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1. INTRODUCTION

The most widely used approach for the simulation ofcomplexturbulent flows is the one based
on the Reynolds-Averaged Navier-Stokes equations (RANS).For complex flows, we mean
flows characterized by complex geometry and high Reynolds numbers, as most of the flows of
industrial or engineering interest. However, RANS models usually have difficulties in provid-
ing accurate predictions for flows with massive separationsor significant unsteadiness, as for
instance the flow around bluff bodies. An alternative approach is the Large-Eddy simulation
(LES), which, for massively separated flows, is generally more accurate, but computationally
more expensive, than RANS.
The success of a large-eddy simulation depends on the combination and interaction of differ-
ent factors, viz. the numerical discretization, which alsoprovides filtering when no explicit
one is applied, the grid refinement and quality, and the physical closure model. On the other
hand, all these aspects can be seen as possible sources of error in LES. Up to now, most of
the simulations reported in the literature are limited to moderate Reynolds numbers and simple
geometries, and a few (almost generally accepted) best practices for LES have been identified
in this academic context. However, these best practices aredifficult to be followed in LES of
complex flows and, thus, some open issues and controversial points remain before LES can be
considered a completely reliable tool for industrial or engineering applications.
In particular, in this context the use ofunstructured gridsbecomes particularly attractive, be-
cause of their friendliness when applied to complex realistic geometries, although they are
more demanding from the point of view of computational resources. However, high-order con-
servative schemes, usually recommended for LES in the academic context, are expensive and
difficult to be devised for unstructured grids. Although there are a few examples of numerical
schemes especially developed for LES on unstructured grids(see e.g. Mahesh et al. [25]),
our choice was to start from an existing numerical technology for industrial application and,
in particular, from asecond-order co-located scheme. The most critical point with co-located
schemes is, in our opinion, the need ofnumerical dissipation. To better understand why, it is
useful to examine how LES works.
The classical LES approach relies on the addition to the usual Navier-Stokes equations of a
sub-grid scale (SGS) term and assumes that this same term is rather optimal for both turbu-
lence modeling and numerical scheme stabilization. Similarly to Direct Numerical Simulation
(DNS), it has been stated by many authors that the approximation should be of the highest
possible accuracy order and preferably without any numerical dissipation. In that case, the



damping of any high frequency component is performed exclusively by the SGS terms. It is
not useless to recall that in general, these terms are second-order derivatives of the flow vari-
ables (e.g. in eddy-viscosity models). Conversely, in a different approach, the role of SGS
terms is completely fulfilled by a purely numerical stabilization term inside the approximation.
A typical example is the MILES method [14] in which both subgrid modeling and numerical
stabilization rely on monotonic dissipation by again a second order derivative (e.g. FCT (Flux-
Corrected Transport) or TVD (Total-Variation Diminishing)schemes). However this family of
model-free monotone methods seems to need a much larger number of nodes in the mesh for a
given prediction quality.
Conversely, if monotone schemes are combined with a classical LES model, they can interact
unfavorably with it, and significantly deteriorate the results (see, for instance, Garnier et al.
[11]). Thus, it appears that in a reasonable option, the effects of numerical dissipation and of
the SGS model should be separated as much as possible. Our proposition was to dedicate the
subgrid modeling to a physics-based model and to use a second-order accurate MUSCL up-
wind scheme involving no TVD limiters. This co-located scheme was equipped with a tunable
dissipation made offourth-order[6] or sixth-order[5] spatial derivatives of all flow variables
through a flux splitting. Fourier analysis clearly shows that such a dissipation has a damping
effect which is much more localized on high frequencies thanthe one of stabilizations based
on second-order derivatives. In this way we can reduce the interaction between, on one hand,
numerical dissipation which damps in priority the highest frequencies, in particular those for
which the phase error is too large and can produce oscillations, and on the other hand SGS
modeling which should reproduce the effects of unresolved frequencies on the resolved ones.
Moreover, a key coefficient (γs) permits to tune numerical dissipation to the smallest amount
required to stabilize the simulation.
We also pushed forward this concept and we started to investigate the application of a locally
super-convergent scheme [17], that is a scheme which is second-order accurate on the whole
unstructured mesh but enjoys accuracy up to 5th order in regions where the grid is Cartesian.
This is achieved by applying the linear reconstruction proposed in [5] to flux functions rather
than to flow variables.
Finally, for time advancing we explored the suitability forLES of a linearized implicit scheme
[26]. In particular, we investigated whether large time steps, unreachable with explicit time
advancing because of stability limitations, can be employed in LES without loosing significant
information on the resolved scales.
As for SGS modeling, our first choice was to useclassicalmodels, viz. the Smagorinsky one
[37] and its dynamic version [12]. As well known, we found that the dynamic model generally
gives more accurate results than the Smagorinsky one (see, e.g., Camarri et al. [6, 5]). However,
due to the explicit filtering required in the dynamic procedure which is highly computationally
demanding on unstructured grids, the increase in computational cost for the dynamic model
was found to be rather dramatic, much larger than for structured grids or spectral schemes. On
the other hand, a good compromise between accuracy and computational requirements was ob-
tained through the Variational MultiScale approach (VMS),which was found to give the same
accuracy as the dynamic model at costs comparable to those ofthe Smagorinsky model [16].
As will be described in the following, the main idea of VMS-LES is to decompose, through
Galerkin projection, the resolved scales into the largest and smallest ones and to add the SGS
model only to the smallest ones [15]. A formulation of the VMSapproach for unstructured
grids and the mixed finite-volume/finite-difference scheme, used in the present work, was pro-
vided by Koobus and Farhat [16].
Another major difficulty for the success of LES for the simulation of complex flows is the fact



that the cost of LES increases as the flow Reynolds number is increased. Indeed, the grid has to
be fine enough to resolve a significant part of the turbulent scales, and this becomes particularly
critical in the near-wall regions. Hybrid models have recently been proposed in the literature
in which RANS and LES approaches are combined together in order to obtain simulations as
accurate as in the LES case but at reasonable computational costs. In this context, we proposed
a new strategy for blending RANS and LES approaches in a hybrid model, not described here
for sake of brevity. We refer to [36, 32, 35] for details on this topic.
The paper is organized as follows: theclassicalLES approach together with the different con-
sidered closure models are briefly presented in Sec. 2. The main numerical ingredients are
summarized in Sec. 3 and, in particular, the discretizationof the convective terms and the
linearized implicit time advancing strategy are described. The VMS-LES approach is briefly
introduced in Sec. 4. Examples of academic and engineering oriented applications of the set-up
methodology are then presented in Sec. 5. Conclusions are finally drawn in Sec. 6.

2. CLASSICAL LES APPROACH AND SGS MODELS

The LES approach consists in filtering in space the Navier-Stokes equations, in order to get
rid of the high frequency fluctuations, and in simulating directly only the filtered flow. Due
to the non-linearity of the problem, the filtered equations contain some unknown terms which
represent the effect of the eliminated fluctuations on the filtered flow. These terms need to be
modeled. The filtered Navier-Stokes equations for compressible flows and in conservative form
are considered. In our simulations, filtering is implicit, i.e. the numerical discretization of the
equations is considered as a filter operator (grid filter).
In modeling the SGS terms resulting from filtering the Navier-Stokes equations, it is assumed
that high Reynolds numbers flows are simulated, in which low compressibility effects are
present in the SGS fluctuations. In addition, we assume that heat transfer and temperature
gradients are moderate. Thus, the retained SGS term in the momentum equation is the classical
SGS stress tensor:

Mij = ρuiuj − ρũiũj , (1)

where the over-line denotes the grid filter and the tilde the density-weighted Favre filter (̃f =(
ρf

)
/ (ρ)). The isotropic part ofMij can be neglected under the assumption of low compress-

ibility effects in the SGS fluctuations [8]. The deviatoric part, Tij, is expressed by an eddy
viscosity term:

Tij = −2µsgs

(
S̃ij −

1

3
S̃kk

)
, (2)

S̃ij being the resolved strain tensor,µsgs the SGS viscosity.
In the total energy equation, the effect of the SGS fluctuations has been modeled by the intro-
duction of a constant SGS Prandtl number to bea priori assigned:

Prsgs = Cp
µsgs

Ksgs

(3)

whereKsgs is the SGS conductivity coefficient; it takes into account the diffusion of total
energy caused by the SGS fluctuations and is added to the molecular conductivity coefficient.
We refer to Camarri and Salvetti [3] and Camarri et al. [6] for a more detailed discussion of the
simplifying assumptions leading to the adopted SGS modeling.
The different eddy-viscosity models used in the present work are briefly recalled in the follow-
ing.



2.1 Smagorinsky model

In the Smagorinsky model the eddy viscosity is defined as follows:

µs = ρ (Cs∆)2
∣∣∣S̃

∣∣∣ , (4)

where∆ is the filter width andCs is a constant that must bea priori assigned and
∣∣∣S̃

∣∣∣ =
√

2S̃ijS̃ij (repeated indexes imply summation). To complete the definition of the SGS viscos-
ity, the grid filter width must be specified. Since filtering isimplicitly applied by the numerical
discretization, there is no unique rigorous definition of the filter width. The following expres-
sion has been employed here for each grid elementj:

∆(j) = V ol
1/3
j (5)

whereV olj is the volume of thej − th grid element.

2.2 Dynamic model

The dynamic version of the Smagorinsky model has also been considered. The dynamic proce-
dure proposed by Germano [12] is applied to the compressibleSmagorinsky model described in
the previous section. In this way, the coefficient that must bea priori assigned in the Smagorin-
sky model (Cs) is computed as a function of space at each time step. We have chosen to dy-
namically compute(Cs∆)2 instead ofC2

s , as in the classical dynamic model, in order to avoid
the indetermination in the definition of the filter width. Thetest filter used here consists in
P1-averaging the flow variables on all the elements having a given node as a vertex. The ratio
∆̂/∆ (∆̂ being the test filter width), which is the only quantity to bea priori assigned in the
dynamic model, is defined on each node as:∆̂/∆ = 3

√
N , whereN is the number of elements

having the node as a vertex. This is a consequence of the assumption that the size of the im-
plicit filter scales as the cubic root of the element volume. Alocal smoothing is applied to
avoid unphysical oscillations of(Cs∆)2. For more details on the implementation of this model
see Camarri and Salvetti [3].

2.3 Vreman model

The eddy viscosityµv of the Vreman model [43] is defined by:

µv = ρCV (
Bβ

αijαij

)
1

2 (6)

with
αij = ∂ũj/∂xi

βij = ∆2αmiαmj

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23

The constant is set toCV ≈ 2.5C2
s whereCs denotes the Smagorinsky constant. The filter

width ∆ has been defined as done for the Smagorinsky model.

2.4 WALE model



The last considered SGS closure is the Wall-Adapting Local Eddy -Viscosity (WALE) SGS
model proposed by Nicoud and Ducros [27]. The eddy-viscosity term µw of the model is
defined by:

µW = ρ(CW ∆)2 (S̃ij

d
S̃ij

d
)

3

2

(S̃ijS̃ij)
5

2 + (S̃ij

d
S̃ij

d
)

5

4

(7)

with

S̃ij

d
=

1

2
(gij

2 + gji
2) − 1

3
δijgkk

2

being the symmetric part of the tensorgij
2 = gikgkj, wheregij = ∂ũi/∂xj. The constantCW

is set to 0.1.

3. NUMERICAL METHOD

The LES governing equations are discretized in space using amixed finite-volume/finite-
element method applied to unstructured tetrahedrizations. The adopted scheme is vertex cen-
tered, i.e. all degrees of freedom are located at the vertexes. P1 Galerkin finite elements are
used to discretize the diffusive terms.

3.1 Convective fluxes

A dual finite-volume grid is obtained by building a cellCi around each vertexi; two different
ways of constructing the finite-volume cells are considered. Cells of the first type (median
cells, MC) are built by the rule of medians: the boundaries between cells are made of triangular
interface facets. Each of these facets has a mid-edge, a facet centroid, and a tetrahedron centroid
as vertexes. The second type of cells (new generation cells, NGC) can be obtained in 3D as
follows: to build the cell centered at nodei, let us consider all the neighboring nodes ofi
(j). For each element containing the nodesi andj, the cell surface is given by the triangles
connecting the middle of the edge joining these two vertexes, thesurface centerof the faces of
the element having this edge in common, and thevolume centerof the element. Thesurface
centerof a given face is the center of its circumscribed circle, if the face comprises only acute
angles, otherwise it is the middle of its longest edge, and the volume centerof an element is
the center of its circumscribed sphere if the former is located inside the element, otherwise,
it is the surface center (among those of the four tetrahedronfaces), which is closest to the
center of the circumscribed sphere. Although the NGC, as wellas the MC, can be built starting
from a generic tetrahedrization, it is interesting to consider the case of a Cartesian mesh, thus,
made of rectangle parallelepipeds (thereafter calledbricks), which are cut in a particular way in
tetrahedrons, following [13]. This division splits each brick in six identical tetrahedrons, each
being the mirror image of its neighbors (see Fig. 1(a)). Starting from such a tetrahedization,
the NGC cells are bricks, centered around the vertexes of themesh, as can be seen in Fig. 1b,
in which the trace of the division of an element into NGC is shown.
The convective fluxes are discretized on this tessellation by a finite-volume approach, i.e. in
terms of the fluxes through the common boundaries between each couple of neighboring cells:

∑

j∈V (i)

∫

∂Cij

F (W,~n) dσ , (8)

whereV (i) is the set of neighboring nodes to vertexi, ∂Cij is the boundary between cellsCi

andCj, and~n is the outer normal to the cellCi andF (W,~n) the Euler flux in the direction of~n.
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Figure 1: New finite-volume cells in 3D: (a) division in tetrahedrons, (b) trace of NGC on a
tetrahedron resulting from the previous division.

In all the schemes considered herein, the unknowns are discontinuous along the cell boundaries
and this allows an approximate Riemann solver to be introduced.

3.1.1 Second-order accurate scheme providing numerical dissipation proportional to high-
order space derivatives

The Roe scheme [34] (with Turkel preconditioning) represents the basic upwind component
for the numerical evaluation of the convective fluxesF :

∫

∂Cij

F (W,~n) dσ ≃ ΦR (Wi, Wj, ~n) =
F (Wi, ~n) + F (Wj, ~n)

2
− γsd

R (Wi, Wj, ~n) (9)

dR (Wi, Wj, ~n) = P−1|PR (Wi, Wj, ~n) | Wj −Wi

2
(10)

in whichWi is the unknown vector at thei-th node,~n is the normal to the cell boundary andR
is the Roe Matrix. The matrixP (Wi, Wj) is the Turkel-type preconditioning term, introduced
to avoid accuracy problems at low Mach numbers [41]. Finally, the parameterγs multiplies the
upwind part of the scheme and permits a direct control of the numerical viscosity, leading to a
full upwind scheme (the usual Roe scheme) forγs = 1 and to a centered scheme whenγs = 0.

The spatial accuracy of this scheme is only first order. The MUSCL linear reconstruction
method (“Monotone Upwind Schemes for Conservation Laws”), introduced by Van Leer [42],
is employed to increase the order of accuracy of the Roe scheme. The basic idea is to express
the Roe flux as a function of a reconstructed value ofW at the boundary between the two cells
centered respectively at nodesi andj: ΦR (Wij, Wji, ~nij). Wij andWji are extrapolated from
the values ofW at the nodes, as follows:

Wij = Wi +
1

2

(
~∇W

)
ij
· ~ij (11)

Wji = Wj −
1

2

(
~∇W

)
ji
· ~ij (12)

Schemes with different properties can be obtained by different numerical evaluation of the

slopes
(
~∇W

)
ij
.~ij and

(
~∇W

)
ji
.~ij. All the considered reconstructions can be written in the

following general form:

(~∇W )ij.~ij = (1 − β)(~∇W )C
ij.~ij + β(~∇W )U

ij.~ij

+ξc

[
(~∇W )U

ij.~ij − 2(~∇W )C
ij.~ij + (~∇W )D

ij .~ij
]

+ξd

[
(~∇W )M .~ij − 2(~∇W )i.~ij + (~∇W )j.~ij

] (13)



With reference to Fig. 2,(~∇W )U
ij is the gradient on the upwind tetrahedronTij, (~∇W )D

ij is

the gradient on the downwind tetrahedronTji, (~∇W )i is the nodal gradient computed over the
finite-volume cell around nodei, (~∇W )j is the nodal gradient computed over the finite-volume
cell around nodej, (~∇W )C

ij is the centered gradient ((~∇W )C
ij.~ij = Wj − Wi) and(~∇W )M

is the gradient at the pointM . This last gradient is computed by interpolation of the nodal
gradient values at the nodes contained in the face opposite to i in the upwind tetrahedronTij.
The reconstruction ofWji is analogous.

Si

Sj M’

M

Tji

Tij

Figure 2: Sketch of points and elements involved in the computation of gradients.

In choosing a particular set of free coefficients (β, ξc, ξd) in Eq. (13) attention has been
dedicated to the dissipative properties of the resulting scheme which is a key point for its
successful use in LES simulations. Two schemes have been proposed: the first on (V4) [6]
is characterized byβ = 1/3, ξc = ξd = 0, while the latter (V6) [5] is obtained byβ = 1

3
,

ξc = − 1
30

andξd = − 2
15

.
The numerical dissipation in the schemes V4 and V6 is made of fourth- and sixth-order

space derivatives, respectively, and, thus, it is concentrated on a narrow-band of the highest
resolved frequencies. This is important in LES simulationsto limit as far as possible the in-
teractions between numerical and SGS dissipation, which could deteriorate the accuracy of the
results.

3.1.2 Super-convergent scheme

The same kind of reconstruction as in the previous section isapplied to the fluxes, instead of to
the flow variables. Thus, the following numerical flux is obtained:

Φij =
Fij + Fji

2
− 1

2
γsP

−1sign(PR)P (Fji −Fij)

whereFij andFji are the extrapolated fluxes at the cell interface, computed through the V6
reconstruction scheme. LetA be a generic matrix such thatA = T−1Λ(A)T , T being the
matrix of the eigenvectors ofA andΛ(A) = diag(λi(A)) the diagonal matrix whose elements
are the eigenvalues ofA, the notationsign(A) meansT−1diag(sign(λi(A)))T . The resulting
numerical approximation of the convective fluxes (V6NL) is 5th-order accurate for a conformal
tetrahedrization obtained from a Cartesian grid as described previously. Indeed, by interpolat-
ing the fluxes, the second-order limitation for MUSCL reconstruction can be overcome. More
details on this super-convergent scheme can be found in [17].

3.2 Time advancing

Simulations can be advanced in time both with explicit or implicit schemes. In the first case,
low-storage Runge-Kutta schemes are used.



As for the implicit time advancing, a second-order time-accurate backward difference scheme
is adopted:

3W n+1 − 4W n +W n−1

2∆t
+ ψn+1 = 0 (14)

in whichψn+1 denotes the discretized convective fluxes, diffusive and SGS terms evaluated at
time stepn+ 1.
To avoid the solution of a non linear system at each time step,the scheme (14) can be lin-
earized by using the Jacobian ofψn+1 with respect to the unknown variables. However, the
evaluation of the Jacobian ofψn+1 for the second-order accurate spatial discretization previ-
ously described and the solution of the resulting linear system implies significant computational
costs and memory requirements. Thus, a defect-correction technique [26] is used here, which
consists in iteratively solving simpler problems obtainedthrough an approximate linearization
of (14). Thus, the following approximation is introduced:

ψn+1 ≃ ψn + Jn
1 (W n+1 −W n)

in whichJn
1 is the exact Jacobian of the spatial discretization terms when the convective fluxes

are evaluated at first order. Then, the defect-correction iterations write as:




W0 = W n

(
3

2∆t
V ol + Js

1

)
(Ws+1 −Ws) = −3Ws − 4W n +W n−1

2∆t
− ψs for s = 0, · · · ,M − 1

W n+1 = WM

whereV ol is the diagonal matrix containing the cell volumes andM is typically equal to 2.
Indeed, it can be shown [26] that only 2 defect-correction iterations are needed to reach a
second-order accuracy.

4. VARIATIONAL MULTISCALE LES

In the Variational MultiScale approach for Large Eddy Simulation (VMS-LES) the flow vari-
ables are decomposed as follows:

W = W︸︷︷︸
LRS

+ W ′

︸︷︷︸
SRS

+W SGS (15)

whereW are the large resolved scales (LRS),W ′ are the small resolved scales (SRS) and
W SGS are the unresolved scales. This decomposition is obtained by projection in the LRS
and SRS spaces respectively. In the present study, we followthe VMS approach proposed
by Koobus and Farhat [16] for the simulation of compressibleturbulent flows through a finite
volume/finite element discretization on unstructured tetrahedral grids. Letψl be the finite-
volume basis functions andφl theN finite-element basis functions associated to the used grid.
In order to obtain the VMS flow decomposition, these can be expressed as:ψl = ψl + ψ′

l and
φl = φl + φ′

l, in which the overbar denotes the basis functions spanning the finite dimensional
spaces of the large resolved scales and the prime those spanning the SRS spaces. As in [16],
the basis functions of the LRS space are defined through a projector operator in the LRS space,
based on spatial average on macro cells:

ψk =
V ol(Ck)∑

jǫIk

V ol(Cj)

∑

jǫIk

ψj (16)



for finite volumes, and:

φk =
V ol(Ck)∑

jǫIk

V ol(Cj)

∑

jǫIk

φj (17)

for finite elements. In both Eqs. (16) and (17),Ik = {j/Cj ∈ Cm(k)}, Cm(k) being the macro-
cell containing the cellCk. The macro-cells are obtained by a process known as agglomeration
[19]. The basis functions for the SRS space are clearly obtained as follows:ψ′

l = ψl − ψl and
φ′

l = φl − φl.
Finally, a key feature of the VMS-LES approach is that the SGSmodel is added only to the
smallest resolved scales. Thus, letτLES be the closure term given by one of the SGS models
described in Sec. 1, it is computed as a function of the smallest resolved scales, i.e.τLES(W ′).
Since eddy-viscosity models are used here (see Sec. 1), the SGS terms are discretized analo-
gously to the viscous fluxes. Thus, the Galerkin projection of the corresponding term in the
governing equations is given by:(τLES(W ′), φ′

l), where(·, ·) denotes theL2 scalar product.
More details about this VMS-LES methodology can be found in Koobus and Farhat [16], Farhat
et al. [9] and Ouvrard et al. [31].

5. EXAMPLES OF APPLICATIONS

Among the different applications of the set-up numerical methodology, some representative
results are presented for three different type of flow configurations. The first one is the flow
around a a square cylinder of infinite length, at a Reynolds number, based on the cylinder side
length and on the freestream velocity, equal to 22000. This is a rather classical benchmark for
LES [33] and allows the different proposed numerical and modeling ingredients to be validated
through comparison with experimental data and LES results in the literature. The second test-
case is the flow around a circular cylinder at very low Reynolds number (Re=3900), for which
very detailed LES results and experimental data are available. It is used here to investigate
the behavior of VMS-LES vs. classical LES and the effect of SGS modeling in both these
approaches. Finally, the results obtained in LES and VMS-LES simulations of a more complex
configuration of engineering interest are briefly summarized.

5.1 Flow past a square cylinder

As previously stated, the flow around a square cylinder of infinite length is considered, at
a Reynolds number, based on the cylinder side length and on the freestream velocity, equal to
22000. A Cartesian frame of reference is considered, with theorigin at the gravity center of
the square section and thex andz axes oriented in the streamwise and spanwise directions, re-
spectively. The computational domain dimensions are:Li/D = 5, Lo/D = 10, Ls/D = 4 and
H/D = 7, whereD is the side length of the square section,Li andLo are the distances between
the origin of the reference frame and the inflow and outflow boundaries, respectively,Ls is the
width of the domain in the spanwise direction andH is the distance between the cylinder axis
and the domain boundaries in they direction. Boundary conditions based on Steger-Warming
decomposition [40] are used at the inflow and at the outflow surfaces. On the side surfaces
free-slip is imposed and the flow is assumed to be periodic in the spanwise direction. Approx-
imate boundary conditions based on the Reichardt wall-law are used on the cylinder surface
(see Camarri et al. [6] and Camarri and Salvetti [4]).
The results shown in the following have been obtained on two grids: the first (GR1) of about
105 nodes and6× 105 elements, the second (GR2), more refined, having approximately 2×105



LES and experiments C ′

l Cd C ′

d lr
S V4 G05 GR1 0.79 1.84 0.10 1.45
S V6 G05 GR1 0.84 1.89 0.09 1.41
S V6 G05 GR2 1.10 2.2 0.18 1.15
D V4 G05 GR1 0.91 2.03 0.12 1.24
D V6 G05 GR1 0.94 2.06 0.10 1.33
D V4 G10 GR1 0.84 1.94 0.09 1.53
D V6 G10 GR1 0.86 2.02 0.09 1.47
D V6 G05 GR2 1.09 2.10 0.15 1.15
V V6 G20 GR2 1.08 2.10 0.18 1.4
S V6NL G20 GR3 1.17 2.33 – 1.29
Rodi et al. [33] [0.38,1.79] [1.66,2.77] [0.10,0.27] [0.89,2.96]
Sohankar et al. [38]
and Fureby et al. [10] [1.23,1.54] [2.0,2.32] [0.16,0.20] [1.29-1.34]
Lyn et al. [23, 24] - 2.1 - 1.4
Bearman et al. [1] 1.2 2.28 - -
Norberg [29] - 2.16 - -
Luo et al. [22] 1.21 2.21 0.18 -

Table 1: Bulk coefficients; comparison with experimental data and with other simulations in the
literature.Cd is the mean drag coefficient,C ′

d andC ′

l are the r.m.s. of the drag and lift coeffi-
cients andlr is the length of the mean recirculation bubble. The name of the simulations is com-
posed in this way: the first part indicates the turbulence model (“S” stands for the Smagorinsky
model, “D” for the Dynamic one and “V” for the VMS-LES with theSmagorinsky closure),
the second indicates the scheme adopted for the convective fluxes, the third indicates the value
of the parameterγs (in hundredth), the fourth indicates the adopted grid.

nodes and 1.1×106 elements. The average distance of the first layer of nodes from the cylin-
der surface is6 × 10−2D for GR1 and4.5 × 10−2D for GR2. For both grids, approximately
32 nodes are located in the spanwise direction within the wake region. A third structured
grid (GR3) has been considered to carry out preliminary simulations with the super-convergent
scheme described in Sec. 3.1.2 (V6NL). GR3 has about 4.1×105 nodes and the distance of
the first node from the wall is 6×10−3; note also that the stretching of the elements of GR3
is significant, the maximum aspect ratio being equal to 12, while the grids GR1 and GR2 are
rather homogeneous.
The main bulk coefficients obtained in the LES simulations, with the Smagorinsky model, the
dynamic model and in the VMS-LES simulations with the Smagorinsky closure, are presented
in Tab. 1, together with results from other LES simulations [10, 33, 38] and experimental data
[1, 22, 23, 24, 29]. As shown in Tab. 1, the results obtained with the V4 scheme are sensitive to
the choice of the parameterγs and, when this is tuned close to the minimum value compatible
with numerical stability, the LES simulations gives ratheraccurate predictions. Nevertheless,
as shown in Camarri et al. [6], the numerical viscosity gives acontribution to the fluxes which
is more important than the one given by the dynamic model, while the LES model contribution
is dominant when the more dissipative Smagorinsky model is used. This drawback, as well as
the need of a fine tuning of the parameterγs have been overcome with the V6 scheme. Indeed,
the results in Tab. 1 show a reduced sensitivity of the predicted bulk coefficients toγs when V6
is used. Moreover, the accuracy of the results is improved, especially concerning the unsteady
part of the flow field. Indeed, the values of the r.m.s. of the force coefficients is generally higher



with V6 (see Tab.1). Moreover, independently of the SGS model, in the simulations with V6
a larger energy content than with V4 is found in all the resolved frequencies, and especially in
the highest ones. This is well shown, for instance, in Fig. 3 where the Fourier energy spectra of
the velocity signals measured in a point in the wake in DV4 G05 GR1 and DV6 G05 GR1
are compared. The mean convection velocity in the considered points within the wake is large
enough to justify the Taylor hypothesis of frozen turbulence which allows us to assume that
high time frequencies correspond to small scale in space; thus, one might conclude that small
scales are less damped by the V6 scheme. As regards the SGS modeling interaction with the
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Figure 3: Simulations DV4 G05 GR1 and DV6 G05 GR1. Fourier energy spectra of the
velocity components recorded atx = 3, y = 0.5 andz = 0. a) Transverse velocityv; b)
spanwise velocityw.

adopted numerical scheme, Tab. 1 shows that the qualitativevariations of the bulk coefficients
with the SGS model are the same for V4 and V6, i.e. the dynamic model generally improves
predictions with respect to the Smagorinsky model. However, quantitatively, the sensitivity to
SGS modeling of the results obtained with V6 is lower than with V4. This is particularly evi-
dent from the comparison of the Reynolds stresses, not shownhere for the sake of brevity, and
this is related to the larger energy content at the small scales obtained with V6; see Camarri et
al. [5] for a more detailed discussion.
The grid refinement improves results particularly when the Smagorinsky model is used, while
the simulations with the dynamic model give acceptable results also on the grid GR1. How-
ever the dynamic model is definitely more CPU-demanding than the Smagorinsky one, due to
the explicit filtering required in the dynamic procedure, which is highly computationally de-
manding on unstructured grids. As an example, when the dynamic model is used instead of
the Smagorinsky one with the V4 scheme and an explicit time advancing, an increase of about
180% CPU time per time step is measured.
The best compromise between accuracy and computational costs has been obtained by the
adoption of the VMS-LES model, properly formulated for our numerics. Indeed, Tab. 1 shows
that the level of accuracy of the VMS-LES model, with the Smagorinsky SGS closure, is com-
parable with that of the dynamic model. At the same time, its computational cost is only slightly
larger than that of the Smagorinsky model. Finally, note that the problems of numerical stabil-
ity typically encountered with the dynamic model, unless ad-hoc smoothing or clipping of the
model coefficient values is carried out, are obviously not present in the VMS approach. A more
detailed discussion of the results obtained with the VMS-LES model can be found in Ref. [16].
An example of the results obtained through the super-convergent V6NL scheme on a structured
grid (GR3) is also shown in Tab. 1. A significant improvement is observed in the prediction of



Simulation Turbulence model SGS aggl. level. γ CFL
CircCyl1 LES Smagorinsky - 0.3 20
CircCyl2 LES Vreman - 0.3 20
CircCyl3 LES WALE - 0.3 20
CircCyl4 VMS-LES Smagorinsky 1 0.3 20
CircCyl5 VMS-LES Vreman 1 0.3 20
CircCyl6 VMS-LES WALE 1 0.3 20
CircCyl7 no model - - 0.3 20

Table 2: Overview of the considered simulations.

the r.m.s. of the lift coefficient, while for the other parameters the agreement with the experi-
mental data is the same as or even worse than the one obtained with the V6 and V4 schemes.
However, a more systematic validation should be carried outand, probably, the V6NL scheme
for the convective fluxes should also be coupled with a more accurate discretization of the dif-
fusive and SGS terms and tested within the VMS-LES approach.

5.2 Flow past a circular cylinder

In this section, the flow over a circular cylinder at Mach numberM∞ = 0.1 and Reynolds num-
ber (based on the cylinder diameter and on the freestream velocity) equal to 3900 is simulated
through the VMS-LES and the traditional LES approach. The computational domain is such
that−10 ≤ x/D ≤ 25, −20 ≤ y/D ≤ 20 and−π/2 ≤ z/D ≤ π/2, wherex, y andz denote
the streamwise, transverse and spanwise directions respectively. The cylinder of unit diameter
is centered on the axisx = y = 0. For the purpose of these simulations, the Steger-Warming
conditions [40] are imposed at the inflow and outflow as well ason the upper and lower surface
(y = ± 20). In the spanwise direction periodic boundary conditions are applied and on the
cylinder surface no-slip boundary conditions are set.
The flow domain is discretized by an unstructured tetrahedral grid which consists of approxi-
mately2.9 × 105 nodes. The averaged distance of the nearest point to the cylinder boundary is
0.017D, which corresponds toy+ ≈ 3.31.
A large number of simulations were carried out by varying different parameters, as, for in-
stance, the SGS model, the value ofγs, the cell agglomeration level for VMS-LES. We report
here only the results obtained in some of these simulations,in order to investigate the differ-
ences between classical LES and VMS-LES and the effect of theSGS modeling. The main
parameters of the considered simulations are summarized inTab. 2. All the simulations were
carried out with the V6 scheme and the linearized implicit time advancing. In particular, the
advantage of the use of an implicit clearly appears from Tab.2, since a CFL equal to 20 could
be used in all the simulations, without loosing significant information about the dynamics of
the resolved scales. Indeed, it was checked that up to this value of CFL the results are indepen-
dent of the adopted time step. Incidentally, the adopted CFL definition is such that the stability
limit of the RK1 scheme corresponds to CFL=1.
The flow bulk parameters obtained in these simulations are reported in Tab. 3 and compared

with LES results in the literature and experimental data. The averaged data are obtained over
about 27 shedding cycles or 150 non-dimensional time units after the initial transient period.
The effect of the SGS model is larger in the classical LES simulations (compare CircCyl1,
CircCyl2 and CircCyl3) than in the VMS-LES approach (CircCyl4, CircCyl5, CircCyl6). The
overall agreement with the numerical and the experimental data in the literature is better for
the VMS-LES simulations than for the LES ones, especially for the mean drag coefficient, the



data from Cd St lr θsep CPb
Umin

CircCyl1 1.16 0.212 0.81 88 -1.17 -0.26
CircCyl2 1.04 0.221 0.97 89 -1.01 -0.28
CircCyl3 1.14 0.214 0.75 91 -1.20 -0.25
CircCyl4 1.00 0.221 1.05 88 -0.96 -0.29
CircCyl5 0.99 0.221 1.12 88 -0.91 -0.30
CircCyl6 0.96 0.225 1.24 88 -0.90 -0.30
CircCyl7 0.96 0.223 1.24 -0.88 -0.30

Numerical data
[18] 1.04 0.210 1.35 -0.94 -0.37
[2] 1.07 1.197 87.7 -1.011
[20] 0.99 0.212 1.36 -0.94 -0.33

Experiments
[28] 0.99±0.05 0.215±0.05 -0.88±0.05 -0.24±0.1
[39] 86±2

[7] 0.215±0.005 1.33±0.05
[30] 0.21±0.005 1.4±0.1 -0.24±0.1
[21] 1.18±0.05

Table 3: Bulk coefficients: comparison with experimental data and with other simulations in
the literature. Cd denotes the mean drag coefficient,St the Strouhal number,lr the mean
recirculation length: the distance on the centerline direction from the surface of the cylinder to
the point where the time-averaged streamwise velocity is zero, θsep the separation angle,CPb

the mean back-pressure coefficient andUmin the minimum centerline streamwise velocity.

base pressure and the mean recirculation bubble length. Finally, the results obtained without
any SGS model (CircCyl7) are similar to those of the VMS-LES simulations. This could be
considered as an a posteriori confirmation that the V6 schemeactually adds a viscosity which
is limited to the smallest resolved scales, in the spirit of VMS-LES.
A more detailed analysis of the reliability of the results and of the different sources of error in
LES and VMS-LES will be the object of forthcoming papers.

5.3 Vortex induced motion of a complex geometry

The prediction of vortex-induced motion of a complex spar geometry is an important moti-
vation for VMS modeling. The spar geometry consists of a cylinder equipped with helical
strakes, see Fig. 4. Each strake produces in the flow a shear layer that interacts with the large
flow structures and inhibits to a significant extent the von Karman vortex street. We investigate
the impact of the choice of a VMS model on the quality of a LES prediction. In our computa-
tions, the obstacle is maintained by elastic moorings and moves under the effect of the vortex
shedding. The flow-structure coupling is computed at several reduced velocity between 4 and
9 (m/s) and Reynolds numbers between 2×105 and 4×105. The grid involves 5×105 vertexes.
The V6 scheme and the linearized implicit time advancing have been used for these simula-
tions.
The behavior of the transverse position of the spar is a key output to be accurately predicted.
Fig. 5 shows the time variation of the transverse position ofthe spar at a reduced velocity of
7 m/s. The r.m.s. computed in LES with the Smagorinsky model is 0.048, and the r.m.s. in
VMS-LES is 0.070, which compares better with the experimental data of 0.077. The agreement
of the VMS calculations with experiments for the different velocities is demonstrated in Tab. 4.



Figure 4: Spar geometry.

Figure 5: Time variation of the transverse position of the spar at a reduced velocity of 7 m/s.



Reduced velocity 4 5 6 7 8 9
LES - - - .048 - -
VMS-LES .0018 .020 .04 .070 .12 .118
Experiments .0018 .025 .05 .077 .13 .125

Table 4: Vortex-induced motion of a spar: r.m.s. of transverse deviation

6. CONCLUDING REMARKS

The main choices made and the solutions proposed for the mutual adaption between anin-
dustrial numerical method, designed and validated for RANS simulations, and an LES ap-
proach to turbulence have been briefly presented in this paper. The numerical method is based
on a co-located mixed finite-volume/finite-element discretization on unstructured tetrahedral
grids. Diffusive fluxes are discretized by P1 finite elementsand convective fluxes by finite
volumes, through the Roe scheme and MUSCL reconstruction to obtain second-order accu-
racy in space. The key feature of our approach is a particularMUSCL reconstruction scheme,
such that the introduced numerical viscosity is proportional to high-order space derivatives, viz.
fourth-order derivatives (V4) or sixth-order derivatives(V6). A first step towards the set-up of
super-convergent schemes for the discretization of the convective fluxes has also been briefly
described. These schemes should be second-order accurate on unstructured grids and enjoy up
to fifth-order accuracy on Cartesian grids. Finally, time advancing can be explicit or implicit,
through a linearized defect-correction approach. As for turbulence modeling, either the classi-
cal LES approach or the VMS-LES one are used, together with different eddy-viscosity SGS
models.
Examples of academic and engineering oriented applications of the set-up methodology have
been given. Summarizing, the results validate our strategyof introducing a numerical viscos-
ity proportional to high-order derivatives in space, in order to keep its effects on the smallest
resolved scales and to reduce negative interactions with the SGS model. Indeed, the results
obtained with the V6 scheme are in general more accurate thanthose obtained with the V4
scheme, also without a fine tuning of the parameterγs, which controls the amount of intro-
duced numerical viscosity. It has also been shown that the use of an implicit scheme is conve-
nient also for LES. Indeed, large time steps, unreachable with explicit time advancing because
of stability limitations, can be used without loosing significant information on the dynamics
of the resolved scales. Finally, the VMS-LES approach closed with a cheapeddy-viscosity
SGS model, as for instance the Smagorinsky one, appears to bemore accurate than classical
LES (closed with the same type of SGS modeling), without introducing significant additional
computational costs.
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