?B) =>
Coq < rewrite (AL_unit B); try MainSimplif
Coq < | (?A * ?B) =>
Coq < (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
Coq < | (?A -> ?B) =>
Coq < (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
Coq < end
Coq < with MainSimplif :=
Coq < match goal with
Coq < | |- (?A = ?B) => try DSimplif A; try DSimplif B
Coq < end.
DSimplif is defined
MainSimplif is defined
Coq < Ltac Length trm :=
Coq < match trm with
Coq < | (_ * ?B) => let succ := Length B in constr:(S succ)
Coq < | _ => constr:1
Coq < end.
Length is defined
Coq < Ltac assoc := repeat rewrite <- Ass.
assoc is defined
```

Figure 10.6: Type isomorphism tactic (1)

Coq < Qed.

```
Coq < Ltac DoCompare n :=
Coq < match goal with
Coq < | [|- (?A = ?A)] => apply refl_equal
Coq < | [|- (?A * ?B = ?A * ?C)] =>
Coq < apply Cons; let newn := Length B in
Coq < DoCompare newn
Coq < | [|- (?A * ?B = ?C)] =>
Coq < match eval compute in n with
Coq < | 1 => fail
Coq < | _ =>
Coq < pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n)
Coq < end
Coq < end.
DoCompare is defined
Coq < Ltac CompareStruct :=
Coq < match goal with
Coq < | [|- (?A = ?B)] =>
Coq< let l1 := Length A
Coq < with l2 := Length B in
Coq < match eval compute in (l1 = l2) with
Coq < | (?n = ?n) => DoCompare n
Coq < end
Coq < end.
CompareStruct is defined
Coq < Ltac IsoProve := MainSimplif; CompareStruct.
IsoProve is defined
```

Figure 10.7: Type isomorphism tactic (2)

## Part III

## User extensions

## Chapter 11

## Syntax extensions and interpretation scopes

In this chapter, we introduce advanced commands to modify the way COQ parses and prints objects, i.e. the translations between the concrete and internal representations of terms and commands. The main commands are Notation and Infix which are described in section 11.1. It also happens that the same symbolic notation is expected in different contexts. To achieve this form of overloading, CoQ offers a notion of interpretation scope. This is described in section 11.2.
Remark: The commands Grammar, Syntax and Distfix which were present for a while in CoQ are no longer available from CoQ version 8.0. The underlying AST structure is also no longer available. The functionalities of the command Syntactic Definition are still available, see section 11.3.

### 11.1 Notations

### 11.1.1 Basic notations

A notation is a symbolic abbreviation denoting some term or term pattern.
A typical notation is the use of the infix symbol $/ \backslash$ to denote the logical conjunction (and). Such a notation is declared by

```
Coq < Notation "A /\ B" := (and A B).
```

The expression (and A B) is the abbreviated term and the string "A $\triangle$ B" (called a notation) tells how it is symbolically written.

A notation is always surrounded by double quotes (excepted when the abbreviation is a single ident, see 11.3). The notation is composed of tokens separated by spaces. Identifiers in the string (such as A and B) are the parameters of the notation. They must occur at least once each in the denoted term. The other elements of the string (such as $/ \backslash$ ) are the symbols.

An identifier can be used as a symbol but it must be surrounded by simple quotes to avoid the confusion with a parameter. Similarly, every symbol of at least 3 characters and starting with a simple quote must be quoted (then it starts by two single quotes). Here is an example.

```
Coq < Notation "'IF' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3).
```

A notation binds a syntactic expression to a term. Unless the parser and pretty-printer of COQ already know how to deal with the syntactic expression (see 11.1.7), explicit precedences and associativity rules have to be given.

## 11．1．2 Precedences and associativity

Mixing different symbolic notations in a same text may cause serious parsing ambiguity．To deal with the ambiguity of notations，CoQ uses precedence levels ranging from 0 to 100 （plus one extra level numbered 200）and associativity rules．

Consider for example the new notation
Coq＜Notation＂A \／B＂：＝（or A B）．
Clearly，an expression such as（A：Prop）True／\A／A $\backslash /$ False is ambiguous．To tell the CoQ parser how to interpret the expression，a priority between the symbols $/ \backslash$ and $\backslash /$ has to be given．Assume for instance that we want conjunction to bind more than disjunction．This is expressed by assigning a precedence level to each notation，knowing that a lower level binds more than a higher level．Hence the level for disjunction must be higher than the level for conjunction．

Since connectives are the less tight articulation points of a text，it is reasonable to choose levels not so far from the higher level which is 100 ，for example 85 for disjunction and 80 for conjunction ${ }^{1}$ ．

Similarly，an associativity is needed to decide whether True $/ \backslash$ False $/ \backslash$ False defaults to True $八$（False $/ \backslash$ False）（right associativity）or to（True $八$ False）$八$ False（left associativity）．We may even consider that the expression is not well－formed and that parentheses are mandatory（this is a＂no associativity＂）${ }^{2}$ ．We don＇t know of a special convention of the associativity of disjunction and conjunction，let＇s apply for instance a right associativity（which is the choice of CoQ）．

Precedence levels and associativity rules of notations have to be given between parentheses in a list of modifiers that the Notation command understands．Here is how the previous examples refine．

```
Coq < Notation "A /\ B" := (and A B) (at level 80, right associativity).
Coq < Notation "A \/ B" := (or A B) (at level 85, right associativity).
```

By default，a notation is considered non associative，but the precedence level is mandatory（except for special cases whose level is canonical）．The level is either a number or the mention next level whose meaning is obvious．The list of levels already assigned is on Figure 3．1．

## 11．1．3 Complex notations

Notations can be made from arbitraly complex symbols．One can for instance define prefix notations．

```
Coq < Notation "~ x" := (not x) (at level 75, right associativity).
```

One can also define notations for incomplete terms，with the hole expected to be inferred at typing time．

```
Coq < Notation "x = y" := (@eq _ x y) (at level 70, no associativity).
```

One can define closed notations whose both sides are symbols．In this case，the default precedence level for inner subexpression is 200 ．

```
Coq < Notation "(x , y)" := (@pair _ _ x y) (at level 0).
```

[^16]One can also define notations for binders

```
Coq < Notation "{ x : A | P }" := (sig A (fun x => P)) (at level 0).
```

In the last case though, there is a conflict with the notation for type casts. This last notation, as shown by the command Print Grammar constr is at level 100. To avoid $x$ : A being parsed as a type cast, it is necessary to put $x$ at a level below 100, typically 99 . Hence, a correct definition is

```
Coq < Notation "{ x : A | P }" := (sig A (fun x => P)) (at level 0, x at level 99)
```

See the next section for more about factorization.

### 11.1.4 Simple factorization rules

CoQ extensible parsing is performed by Camlp4 which is essentially a LL1 parser. Hence, some care has to be taken not to hide already existing rules by new rules. Some simple left factorization work has to be done. Here is an example.

```
Coq < Notation "x < y" := (lt x y) (at level 70).
Coq < Notation "x < y < z" := (x < y /\ y < z) (at level 70).
```

In order to factorize the left part of the rules, the subexpression referred by $y$ has to be at the same level in both rules. However the default behavior puts $y$ at the next level below 70 in the first rule (no associativity is the default), and at the level 200 in the second rule (level 200 is the default for inner expressions). To fix this, we need to force the parsing level of y , as follows.

```
Coq < Notation "x < y" := (lt x y) (at level 70).
Coq < Notation "x < y < z" := (x < y /\ y < z) (at level 70, y at next level).
```

For the sake of factorization with COQ predefined rules, simple rules have to be observed for notations starting with a symbol: e.g. rules starting with "\{" or "(" should be put at level 0 . The list of CoQ predefined notations can be found in chapter 3.

The command to display the current state of the CoQ term parser is

```
Print Grammar constr.
```


## Variant:

Print Grammar pattern.

This displays the state of the subparser of patterns (the parser used in the grammar of the match with constructions).

### 11.1.5 Displaying symbolic notations

The command Notation has an effect both on the COQ parser and on the COQ printer. For example:

```
Coq < Check (and True True).
True /\ True
 : Prop
```

However, printing, especially pretty-printing, requires more care than parsing. We may want specific indentations, line breaks, alignment if on several lines, etc.

The default printing of notations is very rudimentary. For printing a notation, a formatting box is opened in such a way that if the notation and its arguments cannot fit on a single line, a line break is inserted before the symbols of the notation and the arguments on the next lines are aligned with the argument on the first line.

A first, simple control that a user can have on the printing of a notation is the insertion of spaces at some places of the notation. This is performed by adding extra spaces between the symbols and parameters: each extra space (other than the single space needed to separate the components) is interpreted as a space to be inserted by the printer. Here is an example showing how to add spaces around the bar of the notation.

```
Coq < Notation "{{x : A | P } " := (sig (fun x : A => P))
Coq < (at level 0, x at level 99).
Coq < Check (sig (fun x : nat => x=x)).
{{x : nat | x = x }}
 : set
```

The second, more powerful control on printing is by using the format modifier. Here is an example

```
Coq < Notation "'If' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3)
Coq < (at level 200, right associativity, format
Coq < "'[v ' 'If' c1 '/' '[' 'then' c2 ']' '/' '[' 'else' c3 ']' ']'").
Defining 'If' as keyword
```

A format is an extension of the string denoting the notation with the possible following elements delimited by single quotes:

- extra spaces are translated into simple spaces
- tokens of the form '/ ' are translated into breaking point, in case a line break occurs, an indentation of the number of spaces after the "/" is applied (2 spaces in the given example)
- token of the form ' / /' force writing on a new line
- well-bracketed pairs of tokens of the form ' [ $\quad$ and $\left.{ }^{\prime}\right]^{\prime}$ are translated into printing boxes; in case a line break occurs, an extra indentation of the number of spaces given after the "[" is applied (4 spaces in the example)
- well-bracketed pairs of tokens of the form ' [hv ' and ']' are translated into horizontal-orelse-vertical printing boxes; if the content of the box does not fit on a single line, then every breaking point forces a newline and an extra indentation of the number of spaces given after the " [" is applied at the beginning of each newline ( 3 spaces in the example)
- well-bracketed pairs of tokens of the form ${ }^{\prime}\left[\mathrm{v}^{\prime} \text { and }{ }^{\prime}\right]^{\prime}$ are translated into vertical printing boxes; every breaking point forces a newline, even if the line is large enough to display the whole content of the box, and an extra indentation of the number of spaces given after the " [" is applied at the beginning of each newline

Thus, for the previous example, we get
Notations do not survive the end of sections. No typing of the denoted expression is performed at definition time. Type-checking is done only at the time of use of the notation.

```
Coq < Check
Coq < (IF_then_else (IF_then_else True False True)
Coq < (IF_then_else True False True)
Coq < (IF_then_else True False True)).
If If True
 then False
 else True
then If True
 then False
 else True
 else If True
 then False
 else True
 : Prop
```

Remark: Sometimes, a notation is expected only for the parser. To do so, the option only parsing is allowed in the list of modifiers of Notation.

### 11.1.6 The Infix command

The Infix command is a shortening for declaring notations of infix symbols. Its syntax is
Infix "symbol" := qualid ( modifier , ... , modifier ).
and it is equivalent to

```
Notation "x symbol y" := (qualid x y) (modifier,..., modifier).
```

where x and y are fresh names distinct from qualid. Here is an example.

```
Coq < Infix "/\" := and (at level 80, right associativity).
```


### 11.1.7 Reserving notations

A given notation may be used in different contexts. COQ expects all uses of the notation to be defined at the same precedence and with the same associativity. To avoid giving the precedence and associativity every time, it is possible to declare a parsing rule in advance without giving its interpretation. Here is an example from the initial state of CoQ.

```
Coq < Reserved Notation "x = y" (at level 70, no associativity).
```

Reserving a notation is also useful for simultaneously defined an inductive type or a recursive constant and a notation for it.

Remark: The notations mentioned on Figure 3.1 are reserved. Hence their precedence and associativity cannot be changed.

### 11.1.8 Simultaneous definition of terms and notations

Thanks to reserved notations, the inductive, coinductive, recursive and corecursive definitions can benefit of customized notations. To do this, insert a where notation clause after the definition of the (co)inductive type or (co)recursive term (or after the definition of each of them in case of mutual definitions). The exact syntax is given on Figure 11.1. Here are examples:

```
Coq < Inductive and (A B:Prop) : Prop := conj : A -> B -> A /\ B
Coq < where "A /\ B" := (and A B).
Coq < Fixpoint plus (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | O => m
Coq}<|S P=>S (p+m
Coq < end
Coq < where "n + m" := (plus n m).
```


### 11.1.9 Displaying informations about notations

To deactivate the printing of all notations, use the command
Unset Printing Notations.
To reactivate it, use the command

```
Set Printing Notations.
```

The default is to use notations for printing terms wherever possible.
See also: Set Printing All in section 2.9.

### 11.1.10 Locating notations

To know to which notations a given symbol belongs to, use the command
Locate symbol
where symbol is any (composite) symbol surrounded by quotes. To locate a particular notation, use a string where the variables of the notation are replaced by ",".

## Example:

```
Coq < Locate "exists".
Notation Scope
"'exists' x : t , p" := ex (fun x : t => p)
 : type_scope
 (default interpretation)
"'exists' x , p" := ex (fun x => p)
 : type_scope
 (default interpretation)
"'exists' ! x : A , P" := ex (unique (fun x : A => P))
 : type_scope
 (default interpretation)
"'exists' ! x , P" := ex (unique (fun x => P))
 : type_scope
```



Figure 11.1: Syntax of the variants of Notation
(default interpretation)

```
Coq < Locate "'exists' _ , _".
Notation Scope
"'exists' x , p" := ex (fun x => p)
 : type_scope
 (default interpretation)
```

See also: Section 6.2.10.

### 11.1.11 Notations with recursive patterns

An experimental mechanism is provided for declaring elementary notations including recursive patterns. The basic syntax is

```
Coq < Notation "[x ; .. ; y]" := (cons x .. (cons y nil) ..).
```

On the right-hand-side, an extra construction of the form . . $\left.f t_{1} \ldots t_{n}\right) \ldots$ can be used. Notice that . . is part of the COQ syntax while . . is just a meta-notation of this manual to denote a sequence of terms of arbitrary size.

This extra construction enclosed within . . , let's call it $t$, must be one of the argument of an applicative term of the form $\left(\begin{array}{llll}f & u_{1} & \ldots & u_{n}\end{array}\right)$. The sequences $t_{1} \ldots t_{n}$ and $u_{1} \ldots u_{n}$ must coincide everywhere but in two places. In one place, say the terms of indice $i$, we must have $u_{i}=t$. In the other place, say the terms of indice $j$, both $u_{j}$ and $t_{j}$ must be variables, say $x$ and $y$ which are bound by the notation string on the left-hand-side of the declaration. The variables $x$ and $y$ in the string must occur in a substring of the form " $x s \ldots s y$ " where . . is part of the syntax and $s$ is two times the same sequence of terminal symbols (i.e. symbols which are not variables).

These invariants must be satisfied in order the notation to be correct. The term $t_{i}$ is the terminating expression of the notation and the pattern $\left(\begin{array}{llllllll} & u_{1} & \ldots & u_{i-1} & {[I]} & u_{i+1} & \ldots & u_{j-1}\end{array}\right.$ [E] $\left.u_{j+1} \ldots u_{n}\right)$ is the iterating pattern. The hole $[\mathrm{I}]$ is the iterative place and the hole $[\mathrm{E}]$ is the enumerating place. Remark that if $j<i$, the iterative place comes after the enumerating place accordingly.

The notation parses sequences of tokens such that the subpart " $x s \ldots s y$ " parses any number of time (but at least one time) a sequence of expressions separated by the sequence of tokens $s$. The parsing phase produces a list of expressions which are used to fill in order the holes [E] of the iterating pattern which is nested as many time as the length of the list, the hole [I] being the nesting point. In the innermost occurrence of the nested iterating pattern, the hole [I] is finally filled with the terminating expression.

In the example above, $f$ is cons, $n=3$ (because cons has a hidden implicit argument!), $i=3$ and $j=2$. The terminating expression is nil and the iterating pattern is cons [E] [I]. Finally, the sequence $s$ is made of the single token " $;$ ". Here is another example.

Coq < Notation " ( $\mathrm{x}, \mathrm{y}, \ldots, \mathrm{z}$ )" : = (pair.. (pair x y) .. z) (at level 0).
Notations with recursive patterns can be reserved like standard notations, they can also be declared within interpretation scopes (see section 11.2).

### 11.1.12 Notations and binders

Notations can be defined for binders as in the example:

Coq < Notation " $\{\mathrm{x}: \mathrm{A} \mid \mathrm{P}\}$ " $:=(\operatorname{sig}(\mathrm{fun} \mathrm{x}: \mathrm{A}=>\mathrm{P})$ ) (at level 0 ).
The binding variables in the left-hand-side that occur as a parameter of the notation naturally bind all their occurrences appearing in their respective scope after instantiation of the parameters of the notation.

Contrastingly, the binding variables that are not a parameter of the notation do not capture the variables of same name that could appear in their scope after instantiation of the notation. E.g., for the notation

```
Coq < Notation "'exists_different' n" := (exists p:nat, p<>n) (at level 200).
```

the next command fails because $p$ does not bind in the instance of $n$.

```
Coq < Check (exists_different p).
Coq < Coq < Toplevel input, characters 144-145
> Check (exists_different p).
>
Error: The reference p was not found in the current environment
```

Remark: Binding variables must not necessarily be parsed using the ident entry. For factorization purposes, they can be said to be parsed at another level (e.g. x in " $\{\mathrm{x}$ : A | P \}" must be parsed at level 99 to be factorized with the notation " $\{\mathrm{A}\}+\{\mathrm{B}\}$ " for which A can be any term). However, even if parsed as a term, this term must at the end be effectively a single identifier.

### 11.1.13 Summary

Syntax of notations The different syntactic variants of the command Notation are given on Figure 11.1. The optional : scope is described in the section 11.2.

Remark: No typing of the denoted expression is performed at definition time. Type-checking is done only at the time of use of the notation.
Remark: Many examples of Notation may be found in the files composing the initial state of COQ (see directory \$COQLIB/theories/Init).
Remark: The notation " $\{\mathrm{x}\}$ " has a special status in such a way that complex notations of the form " $\mathrm{x}+\{\mathrm{y}\}$ " or " $\mathrm{x} *\{\mathrm{y}\}$ " can be nested with correct precedences. Especially, every notation involving a pattern of the form " $\{x\}$ " is parsed as a notation where the pattern " $\{x\}$ " has been simply replaced by " $x$ " and the curly brackets are parsed separately. E.g. " $y+\{z\}$ " is not parsed as a term of the given form but as a term of the form " $y+z$ " where $z$ has been parsed using the rule parsing " $\{x\}$ ". Especially, level and precedences for a rule including patterns of the form " $\{x\}$ " are relative not to the textual notation but to the notation where the curly brackets have been removed (e.g. the level and the associativity given to some notation, say " $\{\mathrm{y}\} \&\{\mathrm{z}\}$ " in fact applies to the underlying " $\{x$ \}"-free rule which is " y \& z ").

Persistence of notations Notations do not survive the end of sections. They survive modules unless the command Notation Local is used instead of Notation.

### 11.2 Interpretation scopes

An interpretation scope is a set of notations for terms with their interpretation. Interpretation scopes provides with a weak, purely syntactical form of notations overloading: a same notation, for instance the infix symbol + can be used to denote distinct definitions of an additive operator. Depending on which interpretation scopes is currently open, the interpretation is different. Interpretation scopes can include an interpretation for numerals and strings. However, this is only made possible at the Objective Caml level.

See Figure 11.1 for the syntax of notations including the possibility to declare them in a given scope. Here is a typical example which declares the notation for conjunction in the scope type_scope.

```
Notation "A /\ B" := (and A B) : type_scope.
```

Remark: A notation not defined in a scope is called a lonely notation.

### 11.2.1 Global interpretation rules for notations

At any time, the interpretation of a notation for term is done within a stack of interpretation scopes and lonely notations. In case a notation has several interpretations, the actual interpretation is the one defined by (or in) the more recently declared (or open) lonely notation (or interpretation scope) which defines this notation. Typically if a given notation is defined in some scope scope but has also an interpretation not assigned to a scope, then, if scope is open before the lonely interpretation is declared, then the lonely interpretation is used (and this is the case even if the interpretation of the notation in scope is given after the lonely interpretation: otherwise said, only the order of lonely interpretations and opening of scopes matters, and not the declaration of interpretations within a scope).

The initial state of CoQ declares three interpretation scopes and no lonely notations. These scopes, in opening order, are core_scope, type_scope and nat_scope.

The command to add a scope to the interpretation scope stack is
Open Scope scope.
It is also possible to remove a scope from the interpretation scope stack by using the command
Close Scope scope.
Notice that this command does not only cancel the last Open Scope scope but all the invocation of it.

Remark: Open Scope and Close Scope do not survive the end of sections where they occur. When defined outside of a section, they are exported to the modules that import the module where they occur.

## Variants:

1. Open Local Scope scope.
2. Close Local Scope scope.

These variants are not exported to the modules that import the module where they occur, even if outside a section.

### 11.2.2 Local interpretation rules for notations

In addition to the global rules of interpretation of notations, some ways to change the interpretation of subterms are available.

## Local opening of an interpretation scope

It is possible to locally extend the interpretation scope stack using the syntax (term)\% key (or simply term\%key for atomic terms), where key is a special identifier called delimiting key and bound to a given scope.

In such a situation, the term term, and all its subterms, are interpreted in the scope stack extended with the scope bound to key.

To bind a delimiting key to a scope, use the command

```
Delimit Scope scope with ident
```


## Binding arguments of a constant to an interpretation scope

It is possible to set in advance that some arguments of a given constant have to be interpreted in a given scope. The command is

```
Arguments Scope qualid [opt_scope ... opt_scope]
```

where the list is a list made either of _ or of a scope name. Each scope in the list is bound to the corresponding parameter of qualid in order. When interpreting a term, if some of the arguments of qualid are built from a notation, then this notation is interpreted in the scope stack extended by the scopes bound (if any) to these arguments.

See also: The command to show the scopes bound to the arguments of a function is described in section 2.

## Binding types of arguments to an interpretation scope

When an interpretation scope is naturally associated to a type (e.g. the scope of operations on the natural numbers), it may be convenient to bind it to this type. The effect of this is that any argument of a function that syntactically expects a parameter of this type is interpreted using scope. More precisely, it applies only if this argument is built from a notation, and if so, this notation is interpreted in the scope stack extended by this particular scope. It does not apply to the subterms of this notation (unless the interpretation of the notation itself expects arguments of the same type that would trigger the same scope).

More generally, any class (see chapter 16) can be bound to an interpretation scope. The command to do it is

Bind Scope scope with class

## Example:

```
Coq < Parameter U : Set.
U is assumed
Coq < Bind Scope U_scope with U.
Coq < Parameter Uplus : U -> U -> U.
Uplus is assumed
Coq < Parameter P : forall T:Set, T -> U -> Prop.
P \text { is assumed}
Coq < Parameter f : forall T:Set, T -> U.
f is assumed
Coq < Infix "+" := Uplus : U_scope.
Coq < Unset Printing Notations.
Coq < Open Scope nat_scope. (* Define + on the nat as the default for + *)
Coq<Check (fun x yl y2 z t => P_(x + t) ((f_ (y1 + y2) + z))).
fun (x yl y2 : nat) (z : U) (t : nat) =>
P nat (Peano.plus x t) (Uplus (f nat (Peano.plus yl y2)) z)
 : nat -> nat -> nat -> U -> nat -> Prop
```

Remark: The scope type_scope has also a local effect on interpretation. See the next section.
See also: The command to show the scopes bound to the arguments of a function is described in section 2.

### 11.2.3 The type_scope interpretation scope

The scope type_scope has a special status. It is a primitive interpretation scope which is temporarily activated each time a subterm of an expression is expected to be a type. This includes goals and statements, types of binders, domain and codomain of implication, codomain of products, and more generally any type argument of a declared or defined constant.

### 11.2.4 Interpretation scopes used in the standard library of COQ

We give an overview of the scopes used in the standard library of COQ. For a complete list of notations in each scope, use the commands Print Scopes or Print Scopes scope.

```
type_scope
```

This includes infix * for product types and infix + for sum types. It is delimited by key type.

```
nat_scope
```

This includes the standard arithmetical operators and relations on type nat. Positive numerals in this scope are mapped to their canonical representent built from O and S . The scope is delimited by key nat.

## N_scope

This includes the standard arithmetical operators and relations on type N (binary natural numbers). It is delimited by key N and comes with an interpretation for numerals as closed term of type z .

```
Z_scope
```

This includes the standard arithmetical operators and relations on type Z (binary integer numbers). It is delimited by key z and comes with an interpretation for numerals as closed term of type z .

```
positive_scope
```

This includes the standard arithmetical operators and relations on type posit ive (binary strictly positive numbers). It is delimited by key positive and comes with an interpretation for numerals as closed term of type positive.

## Q_scope

This includes the standard arithmetical operators and relations on type $Q$ (rational numbers defined as fractions of an integer and a strictly positive integer modulo the equality of the numerator-denominator cross-product). As for numerals, only 0 and 1 have an interpretation in scope Q_scope (their interpretations are $\frac{0}{1}$ and $\frac{1}{1}$ respectively).

## Qc_scope

This includes the standard arithmetical operators and relations on the type Qc of rational numbers defined as the type of irreducible fractions of an integer and a strictly positive integer.

```
real_scope
```

This includes the standard arithmetical operators and relations on type R (axiomatic real numbers). It is delimited by key R and comes with an interpretation for numerals as term of type R. The interpretation is based on the binary decomposition. The numeral 2 is represented by $1+1$. The interpretation $\phi(n)$ of an odd positive numerals greater $n$ than 3 is $1+(1+1) \star \phi((n-1) / 2)$. The interpretation $\phi(n)$ of an even positive numerals greater $n$ than 4 is $(1+1) * \phi(n / 2)$. Negative numerals are represented as the opposite of the interpretation of their absolute value. E.g. the syntactic object -11 is interpreted as $-(1+(1+1) *((1+1) *(1+(1+1))))$ where the unit 1 and all the operations are those of $R$.
bool_scope
This includes notations for the boolean operators. It is delimited by key bool.

```
list_scope
```

This includes notations for the list operators. It is delimited by key list.

```
core_scope
```

This includes the notation for pairs. It is delimited by key core.

```
string_scope
```

This includes notation for strings as elements of the type string. Special characters and escaping follow CoQ conventions on strings (see page 28). Especially, there is no convention to visualize non printable characters of a string. The file String.v shows an example that contains quotes, a newline and a beep (i.e. the ascii character of code 7).

```
char_scope
```

This includes interpretation for all strings of the form " $c$ " where $c$ is an ascii character, or of the form " $n n n$ " where $n n n$ is a three-digits number (possibly with leading 0 's), or of the form " " " ". Their respective denotations are the ascii code of $c$, the decimal ascii code $n n n$, or the ascii code of the character " (i.e. the ascii code 34), all of them being represented in the type ascii.

### 11.2.5 Displaying informations about scopes

Print Visibility
This displays the current stack of notations in scopes and lonely notations that is used to interpret a notation. The top of the stack is displayed last. Notations in scopes whose interpretation is hidden by the same notation in a more recently open scope are not displayed. Hence each notation is displayed only once.

## Variant:

```
Print Visibility scope
```

This displays the current stack of notations in scopes and lonely notations assuming that scope is pushed on top of the stack. This is useful to know how a subterm locally occurring in the scope of scope is interpreted.

## Print Scope scope

This displays all the notations defined in interpretation scope scope. It also displays the delimiting key if any and the class to which the scope is bound, if any.

```
Print Scopes
```

This displays all the notations, delimiting keys and corresponding class of all the existing interpretation scopes. It also displays the lonely notations.

### 11.3 Abbreviations

An abbreviation is a name denoting a (presumably) more complex expression. An abbreviation is a special form of notation with no parameter and only one symbol which is an identifier. This identifier is given with no quotes around. Example:

```
Coq < Notation List := (list nat).
```

An abbreviation expects no precedence nor associativity, since it can always be put at the lower level of atomic expressions, and associativity is irrelevant. Abbreviations are used as much as possible by the CoQ printers unless the modifier (only parsing) is given.

Abbreviations are bound to an absolute name like for an ordinary definition, and can be referred by partially qualified names too.

Abbreviations are syntactic in the sense that they are bound to expressions which are not typed at the time of the definition of the abbreviation but at the time it is used. Especially, abbreviation can be bound to terms with holes (i.e. with "_"). The general syntax for abbreviations is

```
Notation[Local] ident := term [(only parsing)].
```


## Example:

```
Coq < Definition explicit_id (A:Set) (a:A) := a.
explicit_id is defined
Coq < Notation id := (explicit_id _).
Coq < Check (id O).
id 0
 : nat
```

Abbreviations do not survive the end of sections. No typing of the denoted expression is performed at definition time. Type-checking is done only at the time of use of the abbreviation.

Remark: compatibility Abbreviations are similar to the syntactic definitions available in versions of COQ prior to version 8.0, except that abbreviations are used for printing (unless the modifier (only parsing) is given) while syntactic definitions were not.

### 11.4 Tactic Notations

Tactic notations allow to customize the syntax of the tactics of the tactic language ${ }^{3}$. Tactic notations obey the following syntax

```
sentence ::= Tactic Notation tactic_level[production_item ... production_item]
 := tactic .
production_item ::= string | tactic_argument_type (ident)
tactic_level ::= | (at level natural)
tactic_argument_type ::= ident|simple_intropattern|hyp
 | reference|constr
 integer
 | int_or_var|tactic|
```

[^17]A tactic notation Tactic Notation tactic_level [production_item ... production_item] : = tactic extends the parser and pretty-printer of tactics with a new rule made of the list of production items. It then evaluates into the tactic expression tactic. For simple tactics, it is recommended to use a terminal symbol, i.e. a string, for the first production item. The tactic level indicates the parsing precedence of the tactic notation. This information is particularly relevant for notations of tacticals. Levels 0 to 5 are available. To know the parsing precedences of the existing tacticals, use the command Print Grammar tactic.

Each type of tactic argument has a specific semantic regarding how it is parsed and how it is interpreted. The semantic is described in the following table. The last command gives examples of tactics which use the corresponding kind of argument.

Tactic argument type	parsed as	interpreted as	as in tactic
ident	identifier	a user-given name   an intro_pattern	intro
simple_intropattern	intro_pattern	intros	
hyp	identifier	an hypothesis defined in context	clear
reference	qualified identifier	a global reference of term	unfold
constr	term	a term	exact
integer	integer	an integer	do
int_or_var	identifier or integer	an integer	
tactic	a tactic		

Remark: In order to be bound in tactic definitions, each syntactic entry for argument type must include the case of simple $\mathcal{L}_{t a c}$ identifier as part of what it parses. This is naturally the case for ident, simple_intropattern, reference, constr, ... but not for integer. This is the reason for introducing a special entry int_or_var which evaluates to integers only but which syntactically includes identifiers in order to be usable in tactic definitions.

## Part IV

## Practical tools

## Chapter 12

## The COQ commands

There are two CoQ commands:

- coqtop: The CoQ toplevel (interactive mode) ;
- coqc: The CoQ compiler (batch compilation).

The options are (basically) the same for the two commands, and roughly described below. You can also look at the man pages of coqtop and coqc for more details.

### 12.1 Interactive use (coqtop)

In the interactive mode, also known as the COQ toplevel, the user can develop his theories and proofs step by step. The CoQ toplevel is run by the command coqtop.

They are two different binary images of COQ: the byte-code one and the native-code one (if Objective Caml provides a native-code compiler for your platform, which is supposed in the following). When invoking coqtop or coqc, the native-code version of the system is used. The command-line options -byte and -opt explicitly select the byte-code and the native-code versions, respectively.

The byte-code toplevel is based on a Caml toplevel (to allow the dynamic link of tactics). You can switch to the Caml toplevel with the command Drop., and come back to the CoQ toplevel with the command Toplevel.loop(); ;

### 12.2 Batch compilation (coqc)

The coqc command takes a name file as argument. Then it looks for a vernacular file named file.v, and tries to compile it into a file. vo file (See 6.4).

Warning: The name file must be a regular CoQ identifier, as defined in the section 1.1. It must only contain letters, digits or underscores (_). Thus it can be /bar/foo/toto.v but cannot be /bar/foo/to-to.v.

Notice that the -byte and -opt options are still available with coqc and allow you to select the byte-code or native-code versions of the system.

### 12.3 Resource file

When CoQ is launched, with either coqtop or coqc, the resource file \$HOME/.coqrc.7.0 is loaded, where $\$ H O M E$ is the home directory of the user. If this file is not found, then the file $\$ \mathrm{HOME} / . \mathrm{coqrc}$ is searched. You can also specify an arbitrary name for the resource file (see op-tion-init-file below), or the name of another user to load the resource file of someone else (see option-user).

This file may contain, for instance, Add LoadPath commands to add directories to the load path of CoQ. It is possible to skip the loading of the resource file with the option -q .

### 12.4 Environment variables

There are three environment variables used by the COQ system. \$COQBIN for the directory where the binaries are, $\$ C O Q L I B$ for the directory whrer the standard library is, and $\$ C O Q T O P$ for the directory of the sources. The latter is useful only for developers that are writing their own tactics and are using coq_makefile (see 13.3). If \$COQBIN or \$COQLIB are not defined, COQ will use the default values (defined at installation time). So these variables are useful only if you move the COQ binaries and library after installation.

### 12.5 Options

The following command-line options are recognized by the commands coqc and coqt op, unless stated otherwise:

```
-byte
```

Run the byte-code version of CoQ.
-opt
Run the native-code version of COQ.

- I directory, -include directory

Add directory to the searched directories when looking for a file.
-R directory dirpath
This maps the subdirectory structure of physical directory to logical dirpath and adds directory and its subdirectories to the searched directories when looking for a file.

## -七op dirpath

This sets the toplevel module name to dirpath instead of Top. Not valid for coqc.
-is file, -inputstate file

Cause CoQ to use the state put in the file file as its input state. The default state in initial.coq. Mainly useful to build the standard input state.

## -outputstate file

Cause CoQ to dump its state to file file.coq just after finishing parsing and evaluating all the arguments from the command line.

## -nois

Cause COQ to begin with an empty state. Mainly useful to build the standard input state.
-init-filefile
Take file as the resource file.
$-q$
Cause COQ not to load the resource file.
-user username
Take resource file of user username (that is ~username / . coqrc. 7.0) instead of yours.

## -load-ml-source file

Load the Caml source file file.
-load-ml-ob ject file
Load the Caml object file file.
-l file,-load-vernac-source file
Load CoQ file file . v
-lv file, -load-vernac-source-verbose file
Load COQ file file . v with a copy of the contents of the file on standard input.
-load-vernac-object file
Load CoQ compiled file file . vo
-requirefile
Load CoQ compiled file file . vo and import it (Require file).

- compilefile

This compiles file file.v into file.vo. This option implies options -batch and-silent. It is only available for coqtop.
-compile-verbose file
This compiles file file.v into file. vo with a copy of the contents of the file on standard input. This option implies options -batch and-silent. It is only available for coqtop.

## -verbose

This option is only for coqc. It tells to compile the file with a copy of its contents on standard input.

## -batch

Batch mode : exit just after arguments parsing. This option is only used by coqc.
-xml
This option is for use with coqc. It tells CoQ to export on the standard output the content of the compiled file into XML format.
-quality Improve the legibility of the proof terms produced by some tactics.
-emacs
Tells CoQ it is executed under Emacs.
-impredicative-set
Change the logical theory of CoQ by declaring the sort Set impredicative; warning: this is known to be inconsistent with some standard axioms of classical mathematics such as the functional axiom of choice or the principle of description
-dump-glob file
This dumps references for global names in file file (to be used by coqdoc, see 13.4)
-dont-load-proofs
This avoids loading in memory the proofs of opaque theorems resulting in a smaller memory requirement and faster compilation; warning: this invalidates some features such as the extraction tool.
-vm
This activates the use of the bytecode-based conversion algorithm for the current session (see section 6.9.1).
-image file
This option sets the binary image to be used to be file instead of the standard one. Not of general use.
-bindir directory
Set for coqc the directory containing CoQ binaries. It is equivalent to do export COQBIN=directory before lauching coqc.
-where
Print the CoQ's standard library location and exit.
$-\mathrm{v}$
Print the CoQ's version and exit.
-h, -help
Print a short usage and exit.

## Chapter 13

## Utilities

The distribution provides utilities to simplify some tedious works beside proof development, tactics writing or documentation.

### 13.1 Building a toplevel extended with user tactics

The native-code version of CoQ cannot dynamically load user tactics using Objective Caml code. It is possible to build a toplevel of COQ, with Objective Caml code statically linked, with the tool coqmktop.

For example, one can build a native-code CoQ toplevel extended with a tactic which source is in tactic.ml with the command
\% coqmktop -opt -o mytop.out tactic.cmx
where tactic.ml has been compiled with the native-code compiler ocamlopt. This command generates an executable called mytop. out. To use this executable to compile your COQ files, use coqc -image mytop.out.

A basic example is the native-code version of COQ (coqtop. opt), which can be generated by coqmktop -opt -o coqopt.opt.

Application: how to use the Objective Caml debugger with Coq. One useful application of coqmktop is to build a COQ toplevel in order to debug your tactics with the Objective Caml debugger. You need to have configured and compiled CoQ for debugging (see the file INSTALL included in the distribution). Then, you must compile the Caml modules of your tactic with the option $-g$ (with the bytecode compiler) and build a stand-alone bytecode toplevel with the following command:

```
% coqmktop -g -o coq-debug <your .cmofiles>
```

To launch the Objective Caml debugger with the image you need to execute it in an environment which correctly sets the COQLIB variable. Moreover, you have to indicate the directories in which ocamldebug should search for Caml modules.

A possible solution is to use a wrapper around ocamldebug which detects the executables containing the word coq. In this case, the debugger is called with the required additional arguments. In other cases, the debugger is simply called without additional arguments. Such a wrapper can be found in the dev / subdirectory of the sources.

### 13.2 Modules dependencies

In order to compute modules dependencies (so to use make), CoQ comes with an appropriate tool, coqdep.
coqdep computes inter-module dependencies for CoQ and Objective Caml programs, and prints the dependencies on the standard output in a format readable by make. When a directory is given as argument, it is recursively looked at.

Dependencies of COQ modules are computed by looking at Require commands (Require, Require Export, Require Import, Require Implementation), but also at the command Declare ML Module.

Dependencies of Objective Caml modules are computed by looking at open commands and the dot notation module.value. However, this is done approximatively and you are advised to use ocamldep instead for the Objective Caml modules dependencies.

See the man page of coqdep for more details and options.

### 13.3 Creating a Makefile for CoQ modules

When a proof development becomes large and is split into several files, it becomes crucial to use a tool like make to compile CoQ modules.

The writing of a generic and complete Makefile may be a tedious work and that's why CoQ provides a tool to automate its creation, coq_makefile. Given the files to compile, the command coq_makefile prints a Makefile on the standard output. So one has just to run the command:

$$
\% \text { coq_makefile file } . v \ldots \text { file }_{n} . v>\text { Makefile }
$$

The resulted Makefile has a target depend which computes the dependencies and puts them in a separate file . depend, which is included by the Makefile. Therefore, you should create such a file before the first invocation of make. You can for instance use the command

```
% touch .depend
```

Then, to initialize or update the modules dependencies, type in:

```
% make depend
```

There is a target all to compile all the files file $_{1} \ldots$ file $_{n}$, and a generic target to produce a $\cdot$ vo file from the corresponding . v file (so you can do make file. vo to compile the file file. v ).
coq_makefile can also handle the case of ML files and subdirectories. For more options type

```
% coq_makefile -help
```

Warning: To compile a project containing Objective Caml files you must keep the sources of CoQ somewhere and have an environment variable named COQTOP that points to that directory.

### 13.4 Documenting CoQ files with coqdoc

coqdoc is a documentation tool for the proof assistant CoQ, similar to javadoc or ocamldoc. The task of coqdoc is

1. to produce a nice $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ and/or HTML document from the CoQ sources, readable for a human and not only for the proof assistant;
2. to help the user navigating in his own (or third-party) sources.

### 13.4.1 Principles

Documentation is inserted into CoQ files as special comments. Thus your files will compile as usual, whether you use coqdoc or not. coqdoc presupposes that the given CoQ files are well-formed (at least lexically). Documentation starts with ( $* *$, followed by a space, and ends with the pending *). The documentation format is inspired by Todd A. Coram's Almost Free Text (AFT) tool: it is mainly ASCII text with some syntax-light controls, described below. coqdoc is robust: it shouldn't fail, whatever the input is. But remember: "garbage in, garbage out".

CoQ material inside documentation. CoQ material is quoted between the delimiters [and]. Square brackets may be nested, the inner ones being understood as being part of the quoted code (thus you can quote a term like $[x: T] u$ by writing [ $[\mathrm{x}: \mathrm{T}] \mathrm{u}]$ ). Inside quotations, the code is pretty-printed in the same way as it is in code parts.

Pre-formatted vernacular is enclosed by [ [ and ] ]. The former must be followed by a newline and the latter must follow a newline.

Pretty-printing. coqdoc uses different faces for identifiers and keywords. The pretty-printing of CoQ tokens (identifiers or symbols) can be controlled using one of the following commands:

```
(** printing token %...㓞EX...% #...HTML...# *)
```

or

```
(** printing token $...隹EX math...$ #...HTML...# *)
```

It gives the IATEX and HTML texts to be produced for the given CoQ token. One of the LATEX or HTML text may be ommitted, causing the default pretty-printing to be used for this token.

The printing for one token can be removed with

```
(** remove printing token *)
```

Initially, the pretty-printing table contains the following mapping:

$->$	$\rightarrow$	$<-$	$\leftarrow$	$\star$	$\times$
$<=$	$\leq$	$>=$	$\geq$	$=>$	$\Rightarrow$
$<>$	$\neq$	$<->$	$\leftrightarrow$		$1-$
$\backslash$					
$/$	$\vee$	$/ \backslash$	$\wedge$	$\sim$	$\neg$

Any of these can be overwritten or suppressed using the printing commands.
Important note: the recognition of tokens is done by a (ocaml)lex automaton and thus applies the longest-match rule. For instance, $->\sim$ is recognized as a single token, where CoQ sees two tokens. It is the responsability of the user to insert space between tokens or to give pretty-printing rules for the possible combinations, e.g.

```
(** printing ->~ %\ensuremath{->\lnot}% *)
```

Sections. Sections are introduced by 1 to 4 leading stars (i.e. at the beginning of the line). One star is a section, two stars a sub-section, etc. The section title is given on the remaining of the line. Example:

```
(** * Well-founded relations
 In this section, we introduce... *)
```

Lists. List items are introduced by 1 to 4 leading dashes. Deepness of the list is indicated by the number of dashes. List ends with a blank line. Example:

```
This module defines
 - the predecessor [pred]
 - the addition [plus]
 - order relations:
 -- less or equal [le]
 -- less [lt]
```

Rules. More than 4 leading dashes produce an horizontal rule.

Escapings to $\mathrm{IAT}_{\mathbf{E}} \mathbf{X}$ and HTML. Pure $\mathrm{LAT}_{\mathrm{E}} X$ or HTML material can be inserted using the following escape sequences:

- \$...LaTeX stuff... inserts some LATEX material in math mode. Simply discarded in HTML output.
- \% . . LaTeX stuff... \% inserts some IATEX material. Simply discarded in HTML output.
- \#... HTML stuff... \# inserts some HTML material. Simply discarded in ETEX output.

Verbatim. Verbatim material is introduced by a leading $\ll$ and closed by $\gg$. Example:

```
Here is the corresponding caml code:
<<
 let rec fact n =
 if n <= 1 then 1 else n * fact (n-1)
>>
```

Hyperlinks. Hyperlinks can be inserted into the HTML output, so that any identifier is linked to the place of its definition.

In order to get hyperlinks you need to first compile your CoQ file using coqc --dump-glob file; this appends COQ names resolutions done during the compilation to file file. Take care of erasing this file, if any, when starting the whole compilation process.

Then invoke coqdoc --glob-from file to tell coqdoc to look for name resolutions into the file file.

Identifiers from the CoQ standard library are linked to the CoQ web site at http://coq.inria. fr/library/. This behavior can be changed using command line options--no-externals and --coqlib; see below.

Hiding / Showing parts of the source. Some parts of the source can be hidden using command line options $-g$ and -1 (see below), or using such comments:

```
(* begin hide *)
some Coq material
(* end hide *)
```

Conversely, some parts of the source which would be hidden can be shown using such comments:

```
(* begin show *)
some Coq material
(* end show *)
```

The latter cannot be used around some inner parts of a proof, but can be used around a whole proof.

### 13.4.2 Usage

coqdoc is invoked on a shell command line as follows:

```
coqdoc < options and files >
```

Any command line argument which is not an option is considered to be a file (even if it starts with a -). CoQ files are identified by the suffixes .v and . $g$ and $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ files by the suffix. tex.

## HTML output

This is the default output. One HTML file is created for each CoQ file given on the command line, together with a file index. html (unless option -no-index is passed). The HTML pages use a style sheet named style.css. Such a file is distributed with coqdoc.

## ${ }^{\mathrm{L}} \mathbf{T}_{\mathrm{E}} \mathrm{X}$ output

A single LATEX file is created, on standard output. It can be redirected to a file with option -0 . The order of files on the command line is kept in the final document. LATEX files given on the command 2 line are copied 'as is' in the final document. DVI and PostScript can be produced directly with the options -dvi and -ps respectively.

## TEXmacs output

To translate the input files to $\mathrm{T}_{\mathrm{E}} \mathrm{Xmacs}$ format, to be used by the $\mathrm{T}_{\mathrm{E}} \mathrm{Xmacs}$ Coq interface (see http://www-sop.inria.fr/lemme/Philippe.Audebaud/tmcoq/).

## Command line options

## Overall options

## --html

Select a HTML output.

## --latex

Select a LATEX output.
--dvi
Select a DVI output.

## --ps

Select a PostScript output.

## --texmacs

Select a TEXmacs output.
-stdout
Write output to stdout.
-o file, --output file
Redirect the output into the file 'file' (meaningless with -html).
-d dir, --directory dir
Output files into directory 'dir' instead of current directory (option - d does not change the filename specified with option -o, if any).
-s , --short
Do not insert titles for the files. The default behavior is to insert a title like "Library Foo" for each file.

## -t string, --title string

Set the document title.

## --body-only

Suppress the header and trailer of the final document. Thus, you can insert the resulting document into a larger one.

## -p string, --preamble string

Insert some material in the LETEX preamble, right before \begin } \{ document \} (meaningless with -html).

## --vernac-file file,--tex-file file

Considers the file 'file' respectively as a. v (or. g ) file or a .tex file.
--files-from file
Read file names to process in file 'file' as if they were given on the command line. Useful for program sources splitted in several directories.

## -q, --quiet

Be quiet. Do not print anything except errors.

## -h, --help

Give a short summary of the options and exit.

## $-v,--v e r s i o n$

Print the version and exit.

## Index options

Default behavior is to build an index, for the HTML output only, into index. html.

```
--no-index
```

Do not output the index.

## --multi-index

Generate one page for each category and each letter in the index, together with a top page index.html.

## Table of contents option

## -toc, --table-of-contents

Insert a table of contents. For a LATEX output, it inserts a $\backslash$ tableofcontents at the beginning of the document. For a HTML output, it builds a table of contents into toc.html.

## Hyperlinks options

## --glob-from file

Make references using COQ globalizations from file file. (Such globalizations are obtained with CoQ option-dump-glob).

## --no-externals

Do not insert links to the CoQ standard library.
--coqlib url
Set base URL for the CoQ standard library (default is http: / /coq.inria.fr/library/).

## -R dir coqdir

Map physical directory dir to COQ logical directory coqdir (similarly to COQ option -R).
Note: option -R only has effect on the files following it on the command line, so you will probably need to put this option first.

## Contents options

## -g, --gallina

Do not print proofs.

## -1,--light

Light mode. Suppress proofs (as with -g ) and the following commands:

- [Recursive] Tactic Definition
- Hint / Hints
- Require
- Transparent / Opaque
- Implicit Argument / Implicits
- Section / Variable / Hypothesis / End

The behavior of options -g and -1 can be locally overridden using the (* begin show *) ... (* end show *) environment (see above).

## Language options

Default behavior is to assume ASCII 7 bits input files.

## -latin1, --latin1

Select ISO-8859-1 input files. It is equivalent to -inputenc latin1 -charset iso-8859-1.
-utf8, --utf8
Select UTF-8 (Unicode) input files. It is equivalent to -inputenc utf8-charset utf-8. LATEX UTF-8 support can be found at http://www.ctan.org/tex-archive/macros/ latex/contrib/supported/unicode/.

## --inputenc string

Give a $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ input encoding, as an option to $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ package inputenc.

## --charset string

Specify the HTML character set, to be inserted in the HTML header.

### 13.4.3 The coqdoc $\mathrm{ET}_{\mathbf{E}} \mathrm{X}$ style file

In case you choose to produce a document without the default $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ preamble (by using option --no-preamble), then you must insert into your own preamble the command

```
\usepackage{coqdoc}
```

Then you may alter the rendering of the document by redefining some macros:

## coqdockw, coqdocid

The one-argument macros for typesetting keywords and identifiers. Defaults are sans-serif for keywords and italic for identifiers.
For example, if you would like a slanted font for keywords, you may insert

```
\renewcommand{\coqdockw}[1]{\textsl{#1}}
```

anywhere between sepackage\{coqdoc\}and\begin\{document\}.}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

## coqdocmodule

One-argument macro for typesetting the title of a .v file. Default is
\newcommand\{\coqdocmodule\}[1]\{\section*\{Module \#1\}\}
and you may redefine it using 

### 13.5 Exporting CoQ theories to XML

This section describes the exportation of COQ theories to XML that has been contributed by Claudio Sacerdoti Coen. Currently, the main applications are the rendering and searching tool developed within the HELM ${ }^{1}$ and MoWGLI ${ }^{2}$ projects mainly at the University of Bologna and partly at INRIA-Sophia Antipolis.

### 13.5.1 Practical use of the XML exportation tool

The basic way to export the logical content of a file into XML format is to use coqc with option $-x m l$. When the $-x m l$ flag is set, every definition or declaration is immediately exported to XML once concluded. The system environment variable COQ_XML_LIBRARY_ROOT must be previously set to a directory in which the logical structure of the exported objects is reflected.

For Makefile files generated by coq_makefile (see section 13.3), it is sufficient to compile the files using

```
make COQ_XML=-xml
```

(or, equivalently, setting the environment variable COQ_XML)
To export a development to XML, the suggested procedure is then:

1. add to your own contribution a valid Make file and use coq_makefile to generate the Makefile from the Make file.

Warning: Since logical names are used to structure the XML hierarchy, always add to the Make file at least one " -R " option to map physical file names to logical module paths.
2. set the COQ_XML_LIBRARY_ROOT environment variable to the directory where the XML file hierarchy must be physically rooted.
3. compile your contribution with "make COQ_XML=-xml"

Remark: In case the system variable COQ_XML_LIBRARY_ROOT is not set, the output is done on the standard output. Also, the files are compressed using gzip after creation. This is to save disk space since the XML format is very verbose.

### 13.5.2 Reflection of the logical structure into the file system

For each COQ logical object, several independent files associated to this object are created. The structure of the long name of the object is reflected in the directory structure of the file system. E.g. an object of long name ident $_{1} \ldots \ldots$ ident $_{n}$. ident is exported to files in the subdirectory ident ${ }_{1} / \ldots$ ident $_{n}$ of the directory bound to the environment variable COQ_XML_LIBRARY_ROOT.

[^18]
### 13.5.3 What is exported?

The XML exportation tool exports the logical content of CoQ theories. This covers global definitions (including lemmas, theorems, ...), global assumptions (parameters and axioms), local assumptions or definitions, and inductive definitions.

Vernacular files are exported to .theory.xml files. Comments are pre-processed with coqdoc (see section 13.4). Especially, they have to be enclosed within ( $* *$ and $*$ ) to be exported.

For each inductive definition of name ident $t_{1} \ldots$ ident $_{n}$.ident, a file named ident.ind. xml is created in the subdirectory ident $_{1} / \ldots /$ ident $_{n}$ of the xml library root directory. It contains the arities and constructors of the type. For mutual inductive definitions, the file is named after the name of the first inductive type of the block.

For each global definition of base name ident $t_{1} \ldots$. $_{\text {dent }}^{n}$.ident, files named ident.con.body.xml and ident.con.xml are created in the subdirectory ident $1 / \ldots /$ ident $_{n}$. They respectively contain the body and the type of the definition.

For each global assumption of base name ident $_{1}$. ident $_{2} \ldots$. ident $_{n}$.ident, a file named ident. con. xml is created in the subdirectory ident $_{1} / \ldots$. ident $_{n}$. It contains the type of the global assumption.

For each local assumption or definition of base name ident located in sections ident $t_{1}^{\prime}, \ldots$, ident ${ }_{p}^{\prime}$ of the module ident ${ }_{1}$. ident $_{2} \ldots$. . . ident ${ }_{n}$.ident, a file named ident.var. xml is created in the subdirectory ident ${ }_{1} / \ldots /$ ident $_{n} /$ ident $_{1}^{\prime} / \ldots /$ ident $_{p}^{\prime}$. It contains its type and, if a definition, its body.

In order to do proof-rendering (for example in natural language), some redundant typing information is required, i.e. the type of at least some of the subterms of the bodies and types of the CIC objects. These types are called inner types and are exported to files of suffix .types.xml by the exportation tool.

### 13.5.4 Inner types

The type of a subterm of a construction is called an inner type if it respects the following conditions.

1. Its sort is Prop ${ }^{3}$.
2. It is not a type cast nor an atomic term (variable, constructor or constant).
3. If it's root is an abstraction, then the root's parent node is not an abstraction, i.e. only the type of the outer abstraction of a block of nested abstractions is printed.

The rationale for the $3^{r d}$ condition is that the type of the inner abstractions could be easily computed starting from the type of the outer ones; moreover, the types of the inner abstractions requires a lot of disk/memory space: removing the $3^{\text {rd }}$ condition leads to XML file that are two times as big as the ones exported applying the $3^{\text {rd }}$ condition.

### 13.5.5 Interactive exportation commands

There are also commands to be used interactively in coqtop.

[^19]Print XML qualid
If the variable COQ_XML_LIBRARY_ROOT is set, this command creates files containing the logical content in XML format of qualid. If the variable is not set, the result is displayed on the standard output.

## Variants:

1. Print XML File string qualid

This writes the logical content of qualid in XML format to files whose prefix is string.

Show XML Proof
If the variable COQ_XML_LIBRARY_ROOT is set, this command creates files containing the current proof in progress in XML format. It writes also an XML file made of inner types. If the variable is not set, the result is displayed on the standard output.

## Variants:

1. Show XML File string Proof

This writes the logical content of qualid in XML format to files whose prefix is string.

### 13.5.6 Applications: rendering, searching and publishing

The HELM team at the University of Bologna has developed tools exploiting the XML exportation of COQ libraries. This covers rendering, searching and publishing tools.

All these tools require a running http server and, if possible, a MathML compliant browser. The procedure to install the suite of tools ultimately allowing rendering and searching can be found on the HELM web site http://helm.cs.unibo.it/library.html.

It may be easier though to upload your developments on the HELM http server and to re-use the infrastructure running on it. This requires publishing your development. To this aim, follow the instructions on http://mowgli.cs.unibo.it.

Notice that the HELM server already hosts a copy of the standard library of COQ and of the CoQ user contributions.

### 13.5.7 Technical informations

## CIC with Explicit Named Substitutions

The exported files are XML encoding of the lambda-terms used by the CoQ system. The implementative details of the COQ system are hidden as much as possible, so that the XML DTD is a straightforward encoding of the Calculus of (Co)Inductive Constructions.

Nevertheless, there is a feature of the CoQ system that can not be hidden in a completely satisfactory way: discharging (see Sect.2.4). In COQ it is possible to open a section, declare variables and use them in the rest of the section as if they were axiom declarations. Once the section is closed, every definition and theorem in the section is discharged by abstracting it over the section variables. Variable declarations as well as section declarations are entirely dropped. Since we are interested in an XML encoding of definitions and theorems as close as possible to those directly provided the user, we do not want to export discharged forms. Exporting non-discharged theorem and definitions together with theorems that rely on the discharged forms obliges the tools that work on the XML encoding to implement discharging to achieve logical consistency. Moreover, the rendering of the files can be misleading, since hyperlinks can
be shown between occurrences of the discharge form of a definition and the non-discharged definition, that are different objects.

To overcome the previous limitations, Claudio Sacerdoti Coen developed in his PhD . thesis an extension of CIC, called Calculus of (Co)Inductive Constructions with Explicit Named Substitutions, that is a slight extension of CIC where discharging is not necessary. The DTD of the exported XML files describes constants, inductive types and variables of the Calculus of (Co)Inductive Constructions with Explicit Named Substitutions. The conversion to the new calculus is performed during the exportation phase.

The following example shows a very small COQ development together with its version in CIC with Explicit Named Substitutions.

```
CIC version:
Section S.
 Variable A : Prop.
 Definition impl := A -> A.
Theorem t : impl. (* uses the undischarged form of impl *)
 Proof.
 exact (fun (a:A) => a).
 Qed.
End S.
Theorem t' : (impl False). (* uses the discharged form of impl *)
 Proof.
 exact (t False). (* uses the discharged form of t *)
 Qed.
Corresponding CIC with Explicit Named Substitutions version:
Section S.
 Variable A : Prop.
Definition impl(A) := A -> A. (* theorems and definitions are
 explicitly abstracted over the
 variables. The name is sufficient to
 completely describe the abstraction *)
Theorem t(A) : impl. (* impl where A is not instantiated *)
 Proof.
 exact (fun (a:A) => a).
 Qed.
End S.
Theorem t'() : impl{False/A}. (* impl where A is instantiated with False
 Notice that t' does not depend on A *)
```

    Proof.
    ```
 exact t{False/A}. (* t where A is instantiated with False *)
Qed.
```

Further details on the typing and reduction rules of the calculus can be found in Claudio Sacerdoti Coen PhD . dissertation, where the consistency of the calculus is also proved.

## The CIC with Explicit Named Substitutions XML DTD

A copy of the DTD can be found in the file "cic.dtd" in the contrib/xml source directory of CoQ. The following is a very brief overview of the elements described in the DTD.
<Constant Type> is the root element of the files that correspond to constant types.
<ConstantBody> is the root element of the files that correspond to constant bodies. It is used only for closed definitions and theorems (i.e. when no metavariable occurs in the body or type of the constant)
<CurrentProof> is the root element of the file that correspond to the body of a constant that depends on metavariables (e.g. unfinished proofs)
<Variable> is the root element of the files that correspond to variables
<InductiveTypes> is the root element of the files that correspond to blocks of mutually defined inductive definitions

The elements <LAMBDA>, <CAST>, <PROD>, <REL>, <SORT>, <APPLY>, <VAR>, <META>, <IMPLICIT>, <CONST>, <LETIN>, <MUTIND>, <MUTCONSTRUCT>, <MUTCASE>, <FIX> and <COFIX> are used to encode the constructors of CIC. The sort or type attribute of the element, if present, is respectively the sort or the type of the term, that is a sort because of the typing rules of CIC.

The element <instantiate> correspond to the application of an explicit named substitution to its first argument, that is a reference to a definition or declaration in the environment.

All the other elements are just syntactic sugar.

### 13.6 Embedded COQ phrases inside $\mathrm{ET}_{\mathbf{E}} \mathrm{X}$ documents

When writing a documentation about a proof development, one may want to insert CoQ phrases inside a $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ document, possibly together with the corresponding answers of the system. We provide a mechanical way to process such CoQ phrases embedded in IETEX files: the coq-tex filter. This filter extracts Coq phrases embedded in LaTeX files, evaluates them, and insert the outcome of the evaluation after each phrase.

Starting with a file file. tex containing COQ phrases, the coq-tex filter produces a file named file.v.tex with the CoQ outcome.

There are options to produce the COQ parts in smaller font, italic, between horizontal rules, etc. See the man page of coq-tex for more details.

Remark. This Reference Manual and the Tutorial have been completely produced with coq-tex.

### 13.7 CoQ and GNU Emacs

### 13.7.1 The Coq Emacs mode

CoQ comes with a Major mode for GNU Emacs, coq.el. This mode provides syntax highlighting (assuming your GNU EmACs library provides hilit19.el) and also a rudimentary indentation facility in the style of the Caml GNU Emacs mode.

Add the following lines to your .emacs file:

```
(setq auto-mode-alist (cons '("\\.v$" . coq-mode) auto-mode-alist))
(autoload 'coq-mode "coq" "Major mode for editing Coq vernacular." t)
```

The CoQ major mode is triggered by visiting a file with extension. v , or manually with the command $M-x$ coq-mode. It gives you the correct syntax table for the COQ language, and also a rudimentary indentation facility:

- pressing TAB at the beginning of a line indents the line like the line above;
- extra TABs increase the indentation level (by 2 spaces by default);
- M-TAB decreases the indentation level.

An inferior mode to run COQ under Emacs, by Marco Maggesi, is also included in the distribution, in file coq-inferior.el. Instructions to use it are contained in this file.

### 13.7.2 Proof General

Proof General is a generic interface for proof assistants based on Emacs (or XEmacs). The main idea is that the CoQ commands you are editing are sent to a CoQ toplevel running behind Emacs and the answers of the system automatically inserted into other Emacs buffers. Thus you don't need to copypaste the CoQ material from your files to the CoQ toplevel or conversely from the CoQ toplevel to some files.

Proof General is developped and distributed independently of the system CoQ. It is freely available at proofgeneral.inf.ed.ac.uk.

### 13.8 Module specification

Given a CoQ vernacular file, the gallina filter extracts its specification (inductive types declarations, definitions, type of lemmas and theorems), removing the proofs parts of the file. The CoQ file file.v gives birth to the specification file file.$g$ (where the suffix.$g$ stands for Gallina).

See the man page of gallina for more details and options.

### 13.9 Man pages

There are man pages for the commands coqdep, gallina and coq-tex. Man pages are installed at installation time (see installation instructions in file INSTALL, step 6).

## Chapter 14

## CoQ Integrated Development Environment

The CoQ Integrated Development Environment is a graphical tool, to be used as a user-friendly replacement to coqtop. Its main purpose is to allow the user to navigate forward and backward into a COQ vernacular file, executing corresponding commands or undoing them respectively.

COQIDE is run by typing the command coqide on the command line. Without argument, the main screen is displayed with an "unnamed buffer", and with a file name as argument, another buffer displaying the contents of that file. Additionally, coqide accepts the same options as coqtop, given in Chapter 12, the ones having obviously no meaning for COQIDE being ignored. Additionally, coqide accepts the option-enable-geoproof to enable the support for GeoProof ${ }^{1}$.

A sample COQIDE main screen, while navigating into a file Fermat . v, is shown on Figure 14.1. At the top is a menu bar, and a tool bar below it. The large window on the left is displaying the various script buffers. The upper right window is the goal window, where goals to prove are displayed. The lower right window is the message window, where various messages resulting from commands are displayed. At the bottom is the status bar.

### 14.1 Managing files and buffers, basic edition

In the script window, you may open arbitrarily many buffers to edit. The File menu allows you to open files or create some, save them, print or export them into various formats. Among all these buffers, there is always one which is the current running buffer, whose name is displayed on a green background, which is the one where Coq commands are currently executed.

Buffers may be edited as in any text editor, and classical basic editing commands (Copy/Paste, ...) are available in the Edit menu. COQIDE offers only basic editing commands, so if you need more complex editing commands, you may launch your favorite text editor on the current buffer, using the Edit/External Editor menu.

[^20]

Figure 14.1: COQIDE main screen

### 14.2 Interactive navigation into CoQ scripts

The running buffer is the one where navigation takes place. The toolbar proposes five basic commands for this. The first one, represented by a down arrow icon, is for going forward executing one command. If that command is successful, the part of the script that has been executed is displayed on a green background. If that command fails, the error message is displayed in the message window, and the location of the error is emphasized by a red underline.

On Figure 14.1, the running buffer is Fermat.v, all commands until the Theorem have been already executed, and the user tried to go forward executing Induction n. That command failed because no such tactic exist (tactics are now in lowercase...), and the wrong word is underlined.

Notice that the green part of the running buffer is not editable. If you ever want to modify something you have to go backward using the up arrow tool, or even better, put the cursor where you want to go back and use the goto button. Unlike with coqtop, you should never use Undo to go backward.

Two additional tool buttons exist, one to go directly to the end and one to go back to the beginning. If you try to go to the end, or in general to run several commands using the goto button, the execution will stop whenever an error is found.

If you ever try to execute a command which happens to run during a long time, and would like to abort it before its termination, you may use the interrupt button (the white cross on a red circle).

Finally, notice that these navigation buttons are also available in the menu, where their keyboard shortcuts are given.


Figure 14.2: COQIDE: the query window

### 14.3 Try tactics automatically

The menu Try Tactics provides some features for automatically trying to solve the current goal using simple tactics. If such a tactic succeeds in solving the goal, then its text is automatically inserted into the script. There is finally a combination of these tactics, called the proof wizard which will try each of them in turn. This wizard is also available as a tool button (the light bulb). The set of tactics tried by the wizard is customizable in the preferences.

These tactics are general ones, in particular they do not refer to particular hypotheses. You may also try specific tactics related to the goal or one of the hypotheses, by clicking with the right mouse button one the goal or the considered hypothesis. This is the "contextual menu on goals" feature, that may be disabled in the preferences if undesirable.

### 14.4 Vernacular commands, templates

The Templates menu allows to use shortcuts to insert vernacular commands. This is a nice way to proceed if you are not sure of the spelling of the command you want.

Moreover, this menu offers some templates which will automatic insert a complex command like Fixpoint with a convenient shape for its arguments.

### 14.5 Queries

We call query any vernacular command that do not change the current state, such as Check, SearchAbout, etc. Those commands are of course useless during compilation of a file, hence should not be included in scripts. To run such commands without writing them in the script, COQIDE offers another input window called the query window. This window can be displayed on demand, either by using the Window menu, or directly using shortcuts given in the Queries menu. Indeed, with COQIDE the simplest way to perform a SearchAbout on some identifier is to select it using the mouse, and pressing F2. This will both make appear the query window and run the SearchAbout in it, displaying the result. Shortcuts F3 and F4 are for Check and Print respectively. Figure 14.2 displays the query window after selection of the word "mult" in the script windows, and pressing F4 to print its definition.

### 14.6 Compilation

The Compile menu offers direct commands to:

- compile the current buffer
- run a compilation using make
- go to the last compilation error
- create a makefile using coq_makefile.


### 14.7 Customizations

You may customize your environment using menu Edit/Preferences. A new window will be displayed, with several customization sections presented as a notebook.

The first section is for selecting the text font used for scripts, goal and message windows.
The second section is devoted to file management: you may configure automatic saving of files, by periodically saving the contents into files named $\# \mathrm{f} \#$ for each opened file f . You may also activate the revert feature: in case a opened file is modified on the disk by a third party, CoQIDE may read it again for you. Note that in the case you edited that same file, you will be prompt to choose to either discard your changes or not. The File charset encoding choice is described below in Section 14.8.3

The Externals section allows to customize the external commands for compilation, printing, web browsing. In the browser command, you may use $\% s$ to denote the URL to open, for example: mozilla -remote "OpenURL(\%s)".

The Tactics Wizard section allows to defined the set of tactics that should be tried, in sequence, to solve the current goal.

The last section is for miscellaneous boolean settings, such as the "contextual menu on goals" feature presented in Section 14.3.

Notice that these settings are saved in the file . coqiderc of your home directory.
A gtk2 accelerator keymap is saved under the name. coqide. keys. This file should not be edited manually: to modify a given menu shortcut, go to the corresponding menu item without releasing the mouse button, press the key you want for the new shortcut, and release the mouse button afterwards.

For experts: it is also possible to set up a specific gtk resource file, under the name .coqide-gtk2rc, following the gtk2 resources syntax http://developer.gnome.org/ doc/API/2.0/gtk/gtk-Resource-Files.html. Such a default resource file can be found
in the subdirectory lib/coq/ide of the root installation directory of COQ (alternatively, it can be found in the subdirectory ide of the source archive of COQ). You may copy this file into your home directory, and edit it using any text editor, COQIDE itself for example.

### 14.8 Using unicode symbols

COQIDE supports unicode character encoding in its text windows, consequently a large set of symbols is available for notations.

### 14.8.1 Displaying unicode symbols

You just need to define suitable notations as described in Chapter 11. For example, to use the mathematical symbols $\forall$ and $\exists$, you may define

```
Notation " }\forall\textrm{x}: \textrm{t},\textrm{P}":
(forall x:t, P) (at level 200, x ident).
Notation "\exists x : t, P" :=
(exists x:t, P) (at level 200, x ident).
```

There exists a small set of such notations already defined, in the file utf8.v of CoQ library, so you may enable them just by Require utf 8 inside COQIDE, or equivalently, by starting COQIDE with coqide -l utf8.

However, there are some issues when using such unicode symbols: you of course need to use a character font which supports them. In the Fonts section of the preferences, the Preview line displays some unicode symbols, so you could figure out if the selected font is OK. Related to this, one thing you may need to do is choose whether Gtk should use antialiased fonts or not, by setting the environment variable GDK_USE_XFT to 1 or 0 respectively.

### 14.8.2 Defining an input method for non ASCII symbols

To input an Unicode symbol, a general method is to press both the CONTROL and the SHIFT keys, and type the hexadecimal code of the symbol required, for example 2200 for the $\forall$ symbol. A list of symbol codes is available at http://www.unicode.org.

Of course, this method is painful for symbols you use often. There is always the possibility to copypaste a symbol already typed in. Another method is to bind some key combinations for frequently used symbols. For example, to bind keys F11 and F12 to $\forall$ and $\exists$ respectively, you may add

```
bind "F11" "insert-at-cursor" ("\forall")
bind "F12" "insert-at-cursor" ("\exists")
```

to your binding "text" section in .coqide-gtk2rc.

### 14.8.3 Character encoding for saved files

In the Files section of the preferences, the encoding option is related to the way files are saved.
If you have no need to exchange files with non UTF-8 aware applications, it is better to choose the UTF-8 encoding, since it guarantees that your files will be read again without problems. (This is because when COQIDE reads a file, it tries to automatically detect its character encoding.)

If you choose something else than UTF-8, then missing characters will be written encoded by $\backslash x\{\ldots \ldots$ or $\backslash x\{\ldots \ldots$. . . . . \} where each dot is an hexadecimal digit: the number between braces is the hexadecimal UNICODE index for the missing character.

### 14.9 Building a custom CoQIDE with user ML code

You can do this as described in Section 13.1 for a custom coq text toplevel, simply by adding option -ide to coqmktop, that is something like

```
coqmktop -ide -byte m}\mp@subsup{m}{1}{}.\textrm{cmo ... m}\mp@subsup{m}{n}{}.\textrm{cmo
```

or

```
coqmktop -ide -opt m}\mp@subsup{m}{1}{}.\textrm{cmx ... m}\mp@subsup{m}{n}{}.\textrm{cmx
```


## Part V

## Addendum to the Reference Manual

## Presentation of the Addendum

Here you will find several pieces of additional documentation for the COQ Reference Manual. Each of this chapters is concentrated on a particular topic, that should interest only a fraction of the CoQ users: that's the reason why they are apart from the Reference Manual.

Extended pattern-matching This chapter details the use of generalized pattern-matching. It is contributed by Cristina Cornes and Hugo Herbelin.

Implicit coercions This chapter details the use of the coercion mechanism. It is contributed by Amokrane Saïbi.

Program extraction This chapter explains how to extract in practice ML files from $F_{\omega}$ terms. It is contributed by Jean-Christophe Filliâtre and Pierre Letouzey.
omega omega, written by Pierre Crégut, solves a whole class of arithmetic problems.
The ring tactic This is a tactic to do AC rewriting. This chapter explains how to use it and how it works. The chapter is contributed by Patrick Loiseleur.

The Setoid_replace tactic This is a tactic to do rewriting on types equipped with specific (only partially substitutive) equality. The chapter is contributed by Clément Renard.

## Contents

Extended pattern-matching ..... 275
Patterns ..... 275
About patterns of parametric types ..... 278
Matching objects of dependent types ..... 279
Understanding dependencies in patterns ..... 279
When the elimination predicate must be provided ..... 280
Using pattern matching to write proofs ..... 281
Pattern-matching on inductive objects involving local definitions ..... 282
Pattern-matching and coercions ..... 283
When does the expansion strategy fail ? ..... 283
Implicit Coercions ..... 285
General Presentation ..... 285
Classes ..... 285
Coercions ..... 286
Identity Coercions ..... 286
Inheritance Graph ..... 287
Declaration of Coercions ..... 287
Coercion qualid : class $_{1}>->$ class $_{2}$ ..... 287
Identity Coercion ident:class $1_{1}>->$ class $_{2}$. ..... 288
Displaying Available Coercions ..... 289
Print Classes. ..... 289
Print Coercions ..... 289
Print Graph. ..... 289
Print Coercion Paths class $_{1}$ class $_{2}$. ..... 289
Activating the Printing of Coercions ..... 289
Set Printing Coercions. ..... 289
Set Printing Coercion qualid. ..... 289
Classes as Records ..... 290
Coercions and Sections ..... 290
Examples ..... 290
Omega: a solver of quantifier-free problems in Presburger Arithmetic ..... 295
Description of omega ..... 295
Arithmetical goals recognized by omega ..... 295
Messages from omega ..... 296
Technical data ..... 297
Overview of the tactic ..... 297
Overview of the $O M E G A$ decision procedure ..... 297
Bugs ..... 298
Extraction of programs in Objective Caml and Haskell ..... 299
Generating ML code ..... 299
Extraction options ..... 300
Setting the target language ..... 300
Inlining and optimizations ..... 300
Realizing axioms ..... 302
Differences between CoQ and ML type systems ..... 303
Some examples ..... 304
A detailed example: Euclidean division ..... 304
Another detailed example: Heapsort ..... 306
The Standard Library ..... 309
Extraction's horror museum ..... 309
Users' Contributions ..... 309
Program ..... 311
Elaborating programs ..... 311
The ring and field tactic families ..... 315
What does this tactic do? ..... 315
The variables map ..... 316
Is it automatic? ..... 316
Concrete usage in CoQ ..... 316
Adding a ring structure ..... 318
How does it work? ..... 321
Dealing with fields ..... 322
Adding a new field structure ..... 323
Legacy implementation ..... 324
History of ring ..... 327
Discussion ..... 328
User defined equalities and relations ..... 329
Relations and morphisms ..... 329
Adding new relations and morphisms ..... 331
Rewriting and non reflexive relations ..... 333
Rewriting and non symmetric relations ..... 333
Rewriting in ambiguous setoid contexts ..... 334
First class setoids and morphisms ..... 335
Tactics enabled on user provided relations ..... 336
Printing relations and morphisms ..... 336
Deprecated syntax and backward incompatibilities ..... 337

## Chapter 15

## Extended pattern-matching

## Cristina Cornes and Hugo Herbelin

This section describes the full form of pattern-matching in COQ terms.

### 15.1 Patterns

The full syntax of match is presented in figures 1.1 and 1.2. Identifiers in patterns are either constructor names or variables. Any identifier that is not the constructor of an inductive or coinductive type is considered to be a variable. A variable name cannot occur more than once in a given pattern. It is recommended to start variable names by a lowercase letter.

If a pattern has the form $(c \vec{x})$ where $c$ is a constructor symbol and $\vec{x}$ is a linear vector of (distinct) variables, it is called simple: it is the kind of pattern recognized by the basic version of match. On the opposite, if it is a variable $x$ or has the form $(c \vec{p})$ with $p$ not only made of variables, the pattern is called nested.

A variable pattern matches any value, and the identifier is bound to that value. The pattern "_" (called "don't care" or "wildcard" symbol) also matches any value, but does not bind anything. It may occur an arbitrary number of times in a pattern. Alias patterns written (pattern as identifier) are also accepted. This pattern matches the same values as pattern does and identifier is bound to the matched value. A pattern of the form pattern | pattern is called disjunctive. A list of patterns separated with commas is also considered as a pattern and is called multiple pattern. However multiple patterns can only occur at the root of pattern-matching equations. Disjunctions of multiple pattern are allowed though.

Since extended match expressions are compiled into the primitive ones, the expressiveness of the theory remains the same. Once the stage of parsing has finished only simple patterns remain. Re-nesting of pattern is performed at printing time. An easy way to see the result of the expansion is to toggle off the nesting performed at printing (use here Set Printing Matching), then by printing the term with Print if the term is a constant, or using the command Check.

The extended match still accepts an optional elimination predicate given after the keyword return. Given a pattern matching expression, if all the right-hand-sides of $=>$ (rhs in short) have the same type, then this type can be sometimes synthesized, and so we can omit the return part. Otherwise the predicate after return has to be provided, like for the basic match.

Let us illustrate through examples the different aspects of extended pattern matching. Consider for example the function that computes the maximum of two natural numbers. We can write it in primitive syntax by:

```
Coq < Fixpoint max (n m:nat) {struct m} : nat :=
Coq < match n with
Coq < | O => m
Coq < | S n' => match m with
Coq < | O => S n'
Coq< | S m' => S (max n' m')
Coq < end
Coq < end.
max is recursively defined
```

Multiple patterns Using multiple patterns in the definition of max allows to write:

```
Coq < Reset max.
Coq < Fixpoint max (n m:nat) {struct m} : nat :=
Coq < match n, m with
Coq < | O, _ => m
Coq < | S n', O => S n'
Coq < | S n', S m' => S (max n' m')
Coq < end.
max is recursively defined
```

which will be compiled into the previous form.
The pattern-matching compilation strategy examines patterns from left to right. A match expression is generated only when there is at least one constructor in the column of patterns. E.g. the following example does not build a match expression.

```
Coq < Check (fun x:nat => match x return nat with
Coq < | y => y
Coq < end).
fun x : nat => x
 : nat -> nat
```

```
Aliasing subpatterns We can also use "as ident" to associate a name to a sub-pattern:
Coq < Reset max.
Coq < Fixpoint max (n m:nat) {struct n} : nat :=
Coq < match n, m with
Coq < | O, _ => m
Coq < | S n' as p, O => p
Coq < | S n', S m' => S (max n' m')
Coq < end.
max is recursively defined
```

Nested patterns Here is now an example of nested patterns:

```
Coq < Fixpoint even (n:nat) : bool :=
Coq < match n with
Coq < | O => true
Coq < | S O => false
Coq < | S (S n') => even n'
Coq < end.
even is recursively defined
```

This is compiled into:

```
Coq < Print even.
even =
fix even (n : nat) : bool :=
 match n with
 | 0 => true
 | 1 => false
 | S (S n') => even n'
 end
 : nat -> bool
Argument scope is [nat_scope]
```

In the previous examples patterns do not conflict with, but sometimes it is comfortable to write patterns that admit a non trivial superposition. Consider the boolean function lef that given two natural numbers yields true if the first one is less or equal than the second one and false otherwise. We can write it as follows:

```
Coq < Fixpoint lef (n m:nat) {struct m} : bool :=
Coq < match n, m with
Coq < | O, x => true
Coq < | x, O => false
Coq < | S n, S m => lef n m
Coq < end.
lef is recursively defined
```

Note that the first and the second multiple pattern superpose because the couple of values 00 matches both. Thus, what is the result of the function on those values? To eliminate ambiguity we use the textual priority rule: we consider patterns ordered from top to bottom, then a value is matched by the pattern at the $i t h$ row if and only if it is not matched by some pattern of a previous row. Thus in the example, $O \bigcirc$ is matched by the first pattern, and so (lef $O \bigcirc$ ) yields true.

Another way to write this function is:

```
Coq < Reset lef.
Coq < Fixpoint lef (n m:nat) {struct m} : bool :=
Coq < match n, m with
Coq < | O, x => true
Coq< | S n, S m => lef n m
Coq < | _, _ => false
Coq < end.
lef is recursively defined
```

Here the last pattern superposes with the first two. Because of the priority rule, the last pattern will be used only for values that do not match neither the first nor the second one.

Terms with useless patterns are not accepted by the system. Here is an example:

```
Coq < Check (fun x:nat =>
Coq < match x with
Coq < | O => true
Coq < | S _ => false
Coq < | x => true
Coq < end).
Coq < Coq < Toplevel input, characters 246-255
> | x => true
> ^^^^^^^^^
Error: This clause is redundant
```

Disjunctive patterns Multiple patterns that share the same right-hand-side can be factorized using the notation mult_pattern | ... | mult_pattern. For instance, max can be rewritten as follows:

```
Coq < Fixpoint max (n m:nat) {struct m} : nat :=
Coq < match n, m with
Coq < | S n', S m' => S (max n' m')
Coq < | 0, p | p, 0 => p
Coq < end.
max is recursively defined
```

Similarly, factorization of (non necessary multiple) patterns that share the same variables is possible by using the notation pattern | ... | pattern. Here is an example:

```
Coq < Definition filter_2_4 (n:nat) : nat :=
Coq < match n with
Coq < | 2 as m | 4 as m => m
Coq < | _ => 0
Coq < end.
filter_2_4 is defined
```

Here is another example using disjunctive subpatterns.

```
Coq < Definition filter_some_square_corners (p:nat*nat) : nat*nat :=
Coq < match p with
Coq < | ((2 as m | 4 as m), (3 as n | 5 as n)) => (m,n)
Coq < |__ => (0,0)
Coq < end.
filter_some_square_corners is defined
```


### 15.2 About patterns of parametric types

When matching objects of a parametric type, constructors in patterns do not expect the parameter arguments. Their value is deduced during expansion. Consider for example the type of polymorphic lists:

```
Coq < Inductive List (A:Set) : Set :=
Coq < | nil : List A
Coq < | cons : A -> List A -> List A.
List is defined
List_rect is defined
List_ind is defined
List_rec is defined
```

We can check the function tail:

```
Coq < Check
Coq < (fun l:List nat =>
Coq < match l with
Coq < | nil => nil nat
Coq < | cons _ l' => l'
Coq < end).
fun l : List nat => match l with
 | nil => nil nat
 | cons _ l' => l'
 end
 : List nat -> List nat
```

When we use parameters in patterns there is an error message:

```
Coq < Check
Coq < (fun l:List nat =>
Coq < match l with
Coq < | nil A => nil nat
Coq < | cons A _ l' => l'
Coq < end).
Coq < Coq < Toplevel input, characters 196-201
> | nil A => nil nat
> ^^^^^
Error: The constructor nil expects no argument
```


### 15.3 Matching objects of dependent types

The previous examples illustrate pattern matching on objects of non-dependent types, but we can also use the expansion strategy to destructure objects of dependent type. Consider the type listn of lists of a certain length:

```
Coq < Inductive listn : nat -> Set :=
Coq < | niln : listn 0
Coq < | consn : forall n:nat, nat -> listn n -> listn (S n).
listn is defined
listn_rect is defined
listn_ind is defined
listn_rec is defined
```


### 15.3.1 Understanding dependencies in patterns

We can define the function length over listn by:

```
Coq < Definition length (n:nat) (l:listn n) := n.
length is defined
```

Just for illustrating pattern matching, we can define it by case analysis:

```
Coq < Reset length.
Coq < Definition length (n:nat) (l:listn n) :=
Coq < match l with
Coq < | niln => 0
Coq < | consn n _ => S n
Coq < end.
length is defined
```

We can understand the meaning of this definition using the same notions of usual pattern matching.

### 15.3.2 When the elimination predicate must be provided

The examples given so far do not need an explicit elimination predicate because all the rhs have the same type and the strategy succeeds to synthesize it. Unfortunately when dealing with dependent patterns it often happens that we need to write cases where the type of the rhs are different instances of the elimination predicate. The function concat for list $n$ is an example where the branches have different type and we need to provide the elimination predicate:

```
Coq < Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} :
Coq < listn (n + m) :=
Coq < match l in listn n return listn (n + m) with
Coq < | niln => l'
Coq< | consn n' a y => consn (n' + m) a (concat n' y m l')
Coq < end.
concat is recursively defined
```

The elimination predicate is fun $(\mathrm{n}:$ nat) $(\mathrm{l}:$ listn n$) \Rightarrow$ listn $(\mathrm{n}+\mathrm{m})$. In general if $m$ has type $\left(I q_{1} \ldots q_{r} t_{1} \ldots t_{s}\right)$ where $q_{1} \ldots q_{r}$ are parameters, the elimination predicate should be of the form: fun $y_{1} \ldots y_{s} x:\left(I q_{1} \ldots q_{r} y_{1} \ldots y_{s}\right)=>\mathrm{P}$.

In the concrete syntax, it should be written :

$$
\text { match } m \text { as } x \text { in }\left(I_{-} \ldots y_{1} \ldots y_{s}\right) \text { return } Q \text { with } \ldots \text { end }
$$

The variables which appear in the in and as clause are new and bounded in the property $Q$ in the return clause. The parameters of the inductive definitions should not be mentioned and are replaced by

Recall that a list of patterns is also a pattern. So, when we destructure several terms at the same time and the branches have different type we need to provide the elimination predicate for this multiple pattern. It is done using the same scheme, each term may be associated to an as and in clause in order to introduce a dependent product.

For example, an equivalent definition for concat (even though the matching on the second term is trivial) would have been:

```
Coq < Reset concat.
Coq < Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} :
```

```
Coq < listn (n + m) :=
Coq < match l in listn n, l' return listn (n + m) with
Coq < | niln, x => x
Coq < | consn n' a y, x => consn (n' + m) a (concat n' y m x)
Coq < end.
concat is recursively defined
```

When the arity of the predicate (i.e. number of abstractions) is not correct Coq raises an error message. For example:

```
Coq < Fixpoint concat
Coq < (n:nat) (l:listn n) (m:nat)
Coq < (l':listn m) {struct l} : listn (n + m) :=
Coq < match l, l' with
Coq < | niln, x => x
Coq < | consn n' a y, x => consn (n' +m) a (concat n' y m x)
Coq < end.
Coq<COq < Coq < Toplevel input, characters 342-343
> | niln, x => x
>
Error:
In environment
concat : forall n : nat,
 listn n -> forall m : nat, listn m -> listn (n + m)
n : nat
l : listn n
m : nat
l' : listn m
The term "l'" has type "listn m" while it is expected to have type
 "listn (?48 + ?49)"
```


### 15.4 Using pattern matching to write proofs

In all the previous examples the elimination predicate does not depend on the object(s) matched. But it may depend and the typical case is when we write a proof by induction or a function that yields an object of dependent type. An example of proof using match in given in section 10.1

For example, we can write the function buildlist that given a natural number $n$ builds a list of length $n$ containing zeros as follows:

```
Coq < Fixpoint buildlist (n:nat) : listn n :=
Coq < match n return listn n with
Coq < | O => niln
Coq < | S n => consn n O (buildlist n)
Coq < end.
buildlist is recursively defined
```

We can also use multiple patterns. Consider the following definition of the predicate less-equal Le:

```
Coq < Inductive LE : nat -> nat -> Prop :=
Coq < | LEO : forall n:nat, LE O n
Coq < | LES : forall n m:nat, LE n m -> LE (S n) (S m).
LE is defined
LE_ind is defined
```

We can use multiple patterns to write the proof of the lemma forall ( $\mathrm{n} \mathrm{m}: \mathrm{nat}$ ), (LE n m) $\backslash /($ LE $m n)$ :

```
Coq < Fixpoint dec (n m:nat) {struct n} : LE n m \/ LE m n :=
Coq < match n, m return LE n m \/ LE m n with
Coq < | O, x => or_introl (LE x 0) (LEO x)
Coq < | x, O => or_intror (LE x 0) (LEO x)
Coq < | S n as n', S m as m' =>
Coq < match dec n m with
Coq < | or_introl h => or_introl (LE m' n') (LES n m h)
Coq < | or_intror h => or_intror (LE n' m') (LES m n h)
Coq < end
Coq < end.
dec is recursively defined
```

In the example of dec, the first match is dependent while the second is not.
The user can also use match in combination with the tactic refine (see section 8.2.2) to build incomplete proofs beginning with a match construction.

### 15.5 Pattern-matching on inductive objects involving local definitions

If local definitions occur in the type of a constructor, then there are two ways to match on this constructor. Either the local definitions are skipped and matching is done only on the true arguments of the constructors, or the bindings for local definitions can also be caught in the matching.

Example.

```
Coq < Inductive list : nat -> Set :=
Coq < | nil : list 0
Coq < | cons : forall n:nat, let m := (2 * n) in list m -> list (S (S m)).
```

In the next example, the local definition is not caught.

```
Coq < Fixpoint length n (l:list n) {struct l} : nat :=
Coq < match l with
Coq < | nil => 0
Coq< | cons n lO => S (length (2 * n) l0)
Coq < end.
length is recursively defined
```

But in this example, it is.

```
Coq < Fixpoint length' n (l:list n) {struct l} : nat :=
Coq < match l with
Coq < | nil => 0
Coq < | cons _ m l0 => S (length' m lo)
Coq < end.
length' is recursively defined
```

Remark: for a given matching clause, either none of the local definitions or all of them can be caught.

### 15.6 Pattern-matching and coercions

If a mismatch occurs between the expected type of a pattern and its actual type, a coercion made from constructors is sought. If such a coercion can be found, it is automatically inserted around the pattern.

Example:

```
Coq < Inductive I : Set :=
Coq < | C1 : nat -> I
Coq < | C2 : I -> I.
I is defined
I_rect is defined
I_ind is defined
I_rec is defined
Coq < Coercion C1 : nat >-> I.
C1 is now a coercion
Coq < Check (fun x => match x with
Coq < | C2 O => 0
Coq < | _ => 0
Coq < end).
fun x : I =>
match x with
| C1 _ => 0
| C2 (C1 0) => 0
| C2 (C1 (S__)) => 0
| C2 (C2 _) => 0
end
 : I -> nat
```


### 15.7 When does the expansion strategy fail ?

The strategy works very like in ML languages when treating patterns of non-dependent type. But there are new cases of failure that are due to the presence of dependencies.

The error messages of the current implementation may be sometimes confusing. When the tactic fails because patterns are somehow incorrect then error messages refer to the initial expression. But the strategy may succeed to build an expression whose sub-expressions are well typed when the whole expression is not. In this situation the message makes reference to the expanded expression. We encourage users, when they have patterns with the same outer constructor in different equations, to name the variable patterns in the same positions with the same name. E.g. to write (cons n 0 x) => e1
 helps to maintain certain name correspondence between the generated expression and the original.

Here is a summary of the error messages corresponding to each situation:

## Error messages:

```
1. The constructor ident expects num arguments
 The variable ident is bound several times in pattern term
 Found a constructor of inductive type term while a constructor of
 term is expected
```

Patterns are incorrect (because constructors are not applied to the correct number of the arguments, because they are not linear or they are wrongly typed)
2. Non exhaustive pattern-matching
the pattern matching is not exhaustive
3. The elimination predicate term should be of arity num (for non dependent case) or num (for dependent case)

The elimination predicate provided to match has not the expected arity
4. Unable to infer a match predicate

Either there is a type incompatiblity or the problem involves dependencies

There is a type mismatch between the different branches
Then the user should provide an elimination predicate.

## Chapter 16

## Implicit Coercions

## Amokrane Saïbi

### 16.1 General Presentation

This section describes the inheritance mechanism of CoQ. In CoQ with inheritance, we are not interested in adding any expressive power to our theory, but only convenience. Given a term, possibly not typable, we are interested in the problem of determining if it can be well typed modulo insertion of appropriate coercions. We allow to write:

- $f a$ where $f:$ forall $x: A, B$ and $a: A^{\prime}$ when $A^{\prime}$ can be seen in some sense as a subtype of $A$.
- $x: A$ when $A$ is not a type, but can be seen in a certain sense as a type: set, group, category etc.
- $f a$ when $f$ is not a function, but can be seen in a certain sense as a function: bijection, functor, any structure morphism etc.


### 16.2 Classes

A class with $n$ parameters is any defined name with a type forall $\left(x_{1}: A_{1}\right) . .\left(x_{n}: A_{n}\right), s$ where $s$ is a sort. Thus a class with parameters is considered as a single class and not as a family of classes. An object of a class $C$ is any term of type $C t_{1} . . t_{n}$. In addition to these user-classes, we have two abstract classes:

- Sortclass, the class of sorts; its objects are the terms whose type is a sort.
- Funclass, the class of functions; its objects are all the terms with a functional type, i.e. of form forall $x: A, B$.

Formally, the syntax of a classes is defined on Figure 16.1.

```
class ::= qualid
 | Sortclass
 Funclass
```

Figure 16.1: Syntax of classes

### 16.3 Coercions

A name $f$ can be declared as a coercion between a source user-class $C$ with $n$ parameters and a target class $D$ if one of these conditions holds:

- $D$ is a user-class, then the type of $f$ must have the form forall $\left(x_{1}: A_{1}\right) . .\left(x_{n}: A_{n}\right)(y$ : $\left.C x_{1} . . x_{n}\right), D u_{1} . . u_{m}$ where $m$ is the number of parameters of $D$.
- $D$ is Funclass, then the type of $f$ must have the form forall $\left(x_{1}: A_{1}\right) . .\left(x_{n}: A_{n}\right)(y$ : $\left.C x_{1} . . x_{n}\right)(x: A), B$.
- $D$ is Sortclass, then the type of $f$ must have the form forall $\left(x_{1}: A_{1}\right) . .\left(x_{n}: A_{n}\right)(y$ : $\left.C x_{1} . . x_{n}\right), s$ with $s$ a sort.

We then write $f: C>->D$. The restriction on the type of coercions is called the uniform inheritance condition. Remark that the abstract classes Funclass and Sortclass cannot be source classes.

To coerce an object $t: C t_{1} . . t_{n}$ of $C$ towards $D$, we have to apply the coercion $f$ to it; the obtained term $f t_{1} . . t_{n} t$ is then an object of $D$.

### 16.4 Identity Coercions

Identity coercions are special cases of coercions used to go around the uniform inheritance condition. Let $C$ and $D$ be two classes with respectively $n$ and $m$ parameters and $f:$ forall $\left(x_{1}: T_{1}\right) . .\left(x_{k}\right.$ : $\left.T_{k}\right)\left(y: C u_{1} . . u_{n}\right), D v_{1} . . v_{m}$ a function which does not verify the uniform inheritance condition. To declare $f$ as coercion, one has first to declare a subclass $C^{\prime}$ of $C$ :

$$
C^{\prime}:=\operatorname{fun}\left(x_{1}: T_{1}\right) . .\left(x_{k}: T_{k}\right)=>C u_{1} . . u_{n}
$$

We then define an identity coercion between $C^{\prime}$ and $C$ :

$$
I d_{-} C^{\prime} _C:=\text { fun }\left(x_{1}: T_{1}\right) . .\left(x_{k}: T_{k}\right)\left(y: C^{\prime} x_{1} . . x_{k}\right)=>\left(y: C u_{1} . . u_{n}\right)
$$

We can now declare $f$ as coercion from $C^{\prime}$ to $D$, since we can "cast" its type as forall ( $x_{1}$ : $\left.T_{1}\right) . .\left(x_{k}: T_{k}\right)\left(y: C^{\prime} x_{1} . . x_{k}\right), D v_{1} . . v_{m}$.
The identity coercions have a special status: to coerce an object $t: C^{\prime} t_{1} . . t_{k}$ of $C^{\prime}$ towards $C$, we does not have to insert explicitly $I d_{-} C^{\prime} _C$ since $I d_{-} C^{\prime} _C t_{1} . . t_{k} t$ is convertible with $t$. However we "rewrite" the type of $t$ to become an object of $C$; in this case, it becomes $C u_{1}^{*} . . u_{k}^{*}$ where each $u_{i}^{*}$ is the result of the substitution in $u_{i}$ of the variables $x_{j}$ by $t_{j}$.

### 16.5 Inheritance Graph

Coercions form an inheritance graph with classes as nodes. We call coercion path an ordered list of coercions between two nodes of the graph. A class $C$ is said to be a subclass of $D$ if there is a coercion path in the graph from $C$ to $D$; we also say that $C$ inherits from $D$. Our mechanism supports multiple inheritance since a class may inherit from several classes, contrary to simple inheritance where a class inherits from at most one class. However there must be at most one path between two classes. If this is not the case, only the oldest one is valid and the others are ignored. So the order of declaration of coercions is important.

We extend notations for coercions to coercion paths. For instance $\left[f_{1} ; . . ; f_{k}\right]: C>->D$ is the coercion path composed by the coercions $f_{1} . . f_{k}$. The application of a coercion path to a term consists of the successive application of its coercions.

### 16.6 Declaration of Coercions

### 16.6.1 Coercion qualid : class $_{1}>->$ class $_{2}$.

Declares the construction denoted by qualid as a coercion between class ${ }_{1}$ and class $_{2}$.

## Error messages:

1. qualid not declared
2. qualid is already a coercion
3. Funclass cannot be a source class
4. Sortclass cannot be a source class
5. qualid is not a function
6. Cannot find the source class of qualid
7. Cannot recognize class ${ }_{1}$ as a source class of qualid
8. qualid does not respect the inheritance uniform condition
9. Found target class class instead of class $_{2}$

When the coercion qualid is added to the inheritance graph, non valid coercion paths are ignored; they are signaled by a warning.

## Warning :

1. Ambiguous paths: $\left[f_{1}^{1} ; . . ; f_{n_{1}}^{1}\right]: C_{1}>->D_{1}$

$$
\left[f_{1}^{m} ; . . ; f_{n_{m}}^{m}\right]: C_{m}>->D_{m}
$$

## Variants:

1. Coercion Local qualid : class $_{1}>->$ class $_{2}$.

Declares the construction denoted by qualid as a coercion local to the current section.
2. Coercion ident $:=$ term

This defines ident just like Definition ident $:=$ term, and then declares ident as a coercion between it source and its target.
3. Coercion ident $:=$ term : type

This defines ident just like Definition ident : type $:=$ term, and then declares ident as a coercion between it source and its target.
4. Coercion Local ident $:=$ term

This defines ident just like Local ident $:=$ term, and then declares ident as a coercion between it source and its target.
5. Assumptions can be declared as coercions at declaration time. This extends the grammar of declarations from Figure 1.3 as follows:

```
declaration ::= declaration_keyword assums .
assums ::= simple_assums
 | (simple_assums) ... (simple_assums)
simple_assums ::= ident ... ident : [>] term
```

If the extra $>$ is present before the type of some assumptions, these assumptions are declared as coercions.
6. Constructors of inductive types can be declared as coercions at definition time of the inductive type. This extends and modifies the grammar of inductive types from Figure 1.3 as follows:

```
inductive ::= Inductive ind_bodywith... with ind_body .
 | CoInductive ind_body with... with ind_body .
ind_body ::= ident[binderlet ... binderlet] : term :=
 [[।] constructor | . . . | constructor]
constructor ::= ident[binderlet ... binderlet][:[>] term]
```

Especially, if the extra $>$ is present in a constructor declaration, this constructor is declared as a coercion.

### 16.6.2 Identity Coercion ident:class 1 >-> class $_{2}$.

We check that class ${ }_{1}$ is a constant with a value of the form fun $\left(x_{1}: T_{1}\right) . .\left(x_{n}: T_{n}\right)=>\left(\right.$ class $\left._{2} t_{1} . . t_{m}\right)$ where $m$ is the number of parameters of class $_{2}$. Then we define an identity function with the type forall $\left(x_{1}: T_{1}\right) . .\left(x_{n}: T_{n}\right)\left(y:\right.$ class $\left._{1} x_{1} . . x_{n}\right)$, class $_{2} t_{1} . . t_{m}$, and we declare it as an identity coercion between class ${ }_{1}$ and class ${ }_{2}$.

## Error messages:

1. class ${ }_{1}$ must be a transparent constant

## Variants:

1. Identity Coercion Local ident:ident ${ }_{1}>->$ ident $_{2}$. Idem but locally to the current section.
2. SubClass ident $:=$ type.

If type is a class ident' applied to some arguments then ident is defined and an identity coercion of name Id_ident_ident' is declared. Otherwise said, this is an abbreviation for

Definition ident := type.
followed by
Identity Coercion Id_ident_ident':ident >-> ident'.
3. Local Subclass ident $:=$ type

Same as before but locally to the current section.

### 16.7 Displaying Available Coercions

### 16.7.1 Print Classes.

Print the list of declared classes in the current context.

### 16.7.2 Print Coercions.

Print the list of declared coercions in the current context.

### 16.7.3 Print Graph.

Print the list of valid coercion paths in the current context.
16.7.4 Print Coercion Paths class class $_{2}$.

Print the list of valid coercion paths from class class $_{2}$ to

### 16.8 Activating the Printing of Coercions

### 16.8.1 Set Printing Coercions.

This command forces all the coercions to be printed. Conversely, to skip the printing of coercions, use Unset Printing Coercions. By default, coercions are not printed.
16.8.2 Set Printing Coercion qualid.

This command forces coercion denoted by qualid to be printed. To skip the printing of coercion qualid, use Unset Printing Coercion qualid. By default, a coercion is never printed.

### 16.9 Classes as Records

We allow the definition of Structures with Inheritance (or classes as records) by extending the existing Record macro (see section 2.1). Its new syntax is:

```
Record [>] ident binderlet : sort := [ident 0] {
 ident
 ident }n[:|:>] term } .
```

The identifier ident is the name of the defined record and sort is its type. The identifier ident ${ }_{0}$ is the name of its constructor. The identifiers ident $t_{1}, .$. , ident ${ }_{n}$ are the names of its fields and term ${ }_{1}, .$. , $\operatorname{term}_{n}$ their respective types. The alternative $[: \mid:>]$ is ":" or ": $>$ ". If ident ${ }_{i}:>$ term $_{i}$, then ident ${ }_{i}$ is automatically declared as coercion from ident to the class of term ${ }_{i}$. Remark that ident $_{i}$ always verifies the uniform inheritance condition. If the optional " $>$ " before ident is present, then ident ${ }_{0}$ (or the default name Build_ident if ident ${ }_{0}$ is omitted) is automatically declared as a coercion from the class of term $n$ to ident (this may fail if the uniform inheritance condition is not satisfied).

Remark: The keyword Structure is a synonym of Record.

### 16.10 Coercions and Sections

The inheritance mechanism is compatible with the section mechanism. The global classes and coercions defined inside a section are redefined after its closing, using their new value and new type. The classes and coercions which are local to the section are simply forgotten. Coercions with a local source class or a local target class, and coercions which do not verify the uniform inheritance condition any longer are also forgotten.

### 16.11 Examples

There are three situations:

- $f a$ is ill-typed where $f:$ forall $x: A, B$ and $a: A^{\prime}$. If there is a coercion path between $A^{\prime}$ and $A, f a$ is transformed into $f a^{\prime}$ where $a^{\prime}$ is the result of the application of this coercion path to $a$. We first give an example of coercion between atomic inductive types

```
Coq < Definition bool_in_nat (b:bool) := if b then 0 else 1.
bool_in_nat is defined
Coq < Coercion bool_in_nat : bool >-> nat.
bool_in_nat is now a coercion
Coq < Check (0 = true).
O = true
 : Prop
Coq < Set Printing Coercions.
Coq < Check (0 = true).
0 = bool_in_nat true
 : Prop
```

Warning: "Check true=0." fails. This is "normal" behaviour of coercions. To validate true $=0$, the coercion is searched from nat to bool. There is none.
We give an example of coercion between classes with parameters.

```
Coq < Parameters
Coq < (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set).
C is assumed
D is assumed
E is assumed
Coq < Parameter f : forall n:nat, C n -> D (S n) true.
f is assumed
Coq < Coercion f : C >-> D.
f is now a coercion
Coq < Parameter g : forall (n:nat) (b:bool), D n b -> E b.
g \text { is assumed}
Coq < Coercion g : D >-> E.
g is now a coercion
Coq < Parameter c : C 0.
C is assumed
Coq < Parameter T : E true -> nat.
T ~ i s ~ a s s u m e d ~
Coq < Check (T c).
T C
 : nat
Coq < Set Printing Coercions.
Coq < Check (T c).
T (g I true (f O c))
 : nat
```

We give now an example using identity coercions.

```
Coq < Definition D' (b:bool) := D 1 b.
D' is defined
Coq < Identity Coercion IdD'D : D' >-> D.
Coq < Print IdD'D.
IdD'D =
(fun (b : bool) (x : D' b) => x):forall b : bool, D' b -> D l b
 : forall b : bool, D' b -> D 1 b
Coq < Parameter d' : D' true.
d' is assumed
Coq < Check (T d').
T d'
 : nat
Coq < Set Printing Coercions.
Coq < Check (T d').
T (g I true d')
 : nat
```

In the case of functional arguments, we use the monotonic rule of sub-typing. Approximatively, to coerce $t:$ forall $x: A, B$ towards forall $x: A^{\prime}, B^{\prime}$, one have to coerce $A^{\prime}$ towards $A$ and $B$ towards $B^{\prime}$. An example is given below:

```
Coq < Parameters (A B : Set) (h : A -> B).
A is assumed
B is assumed
h is assumed
Coq < Coercion h : A >-> B.
h is now a coercion
Coq < Parameter U : (A -> E true) -> nat.
U is assumed
Coq < Parameter t : B -> C 0.
t is assumed
Coq < Check (U t).
U (fun x : A => t x)
 : nat
Coq < Set Printing Coercions.
Coq < Check (U t).
U (fun x : A => g 1 true (f 0 (t (h x))))
 : nat
```

Remark the changes in the result following the modification of the previous example.

```
Coq < Parameter U' : (C O -> B) -> nat.
U' is assumed
Coq < Parameter t' : E true -> A.
t' is assumed
Coq < Check (U' t').
U' (fun }x:CO=> t'x
 : nat
Coq < Set Printing Coercions.
Coq < Check (U' t').
U'}(\operatorname{fun}x:COMh(t'(g1 true (f 0 x))))
 : nat
```

- An assumption $x: A$ when $A$ is not a type, is ill-typed. It is replaced by $x: A^{\prime}$ where $A^{\prime}$ is the result of the application to $A$ of the coercion path between the class of $A$ and Sortclass if it exists. This case occurs in the abstraction fun $x: A=>t$, universal quantification forall $x$ : $A, B$, global variables and parameters of (co-)inductive definitions and functions. In forall $x$ : $A, B$, such a coercion path may be applied to $B$ also if necessary.

```
Coq < Parameter Graph : Type.
Graph is assumed
Coq < Parameter Node : Graph -> Type.
```

```
Node is assumed
Coq < Coercion Node : Graph >-> Sortclass.
Node is now a coercion
Coq < Parameter G : Graph.
G is assumed
Coq < Parameter Arrows : G -> G -> Type.
Arrows is assumed
Coq < Check Arrows.
Arrows
 : G -> G -> Type
Coq < Parameter fg : G -> G.
fg is assumed
Coq < Check fg.
fg
 : G -> G
Coq < Set Printing Coercions.
Coq < Check fg.
fg
 : Node G -> Node G
```

- $f a$ is ill-typed because $f: A$ is not a function. The term $f$ is replaced by the term obtained by applying to $f$ the coercion path between $A$ and Funclass if it exists.

```
Coq < Parameter bij : Set -> Set -> Set.
bij is assumed
Coq < Parameter ap : forall A B:Set, bij A B -> A -> B.
ap is assumed
Coq < Coercion ap : bij >-> Funclass.
ap is now a coercion
Coq < Parameter b : bij nat nat.
b is assumed
Coq < Check (b 0).
b 0
 : nat
Coq < Set Printing Coercions.
Coq < Check (b 0).
ap nat nat b 0
 : nat
```

Let us see the resulting graph of this session.

```
Coq < Print Graph.
[bool_in_nat] : bool >-> nat
[f] : C >-> D
[f; g] : C >-> E
```

```
[g] : D >-> E
[IdD'D] : D' >-> D
[IdD'D; g] : D' >-> E
[h] : A >-> B
[Node] : Graph >-> Sortclass
[ap] : bij >-> Funclass
```


## Chapter 17

## Omega: a solver of quantifier-free problems in Presburger Arithmetic

## Pierre Crégut

### 17.1 Description of omega

omega solves a goal in Presburger arithmetic, i.e. a universally quantified formula made of equations and inequations. Equations may be specified either on the type nat of natural numbers or on the type $Z$ of binary-encoded integer numbers. Formulas on nat are automatically injected into Z. The procedure may use any hypothesis of the current proof session to solve the goal.

Multiplication is handled by omega but only goals where at least one of the two multiplicands of products is a constant are solvable. This is the restriction meaned by "Presburger arithmetic".

If the tactic cannot solve the goal, it fails with an error message. In any case, the computation eventually stops.

### 17.1.1 Arithmetical goals recognized by omega

omega applied only to quantifier-free formulas built from the connectors
/<br>, \/, ~, ->
on atomic formulas. Atomic formulas are built from the predicates

$$
=, \text { le, lt, gt, ge }
$$

on nat or from the predicates

$$
=,<,<=,>,>=
$$

on Z. In expressions of type nat, omega recognizes

```
plus, minus, mult, pred, S, O
```

and in expressions of type $Z$, omega recognizes
+, -, *, Zsucc, and constants.
All expressions of type nat or z not built on these operators are considered abstractly as if they were arbitrary variables of type nat or $z$.

### 17.1.2 Messages from omega

When omega does not solve the goal, one of the following errors is generated:

## Error messages:

1. omega can't solve this system

This may happen if your goal is not quantifier-free (if it is universally quantified, try intros first; if it contains existentials quantifiers too, omega is not strong enough to solve your goal). This may happen also if your goal contains arithmetical operators unknown from omega. Finally, your goal may be really wrong!
2. omega: Not a quantifier-free goal

If your goal is universally quantified, you should first apply int ro as many time as needed.
3. omega: Unrecognized predicate or connective: ident
4. omega: Unrecognized atomic proposition: prop
5. omega: Can't solve a goal with proposition variables
6. omega: Unrecognized proposition
7. omega: Can't solve a goal with non-linear products
8. omega: Can't solve a goal with equality on type

### 17.2 Using omega

The omega tactic does not belong to the core system. It should be loaded by

```
Coq < Require Import Omega.
Coq < Open Scope Z_scope.
```


## Example 3:

```
Coq < Goal forall m n:Z, 1 + 2 * m <> 2 * n.
1 subgoal
 =============================
 forallm n:Z, 1 + 2 * m <> 2 * n
Coq < intros; omega.
Proof completed.
```


## Example 4:

```
Coq < Goal forall z:Z, z > 0 -> 2 * z + 1 > z.
1 subgoal
 forall z : Z, z>0 >> 2 * z + 1 > z
Coq < intro; omega.
Proof completed.
```


### 17.3 Technical data

### 17.3.1 Overview of the tactic

- The goal is negated twice and the first negation is introduced as an hypothesis.
- Hypothesis are decomposed in simple equations or inequations. Multiple goals may result from this phase.
- Equations and inequations over nat are translated over Z, multiple goals may result from the translation of substraction.
- Equations and inequations are normalized.
- Goals are solved by the OMEGA decision procedure.
- The script of the solution is replayed.


### 17.3.2 Overview of the $O M E G A$ decision procedure

The $O M E G A$ decision procedure involved in the omega tactic uses a small subset of the decision procedure presented in
"The Omega Test: a fast and practical integer programming algorithm for dependence analysis", William Pugh, Communication of the ACM, 1992, p 102-114.

Here is an overview, look at the original paper for more information.

- Equations and inequations are normalized by division by the GCD of their coefficients.
- Equations are eliminated, using the Banerjee test to get a coefficient equal to one.
- Note that each inequation defines a half space in the space of real value of the variables.
- Inequations are solved by projecting on the hyperspace defined by cancelling one of the variable. They are partitioned according to the sign of the coefficient of the eliminated variable. Pairs of inequations from different classes define a new edge in the projection.
- Redundant inequations are eliminated or merged in new equations that can be eliminated by the Banerjee test.
- The last two steps are iterated until a contradiction is reached (success) or there is no more variable to eliminate (failure).

It may happen that there is a real solution and no integer one. The last steps of the Omega procedure (dark shadow) are not implemented, so the decision procedure is only partial.

### 17.4 Bugs

- The simplification procedure is very dumb and this results in many redundant cases to explore.
- Much too slow.
- Certainly other bugs! You can report them to

Pierre.Cregut@cnet.francetelecom.fr

## Chapter 18

## Extraction of programs in Objective Caml and Haskell

## Jean-Christophe Filliâtre and Pierre Letouzey

## The status of extraction is experimental.

We present here the COQ extraction commands, used to build certified and relatively efficient functional programs, extracting them from the proofs of their specifications. The functional languages available as output are currently Objective Caml, Haskell and SChEME. In the following, "ML" will be used (abusively) to refer to any of the three.

Differences with old versions. The current extraction mechanism is new for version 7.0 of CoQ. In particular, the $F_{\omega}$ toplevel used as an intermediate step between COQ and ML has been withdrawn. It is also not possible any more to import ML objects in this $F_{\omega}$ toplevel. The current mechanism also differs from the one in previous versions of COQ: there is no more an explicit toplevel for the language (formerly called FML).

### 18.1 Generating ML code

The next two commands are meant to be used for rapid preview of extraction. They both display extracted term(s) inside CoQ.

## Extraction qualid.

Extracts one constant or module in the COQ toplevel.

```
Recursive Extraction qualid 1 ... qualid n.
```

Recursive extraction of all the globals (or modules) qualid ${ }_{1} \ldots$ qualid $_{n}$ and all their dependencies in the CoQ toplevel.

All the following commands produce real ML files. User can choose to produce one monolithic file or one file per CoQ library.

```
Extraction "file" qualid 1... qualid
```

Recursive extraction of all the globals (or modules) qualid $d_{1} \ldots$ qualid $_{n}$ and all their dependencies in one monolithic file file. Global and local identifiers are renamed according to the choosen ML language to fullfill its syntactic conventions, keeping original names as much as possible.

## Extraction Library ident.

Extraction of the whole COQ library ident.v to an ML module ident.ml. In case of name clash, identifiers are here renamed using prefixes coq_ or Coq_ to ensure a session-independent renaming.

Recursive Extraction Library ident.
Extraction of the COQ library ident. v and all other modules ident. v depends on.

The list of globals qualid ${ }_{i}$ does not need to be exhaustive: it is automatically completed into a complete and minimal environment.

### 18.2 Extraction options

### 18.2.1 Setting the target language

The ability to fix target language is the first and more important of the extraction options. Default is Ocaml. Besides Haskell and Scheme, another language called Toplevel is provided. It is a pseudoOcaml, with no renaming on global names: so names are printed as in CoQ. This third language is available only at the CoQ Toplevel.

```
Extraction Language Ocaml.
Extraction Language Haskell.
Extraction Language Scheme.
Extraction Language Toplevel.
```


### 18.2.2 Inlining and optimizations

Since Objective Caml is a strict language, the extracted code has to be optimized in order to be efficient (for instance, when using induction principles we do not want to compute all the recursive calls but only the needed ones). So the extraction mechanism provides an automatic optimization routine that will be called each time the user want to generate Ocaml programs. Essentially, it performs constants inlining and reductions. Therefore some constants may not appear in resulting monolithic Ocaml program (a warning is printed for each such constant). In the case of modular extraction, even if some inlining is done, the inlined constant are nevertheless printed, to ensure session-independent programs.

Concerning Haskell, such optimizations are less useful because of lazyness. We still make some optimizations, for example in order to produce more readable code.

All these optimizations are controled by the following COQ options:

```
Set Extraction Optimize.
```

Unset Extraction Optimize.
Default is Set. This control all optimizations made on the ML terms (mostly reduction of dummy beta/iota redexes, but also simplications on Cases, etc). Put this option to Unset if you want a ML term as close as possible to the Coq term.

Set Extraction AutoInline.

Unset Extraction AutoInline.
Default is Set, so by default, the extraction mechanism feels free to inline the bodies of some defined constants, according to some heuristics like size of bodies, useness of some arguments, etc. Those heuristics are not always perfect, you may want to disable this feature, do it by Unset.

Extraction Inline qualid ${ }_{1} \ldots$ qualid $_{n}$.

Extraction NoInline qualid ${ }_{1} \ldots$ qualid $_{n}$.
In addition to the automatic inline feature, you can now tell precisely to inline some more constants by the Extraction Inline command. Conversely, you can forbid the automatic inlining of some specific constants by the Extraction NoInline command. Those two commands enable a precise control of what is inlined and what is not.

Print Extraction Inline.
Prints the current state of the table recording the custom inlinings declared by the two previous commands.

Reset Extraction Inline.
Puts the table recording the custom inlinings back to empty.

Inlining and printing of a constant declaration. A user can explicitely asks a constant to be extracted by two means:

- by mentioning it on the extraction command line
- by extracting the whole COQ module of this constant.

In both cases, the declaration of this constant will be present in the produced file. But this same constant may or may not be inlined in the following terms, depending on the automatic/custom inlining mechanism.

For the constants non-explicitely required but needed for dependancy reasons, there are two cases:

- If an inlining decision is taken, wether automatically or not, all occurences of this constant are replaced by its extracted body, and this constant is not declared in the generated file.
- If no inlining decision is taken, the constant is normally declared in the produced file.


### 18.2.3 Realizing axioms

Extraction will fail if it encounters an informative axiom not realized (see section 18.2.3). A warning will be issued if it encounters an logical axiom, to remind user that inconsistant logical axioms may lead to incorrect or non-terminating extracted terms.

It is possible to assume some axioms while developing a proof. Since these axioms can be any kind of proposition or object or type, they may perfectly well have some computational content. But a program must be a closed term, and of course the system cannot guess the program which realizes an axiom. Therefore, it is possible to tell the system what ML term corresponds to a given axiom.

```
Extract Constant qualid => string.
```

Give an ML extraction for the given constant. The string may be an identifier or a quoted string.

```
Extract Inlined Constant qualid => string.
```

Same as the previous one, except that the given ML terms will be inlined everywhere instead of being declared via a let.

Note that the Extract Inlined Constant command is sugar for an Extract Constant followed by a Extraction Inline. Hence a Reset Extraction Inline will have an effect on the realized and inlined xaxiom.

Of course, it is the responsability of the user to ensure that the ML terms given to realize the axioms do have the expected types. In fact, the strings containing realizing code are just copied in the extracted files. The extraction recognize whether the realized axiom should become a ML type constant or a ML object declaration.

## Example:

```
Coq < Axiom X:Set.
X is assumed
Coq < Axiom x:X.
x is assumed
Coq < Extract Constant X => "int".
Coq < Extract Constant x => "0".
```

Notice that in the case of type scheme axiom (i.e. whose type is an arity, that is a sequence of product finished by a sort), then some type variables has to be given. The syntax is then:

```
Extract Constant qualid string}1 ...string n => string
```

The number of type variable given is checked by the system.

## Example:

```
Coq < Axiom Y : Set -> Set -> Set.
Y is assumed
Coq < Extract Constant Y "'a" "'b" => " ra*'b ".
```

Realizing an axiom via Extract Constant is only useful in the case of an informative axiom (of sort Type or Set). A logical axiom have no computational content and hence will not appears in extracted terms. But a warning is nonetheless issued if extraction encounters a logical axiom. This
warning reminds user that inconsistant logical axioms may lead to incorrect or non-terminating extracted terms.

If an informative axiom has not been realized before an extraction, a warning is also issued and the definition of the axiom is filled with an exception labelled AXIOM TO BE REALIZED. The user must then search these exceptions inside the extracted file and replace them by real code.

The system also provides a mechanism to specify ML terms for inductive types and constructors. For instance, the user may want to use the ML native boolean type instead of COQ one. The syntax is the following:

```
Extract Inductive qualid => string [string ...string].
```

Give an ML extraction for the given inductive type. You must specify extractions for the type itself (first string) and all its constructors (between square brackets). The ML extraction must be an ML recursive datatype.

Example: Typical examples are the following:

```
Coq < Extract Inductive unit => "unit" ["()"].
Coq < Extract Inductive bool => "bool" ["true" "false"].
Coq < Extract Inductive sumbool => "bool" ["true" "false"].
```


### 18.3 Differences between COQ and ML type systems

Due to differences between COQ and ML type systems, some extracted programs are not directly typable in ML. We now solve this problem (at least in Ocaml) by adding when needed some unsafe casting Obj.magic, which give a generic type' a to any term.

For example, Here are two kinds of problem that can occur:

- If some part of the program is very polymorphic, there may be no ML type for it. In that case the extraction to ML works all right but the generated code may be refused by the ML type-checker. A very well known example is the distr-pair function:

```
Definition dp :=
 fun (A B:Set)(x:A)(y:B)(f:forall C:Set, C->C) => (f A x, f B y).
```

In Ocaml, for instance, the direct extracted term would be:

```
let dp x y f = Pair((f () x),(f () y))
```

and would have type:

```
dp : 'a -> 'a -> (unit -> 'a -> 'b) -> ('b,'b) prod
```

which is not its original type, but a restriction.
We now produce the following correct version:

```
let dp x y f = Pair ((Obj.magic f () x), (Obj.magic f () y))
```

- Some definitions of COQ may have no counterpart in ML. This happens when there is a quantification over types inside the type of a constructor; for example:

```
Inductive anything : Set := dummy : forall A:Set, A -> anything.
```

which corresponds to the definition of an ML dynamic type. In Ocaml, we must cast any argument of the constructor dummy.

Even with those unsafe castings, you should never get error like "segmentation fault". In fact even if your program may seem ill-typed to the Ocaml type-checker, it can't go wrong: it comes from a Coq well-typed terms, so for example inductives will always have the correct number of arguments, etc.

More details about the correctness of the extracted programs can be found in [86].
We have to say, though, that in most "realistic" programs, these problems do not occur. For example all the programs of Coq library are accepted by Caml type-checker without any Obj.magic (see examples below).

### 18.4 Some examples

We present here two examples of extractions, taken from the CoQ Standard Library. We choose ObJECTIVE CAML as target language, but all can be done in the other dialects with slight modifications. We then indicate where to find other examples and tests of Extraction.

### 18.4.1 A detailed example: Euclidean division

The file Euclid contains the proof of Euclidean division (theorem eucl_dev). The natural numbers defined in the example files are unary integers defined by two constructors $O$ and $S$ :

```
Coq < Inductive nat : Set :=
Coq < | O : nat
Coq < | S : nat -> nat.
```

This module contains a theorem eucl_dev, and its extracted term is of type

```
forall b:nat, b > 0 -> forall a:nat, diveucl a b
```

where diveucl is a type for the pair of the quotient and the modulo. We can now extract this program to Objective Caml:

```
Coq < Require Import Euclid.
Coq < Extraction Inline Wf_nat.gt_wf_rec Wf_nat.lt_wf_rec.
Coq < Recursive Extraction eucl_dev.
type nat =
 | O
 l S of nat
type sumbool=
 | Left
 | Right
(** val minus : nat -> nat -> nat **)
let rec minus n m =
 match n with
```

```
 | O -> O
 | S k -> (match m with
 | O -> S k
 | S l -> minus k l)
(** val le_lt_dec : nat -> nat -> sumbool **)
let rec le_lt_dec n m =
 match n with
 | O -> Left
 | S nO -> (match m with
 | O -> Right
 | S m0 -> le_lt_dec n0 m0)
(** val le_gt_dec : nat -> nat -> sumbool **)
let le_gt_dec n m =
 le_lt_dec n m
type diveucl =
 | Divex of nat * nat
(** val eucl_dev : nat -> nat -> diveucl **)
let rec eucl_dev b a =
 match le_gt_dec b a with
 | Left -> let Divex (x, x0) = eucl_dev b (minus a b) in Divex ((S x), x0)
 | Right -> Divex (O, a)
```

The inlining of $g t _w f _r e c$ and $l t _w f _r e c$ is not mandatory. It only enhances readability of extracted code. You can then copy-paste the output to a file euclid.ml or let CoQ do it for you with the following command:

```
Coq < Extraction "euclid" eucl_dev.
The file euclid.ml has been created by extraction.
The file euclid.mli has been created by extraction.
```

Let us play the resulting program:

```
#use "euclid.ml";;
type sumbool = Left | Right
type nat = O | S of nat
type diveucl = Divex of nat * nat
val minus : nat -> nat -> nat = <fun>
val le_lt_dec : nat -> nat -> sumbool = <fun>
val le_gt_dec : nat -> nat -> sumbool = <fun>
val eucl_dev : nat -> nat -> diveucl = <fun>
eucl_dev (S (S O)) (S (S (S (S (S O)))));;
- : diveucl = Divex (S (S O), S O)
```

It is easier to test on Objective Caml integers:

```
let rec i2n = function 0 -> O | n -> S (i2n (n-1));;
val i2n : int -> nat = <fun>
let rec n2i = function O -> 0 | S p -> 1+(n2i p);;
val n2i : nat -> int = <fun>
let div a b =
 let Divex (q,r) = eucl_dev (i2n b) (i2n a) in (n2i q, n2i r);;
```

```
div : int -> int -> int * int = <fun>
div 173 15;;
- : int * int = 11, 8
```


### 18.4.2 Another detailed example: Heapsort

The file Heap.v contains the proof of an efficient list sorting algorithm described by Bjerner. Is is an adaptation of the well-known heapsort algorithm to functional languages. The main function is treesort, whose type is shown below:

```
Coq < Require Import Heap.
Coq < Check treesort.
treesort
 : forall (A : Set) (leA eqA : relation A),
 (forall x y : A, {leA x y} + {leA y x}) ->
 forall eqA_dec : forall x y : A, {eqA x y} + {~ eqA x y},
 (forall x y z : A, leA x y -> leA y z -> leA x z) ->
 forall l : list A,
 {m : list A | sort leA m & permutation eqA eqA_dec l m}
```

Let's now extract this function:

```
Coq < Extraction Inline sort_rec is_heap_rec.
Coq < Extraction NoInline list_to_heap.
Coq < Extraction "heapsort" treesort.
The file heapsort.ml has been created by extraction.
The file heapsort.mli has been created by extraction.
```

One more time, the Extraction Inline and NoInline directives are cosmetic. Without it, everything goes right, but the output is less readable. Here is the produced file heapsort.ml:

```
type nat =
 | O
 | S of nat
type 'a sig2 =
 'a
 (* singleton inductive, whose constructor was exist2 *)
type sumbool =
 | Left
 | Right
type 'a list =
 | Nil
 | Cons of 'a * 'a list
type 'a multiset =
```

```
 'a -> nat
 (* singleton inductive, whose constructor was Bag *)
type 'a merge_lem =
 'a list
 (* singleton inductive, whose constructor was merge_exist *)
(** val merge : ('al -> 'al -> sumbool) -> ('al -> 'al -> sumbool) ->
 'a1 list -> 'a1 list -> 'a1 merge_lem **)
let rec merge leA_dec eqA_dec l1 l2 =
 match l1 with
 | Nil -> l2
 | Cons (a, l) ->
 let rec f = function
 | Nil -> Cons (a, l)
 | Cons (a0, l3) ->
 (match leA_dec a aO with
 | Left -> Cons (a,
 (merge leA_dec eqA_dec l (Cons (a0, l3))))
 | Right -> Cons (a0, (f l3)))
 in f l2
type 'a tree =
 | Tree_Leaf
 | Tree_Node of 'a * 'a tree * 'a tree
type 'a insert_spec =
 'a tree
 (* singleton inductive, whose constructor was insert_exist *)
(** val insert : ('al -> 'al -> sumbool) -> ('al -> 'a1 -> sumbool) ->
 'al tree -> 'al -> 'al insert_spec **)
let rec insert leA_dec eqA_dec t a =
 match t with
 | Tree_Leaf -> Tree_Node (a, Tree_Leaf, Tree_Leaf)
 | Tree_Node (a0, t0, t1) ->
 let h3 = fun x -> insert leA_dec eqA_dec t0 x in
 (match leA_dec a0 a with
 | Left -> Tree_Node (a0, t1, (h3 a))
 | Right -> Tree_Node (a, t1, (h3 a0)))
type 'a build_heap =
 'a tree
 (* singleton inductive, whose constructor was heap_exist *)
```

```
(** val list_to_heap : ('a1 -> 'a1 -> sumbool) -> ('al -> 'a1 ->
 sumbool) -> 'al list -> 'al build_heap **)
let rec list_to_heap leA_dec eqA_dec = function
 | Nil -> Tree_Leaf
 | Cons (a, l0) ->
 insert leA_dec eqA_dec (list_to_heap leA__dec eqA_dec lO) a
type 'a flat_spec =
 'a list
 (* singleton inductive, whose constructor was flat_exist *)
(** val heap_to_list : ('a1 -> 'al -> sumbool) -> ('a1 -> 'al ->
 sumbool) -> 'al tree -> 'al flat_spec **)
let rec heap_to_list leA_dec eqA_dec = function
 | Tree_Leaf -> Nil
 | Tree_Node (a, t0, t1) -> Cons (a,
 (merge leA_dec eqA_dec (heap_to_list leA__dec eqA_dec t0)
 (heap_to_list leA__dec eqA__dec t1)))
(** val treesort : ('a1 -> 'al -> sumbool) -> ('al -> 'al -> sumbool)
 -> 'a1 list -> 'al list sig2 **)
let treesort leA_dec eqA_dec l =
 heap_to_list leA_dec eqA_dec (list_to_heap leA_dec eqA_dec l)
```

Let's test it:
\# \#use "heapsort.ml";
type sumbool = Left | Right
type nat $=0$ | S of nat
type 'a tree = Tree_Leaf | Tree_Node of 'a * 'a tree * 'a tree type 'a list = Nil | Cons of 'a * 'a list
val merge :
('a -> 'a -> sumbool) -> 'b -> 'a list -> 'a list -> 'a list = <fun> val heap_to_list :
('a -> 'a -> sumbool) -> 'b -> 'a tree -> 'a list = <fun>
val insert :
('a -> 'a -> sumbool) -> 'b -> 'a tree -> 'a -> 'a tree = <fun>
val list_to_heap :
('a $->$ 'a $->$ sumbool) $->$ 'b $\rightarrow>$ 'a list $->$ 'a tree $=$ <fun>
val treesort :
('a -> 'a -> sumbool) -> 'b -> 'a list -> 'a list = <fun>
One can remark that the argument of treesort corresponding to eqAdec is never used in the informative part of the terms, only in the logical parts. So the extracted treesort never use it, hence
this' b argument. We will use () for this argument. Only remains the leAdec argument (of type ' a -> 'a -> sumbool) to really provide.

```
let leAdec x y = if x <= y then Left else Right;;
val leAdec : 'a -> 'a -> sumbool = <fun>
let rec listn = function 0 -> Nil
 | n -> Cons(Random.int 10000,listn (n-1));;
val listn : int -> int list = <fun>
treesort leAdec () (listn 9);;
- : int list = Cons (160, Cons (883, Cons (1874, Cons (3275, Cons
 (5392, Cons (7320, Cons (8512, Cons (9632, Cons (9876, Nil)))))))))
```

Some tests on longer lists (10000 elements) show that the program is quite efficient for Caml code.

### 18.4.3 The Standard Library

As a test, we propose an automatic extraction of the Standard Library of CoQ. In particular, we will find back the two previous examples, Euclid and Heapsort. Go to directory contrib/extraction/test of the sources of CoQ, and run commands:

```
make tree; make
```

This will extract all Standard Library files and compile them. It is done via many Extraction Module, with some customization (see subdirectory custom).

This test works also with Haskell. In the same directory, run:

```
make tree; make -f Makefile.haskell
```

The haskell compiler currently used is hbc. Any other should also work, just adapt the Makefile.haskell. In particular ghc is known to work.

### 18.4.4 Extraction's horror museum

Some pathological examples of extraction are grouped in the file

```
contrib/extraction/test_extraction.v
```

of the sources of CoQ.

### 18.4.5 Users' Contributions

Several of the CoQ Users' Contributions use extraction to produce certified programs. In particular the following ones have an automatic extraction test (just run make in those directories):

- Bordeaux/Additions
- Bordeaux/EXCEPTIONS
- Bordeaux/SearchTrees
- Dyade/BDDS
- Lannion
- Lyon/CIRCUITS
- Lyon/FIRING-SQUAD
- Marseille/CIRCUITS
- Muenchen/Higman
- Nancy/FOUnify
- Rocq/ARITH/Chinese
- Rocq/COC
- Rocq/GRAPHS
- Rocq/HIGMAN
- Sophia-Antipolis/Stalmarck
- Suresnes/BDD

Lannion, Rocq/HIGMAN and Lyon/CIRCUITS are a bit particular. They are the only examples of developments where 0 bj. magic are needed. This is probably due to an heavy use of impredicativity. After compilation those two examples run nonetheless, thanks to the correction of the extraction [86].

## Chapter 19

## Program

## Matthieu Sozeau

## The status of PROGRAM is experimental.

We present here the new Program tactic commands, used to build certified CoQ programs, elaborating them from their algorithmic skeleton and a rich specification [118]. It can be sought of as a dual of extraction (chapter 18). The goal of PROGRAM is to program as in a regular functional programming language whilst using as rich a specification as desired and proving that the code meets the specification using the whole COQ proof apparatus. This is done using a technique originating from the "Predicate subtyping" mechanism of PVS[115], which generates type-checking conditions while typing a term constrained to a particular type. Here we insert existential variables in the term, which must be filled with proofs to get a complete CoQ term. Program replaces the Program tactic by Catherine Parent [105] which had a similar goal but is no longer maintained.

The languages available as input are currently restricted to CoQ's term language, but may be extended to Objective Caml, Haskell and others in the future. We use the same syntax as Coq and permit to use implicit arguments and the existing coercion mechanism. Input terms and types are typed in an extended system (RUSSELL) and interpreted into COQ terms. The interpretation process may produce some proof obligations which need to be resolved to create the final term.

### 19.1 Elaborating programs

The main difference from CoQ is that an object in a type $T$ : Set can be considered as an object of type $\{x: T \mid P\}$ for any wellformed $P:$ Prop. If we go from $T$ to the subset of $T$ verifying property $P$, we must prove that the object under consideration verifies it. RUSSELL will generate an obligation for every such coercion. In the other direction, RUSSELL will automatically insert a projection.

Another distinction is the treatment of pattern-matching. Apart from the following differences, it is equivalent to the standard match operation (section 4.5.4).

- Generation of equalities. A mat ch expression is always generalized by the corresponding equality. As an example, the expression:

```
Coq < match x with
Coq < | 0 => t
Coq < | S n => u
Coq < end.
```

will be first rewrote to:

```
Coq < (match x as y return (x = y -> _) with
Coq < | 0 => fun H : x = 0 -> t
Coq< | S n => fun H : x = S n -> u
Coq < end) (refl_equal n).
```

This permits to get the proper equalities in the context of proof obligations inside clauses, without which reasoning is very limited.

- Generation of inequalities. If a pattern intersects with a previous one, an inequality is added in the context of the second branch. See for example the definition of div2 below, where the second branch is typed in a context where $\forall p,_{-}<>S(S p)$.
- Coercion. If the object being matched is coercible to an inductive type, the corresponding coercion will be automatically inserted. This also works with the previous mechanism.

If you do specify a return or in clause the typechecker will fall back directly to CoQ's usual typing of dependent pattern-matching.

The next two commands are similar to their standard counterparts Definition (section 1.3.2) and Fixpoint (section 1.3.4) in that they define constants. However, they may require the user to prove some goals to construct the final definitions.

### 19.1.1 Program Definition ident $:=$ term.

This command types the value term in RUSSELL and generate proof obligations. Once solved using the commands shown below, it binds the final COQ term to the name ident in the environment.

## Error messages:

1. ident already exists

## Variants:

1. Program Definition ident :term l $_{1}=$ term $_{2}$.

It interprets the type term ${ }_{1}$, potentially generating proof obligations to be resolved. Once done with them, we have a COQ type term ${ }_{1}^{\prime}$. It then checks that the type of the interpretation of term ${ }_{2}$ is coercible to term $1_{1}^{\prime}$, and registers ident as being of type term $1_{1}^{\prime}$ once the set of obligations generated during the interpretation of $t e r m_{2}$ and the aforementioned coercion derivation are solved.
2. Program Definition ident binder $_{1} \ldots$ binder $_{n}$ :term ${ }_{1}:=$ term $_{2}$.

This is equivalent to


## Error messages:

1. In environment ... the term: term ${ }_{2}$ does not have type term ${ }_{1}$. Actually, it has type term 3 .

See also: Sections 6.2.4, 6.2.5, 8.5.5

### 19.1.2 Program Fixpoint ident params \{order\} : type := term

The structural fixpoint operator behaves just like the one of Coq (section 1.3.4), except it may also generate obligations. It works with mutually recursive definitions too.

```
Coq < Program Fixpoint div2 (n : nat) : { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
Coq < match n with
Coq < | S (S p) => S (div2 p)
Coq < | _ => O
Coq < end.
Solving obligations automatically...
div2_obligation_3 is defined
div2_obligation_4 is defined
2 obligations remaining
```

Here we have one obligation for each branch (branches for 0 and $\left(\begin{array}{ll}\mathrm{S} & 0\end{array}\right)$ are automatically generated by the pattern-matching compilation algorithm):

```
Coq < Obligations.
2 obligation(s) remaining:
Obligation 1 of div2:
forall (div2 : forall n : nat, {x : nat / n = 2 * x \/ n = 2 * x + l})
 (n p : nat),
S (S p) = n ->
n = 2 * S (proj1_sig (div2 p)) \/ n = 2 * S (proj1_sig (div2 p)) + 1.
Obligation 2 of div2:
forall n wildcard' : nat,
(forall p : nat, S (S p) <> wildcard') ->
wildcard' = n > n = 2 * 0 \/ n = 2 * 0 + 1.
```

You can use a well-founded order or a measure as termination orders using the syntax:

```
Coq < Definition id (n : nat) := n.
id is defined
Coq <
Coq < Program Fixpoint div2 (n : nat) {measure id n} : { x : nat | n = 2 * x \/ n = 2 *
Coq < match n with
Coq < | S (S p) => S (div2 p)
Coq < | _ => O
Coq < end.
div2 has type-checked, generating 5 obligation(s)
Solving obligations automatically...
div2_obligation_1 is defined
div2_obligation_4 is defined
div2_obligation_5 is defined
2 obligations remaining
```

Caution: When defining structurally recursive functions, the generated obligations should have the prototype of the currently defined functional in their context. In this case, the obligations should be transparent (e.g. using Defined or Save) so that the guardedness condition on recursive calls can be checked by the kernel's type-checker. There is an optimization in the generation of obligations which gets rid of the hypothesis corresponding to the functionnal when it is not necessary, so that the obligation
can be declared opaque (e.g. using Qed). However, as soon as it appears in the context, the proof of the obligation is required to be declared transparent.

No such problems arise when using measures or well-founded recursion.

### 19.1.3 Program Lemma ident : type.

The Russell language can also be used to type statements of logical properties. It will currently fail if the traduction to COQ generates obligations though it can be useful to insert automatic coercions. In the former case, one can first define the lemma's statement using Program Definition and use it as the goal afterwards.

The Program prefix can similarly be used as a prefix for Variable, Hypothesis, Axiom etc...

### 19.1.4 Solving obligations

The following commands are available to manipulate obligations. The optional identifier is used when multiple functions have unsolved obligations (e.g. when defining mutually recursive blocks). The optional tactic is replaced by the default one if not specified.

- Obligations Tactic := expr Sets the default obligation solving tactic applied to all obligations automatically, whether to solve them or when starting to prove one, e.g. using Next.
- Obligations [of ident] Displays all remaining obligations.
- Next Obligation [of ident] Start the proof of the next unsolved obligation.
- Obligation num [of ident] Start the proof of obligation num.
- Solve Obligations [of ident] [using expr] Tries to solve each obligation of identusing the given tactic.
- Solve All Obligations [using expr] Tries to solve each obligation of every program using the given tactic.
- Admit Obligations [of ident] Admits all obligations (does not work with structurally recursive programs).

The module Coq.subtac.Utils defines the default tactic for solving obligations called subtac_simpl. Importing it also adds some useful notations, as documented in the file itself.

## Chapter 20

## The ring and field tactic families

## Bruno Barras, Benjamin Grégoire and Assia Mahboubi ${ }^{1}$

This chapter presents the tactics dedicated to deal with ring and field equations.

### 20.1 What does this tactic do?

ring does associative-commutative rewriting in ring and semi-ring structures. Assume you have two binary functions $\oplus$ and $\otimes$ that are associative and commutative, with $\oplus$ distributive on $\otimes$, and two constants 0 and 1 that are unities for $\oplus$ and $\otimes$. A polynomial is an expression built on variables $V_{0}, V_{1}, \ldots$ and constants by application of $\oplus$ and $\otimes$.

Let an ordered product be a product of variables $V_{i_{1}} \otimes \ldots \otimes V_{i_{n}}$ verifying $i_{1} \leq i_{2} \leq \cdots \leq i_{n}$. Let a monomial be the product of a constant and an ordered product. We can order the monomials by the lexicographic order on products of variables. Let a canonical sum be an ordered sum of monomials that are all different, i.e. each monomial in the sum is strictly less than the following monomial according to the lexicographic order. It is an easy theorem to show that every polynomial is equivalent (modulo the ring properties) to exactly one canonical sum. This canonical sum is called the normal form of the polynomial. In fact, the actual representation shares monomials with same prefixes. So what does ring? It normalizes polynomials over any ring or semi-ring structure. The basic use of ring is to simplify ring expressions, so that the user does not have to deal manually with the theorems of associativity and commutativity.

## Examples:

1. In the ring of integers, the normal form of $x(3+y x+25(1-z))+z x$ is $28 x+(-24) x z+x x y$.
2. For the classical propositional calculus (or the boolean rings) the normal form is what logicians call disjunctive normal form: every formula is equivalent to a disjunction of conjunctions of atoms. (Here $\oplus$ is $\vee, \otimes$ is $\wedge$, variables are atoms and the only constants are $T$ and $F$ )
ring is also able to compute a normal form modulo monomial equalities. For example, under the hypothesis that $x^{2}=y z$, the normal form of $(x+1) x-x-z y$ is 0 .
[^21]
### 20.2 The variables map

It is frequent to have an expression built with + and $\times$, but rarely on variables only. Let us associate a number to each subterm of a ring expression in the GALLINA language. For example in the ring nat, consider the expression:

```
(plus (mult (plus (f (5)) x) x)
 (mult (if b then (4) else (f (3))) (2)))
```

As a ring expression, it has 3 subterms. Give each subterm a number in an arbitrary order:

```
0 \mapsto if b then (4) else (f (3))
1 \mapsto (f (5))
2 \mapsto X
```

Then normalize the "abstract" polynomial

$$
\left(\left(V_{1} \otimes V_{2}\right) \oplus V_{2}\right) \oplus\left(V_{0} \otimes 2\right)
$$

In our example the normal form is:

$$
\left(2 \otimes V_{0}\right) \oplus\left(V_{1} \otimes V_{2}\right) \oplus\left(V_{2} \otimes V_{2}\right)
$$

Then substitute the variables by their values in the variables map to get the concrete normal polynomial:

```
(plus (mult (2) (if b then (4) else (f (3))))
 (plus (mult (f (5)) x) (mult x x)))
```


### 20.3 Is it automatic?

Yes, building the variables map and doing the substitution after normalizing is automatically done by the tactic. So you can just forget this paragraph and use the tactic according to your intuition.

### 20.4 Concrete usage in CoQ

The ring tactic solves equations upon polynomial expressions of a ring (or semi-ring) structure. It proceeds by normalizing both hand sides of the equation (w.r.t. associativity, commutativity and distributivity, constant propagation, rewriting of monomials) and comparing syntactically the results.
ring_simplify applies the normalization procedure described above to the terms given. The tactic then replaces all occurrences of the terms given in the conclusion of the goal by their normal forms. If no term is given, then the conclusion should be an equation and both hand sides are normalized.

The tactic must be loaded by Require Import Ring. The ring structures must be declared with the Add Ring command (see below). The ring of booleans is predefined; if one wants to use the tactic on nat one must first require the module ArithRing (exported by Arith); for Z, do Require Import ZArithRing or simply Require Import ZArith; for N, do Require Import NArithRing or Require Import NArith.

## Example:

```
Coq < Require Import ZArith.
Coq < Open Scope Z_scope.
Coq < Goal forall a b c:Z,
Coq < (a + b + c)^2 =
Coq< a * a + b^2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c.
1 subgoal
 =============================
 forall a b c : Z,
 (a+b+c) ^ 2 =
 a* a +b^2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c
Coq < intros; ring.
Proof completed.
Coq < Goal forall a b:Z, a*b = 0 ->
Coq< (a+b)^2 = a^2 + b^2.
1 subgoal
 forall a b : Z, a * b = 0 -> (a + b) ^ 2 = a ^ 2 + b ^ 2
Coq < intros a b H; ring [H].
Proof completed.
```


## Variants:

1. ring $\left[\operatorname{term}_{1} \ldots \operatorname{term}_{n}\right]$ decides the equality of two terms modulo ring operations and rewriting of the equalities defined by term th $_{1} \ldots$ term $_{n}$. Each of term ${ }_{1} \ldots$ term ${ }_{n}$ has to be a proof of some equality $m=p$, where $m$ is a monomial (after "abstraction"), $p$ a polynomial and $=$ the corresponding equality of the ring structure.
2. ring_simplify $\left[\operatorname{term}_{1} \ldots \operatorname{term}_{n}\right] t_{1} \ldots t_{m}$ in ident performs the simplification in the hypothesis named ident.

Warning: ring_simplify term ${ }_{1}$; ring_simplify term ${ }_{2}$ is not equivalent to ring_simplify term term $_{2}$. In the latter case the variables map is shared between the two terms, and common subterm $t$ of $t_{1} \mathrm{term}_{1}$ and term ${ }_{2}$ will have the same associated variable number. So the first alternative should be avoided for terms belonging to the same ring theory.

## Error messages:

1. not a valid ring equation The conclusion of the goal is not provable in the corresponding ring theory.
2. arguments of ring_simplify do not have all the same type ring_simplify cannot simplify terms of several rings at the same time. Invoke the tactic once per ring structure.
3. cannot find a declared ring structure over term No ring has been declared for the type of the terms to be simplified. Use Add Ring first.
4. cannot find a declared ring structure for equality term Same as above is the case of the ring tactic.

### 20.5 Adding a ring structure

Declaring a new ring consists in proving that a ring signature (a carrier set, an equality, and ring operations: Ring_theory.ring_theory and Ring_theory.semi_ring_theory) satisfies the ring axioms. Semi-rings (rings without + inverse) are also supported. The equality can be either Leibniz equality, or any relation declared as a setoid (see 21.7). The definition of ring and semi-rings (see module Ring_theory) is:

```
Record ring_theory : Prop := mk_rt {
 Radd_0_l : forall x, 0 + x == x;
 Radd_sym : forall x y, x + y == y + x;
 Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
 Rmul_1_l : forall x, 1 * x == x;
 Rmul_sym : forall x y, x * y == y * x;
 Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
 Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
 Rsub_def : forall x y, x - y == x + -y;
 Ropp_def : forall x, x + (- x) == 0
} .
```

Record semi_ring_theory : Prop := mk_srt \{
SRadd_0_l : forall $\mathrm{n}, \mathrm{O}+\mathrm{n}==\mathrm{n}$;
SRadd_sym : forall $n \mathrm{~m}, \mathrm{n}+\mathrm{m}==\mathrm{m}+\mathrm{n}$;
SRadd_assoc : forall $n \mathrm{~m} p, \mathrm{n}+(\mathrm{m}+\mathrm{p})==(\mathrm{n}+\mathrm{m})+\mathrm{p}$;
SRmul_1_l : forall $n, 1 * n==n$;
SRmul_0_l : forall $n, 0 * n==0$;
SRmul_sym : forall $n m, n * m==m * n$;
SRmul_assoc : forall $n m p, n *(m * p)==(n * m) * p$;
SRdistr_l : forall $n m p,(n+m) * p==n * p+m * p$
\}.

This implementation of ring also features a notion of constant that can be parameterized. This can be used to improve the handling of closed expressions when operations are effective. It consists in introducing a type of coefficients and an implementation of the ring operations, and a morphism from the coefficient type to the ring carrier type. The morphism needs not be injective, nor surjective. As an example, one can consider the real numbers. The set of coefficients could be the rational numbers, upon which the ring operations can be implemented. The fact that there exists a morphism is defined by the following properties:

```
Record ring_morph : Prop := mkmorph {
 morph0 : [cO] == 0;
 morph1 : [cI] == 1;
 morph_add : forall x y, [x +! y] == [x]+[y];
 morph_sub : forall x y, [x -! y] == [x]-[y];
 morph_mul : forall x y, [x *! y] == [x]*[y];
 morph_opp : forall x, [-!x] == -[x];
 morph_eq : forall x y, x?=!y = true -> [x] == [y]
} .
```

```
Record semi_morph : Prop := mkRmorph {
 Smorph0 : [cO] == 0;
 Smorph1 : [cI] == 1;
 Smorph_add : forall x y, [x +! y] == [x]+[y];
 Smorph_mul : forall x y, [x *! y] == [x]*[y];
 Smorph_eq : forall x y, x?=!y = true -> [x] == [y]
} .
```

where $c 0$ and $c I$ denote the 0 and 1 of the coefficient set, $+!, *!,-!$ are the implementations of the ring operations, $==$ is the equality of the coefficients, ? $+!$ is an implementation of this equality, and $[\mathrm{x}]$ is a notation for the image of x by the ring morphism.

Since Z is an initial ring (and N is an initial semi-ring), it can always be considered as a set of coefficients. There are basically three kinds of (semi-)rings:
abstract rings to be used when operations are not effective. The set of coefficients is $Z$ (or N for semirings).
computational rings to be used when operations are effective. The set of coefficients is the ring itself. The user only has to provide an implementation for the equality.
customized ring for other cases. The user has to provide the coefficient set and the morphism.
This implementation of ring can also recognize simple power expressions as ring expressions. A power function is specified by the following property:

```
Section POWER.
 Variable Cpow : Set.
 Variable Cp_phi : N -> Cpow.
 Variable rpow : R -> Cpow -> R.
 Record power_theory : Prop := mkpow_th {
 rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r n)
 }.
End POWER.
```

The syntax for adding a new ring is Add Ring name : $\operatorname{ring}\left(\bmod _{1}, \ldots, \bmod _{2}\right)$. The name is not relevent. It is just used for error messages. The term ring is a proof that the ring signature satisfies the (semi-)ring axioms. The optional list of modifiers is used to tailor the behavior of the tactic. The following list describes their syntax and effects:
abstract declares the ring as abstract. This is the default.
decidable term declares the ring as computational. The expression term is the correctness proof of an equality test ? = ! (which should be evaluable). Its type should be of the form forall x y, $x ?=!\mathrm{y}=$ true $\rightarrow \mathrm{x}==\mathrm{y}$.
morphism term declares the ring as a customized one. The expression term is a proof that there exists a morphism between a set of coefficient and the ring carrier (see Ring_theory .ring_morph and Ring_theory.semi_morph).
setoid term term $_{2}$ forces the use of given setoid. The expression term ${ }_{1}$ is a proof that the equality is indeed a setoid (see Setoid.Setoid_Theory), and term ${ }_{2}$ a proof that the ring operations are morphisms (see Ring_theory.ring_eq_ext and Ring_theory.sring_eq_ext). This modifier needs not be used if the setoid and morphisms have been declared.
constants $\left[\mathcal{L}_{t a c}\right]$ specifies a tactic expression that, given a term, returns either an object of the coefficient set that is mapped to the expression via the morphism, or returns InitialRing. NotConstant. The default behaviour is to map only 0 and 1 to their counterpart in the coefficient set. This is generally not desirable for non trivial computational rings.
preprocess $\left[\mathcal{L}_{t a c}\right]$ specifies a tactic that is applied as a preliminary step for ring and ring_simplify. It can be used to transform a goal so that it is better recognized. For instance, $S \mathrm{n}$ can be changed to plus 1 n .
postprocess $\left[\mathcal{L}_{t a c}\right]$ specifies a tactic that is applied as a final step for ring_simplify. For instance, it can be used to undo modifications of the preprocessor.
power_tac term $\left[\mathcal{L}_{t a c}\right]$ allows ring and ring_simplify to recognize power expressions with a constant positive integer exponent (example: $x^{2}$ ). The term term is a proof that a given power function satisfies the specification of a power function (term has to be a proof of Ring_theory.power_theory) and $\mathcal{L}_{\text {tac }}$ specifies a tactic expression that, given a term, "abstracts" it into an object of type $N$ whose interpretation via Cp_phi (the evaluation function of power coefficient) is the original term, or returns InitialRing. NotConstant if not a constant coefficient (i.e. $\mathcal{L}_{t a c}$ is the inverse function of Cp_phi). See files contrib/setoid_ring/ZArithRing.v and contrib/setoid_ring/RealField.v for examples. By default the tactic does not recognize power expressions as ring expressions.
sign term allows ring_simplify to use a minus operation when outputing its normal form, i.e writing $x-y$ instead of $x+(-y)$. The term term is a proof that a given sign function indicates expressions that are signed (term has to be a proof of Ring_theory.get_sign). See contrib/setoid_ring/IntialRing.v for examples of sign function.
div term allows ring and ring_simplify to use moniomals with coefficient other than 1 in the rewriting. The term term is a proof that a given division function satisfies the specification of an euclidean division function (term has to be a proof of Ring_theory.div_theory). For example, this function is called when trying to rewrite $7 x$ by $2 x=z$ to tell that $7=3 * 2+1$. See contrib/setoid_ring/IntialRing.v for examples of div function.

## Error messages:

1. bad ring structure The proof of the ring structure provided is not of the expected type.
2. bad lemma for decidability of equality The equality function provided in the case of a computational ring has not the expected type.
3. ring operation should be declared as a morphism A setoid associated to the carrier of the ring structure as been found, but the ring operation should be declared as morphism. See 21.7.

### 20.6 How does it work?

The code of ring is a good example of tactic written using reflection. What is reflection? Basically, it is writing CoQ tactics in CoQ, rather than in Objective Caml. From the philosophical point of view, it is using the ability of the Calculus of Constructions to speak and reason about itself. For the ring tactic we used COQ as a programming language and also as a proof environment to build a tactic and to prove it correctness.

The interested reader is strongly advised to have a look at the file Ring_polynom.v. Here a type for polynomials is defined:

```
Inductive PExpr : Type :=
 | PEc : C -> PExpr
 | PEX : positive -> PExpr
 | PEadd : PExpr -> PExpr -> PExpr
 | PEsub : PExpr -> PExpr -> PExpr
 | PEmul : PExpr -> PExpr -> PExpr
 | PEopp : PExpr -> PExpr.
```

Polynomials in normal form are defined as:

```
Inductive Pol : Type :=
 | Pc : C -> Pol
 | Pinj : positive -> Pol -> Pol
 | PX : Pol -> positive -> Pol -> Pol.
```

where Pinj n P denotes $P$ in which $V_{i}$ is replaced by $V_{i+n}$, and PXP n $Q$ denotes $P \otimes V_{1}^{n} \oplus Q^{\prime}$, $Q^{\prime}$ being $Q$ where $V_{i}$ is replaced by $V_{i+1}$.

Variables maps are represented by list of ring elements, and two interpretation functions, one that maps a variables map and a polynomial to an element of the concrete ring, and the second one that does the same for normal forms:

```
Definition PEeval : list R -> PExpr -> R := [...].
Definition Pphi__dev : list R -> Pol -> R := [...].
```

A function to normalize polynomials is defined, and the big theorem is its correctness w.r.t interpretation, that is:

```
Definition norm : PExpr -> Pol := [...].
Lemma Pphi_dev_ok :
 forall l pe npe, norm pe = npe -> PEeval l pe == Pphi_dev l npe.
```

So now, what is the scheme for a normalization proof? Let p be the polynomial expression that the user wants to normalize. First a little piece of ML code guesses the type of p, the ring theory T to use, an abstract polynomial ap and a variables map $v$ such that p is $\beta \delta \iota$-equivalent to (PEeval v ap ). Then we replace it by (Pphi_dev v (norm ap)), using the main correctness theorem and we reduce it to a concrete expression $p^{\prime}$, which is the concrete normal form of $p$. This is summarized in this diagram:

$$
\begin{aligned}
\mathrm{p} \quad \rightarrow_{\beta \delta \iota} \quad & (\text { PEeval } \mathrm{v} \text { ap }) \\
& =(\text { by the main correctness theorem }) \\
\mathrm{p}^{\prime} \quad \leftarrow \beta \delta \iota & (\text { Pphi_dev } \mathrm{v} \quad(\text { norm ap }))
\end{aligned}
$$

The user do not see the right part of the diagram. From outside, the tactic behaves like a $\beta \delta \iota$ simplification extended with AC rewriting rules. Basically, the proof is only the application of the main correctness theorem to well-chosen arguments.

### 20.7 Dealing with fields

The field tactic is an extension of the ring to deal with rational expresision. Given a rational expression $F=0$. It first reduces the expression $F$ to a common denominator $N / D=0$ where $N$ and $D$ are two ring expressions. For example, if we take $F=(1-1 / x) x-x+1$, this gives $N=(x-1) x-x^{2}+x$ and $D=x$. It then calls ring to solve $N=0$. Note that field also generates non-zero conditions for all the denominators it encounters in the reduction. In our example, it generates the condition $x \neq 0$. These conditions appear as one subgoal which is a conjunction if there are several denominators. Non-zero conditions are always polynomial expressions. For example when reducing the expression $1 /(1+1 / x)$, two side conditions are generated: $x \neq 0$ and $x+1 \neq 0$. Factorized expressions are broken since a field is an integral domain, and when the equality test on coefficients is complete w.r.t. the equality of the target field, constants can be proven different from zero automatically.

The tactic must be loaded by Require Import Field. New field structures can be declared to the system with the Add Field command (see below). The field of real numbers is defined in module RealField (in textttcontrib/setoid_ring). It is exported by module Rbase, so that requiring Rbase or Reals is enough to use the field tactics on real numbers. Rational numbers in canonical form are also declared as a field in module Qcanon.

## Example:

```
Coq < Require Import Reals.
Coq < Open Scope R_scope.
Coq < Goal forall x, x <> 0 ->
Coq < (1 - 1/x) * x - x + 1 = 0.
1 subgoal
```


forall $x: R, x<>0->(1-1 / x) * x-x+1=0$
Coq < intros; field; auto.
Proof completed.
Coq < Goal forall $x y, y<>0->y=x->x / y=1$.
1 subgoal

```
 ============================
 forall x y : R, y <> 0 -> y = x -> x/y = 1
Coq < intros x y H H1; field [H1]; auto.
Proof completed.
```


## Variants:

1. field [term $\left.{ }_{1} \ldots \operatorname{term}_{n}\right]$ decides the equality of two terms modulo field operations and rewriting of the equalities defined by $\operatorname{term}_{1} \ldots$ term $_{n}$. Each of $\operatorname{term}_{1} \ldots$ term ${ }_{n}$ has to be a proof of some equality $m=p$, where $m$ is a monomial (after "abstraction"), $p$ a polynomial and $=$ the corresponding equality of the field structure.
2. field_simplify performs the simplification in the conclusion of the goal, $F_{1}=F_{2}$ becomes $N_{1} / D_{1}=N_{2} / D_{2}$. A normalization step (the same as the one for rings) is then applied to $N_{1}, D_{1}$, $N_{2}$ and $D_{2}$. This way, polynomials remain in factorized form during the fraction simplifications. This yields smaller expressions when reducing to the same denominator since common factors can be cancelled.
3. field_simplify [term $\tan _{1}$. . term ${ }_{n}$ ] performs the simplification in the conclusion of the goal using the equalities defined by term $_{1} \ldots$ term ${ }_{n}$.
4. field_simplify $\left[\operatorname{term}_{1} \ldots \operatorname{term}_{n}\right] t_{1} \ldots t_{m}$ performs the simplification in the terms $t_{1} \ldots t_{m}$ of the conclusion of the goal using the equalities defined by term ${ }_{1} \ldots$ term ${ }_{n}$.
5. field_simplify in $H$ performs the simplification in the assumption $H$.
6. field_simplify $\left[\operatorname{term}_{1} \ldots \operatorname{term}_{n}\right]$ in $H$ performs the simplification in the assumption $H$ using the equalities defined by term $_{1} \ldots$ term $_{n}$.
7. field_simplify $\left[t_{1} \operatorname{term}_{1} \ldots \operatorname{term}_{n}\right] t_{1} \ldots t_{m}$ in $H$ performs the simplification in the terms $t_{1} \ldots t_{n}$ of the assumption $H$ using the equalities defined by term ${ }_{1} \ldots$ term $_{m}$.
8. field_simplify_eq performs the simplification in the conclusion of the goal removing the denominator. $F_{1}=F_{2}$ becomes $N_{1} D_{2}=N_{2} D_{1}$.
9. field_simplify_eq [term $1 \ldots$. . term ${ }_{n}$ ] performs the simplification in the conclusion of the goal using the equalities defined by term $_{1} \ldots$ term $_{n}$.
10. field_simplify_eq in $H$ performs the simplification in the assumption $H$.
11. field_simplify_eq [term $\left.\tan _{1} \ldots \operatorname{term}_{n}\right]$ in $H$ performs the simplification in the assumption $H$ using the equalities defined by term ${ }_{1} \ldots$ term ${ }_{n}$.

### 20.8 Adding a new field structure

Declaring a new field consists in proving that a field signature (a carrier set, an equality, and field operations: Field_theory.field_theory and Field_theory.semi_field_theory) satisfies the field axioms. Semi-fields (fields without + inverse) are also supported. The equality can be either Leibniz equality, or any relation declared as a setoid (see 21.7). The definition of fields and semi-fields is:

```
Record field_theory : Prop := mk_field {
 F_R : ring_theory rO rI radd rmul rsub ropp req;
 F_1_neq_0 : ~ 1 == 0;
 Fdiv_def : forall p q, p / q == p * / q;
 Finv_l : forall p, ~ p == 0 -> / p * p == 1
} .
Record semi_field_theory : Prop := mk_sfield {
 SF_SR : semi_ring_theory rO rI radd rmul req;
 SF_1_neq_0 : ~ 1 == 0;
 SFdiv_def : forall p q, p / q == p * / q;
 SFinv_l : forall p, ~ p == 0 -> / p * p == 1
} .
```

The result of the normalization process is a fraction represented by the following type:

```
Record linear : Type := mk_linear {
 num : PExpr C;
 denum : PExpr C;
 condition : list (PExpr C) }.
```

where num and denum are the numerator and denominator; condition is a list of expressions that have appeared as a denominator during the normalization process. These expressions must be proven different from zero for the correctness of the algorithm.

The syntax for adding a new field is Add Field name : field $\left(\bmod _{1}, \ldots, \bmod _{2}\right)$. The name is not relevent. It is just used for error messages. field is a proof that the field signature satisfies the (semi-)field axioms. The optional list of modifiers is used to tailor the behaviour of the tactic. Since field tactics are built upon ring tactics, all mofifiers of the Add Ring apply. There is only one specific modifier:
completeness term allows the field tactic to prove automatically that the image of non-zero coefficients are mapped to non-zero elements of the field. termis a proof of forall $\mathrm{x} y, \quad[\mathrm{x}]==$ $[y]->x ?=!y=$ true, which is the completeness of equality on coefficients w.r.t. the field equality.

### 20.9 Legacy implementation

Warning: This tactic is the ring tactic of previous versions of COQ and it should be considered as deprecated. It will probably be removed in future releases. It has been kept only for compatibility reasons and in order to help moving existing code to the newer implementation described above. For more details, please refer to the Coq Reference Manual, version 8.0.

### 20.9.1 legacy ring term 1 . . . term $n$

This tactic, written by Samuel Boutin and Patrick Loiseleur, applies associative commutative rewriting on every ring. The tactic must be loaded by Require Import LegacyRing. The ring must be declared in the Add Ring command. The ring of booleans is predefined; if one wants to use the tactic on nat one must first require the module LegacyArithRing; for Z, do Require Import LegacyZArithRing; for N, do Require Import LegacyNArithRing.

The terms term ${ }_{1}, \ldots$, term t must be subterms of the goal conclusion. The tactic ring normalizes 2 these terms w.r.t. associativity and commutativity and replace them by their normal form.

## Variants:

1. legacy ring When the goal is an equality $t_{1}=t_{2}$, it acts like ring_simplify $t_{1} t_{2}$ and then solves the equality by reflexivity.
2. ring_nat is a tactic macro for repeat rewrite $S$ _to_plus_one; ring. The theorem S_to_plus_one is a proof that forall (n:nat), $S \mathrm{n}=\mathrm{plus}(\mathrm{S} O) \mathrm{n}$.

You can have a look at the files LegacyRing.v, ArithRing.v, ZArithRing.v to see examples of the Add Ring command.

### 20.9.2 Add a ring structure

It can be done in the CoQtoplevel (No ML file to edit and to link with COQ). First, ring can handle two kinds of structure: rings and semi-rings. Semi-rings are like rings without an opposite to addition. Their precise specification (in GaLLINA) can be found in the file

```
contrib/ring/Ring_theory.v
```

The typical example of ring is $Z$, the typical example of semi-ring is nat.
The specification of a ring is divided in two parts: first the record of constants $(\oplus, \otimes, 1,0, \ominus)$ and then the theorems (associativity, commutativity, etc.).

```
Section Theory_of_semi_rings.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
(* There is also a "weakly decidable" equality on A. That means
 that if (A_eq x y)=true then x=y but }x=y can arise when
 (A_eq x y)=false. On an abstract ring the function [x,y:A]false
 is a good choice. The proof of A_eq_prop is in this case easy. *)
Variable Aeq : A -> A -> bool.
Record Semi_Ring_Theory : Prop :=
{ SR_plus_sym : (n,m:A)[| n + m == m + n |];
 SR_plus_assoc : (n,m,p:A)[| n + (m + p) == (n +m) + p |];
 SR_mult_sym : (n,m:A) [| n*m == m*n |];
 SR_mult_assoc : (n,m,p:A)[| n* (m*p) == (n*m)*p |];
 SR_plus_zero_left : (n:A)[| 0 + n == n|];
 SR_mult_one_left : (n:A)[| 1*n == n |];
 SR_mult_zero_left : (n:A) [| 0*n == 0 |];
 SR_distr_left : (n,m,p:A) [| (n + m)*p == n*p + m*p |];
 SR_plus_reg_left : (n,m,p:A)[| n +m== n + p |] -> m== p;
 SR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y
}.
Section Theory_of_rings.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
Record Ring_Theory : Prop :=
{ Th_plus_sym : (n,m:A)[| n + m == m + n |];
```

```
Th_plus_assoc : (n,m,p:A)[| n + (m + p) == (n + m) + p |];
Th_mult_sym : (n,m:A)[| n*m == m*n |];
Th_mult_assoc : (n,m,p:A)[| n* (m*p) == (n*m)*p |];
Th_plus_zero_left :(n:A)[| 0 + n == n|];
Th_mult_one_left : (n:A)[| 1*n == n |];
Th_opp_def : (n:A) [| n + (-n) == 0 |];
Th_distr_left : (n,m,p:A) [| (n + m)*p == n*p + m*p |];
Th_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y
} .
```

To define a ring structure on A , you must provide an addition, a multiplication, an opposite function and two unities 0 and 1 .

You must then prove all theorems that make (A,Aplus,Amult,Aone,Azero,Aeq) a ring structure, and pack them with the Build_Ring_Theory constructor.

Finally to register a ring the syntax is:

```
Add Legacy Ring A Aplus Amult Aone Azero Ainv Aeq T [cl ...cn] .
```

where $A$ is a term of type Set, Aplus is a term of type A->A->A, Amult is a term of type A->A->A, Aone is a term of type A, Azero is a term of type A, Ainv is a term of type A->A, Aeq is a term of type A->bool, $T$ is a term of type (Ring_Theory A Aplus Amult Aone Azero Ainv Aeq) . The arguments $c 1 \ldots c n$, are the names of constructors which define closed terms: a subterm will be considered as a constant if it is either one of the terms $c 1 \ldots c n$ or the application of one of these terms to closed terms. For nat, the given constructors are $S$ and $O$, and the closed terms are $O,(S O),(S \quad(S O)), \ldots$

## Variants:

1. Add Legacy Semi Ring A Aplus Amult Aone Azero Aeq $T$ [ cl ...cn ].

There are two differences with the Add Ring command: there is no inverse function and the term $T$ must be of type (Semi_Ring_Theory A Aplus Amult Aone Azero Aeq) .
2. Add Legacy Abstract Ring A Aplus Amult Aone Azero Ainv Aeq $T$.

This command should be used for when the operations of rings are not computable; for example the real numbers of theories/REALS /. Here $0+1$ is not beta-reduced to 1 but you still may want to rewrite it to 1 using the ring axioms. The argument Aeq is not used; a good choice for that function is [x:A]false.
3. Add Legacy Abstract Semi Ring A Aplus Amult Aone Azero Aeq $T$.

## Error messages:

1. Not a valid (semi)ring theory.

That happens when the typing condition does not hold.
Currently, the hypothesis is made than no more than one ring structure may be declared for a given type in Set or Type. This allows automatic detection of the theory used to achieve the normalization. On popular demand, we can change that and allow several ring structures on the same set.

The table of ring theories is compatible with the COQ sectioning mechanism. If you declare a ring inside a section, the declaration will be thrown away when closing the section. And when you load a compiled file, all the Add Ring commands of this file that are not inside a section will be loaded.

The typical example of ring is Z, and the typical example of semi-ring is nat. Another ring structure is defined on the booleans.

Warning: Only the ring of booleans is loaded by default with the Ring module. To load the ring structure for nat, load the module ArithRing, and for Z, load the module ZArithRing.

### 20.9.3 legacy field

This tactic written by David Delahaye and Micaela Mayero solves equalities using commutative field theory. Denominators have to be non equal to zero and, as this is not decidable in general, this tactic may generate side conditions requiring some expressions to be non equal to zero. This tactic must be loaded by Require Import LegacyField. Field theories are declared (as for legacy ring) with the Add Legacy Field command.

### 20.9.4 Add Legacy Field

This vernacular command adds a commutative field theory to the database for the tactic field. You must provide this theory as follows:

Add Legacy Field A Aplus Amult Aone Azero Aopp Aeq Ainv Rth Tinvl
where $A$ is a term of type Type, Aplus is a term of type $A->A->A$, Amult is a term of type $A->A->A$, Aone is a term of type A, Azero is a term of type A, Aopp is a term of type A->A, Aeq is a term of type A->bool, Ainv is a term of type A->A, Rth is a term of type (Ring_Theory A Aplus Amult Aone Azero Ainv Aeq), and Tinvl is a term of type forall $\mathrm{n}:$ A, ${ }^{\sim}(\mathrm{n}=$ Azero) $->$ (Amult (Ainv n ) $\mathrm{n})=$ Aone. To build a ring theory, refer to Chapter 20 for more details.

This command adds also an entry in the ring theory table if this theory is not already declared. So, it is useless to keep, for a given type, the Add Ring command if you declare a theory with Add Field, except if you plan to use specific features of ring (see Chapter 20). However, the module ring is not loaded by Add Field and you have to make a Require Import Ring if you want to call the ring tactic.

## Variants:

1. Add Legacy Field A Aplus Amult Aone Azero Aopp Aeq Ainv Rth Tinvl with minus:=Aminus

Adds also the term Aminus which must be a constant expressed by means of Aopp.
2. Add Legacy Field A Aplus Amult Aone Azero Aopp Aeq Ainv Rth Tinvl with div:=Adiv

Adds also the term Adiv which must be a constant expressed by means of Ainv.

See also: [38] for more details regarding the implementation of legacy field.

### 20.10 History of ring

First Samuel Boutin designed the tactic ACDSimpl. This tactic did lot of rewriting. But the proofs terms generated by rewriting were too big for CoQ's type-checker. Let us see why:

```
Coq < Goal forall x y z:Z, x + 3 + y + y * z = x + 3 + y + z * y.
1 subgoal
 ===========================
 forall x y z : Z, x + 3 + y + y * z = x + 3 + y + z * y
Coq < intros; rewrite (Zmult_comm y z); reflexivity.
Coq < Save toto.
Coq < Print toto.
toto =
fun x y z : Z =>
eq_ind_r (fun z0: Z => x + 3 + y + z0 = x + 3 + y + z * y)
 (refl_equal (x + 3 + y + z * y)) (Zmult_comm y z)
 : forall x y z : Z, x + 3 + y + y * z = x + 3 + y + z * y
Argument scopes are [Z_scope Z_scope Z_scope]
```

At each step of rewriting, the whole context is duplicated in the proof term. Then, a tactic that does hundreds of rewriting generates huge proof terms. Since ACDSimpl was too slow, Samuel Boutin rewrote it using reflection (see his article in TACS'97 [17]). Later, the stuff was rewritten by Patrick Loiseleur: the new tactic does not any more require ACDSimpl to compile and it makes use of $\beta \delta \iota$ reduction not only to replace the rewriting steps, but also to achieve the interleaving of computation and reasoning (see 20.11). He also wrote a few ML code for the Add Ring command, that allow to register new rings dynamically.

Proofs terms generated by ring are quite small, they are linear in the number of $\oplus$ and $\otimes$ operations in the normalized terms. Type-checking those terms requires some time because it makes a large use of the conversion rule, but memory requirements are much smaller.

### 20.11 Discussion

Efficiency is not the only motivation to use reflection here. ring also deals with constants, it rewrites for example the expression $34+2 * x-x+12$ to the expected result $x+46$. For the tactic ACDSimpl, the only constants were 0 and 1. So the expression $34+2 *(x-1)+12$ is interpreted as $V_{0} \oplus V_{1} \otimes\left(V_{2} \ominus 1\right) \oplus V_{3}$, with the variables mapping $\left\{V_{0} \mapsto 34 ; V_{1} \mapsto 2 ; V_{2} \mapsto x ; V_{3} \mapsto 12\right\}$. Then it is rewritten to $34-x+2 * x+12$, very far from the expected result. Here rewriting is not sufficient: you have to do some kind of reduction (some kind of computation) to achieve the normalization.

The tactic ring is not only faster than a classical one: using reflection, we get for free integration of computation and reasoning that would be very complex to implement in the classic fashion.

Is it the ultimate way to write tactics? The answer is: yes and no. The ring tactic uses intensively the conversion rule of pCIC , that is replaces proof by computation the most as it is possible. It can be useful in all situations where a classical tactic generates huge proof terms. Symbolic Processing and Tautologies are in that case. But there are also tactics like auto or linear that do many complex computations, using side-effects and backtracking, and generate a small proof term. Clearly, it would be significantly less efficient to replace them by tactics using reflection.

Another idea suggested by Benjamin Werner: reflection could be used to couple an external tool (a rewriting program or a model checker) with COQ. We define (in COQ) a type of terms, a type of traces, and prove a correction theorem that states that replaying traces is safe w.r.t some interpretation. Then we let the external tool do every computation (using side-effects, backtracking, exception, or others features that are not available in pure lambda calculus) to produce the trace: now we can check in Coq that the trace has the expected semantic by applying the correction lemma.

## Chapter 21

## User defined equalities and relations

## Claudio Sacerdoti Coen ${ }^{1}$

This chapter presents the extension of several equality related tactics to work over user-defined structures (called setoids) that are equipped with ad-hoc equivalence relations meant to behave as equalities. Actually, the tactics have also been generalized to relations weaker then equivalences (e.g. rewriting systems).

The work generalizes, and is partially based on, a previous implementation of the setoid_replace tactic by Clément Renard.

### 21.1 Relations and morphisms

A parametric relation R is any term of type forall $\left(x_{1}: T_{1}\right) \ldots\left(x_{n}: T_{n}\right)$, relation $A$. The expression $A$, which depends on $x_{1} \ldots x_{n}$, is called the carrier of the relation and R is said to be a relation over A ; the list $x_{1}, \ldots, x_{n}$ is the (possibly empty) list of parameters of the relation.

Example 1 (Parametric relation) It is possible to implement finite sets of elements of type $A$ as unordered list of elements of type A. The function set_eq: forall (A: Type), relation (list A) satisfied by two lists with the same elements is a parametric relation over (list A) with one parameter A. The type of set_eq is convertible with forall (A: Type), list A -> list A -> Prop.

An instance of a parametric relation R with $n$ parameters is any term ( $\mathrm{R} t_{1} \ldots t_{n}$ ).
Let R be a relation over A with $n$ parameters. A term is a parametric proof of reflexivity for R if it has type forall $\left(x_{1}: T_{1}\right) \ldots\left(x_{n}: T_{n}\right)$, reflexive ( $\mathrm{R} x_{1} \ldots x_{n}$ ). Similar definitions are given for parametric proofs of symmetry and transitivity.

Example 2 (Parametric relation (cont.)) The set_eq relation of the previous example can be proved to be reflexive, symmetric and transitive.

[^22]A parametric unary function $f$ of type forall $\left(x_{1}: T_{1}\right) \ldots\left(x_{n}: T_{n}\right), A_{1} \rightarrow A_{2}$ covariantly respects two parametric relation instances $R_{1}$ and $R_{2}$ if, whenever $x, y$ satisfy $R_{1} x y$, their images $(f x)$ and $(f y)$ satisfy $R_{2}(f x)(f y)$. An $f$ that respects its input and output relations will be called a unary covariant morphism. We can also say that $f$ is a monotone function with respect to $R_{1}$ and $R_{2}$. The sequence $x_{1}, \ldots x_{n}$ represents the parameters of the morphism.

Let $R_{1}$ and $R_{2}$ be two parametric relations. The signature of a parametric morphism of type forall $\left(x_{1}: T_{1}\right) \ldots\left(x_{n}: T_{n}\right), A_{1} \rightarrow A_{2}$ that covariantly respects two parametric relations that are instances of $R_{1}$ and $R_{2}$ is written $R_{1}++>R_{2}$. Notice that the special arrow ++>, which reminds the reader of covariance, is placed between the two parametric relations, not between the two carriers or the two relation instances.

The previous definitions are extended straightforwardly to $n$-ary morphisms, that are required to be simultaneously monotone on every argument.

Morphisms can also be contravariant in one or more of their arguments. A morphism is contravariant on an argument associated to the relation instance $R$ if it is covariant on the same argument when the inverse relation $R^{-1}$ is considered. The special arrow --> is used in signatures for contravariant morphisms.

Functions having arguments related by symmetric relations instances are both covariant and contravariant in those arguments. The special arrow ==> is used in signatures for morphisms that are both covariant and contravariant.

An instance of a parametric morphism $f$ with $n$ parameters is any term $f t_{1} \ldots t_{n}$.
Example 3 (Morphisms) Continuing the previous example, let union: forall (A: Type), list A -> list A -> list A perform the union of two sets by appending one list to the other. union is a binary morphism parametric over A that respects the relation instance (set_eq A). The latter condition is proved by showing forall (A: Type) (S1 S1' S2 S2': list A), set_eq $A$ S1 S1' -> set_eq A S2 S2' -> set_eq A (union A S1 S2) (union A S1' S2').

The signature of the function union is set_eq ==> set_eq ==> set_eq.
Example 4 (Contravariant morphism) The division function Rdiv: $R \rightarrow R_{r}$ is a morphism of signature le ++> le --> le where le is the usual order relation over real numbers. Notice that division is covariant in its first argument and contravariant in its second argument.

Notice that Leibniz equality is a relation and that every function is a morphism that respects Leibniz equality. Unfortunately, Leibniz equality is not always the intended equality for a given structure.

In the next section we will describe the commands to register terms as parametric relations and morphisms. Several tactics that deal with equality in CoQ can also work with the registered relations. The exact list of tactic will be given in Sect. 21.7. For instance, the tactic reflexivity can be used to close a goal $R n n$ whenever $R$ is an instance of a registered reflexive relation. However, the tactics that replace in a context $C[]$ one term with another one related by $R$ must verify that $C[]$ is a morphism that respects the intended relation. Currently the verification consists in checking whether $C\lceil$ is a syntactic composition of morphism instances that respects some obvious compatibility constraints.

Example 5 (Rewriting) Continuing the previous examples, suppose that the user must prove set_eq int (union int (union int S1 S2) S2) (f S1 S2) under the hypothesis $H$ : set_eq int $S 2$ (nil int). It is possible to use the rewrite tactic to replace the first two occurrences of S2 with nil int in the goal since the context set_eq int (union int (union int S1 nil) nil) (f S1 S2), being a composition of morphisms instances, is a
morphism. However the tactic will fail replacing the third occurrence of S2 unless $£$ has also been declared as a morphism.

### 21.2 Adding new relations and morphisms

A parametric relation Aeq: forall ( $x_{1}: T_{1}$ ) ... $\left(x_{n}: T_{n}\right)$, relation (A $x_{1} \ldots x_{n}$ ) over ( $A x_{1} \ldots x_{n}$ ) can be declared with the following command

```
Add Relation A Aeq
[reflexivity proved by refl]
[symmetry proved by sym]
[transitivity proved by trans]
as id.
```

after having required the Setoid module with the Require Setoid command.
The identifier id gives a unique name to the morphism and it is used by the command to generate fresh names for automatically provided lemmas used internally.

Notice that $A$ is required to be a term having the same parameters of Aeq. This is a limitation of the tactic that is often unproblematic in practice.

The proofs of reflexivity, symmetry and transitivity can be omitted if the relation is not an equivalence relation.

If Aeq is a transitive relation, then the command also generates a lemma of type:

```
forall (x (}:\mp@subsup{T}{1}{\prime})\ldots(\mp@subsup{x}{n}{}:\mp@subsup{T}{n}{}) (x y x' y': (A \mp@subsup{x}{1}{}\ldots\mp@subsup{x}{n}{\prime})
Aeq }\mp@subsup{x}{1}{}\ldots\mp@subsup{x}{n}{}\mp@subsup{\textrm{x}}{}{\prime}\textrm{x} -> Aeq \mp@subsup{x}{1}{}\ldots\mp@subsup{x}{n}{
(Aeq }\mp@subsup{x}{1}{}\ldots\mp@subsup{x}{n}{}\textrm{x}\mathrm{ y -> Aeq }\mp@subsup{x}{1}{}\ldots\mp@subsup{x}{n}{}\mp@subsup{\textrm{x}}{}{\prime}\mp@subsup{\textrm{y}}{}{\prime}
```

that is used to declare Aeq as a parametric morphism of signature Aeq --> Aeq ++> impl where impl is logical implication seen as a parametric relation over Aeq.

Some tactics (reflexivity, symmetry, transitivity) work only on relations that respect the expected properties. The remaining tactics (replace, rewrite and derived tactics such as autorewrite) do not require any properties over the relation. However, they are able to replace terms with related ones only in contexts that are syntactic compositions of parametric morphism instances declared with the following command.

```
Add Morphismf
with signature sig
as id.
Proof
Qed
```

The command declares $f$ as a parametric morphism of signature sig. The identifier id gives a unique name to the morphism and it is used by the command to generate fresh names for automatically provided lemmas used internally. The number of parameters for $f$ is inferred by comparing its type with the provided signature. The command asks the user to prove interactively that $f$ respects the relations identified from the signature.

Example 6 We start the example by assuming a small theory over homogeneous sets and we declare set equality as a parametric equivalence relation and union of two sets as a parametric morphism.

```
Require Export Relation_Definitions.
Require Export Setoid.
Set Implicit Arguments.
Set Contextual Implicit.
Parameter set: Type -> Type.
Parameter empty: forall A, set A.
Parameter eq_set: forall A, set A -> set A -> Prop.
Parameter union: forall A, set A -> set A -> set A.
Axiom eq_set_refl: forall A, reflexive _ (eq_set (A:=A)).
Axiom eq_set_sym: forall A, symmetric _ (eq_set (A:=A)).
Axiom eq_set_trans: forall A, transitive _ (eq_set (A:=A)).
Axiom empty_neutral: forall A (S: set A), eq_set (union S empty) S.
Axiom union_compat:
 forall (A : Type),
 forall x x' : set A, eq_set x x' ->
 forall y y' : set A, eq_set y y' ->
 eq_set (union x y) (union x' y').
Add Relation set eq_set
 reflexivity proved by (@eq_set_refl)
 symmetry proved by (@eq_set_sym)
 transitivity proved by (@eq_set_trans)
 as eq_set_rel.
Add Morphism union
 with signature eq_set ==> eq_set ==> eq_set
 as union_mor.
Proof.
 exact union_compat.
Qed.
```

We proceed now by proving a simple lemma performing a rewrite step and then applying reflexivity, as we would do working with Leibniz equality. Both tactic applications are accepted since the required properties over eq_set and union can be established from the two declarations above.

```
Goal forall (S: set nat),
 eq_set (union (union S empty) S) (union S S).
Proof.
 intros.
 rewrite (@empty_neutral).
 reflexivity.
Qed.
```

The tables of relations and morphisms are compatible with the COQ sectioning mechanism. If you declare a relation or a morphism inside a section, the declaration will be thrown away when closing the
section. And when you load a compiled file, all the declarations of this file that were not inside a section will be loaded.

### 21.3 Rewriting and non reflexive relations

To replace only one argument of an n-ary morphism it is necessary to prove that all the other arguments are related to themselves by the respective relation instances.

Example 7 To replace (union $S$ empty) with $S$ in (union (union $S$ empty) $S$ ) (union $S S$ ) the rewrite tactic must exploit the monotony of union (axiom union_compat in the previous example). Applying union_compat by hand we are left with the goal eq_set (union $S$ S) (union $S$ S).

When the relations associated to some arguments are not reflexive, the tactic cannot automatically prove the reflexivity goals, that are left to the user.

Setoids whose relation are partial equivalence relations (PER) are useful to deal with partial functions. Let $R$ be a PER. We say that an element $x$ is defined if $R x x$. A partial function whose domain comprises all the defined elements only is declared as a morphism that respects $R$. Every time a rewriting step is performed the user must prove that the argument of the morphism is defined.

Example 8 Let eqO be fun $x y=>x=y \wedge x \neq 0$ (the smaller PER over non zero elements). Division can be declared as a morphism of signature eq $==>$ eq0 $==>$ eq. Replace $x$ with $y$ in div $x n=\operatorname{div} y n$ opens the additional goal eq0 $n n$ that is equivalent to $n=n \wedge n \neq 0$.

### 21.4 Rewriting and non symmetric relations

When the user works up to relations that are not symmetric, it is no longer the case that any covariant morphism argument is also contravariant. As a result it is no longer possible to replace a term with a related one in every context, since the obtained goal implies the previous one if and only if the replacement has been performed in a contravariant position. In a similar way, replacement in an hypothesis can be performed only if the replaced term occurs in a covariant position.

Example 9 (Covariance and contravariance) Suppose that division over real numbers has been defined as a morphism of signature Zdiv: Zlt $++>$ Zlt $-->$ Zlt (i.e. Zdiv is increasing in its first argument, but decreasing on the second one). Let <denotes Zlt. Under the hypothesis $H: x<y$ we have $k<x / y \rightarrow k<x / x$, but not $k<y / x \rightarrow k<x / x$. Dually, under the same hypothesis $k<x / y->k<y / y$ holds, but $k<y / x->k<y / y$ does not. Thus, if the current goal is $k<x / x$, it is possible to replace only the second occurrence of $x$ (in contravariant position) with $y$ since the obtained goal must imply the current one. On the contrary, if $k$ $<x / x$ is an hypothesis, it is possible to replace only the first occurrence of $x$ (in covariant position) with $y$ since the current hypothesis must imply the obtained one.

An error message will be raised by the rewrite and replace tactics when the user is trying to replace a term that occurs in the wrong position.

As expected, composing morphisms together propagates the variance annotations by switching the variance every time a contravariant position is traversed.

Example 10 Let us continue the previous example and let us consider the goal $x /(x / x)<$ $k$. The first and third occurrences of $x$ are in a contravariant position, while the second one is in covariant position. More in detail, the second occurrence of x occurs covariantly in $(\mathrm{x} / \mathrm{x})($ since division is covariant in its first argument), and thus contravariantly in $x /(x / x)$ (since division is contravariant in its second argument), and finally covariantly in $x /(x / x)<k(s i n c e<$, as every transitive relation, is contravariant in its first argument with respect to the relation itself).

### 21.5 Rewriting in ambiguous setoid contexts

One function can respect several different relations and thus it can be declared as a morphism having multiple signatures.

Example 11 Union over homogeneous lists can be given all the following signatures: eq ==> eq ==> eq(eqbeing the equality over ordered lists) set_eq ==> set_eq ==> set_eq(set_eq being the equality over unordered lists up to duplicates), multiset_eq ==> multiset_eq ==> multiset_eq(multiset_eq being the equality over unordered lists).

To declare multiple signatures for a morphism, repeat the Add Morphism command.
When morphisms have multiple signatures it can be the case that a rewrite request is ambiguous, since it is unclear what relations should be used to perform the rewriting. When non reflexive relations are involved, different choices lead to different sets of new goals to prove. In this case the tactic automatically picks one choice, but raises a warning describing the set of alternative new goals. To force one particular choice, the user can switch to the following alternative syntax for rewriting:

```
setoid_rewrite [orientation] term [in ident]
generate side conditionsterm
```

Up to the generate side conditions part, the syntax is equivalent to the one of the rewrite tactic. Additionally, the user can specify a list of new goals that the tactic must generate. The tactic will prune out from the alternative choices those choices that do not open at least the user proposed goals. Thus, providing enough side conditions, the user can restrict the tactic to at most one choice.

Example 12 Let $[=]+$ and $[=]$ - be the smaller partial equivalence relations over positive (resp. negative) integers. Integer multiplication can be declared as a morphism with the following signatures: Zmult: Zlt ++> [=]+ ==> Zlt (multiplication with a positive number is increasing) and Zmult: Zlt --> [=]- ==> Zlt (multiplication with a negative number is decreasing). Given the hypothesis $H: x<y$ and the goal $(x * n) * m<0$ the tactic rewrite $H$ proposes two alternative sets of goals that correspond to proving that $n$ and $m$ are both positive or both negative.

```
\bullet ...\vdash (y * n) * m<0
 ...\vdash n [=]+ n
 ...\vdash m [=]+m
\bullet ...\vdash (y * n) * m<0
 ...\vdash n [=]- n
 ...\vdashm [=]-m
```

Remember that $n[=]+n$ is equivalent to $n=n \wedge n>0$.
To pick the second set of goals it is sufficient to use setoid_rewrite $H$ generate side conditions $(m[=]-m)$ since the side condition $m[=]-m$ is contained only in the second set of goals.

### 21.6 First class setoids and morphisms

First class setoids and morphisms can also be handled by encoding them as records. The projections of the setoid relation and of the morphism function can be registered as parametric relations and morphisms, as illustrated by the following example.

```
Example 13(First class setoids) Require Export Relation_Definitions.
Require Setoid.
Record Setoid: Type :=
{ car:Type;
 eq:car->car->Prop;
 refl: reflexive _ eq;
 sym: symmetric _ eq;
 trans: transitive _ eq
} .
Add Relation car eq
 reflexivity proved by refl
 symmetry proved by symm
 transitivity proved by trans
as eq_rel.
Record Morphism (S1 S2:Setoid): Type :=
 { f:car S1 ->car S2;
 compat: forall (x1 x2: car S1), eq S1 x1 x2 -> eq S2 (f x1) (f x2)
} .
Add Morphism f with signature eq ==> eq as apply_mor.
Proof.
 intros S1 S2 m.
 apply (compat S1 S2 m).
Qed.
Lemma test: forall (S1 S2:Setoid) (m: Morphism S1 S2)
 (x y: car S1), eq S1 x y -> eq S2 (f _ _ m x) (f _ _ m y).
Proof.
 intros.
 rewrite H.
 reflexivity.
Qed.
```


### 21.7 Tactics enabled on user provided relations

The following tactics, all prefixed by setoid_, deal with arbitrary registered relations and morphisms. Moreover, all the corresponding unprefixed tactics (i.e. reflexivity, symmetry, transitivity, replace, rewrite) have been extended to fall back to their prefixed counterparts when the relation involved is not Leibniz equality. Notice, however, that using the prefixed tactics it is possible to pass additional arguments such as generate side conditions or using relation.

```
setoid_reflexivity
setoid_symmetry [in ident]
setoid_transitivity
setoid_rewrite [orientation] term
[in ident]
[generate side conditions term}1...term _t]
```

The generate side conditions argument cannot be passed to the unprefixed form.

```
setoid_replace term with term [in ident]
[using relation term]
[generate side conditions term1...term
[by tactic]
```

The generate side conditions and using relation arguments cannot be passed to the unprefixed form. The latter argument tells the tactic what parametric relation should be used to replace the first tactic argument with the second one. If omitted, it defaults to Leibniz equality.

Every derived tactic that is based on the unprefixed forms of the tactics considered above will also work up to user defined relations. For instance, it is possible to register hints for autorewrite that are not proof of Leibniz equalities. In particular it is possible to exploit autorewrite to simulate normalization in a term rewriting system up to user defined equalities.

### 21.8 Printing relations and morphisms

The Print Setoids command shows the list of currently registered parametric relations and morphisms. For each morphism its signature is also given. When the rewriting tactics refuse to replace a term in a context because the latter is not a composition of morphisms, the Print Setoids command is useful to understand what additional morphisms should be registered.

### 21.9 Deprecated syntax and backward incompatibilities

Due to backward compatibility reasons, the following syntax for the declaration of setoids and morphisms is also accepted.

Add Setoid A Aeq ST as ident
where $A e q$ is a congruence relation without parameters, $A$ is its carrier and $S T$ is an object of type (Setoid_Theory A Aeq) (i.e. a record packing together the reflexivity, symmetry and transitivity lemmas). Notice that the syntax is not completely backward compatible since the identifier was not required.

```
Add Morphism f: ident.
Proof.
Qed.
```

The latter command is restricted to the declaration of morphisms without parameters. It is not fully backward compatible since the property the user is asked to prove is slightly different: for $n$ ary morphisms the hypotheses of the property are permuted; moreover, when the morphism returns a proposition, the property is now stated using a bi-implication in place of a simple implication. In practice, porting an old development to the new semantics is usually quite simple.

Notice that several limitations of the old implementation have been lifted. In particular, it is now possible to declare several relations with the same carrier and several signatures for the same morphism. Moreover, it is now also possible to declare several morphisms having the same signature. Finally, the replace and rewrite tactics can be used to replace terms in contexts that were refused by the old implementation.

## Bibliography

[1] David Aspinall. Proof general. http://proofgeneral.inf.ed.ac.uk/.
[2] Ph. Audebaud. Partial Objects in the Calculus of Constructions. In Proceedings of the sixth Conf. on Logic in Computer Science. IEEE, 1991.
[3] Ph. Audebaud. CC+ : an extension of the Calculus of Constructions with fixpoints. In B. Nordström and K. Petersson and G. Plotkin, editor, Proceedings of the 1992 Workshop on Types for Proofs and Programs, pages pp 21-34, 1992. Also Research Report LIP-ENS-Lyon.
[4] Ph. Audebaud. Extension du Calcul des Constructions par Points fixes. PhD thesis, Université Bordeaux I, 1992.
[5] L. Augustsson. Compiling Pattern Matching. In Conference Functional Programming and Computer Architecture, 1985.
[6] H. Barendregt. Lambda Calculi with Types. Technical Report 91-19, Catholic University Nijmegen, 1991. In Handbook of Logic in Computer Science, Vol II.
[7] H. Barendregt and T. Nipkow, editors. Types for Proofs and Programs, volume 806 of Lecture Notes in Computer Science. Springer-Verlag, 1994.
[8] H.P. Barendregt. The Lambda Calculus its Syntax and Semantics. North-Holland, 1981.
[9] B. Barras. Auto-validation d'un système de preuves avec familles inductives. Thèse de doctorat, Université Paris 7, 1999.
[10] J.L. Bates and R.L. Constable. Proofs as Programs. ACM transactions on Programming Languages and Systems, 7, 1985.
[11] M.J. Beeson. Foundations of Constructive Mathematics, Metamathematical Studies. SpringerVerlag, 1985.
[12] G. Bellin and J. Ketonen. A decision procedure revisited : Notes on direct logic, linear logic and its implementation. Theoretical Computer Science, 95:115-142, 1992.
[13] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development. Coq'Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS series. Springer Verlag, 2004.
[14] E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, 1967.
[15] S. Boutin. Certification d'un compilateur ML en Coq. Master's thesis, Université Paris 7, September 1992.
[16] S. Boutin. Réflexions sur les quotients. thèse d'université, Paris 7, April 1997.
[17] S. Boutin. Using reflection to build efficient and certified decision procedure s. In Martin Abadi and Takahashi Ito, editors, TACS'97, volume 1281 of Lecture Notes in Computer Science. Sprin-ger-Verlag, 1997.
[18] R.S. Boyer and J.S. Moore. A computational logic. ACM Monograph. Academic Press, 1979.
[19] Laurent Chicli, Loïc Pottier, and Carlos Simpson. Mathematical quotients and quotient types in coq. In TYPES'02, volume 2646 of Lecture Notes in Computer Science, Berg en Dal, The Netherlands, 2003. Springer-Verlag.
[20] R.L. Constable et al. Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall, 1986.
[21] Th. Coquand. Une Théorie des Constructions. PhD thesis, Université Paris 7, January 1985.
[22] Th. Coquand. An Analysis of Girard's Paradox. In Symposium on Logic in Computer Science, Cambridge, MA, 1986. IEEE Computer Society Press.
[23] Th. Coquand. Metamathematical Investigations of a Calculus of Constructions. In P. Oddifredi, editor, Logic and Computer Science. Academic Press, 1990. INRIA Research Report 1088, also in [58].
[24] Th. Coquand. A New Paradox in Type Theory. In Proceedings 9th Int. Congress of Logic, Methodology and Philosophy of Science, August 1991.
[25] Th. Coquand. Pattern Matching with Dependent Types. In Nordström et al. [100].
[26] Th. Coquand. Infinite Objects in Type Theory. In Barendregt and Nipkow [7].
[27] Th. Coquand and G. Huet. Constructions: A Higher Order Proof System for Mechanizing Mathematics. In EUROCAL'85, volume 203 of Lecture Notes in Computer Science, Linz, 1985. Sprin-ger-Verlag.
[28] Th. Coquand and G. Huet. Concepts Mathématiques et Informatiques formalisés dans le Calcul des Constructions. In The Paris Logic Group, editor, Logic Colloquium'85. North-Holland, 1987.
[29] Th. Coquand and G. Huet. The Calculus of Constructions. Information and Computation, 76(2/3), 1988.
[30] Th. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-Löf and G. Mints, editors, Proceedings of Colog'88, volume 417 of Lecture Notes in Computer Science. SpringerVerlag, 1990.
[31] C. Cornes. Conception d'un langage de haut niveau de représentation de preuves. Thèse de doctorat, Université Paris 7, November 1997.
[32] J. Courant. Explicitation de preuves par récurrence implicite. Master's thesis, DEA d'Informatique, ENS Lyon, September 1994.
[33] N.J. de Bruijn. Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem. Indag. Math., 34, 1972.
[34] N.J. de Bruijn. A survey of the project Automath. In J.P. Seldin and J.R. Hindley, editors, to H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, 1980.
[35] D. de Rauglaudre. Camlp4 version 1.07.2. In Camlp4 distribution, 1998.
[36] D. Delahaye. Information retrieval in a coq proof library using type isomorphisms. In Proceedings of TYPES'99, Lökeberg, Lecture Notes in Computer Science. Springer-Verlag, 1999.
[37] D. Delahaye. A Tactic Language for the System Coq. In Proceedings of Logic for Programming and Automated Reasoning (LPAR), Reunion Island, volume 1955 of Lecture Notes in Computer Science, pages 85-95. Springer-Verlag, November 2000.
[38] D. Delahaye and M. Mayero. Field: une procédure de décision pour les nombres réels en CoQ. In Journées Francophones des Langages Applicatifs, Pontarlier. INRIA, Janvier 2001.
[39] R. di Cosmo. Isomorphisms of Types: from $\lambda$-calculus to information retrieval and language design. Progress in Theoretical Computer Science. Birkhauser, 1995. ISBN-0-8176-3763-X.
[40] G. Dowek. Naming and scoping in a mathematical vernacular. Research Report 1283, INRIA, 1990.
[41] G. Dowek. Démonstration automatique dans le Calcul des Constructions. PhD thesis, Université Paris 7, December 1991.
[42] G. Dowek. L'indécidabilité du filtrage du troisième ordre dans les calculs avec types dépendants ou constructeurs de types. Compte-Rendus de l'Académie des Sciences, I, 312(12):951-956, 1991. The undecidability of Third Order Pattern Matching in Calculi with Dependent Types or Type Constructors.
[43] G. Dowek. A second order pattern matching algorithm in the cube of typed $\lambda$-calculi. In Proceedings of Mathematical Foundation of Computer Science, volume 520 of Lecture Notes in Computer Science, pages 151-160. Springer-Verlag, 1991. Also INRIA Research Report.
[44] G. Dowek. A Complete Proof Synthesis Method for the Cube of Type Systems. Journal Logic Computation, 3(3):287-315, June 1993.
[45] G. Dowek. The undecidability of pattern matching in calculi where primitive recursive functions are representable. Theoretical Computer Science, 107(2):349-356, 1993.
[46] G. Dowek. Third order matching is decidable. Annals of Pure and Applied Logic, 69:135-155, 1994.
[47] G. Dowek. Lambda-calculus, combinators and the comprehension schema. In Proceedings of the second international conference on typed lambda calculus and applications, 1995.
[48] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring, and B. Werner. The Coq Proof Assistant User's Guide Version 5.8. Technical Report 154, INRIA, May 1993.
[49] P. Dybjer. Inductive sets and families in Martin-Löf's type theory and their set-theoretic semantics: An inversion principle for Martin-Löf's type theory. In G. Huet and G. Plotkin, editors, Logical Frameworks, volume 14, pages 59-79. Cambridge University Press, 1991.
[50] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. The Journal of Symbolic Logic, 57(3), September 1992.
[51] J.-C. Filliâtre. Une procédure de décision pour le calcul des prédicats direct. étude et implémentation dans le système CoQ. Master's thesis, DEA d'Informatique, ENS Lyon, September 1994.
[52] J.-C. Filliâtre. A decision procedure for direct predicate calculus. Research report 96-25, LIP-ENS-Lyon, 1995.
[53] J.-C. Filliâtre. Preuve de programmes impératifs en théorie des types. Thèse de doctorat, Université Paris-Sud, July 1999.
[54] J.-C. Filliâtre. Formal Proof of a Program: Find. Submitted to Science of Computer Programming, January 2000.
[55] J.-C. Filliâtre. Verification of non-functional programs using interpretations in type theory. Journal of Functional Programming, 13(4):709-745, July 2003. [English translation of [53]].
[56] J.-C. Filliâtre and N. Magaud. Certification of sorting algorithms in the system CoQ. In Theorem Proving in Higher Order Logics: Emerging Trends, 1999.
[57] E. Fleury. Implantation des algorithmes de Floyd et de Dijkstra dans le Calcul des Constructions. Rapport de Stage, July 1990.
[58] Projet Formel. The Calculus of Constructions. Documentation and user's guide, Version 4.10. Technical Report 110, INRIA, 1989.
[59] Jean-Baptiste-Joseph Fourier. Fourier's method to solve linear inequations/equations systems. Gauthier-Villars, 1890.
[60] E. Giménez. Codifying guarded definitions with recursive schemes. In Types'94 : Types for Proofs and Programs, volume 996 of Lecture Notes in Computer Science. Springer-Verlag, 1994. Extended version in LIP research report 95-07, ENS Lyon.
[61] E. Giménez. An application of co-inductive types in coq: verification of the alternating bit protocol. In Workshop on Types for Proofs and Programs, number 1158 in Lecture Notes in Computer Science, pages 135-152. Springer-Verlag, 1995.
[62] E. Giménez. A tutorial on recursive types in coq. Technical report, INRIA, March 1998.
[63] E. Giménez and P. Castéran. A tutorial on [co-]inductive types in coq. available at http: //coq.inria.fr/doc, January 2005.
[64] J.-Y. Girard. Une extension de l'interprétation de Gödel à l'analyse, et son application à l'élimination des coupures dans l'analyse et la théorie des types. In Proceedings of the 2nd Scandinavian Logic Symposium. North-Holland, 1970.
[65] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur. PhD thesis, Université Paris 7, 1972.
[66] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in Theoretical Computer Science 7. Cambridge University Press, 1989.
[67] John Harrison. Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI International Cambridge Computer Science Research Centre,, 1995.
[68] D. Hirschkoff. Écriture d'une tactique arithmétique pour le système CoQ. Master's thesis, DEA IARFA, Ecole des Ponts et Chaussées, Paris, September 1994.
[69] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In Proceedings of the meeting Twenty-five years of constructive type theory. Oxford University Press, 1998.
[70] W.A. Howard. The formulae-as-types notion of constructions. In J.P. Seldin and J.R. Hindley, editors, to H.B. Curry : Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, 1980. Unpublished 1969 Manuscript.
[71] G. Huet. Programming of future generation computers. In Proceedings of TAPSOFT87, volume 249 of Lecture Notes in Computer Science, pages 276-286. Springer-Verlag, 1987.
[72] G. Huet. Induction principles formalized in the Calculus of Constructions. In K. Fuchi and M. Nivat, editors, Programming of Future Generation Computers. Elsevier Science, 1988. Also in [71].
[73] G. Huet, editor. Logical Foundations of Functional Programming. The UT Year of Programming Series. Addison-Wesley, 1989.
[74] G. Huet. The Constructive Engine. In R. Narasimhan, editor, A perspective in Theoretical Computer Science. Commemorative Volume for Gift Siromoney. World Scientific Publishing, 1989. Also in [58].
[75] G. Huet. The gallina specification language : A case study. In Proceedings of 12th FST/TCS Conference, New Delhi, volume 652 of Lecture Notes in Computer Science, pages 229-240. Sprin-ger-Verlag, 1992.
[76] G. Huet. Residual theory in $\lambda$-calculus: a formal development. J. Functional Programming, 4,3:371-394, 1994.
[77] G. Huet and J.-J. Lévy. Call by need computations in non-ambigous linear term rewriting systems. In J.-L. Lassez and G. Plotkin, editors, Computational Logic, Essays in Honor of Alan Robinson. The MIT press, 1991. Also research report 359, INRIA, 1979.
[78] G. Huet and G. Plotkin, editors. Logical Frameworks. Cambridge University Press, 1991.
[79] G. Huet and G. Plotkin, editors. Logical Environments. Cambridge University Press, 1992.
[80] J. Ketonen and R. Weyhrauch. A decidable fragment of Predicate Calculus. Theoretical Computer Science, 32:297-307, 1984.
[81] S.C. Kleene. Introduction to Metamathematics. Bibliotheca Mathematica. North-Holland, 1952.
[82] J.-L. Krivine. Lambda-calcul types et modèles. Etudes et recherche en informatique. Masson, 1990.
[83] A. Laville. Comparison of priority rules in pattern matching and term rewriting. Journal of Symbolic Computation, 11:321-347, 1991.
[84] F. Leclerc and C. Paulin-Mohring. Programming with Streams in Coq. A case study : The Sieve of Eratosthenes. In H. Barendregt and T. Nipkow, editors, Types for Proofs and Programs, Types' 93, volume 806 of LNCS. Springer-Verlag, 1994.
[85] X. Leroy. The ZINC experiment: an economical implementation of the ML language. Technical Report 117, INRIA, 1990.
[86] P. Letouzey. A new extraction for coq. In Proceedings of the TYPES'2002 workshop, 2002.
[87] L.Puel and A. Suárez. Compiling Pattern Matching by Term Decomposition. In Conference Lisp and Functional Programming, ACM. Springer-Verlag, 1990.
[88] Z. Luo. An Extended Calculus of Constructions. PhD thesis, University of Edinburgh, 1990.
[89] P. Manoury. A User's Friendly Syntax to Define Recursive Functions as Typed $\lambda$-Terms. In Types for Proofs and Programs, TYPES'94, volume 996 of LNCS, June 1994.
[90] P. Manoury and M. Simonot. Automatizing termination proof of recursively defined function. TCS, To appear.
[91] L. Maranget. Two Techniques for Compiling Lazy Pattern Matching. Technical Report 2385, INRIA, 1994.
[92] A. Miquel. A model for impredicative type systems with universes, intersection types and subtyping. In Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science (LICS'00). IEEE Computer Society Press, 2000.
[93] A. Miquel. The implicit calculus of constructions: Extending pure type systems with an intersection type binder and subtyping. In Proceedings of the fifth International Conference on Typed Lambda Calculi and Applications (TLCA01), Krakow, Poland, number 2044 in LNCS. SpringerVerlag, 2001.
[94] A. Miquel. Le Calcul des Constructions implicite: syntaxe et sémantique. PhD thesis, Université Paris 7, dec 2001.
[95] A. Miquel and B. Werner. The not so simple proof-irrelevant model of cc. In Types for Proofs and Programs (TYPES'02), number 2646 in LNCS. Springer-Verlag, 2003.
[96] C. Muñoz. Démonstration automatique dans la logique propositionnelle intuitionniste. Master's thesis, DEA d'Informatique Fondamentale, Université Paris 7, September 1994.
[97] C. Muñoz. Un calcul de substitutions pour la représentation de preuves partielles en théorie de types. Thèse de doctorat, Université Paris 7, 1997. Version en anglais disponible comme rapport de recherche INRIA RR-3309.
[98] B. Nordström. Terminating general recursion. BIT, 28, 1988.
[99] B. Nordström, K. Peterson, and J. Smith. Programming in Martin-Löf's Type Theory. International Series of Monographs on Computer Science. Oxford Science Publications, 1990.
[100] B. Nordström, K. Petersson, and G. Plotkin, editors. Proceedings of the 1992 Workshop on Types for Proofs and Programs. Available by ftp at site ftp.inria.fr, 1992.
[101] P. Odifreddi, editor. Logic and Computer Science. Academic Press, 1990.
[102] P. Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory. Bibliopolis, 1984.
[103] C. Parent. Developing certified programs in the system Coq- The Program tactic. Technical Report 93-29, Ecole Normale Supérieure de Lyon, October 1993. Also in [7].
[104] C. Parent. Synthèse de preuves de programmes dans le Calcul des Constructions Inductives. PhD thesis, Ecole Normale Supérieure de Lyon, 1995.
[105] C. Parent. Synthesizing proofs from programs in the Calculus of Inductive Constructions. In Mathematics of Program Construction'95, volume 947 of LNCS. Springer-Verlag, 1995.
[106] M. Parigot. Recursive Programming with Proofs. Theoretical Computer Science, 94(2):335-356, 1992.
[107] M. Parigot, P. Manoury, and M. Simonot. ProPre : A Programming language with proofs. In A. Voronkov, editor, Logic Programming and automated reasoning, number 624 in LNCS, St. Petersburg, Russia, July 1992. Springer-Verlag.
[108] C. Paulin-Mohring. Extracting $F_{\omega}$ 's programs from proofs in the Calculus of Constructions. In Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, January 1989. ACM.
[109] C. Paulin-Mohring. Extraction de programmes dans le Calcul des Constructions. PhD thesis, Université Paris 7, January 1989.
[110] C. Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Properties. In M. Bezem and J.-F. Groote, editors, Proceedings of the conference Typed Lambda Calculi and Applications, number 664 in LNCS. Springer-Verlag, 1993. Also LIP research report 92-49, ENS Lyon.
[111] C. Paulin-Mohring. Le système Coq. Thèse d'habilitation. ENS Lyon, January 1997.
[112] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq. Journal of Symbolic Computation, 15:607-640, 1993.
[113] K.V. Prasad. Programming with broadcasts. In Proceedings of CONCUR'93, volume 715 of LNCS. Springer-Verlag, 1993.
[114] J. Rouyer. Développement de l'Algorithme d’Unification dans le Calcul des Constructions. Technical Report 1795, INRIA, November 1992.
[115] John Rushby, Sam Owre, and N. Shankar. Subtypes for specifications: Predicate subtyping in PVS. IEEE Transactions on Software Engineering, 24(9):709-720, September 1998.
[116] A. Saïbi. Axiomatization of a lambda-calculus with explicit-substitutions in the Coq System. Technical Report 2345, INRIA, December 1994.
[117] H. Saidi. Résolution d'équations dans le système t de gödel. Master's thesis, DEA d'Informatique Fondamentale, Université Paris 7, September 1994.
[118] Matthieu Sozeau. Subset coercions in Coq. In TYPES'06, volume 4502 of $L N C S$, pages 237-252. Springer, 2007.
[119] T. Streicher. Semantical investigations into intensional type theory, 1993. Habilitationsschrift, LMU Munchen.
[120] Lemme Team. Pcoq a graphical user-interface for Coq. http://www-sop.inria.fr/ lemme/pcoq/.
[121] The Coq Development Team. The Coq Proof Assistant Reference Manual Version 7.2. Technical Report 255, INRIA, February 2002.
[122] D. Terrasse. Traduction de TYPOL en COQ. Application à Mini ML. Master's thesis, IARFA, September 1992.
[123] L. Théry, Y. Bertot, and G. Kahn. Real theorem provers deserve real user-interfaces. Research Report 1684, INRIA Sophia, May 1992.
[124] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, an introduction. Studies in Logic and the foundations of Mathematics, volumes 121 and 123. North-Holland, 1988.
[125] P. Wadler. Efficient compilation of pattern matching. In S.L. Peyton Jones, editor, The Implementation of Functional Programming Languages. Prentice-Hall, 1987.
[126] P. Weis and X. Leroy. Le langage Caml. InterEditions, 1993.
[127] B. Werner. Une théorie des constructions inductives. Thèse de doctorat, Université Paris 7, 1994.

## Global Index

||, 194
*, 79, 85
$+, 79,85$
-, 85
/, 85
;, 193
; [...|...|...], 193
<, 85
$<=, 85$
>, 85
$>=, 85$
?, 146
? $=, 85$
\%, 236
\&, 80
_, 32
$\{A\}+\{B\}, 80$
$\{x: A \&(P \quad x)\}, 80$
$\{\mathrm{x}: \mathrm{Al} \mid \mathrm{P} x)\}, 80$
lhyperpage, 80
2-level approach, 177
$A * B, 79$
$A+\{B\}, 80$
A+B, 79
Abbreviations, 240
Abort, 139
About, 123
Absolute names, 66
abstract, 200
abstractions, 32
absurd, 78,155
absurd_set, 81
Acc, 83
Acc_inv, 83
Acc_rec, 83
Add Field, 182, 323
Add Legacy Abstract Ring, 326

Add Legacy Abstract Semi Ring, 326
Add Legacy Field, 327
Add Legacy Ring, 324, 326
Add Legacy Semi Ring, 324, 326
Add LoadPath, 131
Add ML Path, 131
Add Morphism, 331, 337
Add Printing If ident, 54
Add Printing Let ident, 54
Add Rec LoadPath, 131
Add Rec ML Path, 132
Add Relation, 331
Add Ring, 182, 318
Add Setoid, 337
Admitted, 47, 138
all, 77
and, 77
and_rec, 81
app, 88
applications, 32
apply, 149
apply ... with, 149
apply ... in, 152
Arguments Scope, 236
Arithmetical notations, 85
Arity, 99
assert, 151
assert as, 152
assert by, 152
Associativity, 228
assumption, 146
auto, 177
autorewrite, 183
Axiom, 36
Axiom (and coercions), 288

Back, 132

Bad Magic Number, 130
$\beta$-reduction, 94
Bind Scope, 237
binders, 30
Binding list, 154
BNF metasyntax, 27
bool, 79
bool_choice, 80
byte-code, 245

Calculus of (Co)Inductive Constructions, 89
Canonical Structure, 71
case, 163
case ... with, 163
case_eq, 163
Cases, 275
Cast, 32
cbv, 155
cd, 131
change, 153
change ... in, 153
Check, 124
Choice, 80
Choice2, 80
CIC, 89
classical_left, 177
classical_right, 177
Clauses, 155
clear, 147
clearbody, 147
Close Scope, 236
Coercion, 73, 287, 288
Coercion Local, 287,288
Coercions, 73
and records, 290
and sections, 290
classes, 285
Funclass, 286
identity, 286
inheritance graph, 287
presentation, 285
Sortclass, 286
CoFixpoint, 45
CoFixpoint ... where ..., 232
CoInductive, 43
CoInductive (and coercions), 288
Combined Scheme, 206

Comments, 27
compare, 170
Compiled files, 129
compute, 155, 156
congruence, 181
conj, 77
Conjecture, 36
Connectives, 77
Constant, 37
constructor, 159
constructor ... with, 159
Context, 92
context
in expression, 199
in pattern, 197
contradiction, 155
Contributions, 88
Conversion rules, 94
Conversion tactics, 155
coqc, 245
coqdep, 250
coqdoc, 251
coqide, 263
coq_Makefile, 250
coqmktop, 249
coq-tex, 261
coqtop, 245
Corollary, 47
cut, 152
cutrewrite, 168

Datatypes, 78
Debugger, 249
decide equality, 170
Declarations, 36
Declare Implicit Tactic, 188
Declare Left Step, 169
Declare ML Module, 130
Declare Right Step, 170
decompose, 165
decompose record, 165
decompose sum, 165
Defined, 47, 138
Definition, 37, 139
Definitions, 37
Delimit Scope, 236
$\delta$-reduction, 37, 94

Dependencies, 250
dependent inversion, 175
dependent inversion ... as , 175
dependent inversion ... as ... with, 175
dependent inversion ... with, 175
dependent inversion_clear, 175
dependent inversion_clear ... as, 175
dependent inversion_clear ... as ... with, 175
dependent inversion_clear ... with, 175
dependent rewrite ->, 173
dependent rewrite $<-, 173$
Derive Dependent Inversion, 176
Derive Dependent
Inversion_clear, 176
Derive Inversion, 176
Derive Inversion_clear, 176
Derive Inversion_clear ... with, 176
destruct, 162
discriminate, 171
discrR, 87
do, 194
double induction, 165
Drop, 133
eapply, 150, 204
eassumption, 146
eauto, 178
eexact, 146
elim ... using, 162
elim ... with, 161
Elimination
Empty elimination, 105
Singleton elimination, 105
Elimination sorts, 104
elimtype, 162
Emacs, 262
End, 58, 60
Environment, 37, 92
Environment variables, 246
eq, 77
eq_add_S, 81
eq_ind_r, 78
eq_rec, 81
eq_rec_r, 78
eq_rect, 78
eq_rect_r, 78
eq_S, 81
Equality, 77
error, 81
$\eta$-conversion, 95
$\eta$-reduction, 95
Eval, 124
eval
in Ltac, 199
evar, 154
ex, 77
ex2, 77
ex_intro, 77
ex_intro2,77
exact, 146
Example, 37
Exc, 81
Except, 81
exist, 80
exist2, 80
Existential, 140
existS, 80
exists, 77,159
existS 2,80
exists2,77
Explicitation of implicit arguments, 70
Export, 65
Extract Constant, 302
Extract Inductive, 303
Extraction, 299
Extraction, 124, 299
Extraction Inline, 301
Extraction Language, 300
Extraction Module, 299
Extraction NoInline, 301
f_equal, 78, 170
f_equal $i, 78$
Fact, 47, 139
fail, 195
False, 77
false, 79
False_rec, 81
field, 182, 322
field_simplify, 182, 322
field_simplify_eq, 182, 322
first, 195
firstorder, 180
firstorder using, 180
firstorder with, 180
firstorder tactic, 180
Fix, 107
fix ident $_{i}\{\ldots\}, 34$
fix_eq, 83
Fix_F, 83
Fix_F_eq, 83
Fix_F_inv, 83
Fixpoint, 43
Fixpoint ... where ..., 232
flat_map, 88
Focus, 141
fold, 158
fold_left, 88
fold_right, 88
form, 29
fourier, 183
fresh
in Ltac, 199
fst, 79
fun
in Ltac, 196
Function, 55
functional induction, 166, 207
Functional Scheme, 190, 207
Gallina, 27, 49
gallina, 262
ge, 82
generalize, 153
generalize dependent, 153
Goal, 47, 137
goal, 145
gt, 82
head, 88
Head normal form, 95
Hint, 184
Hint Constructors, 185
Hint Extern, 186
Hint Immediate, 185
Hint Resolve, 184
Hint Rewrite, 188
Hint Unfold, 185

Hints databases, 184
hnf, 156
Hypotheses, 36
Hypothesis, 36
Hypothesis (and coercions), 288
I, 77
ident, 27
identity, 79
Identity Coercion, 288
idtac, 195
if ... then ... else, 52
IF_then_else, 77
iff, 77
Implicit Arguments, 68
Implicit arguments, 67
Import, 64
induction, 160
Inductive, 38
Inductive (and coercions), 288
Inductive definitions, 38
Inductive ... where ..., 232
Infix, 231
info, 200
injection, 171, 172
injection ... as, 173
inl, 79
inleft, 80
inr, 79
inright, 80
Inspect, 123
instantiate, 154
integer, 28
Interpretation scopes, 235
intro, 148
intro ... after, 149
intro after, 149
intros, 148
intros intro_pattern, 163
intros until, 148
intuition, 180
inversion, 173, 210
inversion ... as, 174
inversion ... as ... in, 175
inversion ... in, 174
inversion ... using, 176
inversion ... using ... in, 176

```
inversion_clear,174
inversion_clear ... as ... in,
 175
inversion_clear ... in,175
inversion_cleardots as,174
\iota-reduction, 94, 107, 109
IsSucc, 81
```

$\lambda$-calculus, 91
lapply, 150
LATEX, 261
lazy, 155
lazymatch
in Ltac, 197
lazymatch goal
in Ltac, 198
lazymatch reverse goal
in Ltac, 198
le, 82
le_n, 82
le_S, 82
left, 80, 159
legacy field, 327
legacy ring, 324
Lemma, 47, 139
length, 88
Let, 38, 139
let
in Ltac, 196
let ... in, 52
let rec
in Ltac, 196
let-in, 32
Lexical conventions, 27
Libraries, 65
Load, 129
Load Verbose, 129
Loadpath, 130
local context, 137
Local definitions, 32
Locate, 127, 232
Locate File, 132
Locate Library, 132
Locate Module, 65
Logical paths, 65
lt, 82
Ltac
eval, 199
external, 200
fresh, 199
fun, 196
lazymatch, 197
lazymatch goal, 198
lazymatch reverse goal, 198
let, 196
let rec, 196
match, 196
match goal, 198
match reverse goal, 198
type of, 199
Ltac, 201
Makefile, 250
Man pages, 262
map, 88
match
in Ltac, 196
match...with...end, 33, 51, 104
match goal
in Ltac, 198
match reverse goal
in Ltac, 198
ML-like patterns, 51, 275
mod, 85
Module, 59, 60
Module Type, 60
Modules, 59
move, 147
mult, 81
mult_n_O, 81
mult_n_Sm, 81
Mutual Inductive,41
n_Sn, 81
nat, 79
nat_case, 82
nat_double_ind, 82
nat_scope, 85
native code, 245
None, 79
Normal form, 95
not, 77
not_eq_S, 81
Notation, 227, 240
Notations for lists, 88

Notations for real numbers, 86
not T, 84
nth, 88
num, 28
0, 79
O_S, 81
omega, 182, 295
Opaque, 124
Open Scope, 236
option, 79
Options of the command line, 246
or, 77
or_introl, 77
or_intror, 77
pair, 79
pairT, 84
Parameter, 36
Parameter (and coercions), 288
Parameters, 36
pattern, 158
pCIC, 89
Peano's arithmetic, 85
plus, 81
plus_n_0, 81
plus_n_Sm, 81
pose, 150
Positivity, 99
Precedences, 228
pred, 81
pred_Sn, 81
Predicative Calculus of (Co)Inductive Constructions, 89
Print, 123
Print All, 123
Print Canonical Projections, 72
Print Classes, 289
Print Coercion Paths, 289
Print Coercions, 289
Print Extraction Inline, 301
Print Grammar constr, 229
Print Grammar pattern, 229
Print Graph, 289
Print Hint, 187
Print HintDb, 187
Print Implicit,71
Print LoadPath, 131

Print Ltac, 201
Print ML Modules, 130
Print ML Path, 132
Print Module, 65
Print Module Type, 65
Print Modules, 130
Print Section, 123
Print Table Printing If, 54
Print Table Printing Let, 54
Print Term, 123
Print Universes, 74
Print XML, 259
prod, 79
prodT, 84
products, 32
Program, 311
Program Definition, 312
Program Fixpoint, 313
Program Lemma, 314
Programming, 79
progress, 194
proj1,77
proj2,77
projS1,80
projS2, 80
Prompt, 137
Proof, 47, 139
Proof editing, 137
Proof General, 262
Proof rendering, 257
Proof term, 137
Proof with, 188
Prop, 29, 90
Proposition, 47
Pwd, 131
Qed, 47, 138
qualid, 70
Qualified identifiers, 66
Quantifiers, 77
Quit, 133
quote, 177, 214
Record, 49
Recursion, 83
Recursive arguments, 108
Recursive Extraction, 299
Recursive Extraction Module, 299
red, 156
refine, 146, 203
refl_equal, 77
refl_identity, 79
reflexivity, 169
Remark, 47, 139
Remove LoadPath, 131
Remove Printing If ident, 54
Remove Printing Let ident, 54
rename, 147
repeat, 194
replace ... with, 168
Require, 129
Require Export, 130
ReservedNotation, 231
Reset, 132
Reset Extraction Inline, 301
Reset Initial, 133
Resource file, 246
Restart, 141
Restore State, 133
Resume, 140
rev, 88
revert, 153
rewrite, 167
rewrite ->, 167
rewrite -> ... in, 168
rewrite <-, 167
rewrite <- ... in, 168
rewrite ... in, 167
right, 80, 159
ring, 182, 315, 316
ring_simplify, 182, 316
rtauto, 180
S, 79
Save, 47, 138
Scheme, 189, 205
Script file, 129
Search, 125
SearchAbout, 125
SearchPattern, 126
SearchPattern ... inside ...,
127
SearchPattern ... outside ..., 127
SearchRewrite, 127

Section, 58
Sections, 58
Set, 29, 90
set, 150
Set Contextual Implicit, 70
Set Extraction AutoInline, 301
Set Extraction Optimize, 300
Set Firstorder Depth, 180
Set Hyps Limit, 142
Set Implicit Arguments, 70
Set Ltac Debug, 201
Set Printing All, 74
Set Printing Coercion, 289
Set Printing Coercions, 289
Set Printing Depth, 134
Set Printing Implicit, 71
Set Printing Matching, 53
Set Printing Notations, 232
Set Printing Synth, 54
Set Printing Universes, 74
Set Printing Width, 134
Set Printing Wildcard, 53
Set Silent, 134
Set Strict Implicit, 70
Set Undo, 141
Set Virtual Machine, 135
setoid_reflexivity, 336
setoid_replace, 329, 336
setoid_rewrite, 334,336
setoid_symmetry, 336
setoid_transitivity, 336
Show, 141
Show Conjectures, 142
Show Existentials, 142
Show Implicits, 141
Show Intro, 142
Show Intros, 142
Show Proof, 142
Show Script, 142
Show Tree, 142
Show XML Proof, 259
sig, 80
sig2, 80
sigS, 80
sigS2, 80
Silent mode, 134
simpl, 157
simpl ... in, 157
simple destruct, 163
simple induction, 162
simple inversion, 175
simple inversion ... as, 176
simplify_eq, 173
snd, 79
solve, 195
Some, 79
sort, 30
Sort-polymorphism of inductive families, 101
Sorts, 29, 90
specif, 29
split, 159
split_Rabs, 87
split_Rmult, 87
stepl, 169
stepr, 170
string, 28
Structure, 290
SubClass, 289
subgoal, 145
subst, 169
Substitution, 92
sum, 79
sumbool, 80
sumor, 80
Suspend, 140
sym_eq, 78
sym_not_eq, 78
symmetry, 169
symmetry in, 169
Syntactic Definition, 240
tactic, 145
Tactic Definition, 190
tactic macros, 190
Tacticals, 193
tactic $_{1} ;$ tactic $_{2}, 193$
abstract, 200
do, 194
fail, 195
first, 195
idtac, 195
info, 200
||, 194
repeat, 194
solve, 195
try, 194
Tactics, 145
tail, 88
tauto, 179
term, 30
Terms, 29
Test Ltac Debug, 201
Test Printing Depth, 134
Test Printing If ident, 54
Test Printing Let ident, 54
Test Printing Matching, 53
Test Printing Synth, 54
Test Printing Width, 134
Test Printing Wildcard, 53
Test Virtual Machine, 135
Theorem, 47, 138
Theories, 75
Time, 134
trans_eq, 78
transitivity, 169
Transparent, 125
trivial, 178
True, 77
true, 79
try, 194
tt, 79
Type, 29, 90
type, 29
type of
in Ltac, 199
Type of constructor, 99
type_scope, 237
Typing rules, 92, 146
App, 93, 152
Ax, 93
Const, 93
Conv, 95, 148, 153
Fix, 107
Lam, 93, 148
Let, 93, 148
match, 106
Prod, 93
Prod (impredicative Set), 111
Var, 93, 146

Undo, 140

```
Unfocus,141
unfold,157
unfold ... in, 157
unit,79
Unset Contextual Implicit,70
Unset Extraction AutoInline,301
Unset Extraction Optimize,301
Unset Hyps Limit,142
Unset Implicit Arguments,70
Unset Ltac Debug,201
Unset Printing All,74
Unset Printing Coercion,289
Unset Printing Coercions,289
Unset Printing Depth,134
Unset Printing Implicit,71
Unset Printing Matching,53
Unset Printing Notations,232
Unset Printing Synth,54
Unset Printing Universes,74
Unset Printing Width,134
Unset Printing Wildcard,53
Unset Silent,134
Unset Strict Implicit,70
Unset Undo,141
Unset Virtual Machine,135
value,81
Variable,36
Variable (and coercions), 288
Variables,36
vm_compute, 155,156
```

Well founded induction, 83
Well foundedness, 83
well_founded, 83
Whelp Elim, 128
Whelp Hint, 128
Whelp Instance, 128
Whelp Locate, 128
Whelp Match, 128
Write State, 133
XML exportation, 257
$\zeta$-reduction, 94

## Tactics Index

||, 194
;, 193
; [...|...|...], 193
abstract, 200
absurd, 155
apply, 149
apply ... with, 149
apply ... in, 152
assert, 151
assert as, 152
assert by, 152
assumption, 146
auto, 177
autorewrite, 183
case, 163
case ... with, 163
case_eq, 163
cbv, 155
change, 153
change ... in, 153
classical_left, 177
classical_right, 177
clear, 147
clearbody, 147
compare, 170
compute, 155, 156
congruence, 181
constructor, 159
constructor ... with, 159
contradiction, 155
cut, 152
cutrewrite, 168
decide equality, 170
decompose, 165
decompose record, 165
decompose sum, 165
dependent inversion, 175
dependent inversion ... as , 175
dependent inversion ... as ... with, 175
dependent inversion ... with, 175
dependent inversion_clear, 175
dependent inversion_clear ... as, 175
dependent inversion_clear ... as ... with, 175
dependent inversion_clear ... with, 175
dependent rewrite ->, 173
dependent rewrite <-, 173
destruct, 162
discriminate, 171
discrR, 87
do, 194
double induction, 165
eapply,150,204
eassumption, 146
eauto, 178
eexact, 146
elim ... using, 162
elim ... with, 161
elimtype, 162
evar, 154
exact, 146
exists, 159
f_equal, 170
fail, 195
field, 182, 322
field_simplify, 182, 322
field_simplify_eq, 182, 322
first, 195
firstorder, 180
firstorder using, 180
firstorder with, 180
firstorder tactic, 180
fold, 158
fourier, 183
functional induction, 166, 207
generalize, 153
generalize dependent, 153
hnf, 156
idtac, 195
induction, 160
info, 200
injection, 171, 172
injection ... as, 173
instantiate, 154
intro, 148
intro ... after, 149
intro after, 149
intros, 148
intros intro_pattern, 163
intros until, 148
intuition, 180
inversion, 173, 210
inversion ... as, 174
inversion ... as ... in, 175
inversion ... in, 174
inversion ... using, 176
inversion ... using ... in, 176
inversion_clear, 174
inversion_clear ... as ... in, 175
inversion_clear ... in, 175
inversion_cleardots as, 174
lapply, 150
lazy, 155
left, 159
legacy field, 327
legacy ring, 324
move, 147
omega, 182, 295
pattern, 158
pose, 150
progress, 194
quote, 177, 214
red, 156
refine, 146, 203
reflexivity, 169
rename, 147
repeat, 194
replace ... with, 168
revert, 153
rewrite, 167
rewrite ->, 167
rewrite -> ... in, 168
rewrite <-, 167
rewrite <- ... in, 168
rewrite ... in, 167
right, 159
ring, 182, 315, 316
ring_simplify, 182, 316
rtauto, 180
set, 150
setoid_replace, 329
simpl, 157
simpl ... in, 157
simple destruct, 163
simple induction, 162
simple inversion, 175
simple inversion ... as, 176
simplify_eq, 173
solve, 195
split, 159
split_Rabs, 87
split_Rmult, 87
stepl, 169
stepr, 170
subst, 169
symmetry, 169
symmetry in, 169
tauto, 179
transitivity, 169
trivial, 178
try, 194
unfold, 157
unfold ... in, 157
vm_compute, 155, 156

## Vernacular Commands Index

Abort, 139
About, 123
Add Field, 182, 323
Add Legacy Abstract Ring, 326
Add Legacy Abstract Semi Ring, 326
Add Legacy Field, 327
Add Legacy Ring, 324, 326
Add Legacy Semi Ring, 324, 326
Add LoadPath, 131
Add ML Path, 131
Add Morphism, 331, 337
Add Printing If ident, 54
Add Printing Let ident, 54
Add Rec LoadPath, 131
Add Rec ML Path, 132
Add Relation, 331
Add Ring, 182, 318
Add Setoid, 337
Admitted, 47, 138
Arguments Scope, 236
Axiom, 36
Axiom (and coercions), 288
Back, 132
Bind Scope, 237
Canonical Structure, 71
cd, 131
Check, 124
Close Scope, 236
Coercion, 73, 287, 288
Coercion Local, 287, 288
CoFixpoint, 45
CoFixpoint ... where ..., 232
CoInductive, 43
CoInductive (and coercions), 288
Combined Scheme, 206
Conjecture, 36

Corollary, 47
Declare Implicit Tactic, 188
Declare Left Step, 169
Declare ML Module, 130
Declare Right Step, 170
Defined, 47, 138
Definition, 37, 139
Delimit Scope, 236
Derive Dependent Inversion, 176
Derive Dependent
Inversion_clear, 176
Derive Inversion, 176
Derive Inversion_clear, 176
Drop, 133
End, 58, 60
Eval, 124
Example, 37
Existential, 140
Export, 65
Extract Constant, 302
Extract Inductive, 303
Extraction, 124, 299
Extraction Inline, 301
Extraction Language, 300
Extraction Module, 299
Extraction NoInline, 301
Fact, 47, 139
Fixpoint, 43
Fixpoint ... where ..., 232
Focus, 141
Function, 55
Functional Scheme, 190, 207
Goal, 47, 137
Hint, 184
Hint Constructors, 185

Hint Extern, 186
Hint Immediate, 185
Hint Resolve, 184
Hint Rewrite, 188
Hint Unfold, 185
Hypotheses, 36
Hypothesis, 36
Hypothesis (and coercions), 288
Identity Coercion, 288
Implicit Arguments, 68
Import, 64
Inductive, 38
Inductive (and coercions), 288
Inductive ... where ..., 232
Infix, 231
Inspect, 123
Lemma, 47, 139
Let, 38, 139
Load, 129
Load Verbose, 129
Locate, 127, 232
Locate File, 132
Locate Library, 132
Locate Module, 65
Ltac, 201
Module, 59, 60
Module Type, 60
Mutual Inductive,41
Notation, 227, 240
Opaque, 124
Open Scope, 236
Parameter, 36
Parameter (and coercions), 288
Parameters, 36
Print, 123
Print All, 123
Print Canonical Projections, 72
Print Classes, 289
Print Coercion Paths, 289
Print Coercions, 289
Print Extraction Inline, 301
Print Grammar constr, 229
Print Grammar pattern, 229

Print Graph, 289
Print Hint, 187
Print HintDb, 187
Print Implicit,71
Print LoadPath, 131
Print Ltac, 201
Print ML Modules, 130
Print ML Path, 132
Print Module, 65
Print Module Type, 65
Print Modules, 130
Print Section, 123
Print Table Printing If,54
Print Table Printing Let, 54
Print Term, 123
Print Universes, 74
Print XML, 259
Program Definition, 312
Program Fixpoint, 313
Program Lemma, 314
Proof, 47, 139
Proof with, 188
Proposition, 47
Pwd, 131
Qed, 47, 138
Quit, 133

Record, 49
Recursive Extraction, 299
Recursive Extraction Module, 299
Remark, 47, 139
Remove LoadPath, 131
Remove Printing If ident, 54
Remove Printing Let ident, 54
Require, 129
Require Export, 130
ReservedNotation, 231
Reset, 132
Reset Extraction Inline, 301
Reset Initial, 133
Restart, 141
Restore State, 133
Resume, 140
Save, 47, 138
Scheme, 189, 205
Search, 125

SearchAbout, 125
SearchPattern, 126
SearchPattern ... inside ...,
127
SearchPattern ... outside ..., 127
SearchRewrite, 127
Section, 58
Set Contextual Implicit, 70
Set Extraction AutoInline, 301
Set Extraction Optimize, 300
Set Firstorder Depth, 180
Set Hyps Limit, 142
Set Implicit Arguments, 70
Set Ltac Debug, 201
Set Printing All, 74
Set Printing Coercion, 289
Set Printing Coercions, 289
Set Printing Depth, 134
Set Printing Implicit, 71
Set Printing Matching, 53
Set Printing Notations, 232
Set Printing Synth, 54
Set Printing Universes, 74
Set Printing Width, 134
Set Printing Wildcard,53
Set Silent, 134
Set Strict Implicit, 70
Set Undo, 141
Set Virtual Machine, 135
setoid_reflexivity, 336
setoid_replace, 336
setoid_rewrite, 334, 336
setoid_symmetry, 336
setoid_transitivity, 336
Show, 141
Show Conjectures, 142
Show Existentials, 142
Show Implicits, 141
Show Intro, 142
Show Intros, 142
Show Proof, 142
Show Script, 142
Show Tree, 142
Show XML Proof, 259
Structure, 290
SubClass, 289

Suspend, 140
Tactic Definition, 190
Test Ltac Debug, 201
Test Printing Depth, 134
Test Printing If ident, 54
Test Printing Let ident, 54
Test Printing Matching, 53
Test Printing Synth, 54
Test Printing Width, 134
Test Printing Wildcard, 53
Test Virtual Machine, 135
Theorem, 47, 138
Time, 134
Transparent, 125
Undo, 140
Unfocus, 141
Unset Contextual Implicit, 70
Unset Extraction AutoInline, 301
Unset Extraction Optimize, 301
Unset Hyps Limit, 142
Unset Implicit Arguments, 70
Unset Ltac Debug, 201
Unset Printing All, 74
Unset Printing Coercion, 289
Unset Printing Coercions, 289
Unset Printing Depth, 134
Unset Printing Implicit, 71
Unset Printing Matching, 53
Unset Printing Notations, 232
Unset Printing Synth, 54
Unset Printing Universes, 74
Unset Printing Width, 134
Unset Printing Wildcard, 53
Unset Silent, 134
Unset Strict Implicit, 70
Unset Undo, 141
Unset Virtual Machine, 135

Variable, 36
Variable (and coercions), 288
Variables, 36
Whelp Elim, 128
Whelp Hint, 128
Whelp Instance, 128
Whelp Locate, 128

Whelp Match, 128
Write State, 133

## Index of Error Messages

ident $_{2}$ not found, 147
ident $_{i}$ not found, 147
ident already exists, 36-38, 47, 312
ident not found, 147
A record cannot be recursive, 51
already exists, 139
Argument of match does not evaluate to a term, 197
arguments of ring_simplify do not have all the same type, 317
Attempt to save an incomplete proof, 138
bad lemma for decidability of equality, 320
Bad magic number, 130
bad ring structure, 320
Bound head variable, 184, 185
Can't find file ident on loadpath, 129
Can't find module toto on loadpath, 130
cannot be used as a hint, 185
Cannot build functional inversion principle, 56
Cannot define graph for ident..., 56
Cannot define principle(s) for ident..., 56
cannot find a declared ring structure for equality term, 317
cannot find a declared ring structure over term, 317
Cannot find induction information on qualid, 166
Cannot find inversion information for hypothesis ident, 176
Cannot find the source class of qualid, 287
Cannot infer a term for this placeholder, 68, 146
Cannot load ident: no physical path bound to dirpath, 130
Cannot move ident ${ }_{1}$ after ident $_{2}$ : it depends on ident $_{2}, 147$

Cannot move ident $_{1}$ after ident $_{2}$ : it occurs in ident $_{2}, 147$
Cannot recognize class 1 as a source class of qualid, 287
Cannot refine to conclusions with metavariables, 161
Cannot solve the goal, 195
Cannot use mutual definition with well-founded recursion or measure, 56

Delta must be specified before, 156
does not denote an evaluable constant, 157
does not respect the inheritance uniform condition, 287

Failed to progress, 194
File not found on loadpath : string, 130
Found target class class instead of class $_{2}, 287$
Funclass cannot be a source class, 287
generated subgoal term' has metavariables in it, 149
goal does not satisfy the expected preconditions, 172
Goal is solvable by congruence but some arguments are missing. Try congruence with ..., replacing metavariables by arbitrary terms., 182

Hypothesis identmust contain at least one Function, 176

I couldn't solve goal, 182
I don't know how to handle dependent equality, 182
Impossible to unify . . . with .., 169
Impossible to unify $\ldots$ with $\ldots, 149,162$
In environment ... the term: term 2 does not have type term ${ }_{1}, 312$
invalid argument, 146
is already a coercion, 287
is already used, 147,148
is not a function, 287
is not a module, 65
is not a projectable equality, 172
is not an inductive type, 185
is used in the conclusion, 147
is used in the hypothesis, 147
Loading of ML object file forbidden in a native Coq, 130

Module/section module not found, 125
must be a transparent constant, 288
name ident is already used, 148
No applicable tactic, 195
No argument name ident, 56
No discriminable equalities, 171
No focused proof, 137, 141
No focused proof (No proof-editing in progress), 139, 140
No focused proof to restart, 141
No matching clauses for match, 197
No matching clauses for match goal, 198
No product even after head-reduction, 148, 149
No proof-editing in progress, 140
No such assumption, 146, 155
no such entry, 132
No such goal, 141
No such hypothesis, 149, 158
No such hypothesis in current goal, 148, 149
No such label ident, 60
No such proof, 140
Non exhaustive pattern-matching, 284
Non strictly positive occurrence of ident in type, 40
not a context variable, 199
not a defined object, 123
Not a discriminable equality, 171
Not a proposition or a type, 151
Not a valid (semi)ring theory, 326
not a valid ring equation, 317
Not an equation, 172
Not an exact proof, 146
Not an inductive product, 159, 161
Not convertible, 153
not declared, 185, 287
Not enough constructors, 159
Not reducible, 156
Not the right number of dependent arguments, 161
Not the right number of induction arguments, 166
Not the right number of missing arguments, 149
omega can't solve this system, 296
omega: Can't solve a goal with equality on type, 296
omega: Can't solve a goal with non-linear products, 296
omega: Can't solve a goal with proposition variables, 296
omega: Not a quantifier-free goal, 296
omega: Unrecognized atomic proposition: prop, 296
omega: Unrecognized predicate or connective: ident, 296
omega: Unrecognized proposition, 296
Proof is not complete, 200
quote: not a simple fixpoint, 177, 215
Reached begin of command history, 132
ring operation should be declared as a morphism, 320

Signature components for label ident do not match, 60
Sortclass cannot be a source class, 287
Statement without assumptions, 152
Tactic Failure message (level $n$ ), 195
Tactic generated a subgoal identical to the original goal, 167
terms do not have convertible types, 168
The conclusion is not a substitutive equation, 169
The conclusion of type is not valid; it must be built from ident, 40
The recursive argument must be specified, 56
The reference qualid was not found in the current environment, 124, 125
the term form has type ... which should be Set, Prop or Type, 137, 138

The term provided does not end with an equation, 167
The numth argument of ident must be ident' in type, 40
This is not the last opened module, 60
This is not the last opened module type, 60
This is not the last opened section, 59
Unable to apply, 152
Undo stack would be exhausted, 140
Universe inconsistency, 90

## List of Figures

1.1 Syntax of terms ..... 30
1.2 Syntax of terms (continued) ..... 31
1.3 Syntax of sentences ..... 35
2.1 Syntax for the definition of Record ..... 49
2.2 Syntax of Record projections ..... 51
2.3 Syntax of modules ..... 59
2.4 Syntax for explicitations of implicit arguments ..... 71
3.1 Notations in the initial state ..... 76
3.2 Syntax of formulas ..... 76
3.3 Syntax of datatypes and specifications ..... 79
3.4 Definition of the scope for integer arithmetics (Z_scope) ..... 85
3.5 Definition of the scope for natural numbers (nat_scope) ..... 86
3.6 Definition of the scope for real arithmetics (R_scope) ..... 86
3.7 Definition of the scope for lists (list_scope) ..... 88
9.1 Syntax of the tactic language ..... 192
9.2 Syntax of the tactic language (continued) ..... 193
9.3 Tactic toplevel definitions ..... 193
10.1 Definition of the permutation predicate ..... 218
10.2 Permutation tactic ..... 218
10.3 Deciding intuitionistic propositions (1) ..... 219
10.4 Deciding intuitionistic propositions (2) ..... 220
10.5 Type isomorphism axioms ..... 221
10.6 Type isomorphism tactic (1) ..... 222
10.7 Type isomorphism tactic (2) ..... 223
11.1 Syntax of the variants of Notation ..... 233
14.1 COQIDE main screen ..... 264
14.2 COQIDE: the query window ..... 265
16.1 Syntax of classes ..... 286


[^0]:    ${ }^{1}$ This research was partly supported by IST working group "Types"

[^1]:    ${ }^{1}$ This is similar to the expression "entry $\{$ sep entry $\}$ " in standard BNF, or "entry ( sep entry )*" in the syntax of regular expressions.

[^2]:    ${ }^{2}$ Except if the inductive type is empty in which case there is no equation to help to infer the return type.

[^3]:    ${ }^{1}$ Most of these constructions are defined in the Prelude module in directory theories / Init at the CoQ root directory; this includes the modules Notations, Logic, Datatypes, Specif, Peano, and Wf. Module Logic_Type also makes it in the initial state

[^4]:    ${ }^{2}$ They are in Datatypes.v

[^5]:    ${ }^{3}$ They are defined in module Specif.v
    ${ }^{4}$ This syntax can be found in the module SpecifSyntax.v

[^6]:    ${ }^{5}$ This is in module Peano.v

[^7]:    ${ }^{6}$ This is defined in module $W f . v$

[^8]:    ${ }^{7}$ This is in module Logic_Type.v
    ${ }^{8}$ http://coq.inria.fr

[^9]:    ${ }^{1}$ This requirement could be relaxed if we instead introduced an explicit mechanism for instantiating constants. At the external level, the Coq engine works accordingly to this view that all the definitions in the environment were built in a subcontext of the current context.

[^10]:    ${ }^{1}$ Hypertextual Electronic Library of Mathematics
    ${ }^{2}$ Mathematics on the Web, Get it by Logics and Interfaces

[^11]:    ${ }^{1}$ but it does not rename the hypothesis in the proof-term...

[^12]:    ${ }^{2}$ Actually, only the second subgoal will be generated since the other one can be automatically checked.

[^13]:    ${ }^{3}$ This corresponds to the cut rule of sequent calculus.

[^14]:    ${ }^{4}$ Recall: opaque constants will not be expanded by $\delta$ reductions

[^15]:    ${ }^{5}$ The behavior of this tactic has much changed compared to the versions available in the previous distributions (V6). This may cause significant changes in your theories to obtain the same result. As a drawback of the reengineering of the code, this tactic has also been completely revised to get a very compact and readable version.

[^16]:    ${ }^{1}$ which are the levels effectively chosen in the current implementation of COQ
    ${ }^{2}$ COQ accepts notations declared as no associative but the parser on which COQ is built，namely CAMLP4，currently does not implement the no－associativity and replace it by a left associativity；hence it is the same for COQ：no－associativity is in fact left associativity

[^17]:    ${ }^{3}$ Tactic notations are just a simplification of the Grammar tactic simple_tactic command that existed in versions prior to version 8.0.

[^18]:    ${ }^{1}$ Hypertextual Electronic Library of Mathematics
    ${ }^{2}$ Mathematics on the Web, Get it by Logic and Interfaces

[^19]:    ${ }^{3}$ or CProp which is the "sort"-like definition used in C-CoRN (see http://vacuumcleaner.cs.kun.nl/ $c-\operatorname{cor} n$ ) to type computationally relevant predicative propositions.

[^20]:    ${ }^{1}$ GeoProof is dynamic geometry software which can be used in conjunction with COQIDE to interactively build a Coq statement corresponding to a geometric figure. More information about GeoProof can be found here: http://home.gna. org/geoproof/

[^21]:    ${ }^{1}$ based on previous work from Patrick Loiseleur and Samuel Boutin

[^22]:    ${ }^{1}$ Based on previous work by Clément Renard

