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Abstract

In this paper, we present parallel simulations of three-dimensional complex flows obtained on an ORIGIN 3800 computer and on
homogeneous and heterogeneous (processors of different speeds and RAM) computational grids. The solver under consideration, which
is representative of modern numerics used in industrial computational fluid dynamics (CFD) software, is based on a mixed element-vol-
ume method on unstructured tedrahedrisations. The parallelisation strategy combines mesh partitioning techniques, a message-passing
programming model and an additive Schwarz algorithm. The parallelisation performances are analysed on a two-phase compressible
flow and a turbulent flow past a square cylinder.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last two decades computer technology has grown
rapidly, especially parallel architectures [1]. Numerous con-
figurations of parallel platforms are installed worldwide,1

either through parallel supercomputers or through compu-
tational grids (homogeneous or heterogeneous). The com-
bination of these with mature parallel algorithms allows
the very efficient solution of academic or industrial prob-
lems like those encountered by the computational fluid
dynamics (CFD) community.

In this paper, we present parallel simulations of three-
dimensional complex flows using a CFD software which
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combines mesh partitioning techniques and a domain
decomposition method (Schwarz algorithm). We propose
to investigate the behaviour and performance of such a par-
allelisation strategy on homogeneous and heterogeneous
computational grids, as well as on a parallel supercomputer.

The parallelisation strategy adopted in this study has
been successfully applied in both a two-dimensional and
a three-dimensional case by the university of Colorado at
Boulder and INRIA in a cooperative program [2–4]. This
has then been used intensively, in particular by the univer-
sities of Montpellier, Pisa and Pau in several CFD research
studies (see for example [5–7]). The mesh partitioning tech-
niques are combined with a message-passing programming
model [2–4] using the MPI communication library which
ensures software portability from one parallel system to
another. The mesh partitioning algorithms and the genera-
tion of the corresponding communication data structures
are computed in a preprocessing step. Because mesh parti-
tions with overlap incur redundant floating-point opera-
tions, non-overlapping mesh partitions are chosen in our
applications. It has been shown in [4] that the latter option
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is more efficient though it induces additional communica-
tion steps.

The fluid solver AERO (and its two-phase version
AEDIF) used in this work, which is representative of mod-
ern numerics employed in industrial CFD codes, is based
on a mixed element-volume formulation which applies on
unstructured tedrahedral meshes [8,9].

The first set of performance results presented in this
paper concerns the simulation of a jet in crossflow and a
shock wave propagation respectively on homogeneous
and heterogeneous computational platforms. The second
set of test cases, performed on an ORIGIN 3800 computer,
concerns the prediction of a blast wave–bubble interaction
and of a bluff-body flow dominated by massive separations.
All these simulations must discretise the fluid equations on
large three-dimensional meshes with small time steps.
Therefore they require intensive computational resources
(in terms of CPU and memory) and parallel computation
is of particular interest for such applications.

The remainder of the paper is organised as follows. In
Section 2 we describe the numerical and parallel features
of the CFD softwares used in our applications. In particu-
lar, we present the software improvements in terms of
memory allocation that have been achieved in order to per-
form efficient parallel computations on homogeneous and
heterogeneous computational platforms. These improve-
ments are highlighted by some performance results. In Sec-
tion 3, we describe the two-phase flow application which
concerns a blast wave–bubble interaction. In Section 4,
we present the parallel simulation of a bluff-body flow with
a hybrid Reynolds Averaged Navier–Stokes (RANS)/
Large Eddy Simulation (LES) model. Finally, conclusions
are given in Section 5.

2. Features of the CFD Software AERO

2.1. Numerical approximation

The spatial discretisation is based on a mixed element-
volume method which applies to unstructured tetrahedrisa-
tions [8,9]. The adopted scheme is vertex centred, i.e. all
degrees of freedom are located at the vertices. P1 Galerkin
finite elements are used to dicretise the diffusive terms.

A dual finite-volume grid is obtained by building a cell
Ci around each vertex i through the rule of medians. The
convective fluxes are discretised on this tessellation, i.e. in
terms of fluxes relative to the common boundaries shared
by neighboring cells.

The Roe scheme [10] represents the basic upwind compo-
nent for the numerical evaluation of the convective fluxesF:

URðW i;W j;~nÞ ¼
FðW i;~nÞ þFðW j;~nÞ

2

� cs jRðW i;W j;~nÞj
W j � W i

2

� �
ð1Þ

in which URðW i;W j;~nÞ is the numerical approximation of
the flux between the ith and the jth cells, Wi is the solution
vector at the ith node,~n is the normal to the cell boundary
and R is the Roe matrix. The parameter cs, which multi-
plies the stabilisation part of the scheme, collected within
square brackets in Eq. (1), allows a direct control of the
numerical viscosity, leading to a full upwind scheme for
cs = 1 and to a centred scheme when cs = 0. The spatial
accuracy of this scheme is only first order. To increase
the order of accuracy of the Roe scheme, the Monotone
Upwind Schemes for Conservation Laws linear reconstruc-
tion method (MUSCL), introduced by Van Leer [11] is em-
ployed. This is obtained by expressing the Roe flux between
two cells centred on two generic nodes i and j, as a function
of the reconstructed values of W at their interface:
URðW ij;W ji;~nijÞ, where Wij is extrapolated from the values
of W at nodes i and j. A reconstruction using a combina-
tion of different families of approximate gradients (P1-ele-
mentwise gradients and nodal gradients evaluated on
different tetrahedra) is adopted, which allows us to obtain
a numerical dissipation made up of sixth-order space deriv-
atives. This MUSCL reconstruction is described in detail in
Ref. [12].

Either implicit or explicit schemes can be used to
advance the equations in time by a line method, i.e. time
and space are treated separately. In the explicit case a N-
stage low-storage Runge–Kutta algorithm is applied. At
each stage, the flux evaluation is performed avoiding
redundant operations. These operations represent about
2K flop per unknown. Data transfers are done only once
per flux evaluation and concern a data volume which rep-
resents in average 10% of the system unknowns number
(for a subdomain size of about 30K nodes). An implicit
time marching algorithm is also available in the code,
based on a second-order time-accurate backward difference
scheme. The non-linear discretised equations are solved by
a defect-correction (Newton-like) method [13] in which a
first-order semi-discretisation of the Jacobian is used. At
each time-step, the resulting sparse linear system is solved
by a restricted additive Schwarz preconditioned iterative
method [14]. The non-zero (5 · 5 and 2 · 2) blocks of the
system is stored at each time step. The most internal loop
is a local block-ILU(0) iteration used for preconditioning
the Schwarz one. It represents about 1K flop per unknown.
Then Schwarz starts a data transfer slightly smaller than in
the explicit flux assembly. As a result, the communication/
computation ratio in the implicit mode is typically 50% lar-
ger than for the explicit case. This implicit scheme is line-
arly unconditionally stable and second-order accurate.

More details on the numerical ingredients used in this
paper can be found in Refs. [5,15].

2.2. Implementation on parallel platforms

2.2.1. Parallelisation in the AERO code

The AERO code implements parallel computing using
mesh partitioning that is, dividing a large mesh into smaller
partitions so that the work for each partition can be com-
puted by a different processor. The partitioning can be
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homogeneous (equal size) or heterogeneous (unequal size).
Using mesh partitioning is a very popular approach for
parallel computing using CFD codes. Once the mesh has
been partitioned, parallelisation is implemented using the
Message Passing Interface (MPI) system applied over the
partitions.

The source code (including the MPI calls) is compiled
with the F77 compiler and linked with the MPI library.
Using MPI, each processor executes a copy of the execut-
able, reads a data file containing data common to all the
processors,2 a file that contains the size of the full mesh
and the maximum size of the partitions, etc. However, each
processor reads only the mesh data for its specific partition.
The partition files contain the number of vertices, tetrahe-
dra, and external faces (triangles); the coordinates of the
vertices, the connectivity for the tetrahedra and external
faces (triangles), the type of external boundary conditions
to be applied on the external faces, the vertices that must
exchange data with neighboring partitions, an identifier
to indicate whether a boundary vertice is active or not
and finally the global indices of the local vertices.
2.2.2. Computational platforms

For machines like the ORIGIN 3800 with shared mem-
ory at the Centre Informatique National de l’Enseignement
Supérieur (CINES)3 with 768 processors, homogeneous
partitioning with the executable compiled with F77 works
well as all the processors are identical in speed and RAM.

When computing on parallel platforms that have pro-
cessors with different speeds and RAM, efficiency is lost
when homogeneous partitions are used; the slower proces-
sors spend more time computing than the faster processors.
This is the scenario that often occurs on computational
grids. For examples the cluster of INRIA4 and the Meca-
GRID5 both having a mixture of processors of 2 GHz
and 1 GHz and 2 GB and 1 GB RAM. Numerical tests
using the MecaGRID with as many as 64 processors were
reported by Wornom [16]. The MecaGRID is a grid in the
classical definition in that the MecaGRID clusters belong
to different Virtual Organisations using a Virtual Private
Network or tunnel to pass messages between the different
MecaGRID clusters.

In order to maximise efficiency on computational grids
with processors of different speeds and RAM, dynamic
memory allocation is required in order to give more com-
2 Time scheme, order of accuracy, CFL number, number of time steps,
. . . etc.

3 http://www.cines.fr.
4 The INRIA cluster is actually comprised of three clusters (two

operational). Thus it is appropriate and more descriptive to refer to it as a
local computational grid.

5 The MecaGRID connects the clusters of INRIA Sophia Antipolis,
Ecole des Mines de Paris at Sophia Antipolis, and the IUSTI in Marseille.
The MecaGRID project is sponsored by the French Ministry of
Research (http://www.recherche.gouv.fr/recherche/aci/grid.htm, http://
www.recherche.gouv.fr/recherche/aci/grid.htm) through the ACI-Grid
program.
putational work to the faster processors so that all the pro-
cessors finish their work at approximately the same time.
Dynamic memory allocation cannot be achieved with the
present F77 code since parameters statements are used
and the parameters are fixed not by the size of the local
partition but by the size of the largest partition.

2.2.3. Dynamic memory allocation

Several programming languages use dynamic memory
allocation, F90, C, C++, and JAVA are examples. Choos-
ing either C, C++, or JAVA as the new language will
require changing 100% of the F77 coding.

An alternative choice would be to retain the FOR-
TRAN coding and replace the FORTRAN parameter
statements with C, C++, JAVA, PYTHON, or TCL wrap-
pers to achieve the necessary dynamic memory allocation.
Although not used in this study, this alternative choice is
valid. Here F90 was chosen for the following reasons:

1. In general, the F77 coding is compatible with the F90
compiler. Therefore we can add F90 features to the
existing F77 code and it is not necessary to convert
100 percent of the F77 code to the F90 standard. This
saves considerable time both in not having to rewrite
the F77 code in the F90 standard as well as the addi-
tional debugging time that would be necessary.

2. The modification to the F77 code to include the F90
dynamic memory allocation are relatively easy. In fact,
most of the necessary changes were completed over a
two-day period with an additional week needed for test-
ing and verification.

3. Most of the F90 modifications (replacing .h files with
F90 Modules) are transparent to the users, thus the
use of the F90 version results in no perturbation to
F77 users.

4. The F90 code compiles only options actually used. With
F77, all arrays and options are allocated memory at
compiling time whether or not they are used at run time.
This results in a very large executable that reduces the
size of the mesh that can be executed on computational
platforms.

5. In contrast to the F77 version of the AERO code, the
source of the F90 version does not depend on mesh size
parameters or on the number of processors; therefore
the F90 code is much easier for new and F77 users to
use.

2.2.4. Improvements related to F90

Two improvements related to the F90 version of the
AERO code are illustrated below.

Homogeneous parallel platforms: In this section it is
shown that because memory is allocated at runtime, and
only allocated for the code options actually used, the size
of the F90 executable is much smaller than the F77 version
that allocates memory for all options at compile time,
whether or not they are used at run time. As a consequence

http://www.cines.fr
http://www.recherche.gouv.fr/recherche/aci/grid.htm
http://www.recherche.gouv.fr/recherche/aci/grid.htm
http://www.recherche.gouv.fr/recherche/aci/grid.htm


Table 1
Characteristics of the INRIA cluster

Processor CPUs GHz RAM/node (GB) LAN speed (Gbps)

nina 32 2 1.00 1.000
pf 32 1 0.50 0.100
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many test cases that cannot be run with the F77 version,
because the executable is too large for the available
RAM, can be easily run with the F90 version.

The problem that motivated the F90 work was the test
case of a jet in crossflow [17] involving 400K mesh points.
The INRIA cluster is really composed of two clusters, one
called nina and the other pf.6 Table 1 shows the speed and
RAM of the nina processors to be twice that of the pf pro-
cessors. Due to the pf RAM limit, this test case could not
be run using the implicit scheme on the INRIA cluster
when less than approximately 32 mesh partitions were used
if one of the 32 processors was a pf processor because the
size of the F77 executable was too large for the pf processor
(1/2 GB RAM). In order to run the F77 version the user
accepted the use of the explicit algorithm.7

Using the F90 complete code version, both the explicit
and implicit executed successfully using either nina or pf

processors for the 400K mesh with as few as eight total par-
titions. We also estimate, based on our tests, that, using the
F90 version, a mesh of 1.2 million points could be run
using only 32-pf processors.

In Table 2, we compare, using 32 partitions of the 400K
vertices mesh, the performance results (wall time and mem-
ory) obtained with the F77 and F90 versions of AERO for
different parallel systems: 32 pf processors, 32 nina proces-
sors, and 32 R14000 500 MHz processors of an ORIGIN
3800 computer. The results show that with F90 almost 3
times less memory is required than with F77, and that wall
times are rather closed for a similar parallel system (F90 is
a little less performant due certainly to allocation/dealloca-
tion of temporary tables). For the ORIGIN 3800 com-
puter, the reduction of memory (which does not appear
in this table) is not crucial, due to its shared memory. This
table also shows that, as predicted according to their rela-
tive processor performance (see Table 1), the computations
performed on 32 nina processors are twice as fast as the
ones achieved on 32 pf processors, and that the best perfor-
mances are obtained with the ‘‘integrated’’ parallel system
(ORIGIN 3800 computer).

MecaGRID: In this section, the benefit of using hetero-
geneous partitioning is illustrated. The focus here was to
determine the efficiency of using dynamic memory alloca-
tion and not to evaluate the efficiency of the MecaGRID.

In order to verify the dynamic memory allocation fea-
ture of the F90 code, test cases were run on the MecaGRID
using homogeneous and heterogeneous mesh partitioning
with the Globus software. The test case studied is a plane
shockwave propagating in a rectangular tube. The mesh
contains 252K vertices. Two partitionings were created:
(1) 16 homogeneous partitions and (2) 16 heterogeneous
6 See http://www-sop.inria.fr/parallel/.
7 The 400K grid has mesh refinement near boundaries; therefore the

implicit algorithm was preferred to avoid the long computational times
needed with the explicit algorithm. Using the explicit algorithm permitted
us to remove eight implicit subroutines from the Makefile, and their call
statements from the source code, to get the size of the executable 61/2 GB.
partitions. The mesh partitioner used in this study was
the FastMP software developed by Wornom [18]. The
FastMP software is written in F90 and executes in parallel
using MPI and is reasonably fast. The heterogeneous par-
titioning for the 252K mesh required 3.8 s.8 The partition-
ing for a mesh of 2 million vertices into 32 homogeneous
partitions, discussed in Section 3.2, required 30 s.

We executed the F90 code via the MecaGRID using the
GLOBUS software9 with a total of 16 processors (8-nina

and 8-pf). The number of processors to be used on each
cluster can be selected by MecaGRID users in Globus
script; this possibility is not available to users of the INRIA
cluster. Both the nina and pf clusters are members of the
MecaGRID. Unfortunately the other clusters belonging
to the MecaGRID were off line and could not be used
for this evaluation. As the bandwidth between nina proces-
sors is 1 Gbps and 100 Mbps between pf processors, the
computations made via the MecaGRID may be considered
as a metacomputing, rather than a true grid, computation.
For a true MecaGRID calculation using, for example, pf

processors and iusti processors in Marseille 180 km distant,
latency and bandwidth fluctuating bandwidths become
important; these were not important in the calculations
here as both the nina and pf processors were local.

For the homogeneous mesh partitioning, all the partitions
were of equal size. For the heterogeneous partitioning, the 8-
nina partitions contained twice the number of tetrahedra as
the 8-pf partitions. In Table 3, we give the wall time relative
to the homogeneous and heterogeneous partitioning for a
simulation of 150 time steps. From this table, we observe
the substantial gain in simulation time obtained with the het-
erogeneous partitioning for which a speedup of 1.45 is
reached (the theoretical speedup for this case is 1.5).

2.2.5. Summary: implementation on parallel platforms

F90 offers several features not available in F77 that
increase the capabilities and ease of use of the AERO code.
These include dynamic memory allocation. The F90 ver-
sion of the AERO code is mesh independent and because
memory is allocated at runtime, only arrays and options
that are used are allocated memory. Therefore the size of
the executable is much smaller than the F77 version that
allocates memory for all options, whether they are used
or not, at run time. As a consequence many test cases (large
meshes) that cannot be run with the F77 version can be eas-
ily run with the F90 version. This improvement was first
checked on homogeneous parallel platforms by considering
8 Time to read the mesh to be partitioned, partition the mesh and write
the partition files.

9 http://www.globus.org.

http://www-sop.inria.fr/parallel/
http://www.globus.org


Table 2
Implicit computation on the 400K vertices mesh: comparison of memory needed and wall time for the F77 and F90 versions of AERO

Parallel system F90 F77

Size (MB) Wall time (s) Size (MB) Wall time (s)

Cluster 32-pf 164 2075 431 1945
Cluster 32-nina 164 1148 431 1050
ORIGIN 3800, 32 proc – 798 – 726

Table 3
A mesh containing 252K vertices: wall time comparison between a
homogeneous and a heterogenous partitioning using 8-nina 8-pf pro-
cessors

Mesh partitioning Wall time (s)

16 homogeneous partitions 701
16 heterogeneous partitions 484
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a mesh of 400K vertices. Then, we show numerical results
for a mesh containing 252K vertices running on the Meca-
GRID using GLOBUS and heterogeneous partitions. This
resulted in a speedup of 1.45 relative to the same run using
the homogeneous partitioning which compares well with
the theoretical speedup of 1.5. This validates the efficiency
of the F90 version of the AERO code.

3. Application to two-phase flows

Numerical methods for multi-fluid or multiphase flows
have a long history and many different methods have
become successively popular over the last five decades.
Today Eulerian formulations are favoured for solving
many problems where the interface shows strong variations
of physical properties. The difficulties are not only related
to the advection of the interface, but also to the computa-
tion of the composite fluid (typically liquid and gas) in
mixed cells. The diffuse interface method of Saurel and
Abgrall [19] is an Eulerian method which applies particu-
larly to the latter problem. The main principle of this
method is to build accurate and stable models for the
mixed cells involving fluids with a common law, but with
very different constants. Then such methods can be mod-
elled in the same manner either for an interface without
mixing or for a region with some local mixing. The five
equation two-dimensional model of Guillard–Murrone
[20] has been applied in a large set of two-dimensional test
cases. This model was extended to three dimensions using
unstructured tetrahedra volumes by Wornom et al. [21].
The scheme was implemented in the basic solver in AERO

code developed at the University of Colorado by Farhat
[22] with the collaboration of INRIA – see Dervieux [8],
Nkonga and Guillard [23], and Martin and Guillard [13]
for fluid flow problems. The two-phase10 software is called
AEDIF.
10 The term ‘‘two-phase flows’’ is used in the literature to describe flows
involving two different liquids or gases: for example, liquid and gas, or two
different liquids, as in the present report.
3.1. Numerical algorithm

The AEDIF software, derived from AERO for the
calculation of two-phase flows, replaces the Euler equa-
tions for a unique, perfect gas with the following two-phase
model:

Seven-equation quasi conservative reduced model

o

ot
akqk þ divðakqkuÞ ¼ 0; k ¼ 1; 2 ð2Þ

o

ot
quþ divðqu� uÞ þ rp ¼ 0; ð3Þ

o

ot
qeþ divðqeþ pÞu ¼ 0; ð4Þ

o

ot
a2 þ u _ra2 ¼ a1a2

q1a2
1 � q2a2

2P2
k¼1ak0qka2

k

divu ð5Þ

with e = e + u2/2 and qe ¼
P2

k¼1akqkekðp; qkÞ, where ak are
the mass fractions of the two fluids, qk the corresponding
densities, u, p the velocity and pressure common to the
two phases.

The flux splitting for the five equation two phase flows
model was developed in [24], extended to three dimensions
by Wornom [21] and can be understood as an extension of
the acoustic Riemann solver described for instance in [25]
for the Euler equations of gas dynamics. This linearised
Riemann solver uses the mathematical structure of the
model and in particular the continuity of pressure and
velocity across a contact discontinuity. Based on several
different numerical tests, this acoustic Riemann solver
seems to be very robust with respect to the Mach number
and especially for interface problems (see [26]).
3.2. Results: blast wave–bubble interaction

This kind of flow has been studied in 2D and 2D axi-
symmetric computations by Giordano [27]. Very fine 3D
calculations are necessary in order to study unstable capil-
lary effects that cannot be modelled using axisymmetric
formulations. The calculations shown hereafter were per-
formed on a mesh with 2 million vertices and represent a
step in this direction.

The initial position of the shockwave and the densities
are shown in Fig. 1.11 Shown in Fig. 2 are the contours
of density and the mass fractions of the two fluids on a
symmetry plane after 600 time steps. Fig. 3 shows the
11 The initial pressure and density ratios were 10/1.



Fig. 1. Symmetry plane contours at time step 600: pressure (left), mass
fractions (right).

Fig. 3. Blast wave w-velocity contours after 600 time steps.
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three-dimensional w-velocity contours after 600 time steps
at which time the blast wave has passed through the bub-
ble. The deformation of the initial spherical bubble can
be seen.

In order to evaluate the parallel speedup and efficiency
of AEDIF, the mesh containing 2 million vertices has been
decomposed into 24, 32, 48 and 64 partitions, each parti-
tion being assigned to one processor of an ORIGIN 3800
computer.

As the total simulation time of the serial program run-
ning on a single processor is not available because of mem-
ory limits, we have used the following speedup estimation
[4]:

SðNpÞ ¼ Np � 1þ T Np
comm

T Np
comp

 !�1

;

where Np is the number of processors, T Np
comm and T Np

comp are
respectively the communication time and the computa-
Fig. 2. Centre plane contours at time step 6
tional time of the parallel application on Np processors,
and S(Np) is the resulting speedup.

The efficiency, which is a meaningful measure of the per-
centage of a processor’s time spent in useful computation,
is then defined by:

EðNpÞ ¼ SðNpÞ
Np

:

Table 4 shows the parallel speedup and efficiency
relative to one processor, as well as the computational
and communication times for 600 time steps. These
performance results prove the good parallel scalability
of the software used for these two-phase flow
calculations.
00: density (left), volumic ratio (right).



Table 4
A mesh containing 2 million vertices: speedup S(Np) and efficiency E(Np) vs the number Np of processors of an ORIGIN 3800 computer for 600 time steps

Np Computational time (s) Communication time (s) S(Np) E(Np) (%)

24 14,218 990 22.44 93.49
32 10,626 812 29.73 92.90
48 8372 1194 42.01 87.52
64 6824 1029 55.65 86.95

334 B. Koobus et al. / Advances in Engineering Software 38 (2007) 328–337
4. Application to turbulent wakes

The accurate and efficient simulation of turbulent wakes
is an important challenge in CFD. It concerns many flow
problems, in particular those around bluff-bodies involving
vortex shedding. In the present study, we are interested in
the turbulent flow which develops around a square cylinder
at a relatively high Reynolds number.

Several turbulence models can be used for the simula-
tion of such massively separated flows. Among these
models, we can cite two important classical approaches:
the one in which the Reynolds Averaged Navier–Stokes
(RANS) equations are discretised, and the Large Eddy
Simulation (LES). In this work, we use a third and more
recent approach: a hybrid RANS/LES model which com-
bines RANS and LES features in order to exploit as much
as possible the advantages of the two previous classical
approaches: less computational resources compared with
LES, and better accuracy than RANS. In the next subsec-
tion, we describe briefly the chosen hybrid RANS/LES
approach, before presenting some performance results in
the next subsection.
4.1. Limited numerical scales (LNS) approach

The basic idea of the LNS model [28] is to multiply the
Reynolds stress tensor, given by the RANS closure, by a
blending function, which permits us to switch from the
RANS to the LES approach.

For the RANS closure, the standard k–e model [29] is
used here, in which the Reynolds stress tensor is modelled
as follows, by introducing a turbulent eddy-viscosity, lt:

Rij ’ lt
o~ui

oxj
þ o~uj

oxi
� 2

3

o~ul

oxl
dij

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~P ij

� 2

3
qkdij; ð6Þ

where the tilde denotes the Favre average, the overbar time
averaging, dij is the Krönecker symbol and k is the turbu-
lent kinetic energy. The turbulent eddy-viscosity lt is de-
fined as a function of k and of the turbulent dissipation
rate of energy, e, as follows:

lt ¼ Cl
k2

e
; ð7Þ

in which Cl is a model parameter, here set equal to the clas-
sical value of 0.09 and k and e are obtained from the cor-
responding modelled transport equations [29].
The LNS equations are then obtained from the RANS
equations by replacing the Reynolds stress tensor Rij, given
by Eq. (6), with the tensor Lij:

Lij ¼ aRij ¼ alt
eP ij �

2

3
qðakÞdij; ð8Þ

where a is the damping function (0 6 a 6 1), varying in
space and time.

In the LNS model, the damping function is defined as
follows:

a ¼ min
ls

lt
; 1

� �
ð9Þ

in which ls is the SGS viscosity obtained from a LES clo-
sure model.

The Smagorinsky SGS model [30] is adopted here; thus,
we have:

ls ¼ qCsD
2

ffiffiffiffiffiffiffiffiffiffiffieS ij
eS ij

q
; ð10Þ

where Cs is the model input parameter, eS ij is the strain-rate
tensor and D is a length which should be representative of
the size of the resolved turbulent scales. Here, D has been
selected, for each tetrahedrical element of the grid, as the
length of the longest edge [5].

Summarising, wherever the LES SGS-viscosity is lower
than the RANS eddy-viscosity (a < 1), an expression very
similar to the classical Smagorinsky model is obtained
for the turbulent stresses by combining Eqs. (6), (8) and
(9). The difference with the classical Smagorinsky model
is the presence of the diagonal term proportional to k.
However, for compressible flows, this can be considered
as a model for the isotropic part of the SGS stresses. As
discussed in [28], the model should work in the LES mode
where the grid is fine enough to resolve a significant part of
the turbulence scales, as in LES; elsewhere (a = 1), the k–e
RANS closure is recovered.

Note that in LNS Rij is replaced with Lij not only in the
momentum and energy equations, but also in the two addi-
tional equations in k and e (omitted here for the sake of
brevity). In those regions where a < 1, this implies a reduc-
tion of the turbulent kinetic energy production, together
with a reduction of the turbulent transport of k and e.

Finally, by construction, the present version of the LNS
model is no more time consuming than the RANS k–e
model. Indeed, the extra cost due to the evaluation of the
Smagorinsky eddy viscosity is negligible compared to the



Table 5
Bulk coefficients: numerical results obtained in the LNS simulation
together with some reference LES results and experimental data

C0l Cd St lr

Simulations

LNS 1.0 2.0 0.127 1.29
Ref. LES [31] [0.38,1.79] [1.66,2.77] [0.07,0.15] [0.89,2.96]

Experiments

[32] and [33] – 2.1 0.132 ± 0.004 1.4
[34] 1.2 2.28 0.130 –

Cd is the mean drag coefficient, C0l is the r.m.s. of the lift coefficient, St is
the Strouhal number and lr is the length of the mean recirculation bubble.

Table 6
Computational time, communication time, speedup S(Np) and efficiency
E(Np) vs. the number Np of processors of an ORIGIN 3800 computer for
a shedding cycle (83,000 vertices mesh)

Np Computational
time (s)

Communication
time (s)

S(Np) E(Np) (%)

2 4229 34 1.98 99.00
4 2053 41 3.92 98.00
8 1020 56 7.58 94.75
16 830 63 14.87 92.93
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overall computation required by the solution of the RANS
k–e equations.

4.2. Results: flow around a square cylinder

The flow around a square cylinder of infinite length is
considered. The Reynolds number, based on the cylinder
side length and the freestream velocity, is set to 22,000,
and the Mach number to 0.1. The unstructured grid used
for this simulation contains around 83,000 nodes and half
a million tetrahedra (see Fig. 4 for a horizontal and a ver-
tical cut of the mesh). The dimensions of the computational
domain are equal to those employed by contributors to the
LES workshop [31] except for a larger dimension in the
spanwise direction which corresponds to that of the water
tunnel used in the experiments of Lyn and Rodi [32,33].
Thus, slip conditions have been applied in the spanwise
direction. The Reichardt wall-law is used for an approxi-
mate near-wall treatment on the cylinder surface.

The simulations are advanced in time using an implicit
scheme, with a maximum CFL number equal to 25. The
resulting time step leads to the use of around 150 time iter-
ations per shedding cycles. We have a-posteriori checked
that no significant information is lost in time with respect
to the case of an explicit four steps Runge–Kutta scheme
with a CFL equals to 1.

We show in Fig. 4 the instantaneous Mach number con-
tours in a vertical and horizontal section. These plots high-
light the small structures predicted in the wake by the
rather coarse unstructured mesh employed in this work,
and illustrate the vortex shedding phenomenon which is
characteristic of subsonic flows around such bluff-bodies.

The bulk coefficients obtained in this LNS simulation
are reported in Table 5, together with some reference
LES results [31] and experimental data [32,33]. The results
summarised in this table show that the LNS approach pre-
dicts the bulk coefficients with good accuracy, and on a
coarser grid than those employed in the LES workshop
[31].
Fig. 4. Mesh and instantaneous Mach field in a vert
Per shedding cycle, the total simulation time is 1076 s on
eight processors of an ORIGIN 3800 computer equipped
with R14000 500 MHz chips. In order to evaluate the par-
allel speedup and efficiency of our software, we have
decomposed the mesh into 2, 4, 8 and 16 partitions, each
partition being assigned to one processor.

In Table 6, we show the computational and communica-
tion time, as well as the speedup and efficiency (defined in
Section 3.2) relative to each of these mesh partitionings for
the prediction of a complete shedding cycle. From this
table, we observe the good speedup and efficiency obtained
through this sequence of simulations. This proves the good
parallel scalability of the software used in this work for
‘‘integrated’’ parallel systems.
ical (left and right) and horizontal section (left).
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5. Conclusion

In this paper, we have presented some parallel simula-
tions of three-dimensional complex flows. The first perfor-
mance results concern the simulation of a jet in crossflow
and the propagation of a shock wave on homogeneous
and on heterogeneous computational platforms respec-
tively. For this purpose, and in order to allow dynamic
memory allocation, the original F77 software was
extended to an F90 version. The second set of simulations
were performed on an ORIGIN 3800 computer and con-
cern a blast wave–bubble interaction and the prediction,
by a recent hybrid RANS/LES model (namely the LNS
approach), of a turbulent flow which develops around a
square cylinder. All these simulations are resource inten-
sive, and their computation on one processor would
require prohibitive delays, as well as using too much mem-
ory. The parallel option, which we have briefly described
in this paper, combines mesh partitioning techniques and
a message-passing programming model. The performance
measurements performed on parallel systems made of
identical or different processors (in terms of RAM and
speed), have shown that our algorithm has good scalabi-
lity features and is well adapted to the coarse–grain para-
llel computing power that is available today on parallel
supercomputers and on homogeneous or heterogeneous
computational grids.
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[27] Giordano J. Contribution à la modélisation numérique des problèmes
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