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1. INTRODUCTION

The most widely used approach for the simulatiomamplexturbulent flows is the one based
on the Reynolds-Averaged Navier-Stokes equations (RAINS).complex flows, we mean
flows characterized by complex geometry and high Reynoldsbaus, as most of the flows of
industrial or engineering interest. However, RANS modeaigally have difficulties in provid-
ing accurate predictions for flows with massive separatmmsignificant unsteadiness, as for
instance the flow around bluff bodies. An alternative apphog the Large-Eddy simulation
(LES), which, for massively separated flows, is generallyeraxcurate, but computationally
more expensive, than RANS.

The success of a large-eddy simulation depends on the catidyirand interaction of differ-
ent factors, viz. the numerical discretization, which gigovides filtering when no explicit
one is applied, the grid refinement and quality, and the glhyslosure model. On the other
hand, all these aspects can be seen as possible sourcesrahdrES. Up to now, most of
the simulations reported in the literature are limited tod@@te Reynolds numbers and simple
geometries, and a few (almost generally accepted) bedigeador LES have been identified
in this academic context. However, these best practiceditiieult to be followed in LES of
complex flows and, thus, some open issues and controveosidspemain before LES can be
considered a completely reliable tool for industrial or i@gring applications.

In particular, in this context the use afstructured gridoecomes particularly attractive, be-
cause of their friendliness when applied to complex rdaaligeometries, although they are
more demanding from the point of view of computational reses. However, high-order con-
servative schemes, usually recommended for LES in the auadmntext, are expensive and
difficult to be devised for unstructured grids. Althoughrhare a few examples of numerical
schemes especially developed for LES on unstructured ¢siels e.g. Mahesh et al. [25]),
our choice was to start from an existing numerical techngliag industrial application and,
in particular, from asecond-order co-located schemihe most critical point with co-located
schemes is, in our opinion, the needmimerical dissipationTo better understand why, it is
useful to examine how LES works.

The classical LES approach relies on the addition to thelusaeier-Stokes equations of a
sub-grid scale (SGS) term and assumes that this same teather optimal for both turbu-
lence modeling and numerical scheme stabilization. Siiyita Direct Numerical Simulation
(DNS), it has been stated by many authors that the approximahould be of the highest
possible accuracy order and preferably without any nuragdéssipation. In that case, the



damping of any high frequency component is performed ekaiisby the SGS terms. lItis
not useless to recall that in general, these terms are sewded derivatives of the flow vari-
ables (e.g. in eddy-viscosity models). Conversely, in aediffit approach, the role of SGS
terms is completely fulfilled by a purely numerical staliion term inside the approximation.
A typical example is the MILES method [14] in which both sulbigmodeling and numerical
stabilization rely on monotonic dissipation by again a sekorder derivative (e.g. FCT (Flux-
Corrected Transport) or TVD (Total-Variation Diminishingghemes). However this family of
model-free monotone methods seems to need a much largeenafodes in the mesh for a
given prediction quality.

Conversely, if monotone schemes are combined with a cldddi<® model, they can interact
unfavorably with it, and significantly deteriorate the riésifsee, for instance, Garnier et al.
[11]). Thus, it appears that in a reasonable option, thecffef numerical dissipation and of
the SGS model should be separated as much as possible. Qosjpian was to dedicate the
subgrid modeling to a physics-based model and to use a sexded accurate MUSCL up-
wind scheme involving no TVD limiters. This co-located seteewas equipped with a tunable
dissipation made dburth-order[6] or sixth-order[5] spatial derivatives of all flow variables
through a flux splitting. Fourier analysis clearly showstthiach a dissipation has a damping
effect which is much more localized on high frequencies ttinone of stabilizations based
on second-order derivatives. In this way we can reduce tieedotion between, on one hand,
numerical dissipation which damps in priority the highesgiiencies, in particular those for
which the phase error is too large and can produce oscifistiand on the other hand SGS
modeling which should reproduce the effects of unresolveduencies on the resolved ones.
Moreover, a key coefficient) permits to tune numerical dissipation to the smallest amou
required to stabilize the simulation.

We also pushed forward this concept and we started to igagstthe application of a locally
super-convergent scheme [17], that is a scheme which isxdem@ler accurate on the whole
unstructured mesh but enjoys accuracy up to 5th order imnsgivhere the grid is Cartesian.
This is achieved by applying the linear reconstruction psgal in [5] to flux functions rather
than to flow variables.

Finally, for time advancing we explored the suitability tdeS of a linearized implicit scheme
[26]. In particular, we investigated whether large timepsteunreachable with explicit time
advancing because of stability limitations, can be empdagd_ES without loosing significant
information on the resolved scales.

As for SGS modeling, our first choice was to udassicalmodels, viz. the Smagorinsky one
[37] and its dynamic version [12]. As well known, we foundtttiae dynamic model generally
gives more accurate results than the Smagorinsky one (segCamarri et al. [6, 5]). However,
due to the explicit filtering required in the dynamic proceglwhich is highly computationally
demanding on unstructured grids, the increase in computaticost for the dynamic model
was found to be rather dramatic, much larger than for strectgrids or spectral schemes. On
the other hand, a good compromise between accuracy and tatopal requirements was ob-
tained through the Variational MultiScale approach (VM&hjch was found to give the same
accuracy as the dynamic model at costs comparable to thake &magorinsky model [16].
As will be described in the following, the main idea of VMS-8Hs to decompose, through
Galerkin projection, the resolved scales into the largadt@mallest ones and to add the SGS
model only to the smallest ones [15]. A formulation of the VMSproach for unstructured
grids and the mixed finite-volume/finite-difference scheomsed in the present work, was pro-
vided by Koobus and Farhat [16].

Another major difficulty for the success of LES for the sintida of complex flows is the fact



that the cost of LES increases as the flow Reynolds numbetrisased. Indeed, the grid has to
be fine enough to resolve a significant part of the turbuleslesg and this becomes particularly
critical in the near-wall regions. Hybrid models have rebebeen proposed in the literature
in which RANS and LES approaches are combined together iardodobtain simulations as

accurate as in the LES case but at reasonable computatmstal ¢n this context, we proposed
a new strategy for blending RANS and LES approaches in a thybddel, not described here
for sake of brevity. We refer to [36, 32, 35] for details onsthopic.

The paper is organized as follows: tblassicalLES approach together with the different con-
sidered closure models are briefly presented in Sec. 2. The manerical ingredients are

summarized in Sec. 3 and, in particular, the discretizatibthe convective terms and the
linearized implicit time advancing strategy are describétle VMS-LES approach is briefly

introduced in Sec. 4. Examples of academic and engineenegted applications of the set-up
methodology are then presented in Sec. 5. Conclusions ally fiinawn in Sec. 6.

2. CLASSICAL LES APPROACH AND SGS MODELS

The LES approach consists in filtering in space the Naviek&t equations, in order to get
rid of the high frequency fluctuations, and in simulatingedity only the filtered flow. Due
to the non-linearity of the problem, the filtered equationatain some unknown terms which
represent the effect of the eliminated fluctuations on therétl flow. These terms need to be
modeled. The filtered Navier-Stokes equations for comgsiesiows and in conservative form
are considered. In our simulations, filtering is implicig.ithe numerical discretization of the
equations is considered as a filter operator (grid filter).
In modeling the SGS terms resulting from filtering the Nax&okes equations, it is assumed
that high Reynolds numbers flows are simulated, in which lemgressibility effects are
present in the SGS fluctuations. In addition, we assume thaitt thansfer and temperature
gradients are moderate. Thus, the retained SGS term in theemtam equation is the classical
SGS stress tensor:

M;; = puu; — puu; (1)
where the over-line denotes the grid filter and the tilde teesity-weighted Favre filterf(=
(p_f) / (p)). The isotropic part ofi/;; can be neglected under the assumption of low compress-

ibility effects in the SGS fluctuations [8]. The deviatoriarp 7;;, is expressed by an eddy
viscosity term:

] —
ﬂj = _2,usgs (SZ - gSkk) ’ (2)

3; being the resolved strain tenspy, the SGS viscosity.
In the total energy equation, the effect of the SGS fluctuatioas been modeled by the intro-
duction of a constant SGS Prandtl number talgiori assigned:

Prog = O, 12 3)

where K, is the SGS conductivity coefficient; it takes into accourg thffusion of total
energy caused by the SGS fluctuations and is added to the uteri@onductivity coefficient.
We refer to Camarri and Salvetti [3] and Camarri et al. [6] for@rendetailed discussion of the
simplifying assumptions leading to the adopted SGS mogelin

The different eddy-viscosity models used in the presenkwoe briefly recalled in the follow-

ing.



2.1 Smagorinsky model
In the Smagorinsky model the eddy viscosity is defined asvial

pe =7 (CA) 8] (4)

where A is the filter width andCy is a constant that must kee priori assigned ant#g‘ =

\/232-5;- (repeated indexes imply summation). To complete the defimdf the SGS viscos-
ity, the grid filter width must be specified. Since filteringnsplicitly applied by the numerical
discretization, there is no unique rigorous definition & fiter width. The following expres-
sion has been employed here for each grid element

AV = Vol (5)

whereV ol; is the volume of thg — ¢h grid element.
2.2 Dynamic model

The dynamic version of the Smagorinsky model has also bessidered. The dynamic proce-
dure proposed by Germano [12] is applied to the compresSilagorinsky model described in
the previous section. In this way, the coefficient that mest priori assigned in the Smagorin-
sky model () is computed as a function of space at each time step. We haseie to dy-
namically computéC;A)? instead ofC?, as in the classical dynamic model, in order to avoid
the indetermination in the definition of the filter width. Thest filter used here consists in
P1-averaging the flow variables on all the elements havingengode as a vertex. The ratio
A/A (A being the test filter width), which is the only quantity to &riori assigned in the
dynamic model, is defined on each nodeE$A — /N, whereN is the number of elements
having the node as a vertex. This is a consequence of the pearthat the size of the im-
plicit filter scales as the cubic root of the element volumelogal smoothing is applied to
avoid unphysical oscillations ¢f>,A)?. For more details on the implementation of this model
see Camarri and Salvetti [3].

2.3 Vreman model

The eddy viscosity:, of the Vreman model [43] is defined by:

p = POy (—2—)2 (6)

with
Q5 = 8@/8@

Bij = AQQ/miO-/mj
Bg = 31122 — 5%2 + B11 533 — 5?3 + B22333 — 533

The constant is set 16 ~ 2.5C? whereC, denotes the Smagorinsky constant. The filter
width A has been defined as done for the Smagorinsky model.

2.4 WALE model



The last considered SGS closure is the Wall-Adapting Loail\E-Viscosity (WALE) SGS
model proposed by Nicoud and Ducros [27]. The eddy-visgasitm 1., of the model is
defined by:

~d—~—d_;
(Siy Sij )2

Hw :p(CWA)z —— ——d—
(Si58i5)2 + (Sij Sy

— (7)
)1
with ) )
—~d
Sij = §(gz‘j2 +95i°) — §5ijgkk2
being the symmetric part of the tenspf?* = girgxj, Whereg,; = du;/0x;. The constan€y,

issetto 0.1.
3. NUMERICAL METHOD

The LES governing equations are discretized in space usingxad finite-volume/finite-
element method applied to unstructured tetrahedrizatidhe adopted scheme is vertex cen-
tered, i.e. all degrees of freedom are located at the vesteR& Galerkin finite elements are
used to discretize the diffusive terms.

3.1 Convective fluxes

A dual finite-volume grid is obtained by building a cé€l| around each vertex two different
ways of constructing the finite-volume cells are consider€ells of the first type roedian
cells MC) are built by the rule of medians: the boundaries betwedls are made of triangular
interface facets. Each of these facets has a mid-edge,tatateoid, and a tetrahedron centroid
as vertexes. The second type of cetieW generation cell]NGC) can be obtained in 3D as
follows: to build the cell centered at nodglet us consider all the neighboring nodes:of
(). For each element containing the nodeand j, the cell surface is given by the triangles
connecting the middle of the edge joining these two vertgkesurface centeof the faces of
the element having this edge in common, andubkime centeof the element. Theurface
centerof a given face is the center of its circumscribed circleh# face comprises only acute
angles, otherwise it is the middle of its longest edge, aed/tthume centeof an element is
the center of its circumscribed sphere if the former is ledanside the element, otherwise,
it is the surface center (among those of the four tetrahetloes), which is closest to the
center of the circumscribed sphere. Although the NGC, asagdthe MC, can be built starting
from a generic tetrahedrization, it is interesting to cdesithe case of a Cartesian mesh, thus,
made of rectangle parallelepipeds (thereafter cdlgzks), which are cut in a particular way in
tetrahedrons, following [13]. This division splits eachdarin six identical tetrahedrons, each
being the mirror image of its neighbors (see Fig. 1(a)). tBtarfrom such a tetrahedization,
the NGC cells are bricks, centered around the vertexes ahtsh, as can be seen in Fig. 1D,
in which the trace of the division of an element into NGC iswho

The convective fluxes are discretized on this tessellatioa bnite-volume approach, i.e. in
terms of the fluxes through the common boundaries betwedncesample of neighboring cells:

> F(W,i)do | 8)
jev() Y 9%

whereV (i) is the set of neighboring nodes to vergx)C;; is the boundary between cell§
andC}, andri is the outer normal to the cell; andF (I, 77) the Euler flux in the direction af.



() (b)

Figure 1. New finite-volume cells in 3D: (a) division in tefiedrons, (b) trace of NGC on a
tetrahedron resulting from the previous division.

In all the schemes considered herein, the unknowns arerdisoous along the cell boundaries
and this allows an approximate Riemann solver to be intreduc

3.1.1 Second-order accurate scheme providing numericsigtion proportional to high-
order space derivatives

The Roe scheme [34] (with Turkel preconditioning) représehe basic upwind component
for the numerical evaluation of the convective fluxges

F (W, i) do ~ &8 (W;, W, @) = F (Wi, i) ;f(Wj, )
ley

- Wst (VVM W]7 ﬁ) (9)

W; — W,
2
in which W is the unknown vector at theth node,7 is the normal to the cell boundary afidl
is the Roe Matrix. The matri¥’(W;, ;) is the Turkel-type preconditioning term, introduced
to avoid accuracy problems at low Mach numbers [41]. Fin#tlg parametey, multiplies the
upwind part of the scheme and permits a direct control of theerical viscosity, leading to a
full upwind scheme (the usual Roe scheme)fpr= 1 and to a centered scheme whgn= 0.
The spatial accuracy of this scheme is only first order. TheS@U linear reconstruction
method (“Monotone Upwind Schemes for Conservation Lawsitjpduced by Van Leer [42],
is employed to increase the order of accuracy of the Roe seh&ire basic idea is to express
the Roe flux as a function of a reconstructed valudlot the boundary between the two cells
centered respectively at nodeand;: ®% (W,;, W;;, 7;;). W;; andW;; are extrapolated from
the values ofV at the nodes, as follows:

d® (Wi, W;, i) = P~ PR (W;, W;, i) | (10)

-

Wy = Wi+ - (ﬁW)Zj-ij (11)

—

Wii=W,— = (ﬁw)ji i) (12)

Schemes with different properties can be obtained by diffenumerical evaluation of the
sIopes(ﬁW) ~.ij and (ﬁW) _.ij. All the considered reconstructions can be written in the
following genejral form: ’
(VW)iyij = (1= B)(V Wi z’3'+ﬁ(§W)U
& [(VW)G.] = 20W)G.] + (YW)5.i]] (13)

a |[(VW)arij — 2V W)s.dj + (VW)



With reference to Fig. 2(VIV)Y is the gradient on the upwind tetrahedr@p, (V)2 is
the gradient on the downwind tetrahedrdp, (VW) is the nodal gradient computed over the
finite-volume cell around node (@W)j is the nodal gradient computed over the finite-volume
cell around nodg, (VIV) is the centered gradientW)$.ij = W, — W;) and (VIV)

is the gradient at the point/. This last gradient is computed by interpolation of the noda
gradient values at the nodes contained in the face oppasit the upwind tetrahedrof;;.
The reconstruction oft/;; is analogous.

Figure 2: Sketch of points and elements involved in the cdatmn of gradients.

In choosing a particular set of free coefficients €., ;) in Eq. (13) attention has been
dedicated to the dissipative properties of the resultifgeste which is a key point for its
successful use in LES simulations. Two schemes have be@og®d: the first on (V4) [6]
is characterized by = 1/3, ¢, = & = 0, while the latter (V6) [5] is obtained by = %
gc = _% andgd = _%-

The numerical dissipation in the schemes V4 and V6 is madewtt- and sixth-order
space derivatives, respectively, and, thus, it is conaggdron a narrow-band of the highest
resolved frequencies. This is important in LES simulatitmémit as far as possible the in-
teractions between numerical and SGS dissipation, whiatdateteriorate the accuracy of the
results.

3.1.2 Super-convergent scheme

The same kind of reconstruction as in the previous sectiappéied to the fluxes, instead of to
the flow variables. Thus, the following numerical flux is ahtd:

i = w - %’Ysplsign(PR)P (Fji — Fij)

whereF;; and F;; are the extrapolated fluxes at the cell interface, computesligh the V6
reconstruction scheme. Let be a generic matrix such that = T-'A(A)T, T being the
matrix of the eigenvectors of andA(A) = diag(\;(A)) the diagonal matrix whose elements
are the eigenvalues of, the notationsign(A) meansl’'diag(sign(\;(A)))T. The resulting
numerical approximation of the convective fluxes (V6NL) i-Brder accurate for a conformal
tetrahedrization obtained from a Cartesian grid as destioeviously. Indeed, by interpolat-
ing the fluxes, the second-order limitation for MUSCL reconstion can be overcome. More
details on this super-convergent scheme can be found in [17]

)

3.2 Time advancing

Simulations can be advanced in time both with explicit orlicipschemes. In the first case,
low-storage Runge-Kutta schemes are used.



As for the implicit time advancing, a second-order timetaate backward difference scheme
is adopted: 1 1
3Wwnth — 4w + W ntl
SA7 +Y" =0 (14)
in which ¢"*! denotes the discretized convective fluxes, diffusive an® 8&ms evaluated at
time stepn + 1.
To avoid the solution of a non linear system at each time stepscheme (14) can be lin-
earized by using the Jacobian©f*™! with respect to the unknown variables. However, the
evaluation of the Jacobian @f**! for the second-order accurate spatial discretizationiprev
ously described and the solution of the resulting lineatesypsmplies significant computational
costs and memory requirements. Thus, a defect-correaimique [26] is used here, which
consists in iteratively solving simpler problems obtaitkebugh an approximate linearization
of (14). Thus, the following approximation is introduced:

Y TV W)

in which J7* is the exact Jacobian of the spatial discretization termsnhe convective fluxes
are evaluated at first order. Then, the defect-correctenations write as:

( }4}0 =W
S S 3Ws _4Wn_'_Wn—1 S
(QAtVOl"‘J)(W‘H—W):_ IAL - for s=0,---, M —1
[t — M

whereV ol is the diagonal matrix containing the cell volumes avidis typically equal to 2.
Indeed, it can be shown [26] that only 2 defect-correcti@maitions are needed to reach a
second-order accuracy.

4. VARIATIONAL MULTISCALE LES

In the Variational MultiScale approach for Large Eddy Siatidn (VMS-LES) the flow vari-
ables are decomposed as follows:

W= W + W +W95 (15)
LRS SRS

where W are the large resolved scales (LR®)! are the small resolved scales (SRS) and
W95 are the unresolved scales. This decomposition is obtaigegatdjection in the LRS
and SRS spaces respectively. In the present study, we feHewwMS approach proposed
by Koobus and Farhat [16] for the simulation of compressibteulent flows through a finite
volume/finite element discretization on unstructuredate#dral grids. Let); be the finite-
volume basis functions ang) the V finite-element basis functions associated to the used grid.
In order to obtain the VMS flow decomposition, these can beesged asy;, = 1, + | and

# = ¢, + ¢}, in which the overbar denotes the basis functions spanhiadjnite dimensional
spaces of the large resolved scales and the prime thoseisgdaha SRS spaces. As in [16],
the basis functions of the LRS space are defined through egtosjoperator in the LRS space,
based on spatial average on macro cells:

Zvoz )i

Jelg



for finite volumes, and:

3, = 2% s~y (17)

ZVOZ(CJ) jelk

Jely
for finite elements. In both Egs. (16) and (17),= {j/C; € Cru}, Cmae) being the macro-
cell containing the cell’,. The macro-cells are obtained by a process known as aggitiomer
[19]. The basis functions for the SRS space are clearly nbthas followsz); = ¢; — ¢, and
= ¢ — ¢y
Finally, a key feature of the VMS-LES approach is that the S@flel is added only to the
smallest resolved scales. Thus, 1gLs be the closure term given by one of the SGS models
described in Sec. 1, it is computed as a function of the sstaksolved scales, i®.zs(W').
Since eddy-viscosity models are used here (see Sec. 1)3Bae&ms are discretized analo-
gously to the viscous fluxes. Thus, the Galerkin projectibthe corresponding term in the
governing equations is given by zs(W’), ¢,), where(-, -) denotes thd.? scalar product.
More details about this VMS-LES methodology can be foundaolsus and Farhat [16], Farhat
et al. [9] and Ouvrard et al. [31].

5. EXAMPLES OF APPLICATIONS

Among the different applications of the set-up humericalhmdology, some representative
results are presented for three different type of flow comfijans. The first one is the flow
around a a square cylinder of infinite length, at a Reynoldslyer, based on the cylinder side
length and on the freestream velocity, equal to 22000. Busrather classical benchmark for
LES [33] and allows the different proposed numerical and etiod ingredients to be validated
through comparison with experimental data and LES resnltke literature. The second test-
case is the flow around a circular cylinder at very low Reysaidmber (Re=3900), for which
very detailed LES results and experimental data are availalb is used here to investigate
the behavior of VMS-LES vs. classical LES and the effect ofSS@odeling in both these
approaches. Finally, the results obtained in LES and VM& kEnulations of a more complex
configuration of engineering interest are briefly summatize

5.1 Flow past a square cylinder

As previously stated, the flow around a square cylinder ohitdilength is considered, at
a Reynolds number, based on the cylinder side length andeoingstream velocity, equal to
22000. A Cartesian frame of reference is considered, withotiggn at the gravity center of
the square section and theandz axes oriented in the streamwise and spanwise directions, re
spectively. The computational domain dimensions &¢D =5, L,/D = 10, L,/D = 4 and
H/D = 7, whereD is the side length of the square sectidpandL, are the distances between
the origin of the reference frame and the inflow and outflowrtatauies, respectively,; is the
width of the domain in the spanwise direction alds the distance between the cylinder axis
and the domain boundaries in thalirection. Boundary conditions based on Steger-Warming
decomposition [40] are used at the inflow and at the outflofases. On the side surfaces
free-slip is imposed and the flow is assumed to be periodicerspanwise direction. Approx-
imate boundary conditions based on the Reichardt wall-leewaed on the cylinder surface
(see Camarri et al. [6] and Camarri and Salvetti [4]).
The results shown in the following have been obtained on tiasgthe first (GR1) of about
10° nodes and x 10° elements, the second (GR2), more refined, having approglyn2 10°



LES and experiments Ci Cy [ l

S V4 GO5GR1 0.79 1.84 0.10 1.45
S V6_G05GR1 0.84 1.89 0.09 1.41
S V6_G05GR2 1.10 2.2 0.18 1.15
D_V4_GO5GR1 0.91 2.03 0.12 1.24
D_V6_GO5GR1 0.94 2.06 0.10 1.33
D_V4_.G10GR1 0.84 1.94 0.09 1.53
D V6_G10GR1 0.86 2.02 0.09 1.47
D_V6_GO05GR2 1.09 2.10 0.15 1.15
V_V6_G20GR2 1.08 2.10 0.18 1.4
S V6NL_G20.GR3 1.17 2.33 — 1.29
Rodi et al. [33] [0.38,1.79] [1.66,2.77] [0.10,0.27] [0,896]
Sohankar et al. [38]

and Fureby et al. [10] [1.23,1.54] [2.0,2.32] [0.16,0.20] 1.29-1.34]
Lyn et al. [23, 24] - 21 - 1.4
Bearman et al. [1] 1.2 2.28 - -
Norberg [29] - 2.16 - -
Luo et al. [22] 1.21 2.21 0.18 -

Table 1: Bulk coefficients; comparison with experimentabdand with other simulations in the
literature. C, is the mean drag coefficient, andC; are the r.m.s. of the drag and lift coeffi-
cients and.. is the length of the mean recirculation bubble. The namees$imulations is com-
posed in this way: the first part indicates the turbulenceeh(®” stands for the Smagorinsky
model, “D” for the Dynamic one and “V” for the VMS-LES with th®magorinsky closure),
the second indicates the scheme adopted for the convectiesflthe third indicates the value
of the parametet, (in hundredth), the fourth indicates the adopted grid.

nodes and 1.2£10° elements. The average distance of the first layer of nodes fine cylin-

der surface i$ x 1072D for GR1 and4.5 x 10~2D for GR2. For both grids, approximately
32 nodes are located in the spanwise direction within theewakion. A third structured
grid (GR3) has been considered to carry out preliminary fatmns with the super-convergent
scheme described in Sec. 3.1.2 (V6NL). GR3 has about #J1 nodes and the distance of
the first node from the wall is 610~3; note also that the stretching of the elements of GR3
is significant, the maximum aspect ratio being equal to 12lenthe grids GR1 and GR2 are
rather homogeneous.

The main bulk coefficients obtained in the LES simulationshwhe Smagorinsky model, the
dynamic model and in the VMS-LES simulations with the Smatghty closure, are presented
in Tab. 1, together with results from other LES simulatioh8,[33, 38] and experimental data
[1, 22, 23, 24, 29]. As shown in Tab. 1, the results obtaindd thie V4 scheme are sensitive to
the choice of the parametegr and, when this is tuned close to the minimum value compatible
with numerical stability, the LES simulations gives ratlaercurate predictions. Nevertheless,
as shown in Camarri et al. [6], the numerical viscosity givesatribution to the fluxes which

is more important than the one given by the dynamic modellethe LES model contribution

is dominant when the more dissipative Smagorinsky modetesluThis drawback, as well as
the need of a fine tuning of the parametghave been overcome with the V6 scheme. Indeed,
the results in Tab. 1 show a reduced sensitivity of the ptedibulk coefficients tg, when V6

is used. Moreover, the accuracy of the results is improvegee&ally concerning the unsteady
part of the flow field. Indeed, the values of the r.m.s. of thredaoefficients is generally higher



with V6 (see Tab.1). Moreover, independently of the SGS Moadehe simulations with V6
a larger energy content than with V4 is found in all the resdlfrequencies, and especially in
the highest ones. This is well shown, for instance, in Figh&me the Fourier energy spectra of
the velocity signals measured in a point in the wake iV G05 GR1 and DV6_G05GR1
are compared. The mean convection velocity in the consideoets within the wake is large
enough to justify the Taylor hypothesis of frozen turbukenzhich allows us to assume that
high time frequencies correspond to small scale in spacs; ttme might conclude that small
scales are less damped by the V6 scheme. As regards the SG#ingadteraction with the

Figure 3: Simulations D/4_G05.GR1 and DV6_G05GR1. Fourier energy spectra of the
velocity components recorded at= 3, y = 0.5 andz = 0. a) Transverse velocity; b)
spanwise velocity.

adopted numerical scheme, Tab. 1 shows that the qualitaations of the bulk coefficients
with the SGS model are the same for V4 and V6, i.e. the dynanodeingenerally improves
predictions with respect to the Smagorinsky model. Howeyeantitatively, the sensitivity to
SGS modeling of the results obtained with V6 is lower tharhwié. This is particularly evi-
dent from the comparison of the Reynolds stresses, not shevenfor the sake of brevity, and
this is related to the larger energy content at the smalksaalbtained with V6; see Camarri et
al. [5] for a more detailed discussion.

The grid refinement improves results particularly when thea§orinsky model is used, while
the simulations with the dynamic model give acceptablelteslso on the grid GR1. How-
ever the dynamic model is definitely more CPU-demanding tharSimagorinsky one, due to
the explicit filtering required in the dynamic procedure,i@vhis highly computationally de-
manding on unstructured grids. As an example, when the dynamadel is used instead of
the Smagorinsky one with the V4 scheme and an explicit tinvaecing, an increase of about
180% CPU time per time step is measured.

The best compromise between accuracy and computationed bas been obtained by the
adoption of the VMS-LES model, properly formulated for ownmerics. Indeed, Tab. 1 shows
that the level of accuracy of the VMS-LES model, with the Soragsky SGS closure, is com-
parable with that of the dynamic model. At the same time ataputational cost is only slightly
larger than that of the Smagorinsky model. Finally, note tha problems of numerical stabil-
ity typically encountered with the dynamic model, unlesshad smoothing or clipping of the
model coefficient values is carried out, are obviously nespnt in the VMS approach. A more
detailed discussion of the results obtained with the VM$Iriodel can be found in Ref. [16].
An example of the results obtained through the super-cgeveV6NL scheme on a structured
grid (GR3) is also shown in Tab. 1. A significant improvemenbibserved in the prediction of



Simulation | Turbulence model SGS aggl. level. v CFL
CircCyll LES Smagorinsky - 03 20
CircCyl2 LES Vreman - 03 20
CircCylI3 LES WALE - 03 20
CircCyl4 VMS-LES Smagorinsky 1 03 20
CircCyl5 VMS-LES Vreman 1 03 20
CircCyl6 VMS-LES WALE 1 03 20
CircCyl7 no model - - 03 20

Table 2: Overview of the considered simulations.

the r.m.s. of the lift coefficient, while for the other paraers the agreement with the experi-
mental data is the same as or even worse than the one obtaithethe/\V6 and V4 schemes.
However, a more systematic validation should be carriechadt probably, the VENL scheme
for the convective fluxes should also be coupled with a moceirate discretization of the dif-
fusive and SGS terms and tested within the VMS-LES approach.

5.2 Flow past a circular cylinder

In this section, the flow over a circular cylinder at Mach nenk/,, = 0.1 and Reynolds num-
ber (based on the cylinder diameter and on the freestreameits@l equal to 3900 is simulated
through the VMS-LES and the traditional LES approach. Thamatational domain is such
that—10 < z/D < 25, -20 < y/D <20 and—7/2 < z/D < /2, wherez, y andz denote
the streamwise, transverse and spanwise directions riasggcThe cylinder of unit diameter
is centered on the axis = y = 0. For the purpose of these simulations, the Steger-Warming
conditions [40] are imposed at the inflow and outflow as wetimghe upper and lower surface
(y = =4 20). In the spanwise direction periodic boundary conditiore applied and on the
cylinder surface no-slip boundary conditions are set.

The flow domain is discretized by an unstructured tetraHegird which consists of approxi-
mately2.9 x 10° nodes. The averaged distance of the nearest point to theleylboundary is
0.017D, which corresponds tg* ~ 3.31.

A large number of simulations were carried out by varyingedént parameters, as, for in-
stance, the SGS model, the valueypfthe cell agglomeration level for VMS-LES. We report
here only the results obtained in some of these simulationsrder to investigate the differ-
ences between classical LES and VMS-LES and the effect o8@® modeling. The main
parameters of the considered simulations are summarizéaln?2. All the simulations were
carried out with the V6 scheme and the linearized implienidiadvancing. In particular, the
advantage of the use of an implicit clearly appears from 2alince a CFL equal to 20 could
be used in all the simulations, without loosing significarformation about the dynamics of
the resolved scales. Indeed, it was checked that up to this @A CFL the results are indepen-
dent of the adopted time step. Incidentally, the adopted Gfinition is such that the stability
limit of the RK1 scheme corresponds to CFL=1.

The flow bulk parameters obtained in these simulations grerted in Tab. 3 and compared
with LES results in the literature and experimental datae @tieraged data are obtained over
about 27 shedding cycles or 150 non-dimensional time uftés e initial transient period.
The effect of the SGS model is larger in the classical LES tians (compare CircCyll,
CircCyl2 and CircCyl3) than in the VMS-LES approach (CircCyl4, Cint5, CircCyl6). The
overall agreement with the numerical and the experimerdtd th the literature is better for
the VMS-LES simulations than for the LES ones, especialiytie mean drag coefficient, the



data from Cy St L Osep Cp, Umin
CircCyll 1.16 0.212 0.81 88 -1.17 -0.26
CircCyl2 1.04 0.221 0.97 89 -1.01 -0.28
CircCyl3 1.14 0.214 0.75 91 -1.20 -0.25
CircCyl4 1.00 0.221 1.05 88 -0.96 -0.29
CircCyl5 0.99 0.221 1.12 88 -0.91 -0.30
CircCyl6 0.96 0.225 1.24 88 -0.90 -0.30
CircCyl7 0.96 0.223 1.24 -0.88 -0.30
Numerical datal
[18] 1.04 0.210 1.35 -0.94 -0.37
2] 1.07 1.197 87.7 -1.011
[20] 0.99 0.212 1.36 -0.94 -0.33
Experiments
[28] 0.99+0.05 0.215+0.05 -0.88:0.05 -0.24-0.1
[39] 86 +2
[7] 0.215+0.005 1.33-0.05
[30] 0.214+-0.005 1.40.1 -0.24+0.1
[21] 1.18+0.05

Table 3: Bulk coefficients: comparison with experimentaiadand with other simulations in
the literature. C,; denotes the mean drag coefficiesst, the Strouhal numbet,. the mean
recirculation length: the distance on the centerline dioecfrom the surface of the cylinder to
the point where the time-averaged streamwise velocity iis, 2g., the separation angl€/p,
the mean back-pressure coefficient &ng,, the minimum centerline streamwise velocity.

base pressure and the mean recirculation bubble lengtlallyithe results obtained without
any SGS model (CircCyl7) are similar to those of the VMS-LESwdations. This could be
considered as an a posteriori confirmation that the V6 screanally adds a viscosity which
is limited to the smallest resolved scales, in the spirit MSALES.

A more detailed analysis of the reliability of the resultslari the different sources of error in
LES and VMS-LES will be the object of forthcoming papers.

5.3 Vortex induced motion of a complex geometry

The prediction of vortex-induced motion of a complex spaprgetry is an important moti-
vation for VMS modeling. The spar geometry consists of anddr equipped with helical
strakes, see Fig. 4. Each strake produces in the flow a shesirtkat interacts with the large
flow structures and inhibits to a significant extent the vomrKan vortex street. We investigate
the impact of the choice of a VMS model on the quality of a LE&dution. In our computa-
tions, the obstacle is maintained by elastic moorings andeshander the effect of the vortex
shedding. The flow-structure coupling is computed at sévedaced velocity between 4 and
9 (m/s) and Reynolds numbers betweenl2° and 4<10°. The grid involves 5 10° vertexes.
The V6 scheme and the linearized implicit time advancingehaeen used for these simula-
tions.

The behavior of the transverse position of the spar is a képubdo be accurately predicted.
Fig. 5 shows the time variation of the transverse positiothefspar at a reduced velocity of
7 m/s. The r.m.s. computed in LES with the Smagorinsky masl®.048, and the r.m.s. in
VMS-LES is 0.070, which compares better with the experirakstdta of 0.077. The agreement
of the VMS calculations with experiments for the differeptacities is demonstrated in Tab. 4.
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Figure 5: Time variation of the transverse position of tharsit a reduced velocity of 7 m/s.



Reduced velocity 4 5 6 7 8 9
LES - - - .048 - -
VMS-LES .0018 .020 .04 .070 .12 .118
Experiments .0018 .025 .05 .077 .13 .125

Table 4: Vortex-induced motion of a spar: r.m.s. of transeeteviation

6. CONCLUDING REMARKS

The main choices made and the solutions proposed for theaiatlaption between an-
dustrial numerical method, designed and validated for RANS simutati and an LES ap-
proach to turbulence have been briefly presented in thisrpdpe numerical method is based
on a co-located mixed finite-volume/finite-element diseedton on unstructured tetrahedral
grids. Diffusive fluxes are discretized by P1 finite elemestsl convective fluxes by finite
volumes, through the Roe scheme and MUSCL reconstructiot@irosecond-order accu-
racy in space. The key feature of our approach is a partiddlaBCL reconstruction scheme,
such that the introduced numerical viscosity is propodida high-order space derivatives, viz.
fourth-order derivatives (V4) or sixth-order derivative). A first step towards the set-up of
super-convergent schemes for the discretization of theemdive fluxes has also been briefly
described. These schemes should be second-order accananstouctured grids and enjoy up
to fifth-order accuracy on Cartesian grids. Finally, timeauhing can be explicit or implicit,
through a linearized defect-correction approach. As fdoulence modeling, either the classi-
cal LES approach or the VMS-LES one are used, together witbrent eddy-viscosity SGS
models.

Examples of academic and engineering oriented applicatidthe set-up methodology have
been given. Summarizing, the results validate our stratégytroducing a numerical viscos-
ity proportional to high-order derivatives in space, in @rdo keep its effects on the smallest
resolved scales and to reduce negative interactions witSthS model. Indeed, the results
obtained with the V6 scheme are in general more accuratetties® obtained with the V4
scheme, also without a fine tuning of the parametemwhich controls the amount of intro-
duced numerical viscosity. It has also been shown that teetian implicit scheme is conve-
nient also for LES. Indeed, large time steps, unreachalite exiplicit time advancing because
of stability limitations, can be used without loosing sigrant information on the dynamics
of the resolved scales. Finally, the VMS-LES approach dosgh a cheapeddy-viscosity
SGS model, as for instance the Smagorinsky one, appearsrnwigeaccurate than classical
LES (closed with the same type of SGS modeling), withoubishticing significant additional
computational costs.
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