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MASCOTTE, I3S-CNRS-INRIA

2004, route des Lucioles - B.P. 93.
F-06902, Sophia Antipolis Cedex, France

and

Cs. D. Tóth∗
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1 Introduction

Modern telecommunication satellites are very complex to design and an important industrial issue is to provide
robustness at the lowest possible cost. A key component of telecommunication satellites is an interconnection
network which allows to redirect signals received by the satellite to a set of amplifiers from where the signals will
be retransmitted. Designing such network is a complex problem that was proposed by Alcatel Space Industries. A
detailed overview on the model and the motivations can be found in [2].

Informally, we are looking for a network interconnecting a set of input ports (at each of which a signal enters the
network) with a set of output ports (at each of which a signal leaves after amplification). The connections are
made via costly switches with4 links, and the paths connecting inputs to outputs are link disjoint.

Here we suppose that signals are of the same kind so any signalcan be routed to any output (port). In practice,
amplifiers are subject to faults which cannot be repaired, but there is a valuek such that the probability that more
thank faults occur is practically negligible. As a first approach,given a numbern of signals and a maximal
numberk of faults, we should design a low cost network routingn inputs and tolerating up tok faulty amplifiers.
The first cost criterion is the number of amplifiers, and the second is the number of switches. So we consider
networks withn inputs andn + k outputs. In [2] such networks are called(n, k)-networks. An(n, k)-network
is said to bevalid if for any set of at mostk faulty outputs, there exists a set ofn disjoint paths interconnecting
then inputs to then non-faulty outputs. The design problem consists of determining a valid(n, k)-network with
a minimum number of switches.

We define our(n, k)-network as follows.

Definition 1 An (n, k)-network is a tripleN = {(V, E), i, o} whereG = (V, E) is a graph andi, o are integral
functions defined onV calledinputandoutputfunctions, such that for anyv ∈ V , i(v)+ o(v)+ deg(v) = 4. The

∗Research of the second author was done while visiting the project MASCOTTE (formerly SLOOP), I3S-CNRS-INRIA in Sophia Antipo-
lis.
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total number of inputs isi(V ) =
∑

v∈V i(v) = n, and the total number of outputs iso(V ) =
∑

v∈V o(v) = n+k,
with k ≥ 0.

Note that this definition is different but equivalent to thatof [2] where inputs and outputs are introduced as vertices.
Our definition enables us to apply tools of flow theory.
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1/2
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Figure 1: A valid(4, 4)-network with4 inputs and8 outputs on the left, and the numeric representation of the
input/output functions on the right.

Any integral functiono′ defined onV such thato′(v) ≤ o(v) for anyv ∈ V , ando′(V ) = n is called afaulty
output function.

Note thato(v) − o′(v) is the number of faults at vertexv.

Definition 2 An (n, k)-network isvalid, if for any faulty output functiono′, there aren edge-disjoint directed
paths inG such that each vertexv ∈ V is the initial vertex ofi(v) paths and the terminal vertex ofo′(v) paths.

Let us denote the minimum number of vertices in a valid(n, k)-network byN (n, k). A valid (n, k)-network with
exactlyN (n, k) vertices is called aminimum(n, k)-network.

Problem 1 The design problem consists of determiningN (n, k) and of constructing minimum(n, k)-networks,
or at least valid(n, k)-networks with a number of vertices close to the optimal value.

In [2], the authors proved thatN (n, 1) = N (n, 2) = n and gave a general construction which yieldsN (n +
n′, k) ≤ N (n, k) + N (n′, k), under some conditions. In particular, they proved thatN (n, 4) ≤ n +

⌈

n
4

⌉

.

In this paper, we present an approach which simplifies the design problem, and we apply it for practical values
of k (k ≤ 12). In a first step we derive lower bounds onN (n, k), then we propose effective almost optimal
constructions. We also provide some asymptotic values for larger values ofk. In summary we prove that

N (n, 4) = n +
⌈

n
4

⌉

,
N (n, 6) = n + n

4 +
√

n
8 + O(1),

N (n, 8) = n + n
3 + 2

3

√

n
3 + O(4

√
n),

N (n, 10) = n + 3n
8 + Θ(

√
n),

N (n, 12) = n + 3n
7 + O(

√
n).

For larger values ofk, we show thatN (n, k) ≤ n + n
2 + O(k), this bound is tight as we prove also that :

N (n, k) ≥ 3n

2
− O(

n

k
)
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2 Validity and Cut-criterion

We introduce some notation that will be used throughout thispaper.

Given a functionf , we use the notationf(A) =
∑

a∈A f(a) for any finite setA.

For a setW ⊂ V of a graphG = (V, E), let us denote∆(W ) the set of edges connectingW andW = V \ W ,
δ(W ) the cardinality of∆(W ), andΓ(W ) the set of vertices adjacent to a vertex ofW .

In order to prove structural properties, we generalize the definition of (n, k)-networks. In this general definition,
we impose no restriction on the degree of the vertices.

Definition 3 An (n, k)-graph is a tripleN = {(V, E), i, o} whereG = (V, E) is a multi-graph andi, o are
integral functions defined onV , where, for anyv ∈ V , i(v) (resp. o(v)) denotes the number of inputs (resp.
outputs) atv. The total number of inputs isi(V ) = n, and the total number of outputs iso(V ) = n + k, with
k ≥ 0.

Any integral functiono′ defined onV such thato′(v) ≤ o(v) for anyv ∈ V , ando′(V ) = n is called afaulty
output function.

A crucial fact is that the validity of a(n, k)-graph is nicely expressed in term of a supply/demand flow problem
(see [3, 1] for a definition).

Definition 4 An (n, k)-graphN = {(V, E), i, o} is valid if and only if for any faulty output functiono′ the
following supply/demand flow problem is feasible in the graph G = (V, E): for any v ∈ V the demand is
demand(v) = o′(v) − i(v) 1 and the capacity of every edge ofE is one.

As integral flow problems admit integral solutions, this definition is equivalent to state that, for any set ofk faults,
there existn pairwise edge-disjoint paths connecting inputs to non faulty outputs.

2.1 A cut-criterion for (n, k)-graphs

As any input can be routed to any output, the validity problemof a (n, k)-graph reduces to a simple flow problem
once the faulty outputs are identified (more formally when the faulty output function is fixed as in definition 4).
The next property characterises valid(n, k)-graphs and is a direct consequence of the Ford-Fulkerson theorem [3].

Property 5 (min cut & max flow criterion) An (n, k)-graph{(V, E), i, o} is valid if and only if, for any subset
of verticesW ⊂ V theexcessof W ,

E(W ) = δ(W ) + o(W ) − i(W ) − min{k, o(W )}

satisfiesE(W ) ≥ 0.

Proof. Let o′ be a fixed faulty output function, then a supply/demand flow problem is defined by an integral
(not necessarily positive) demand at each nodev. In our case, the demand of a nodev ∈ V is demand(v) =
o′(v) − i(v). (Note thatdemand(V ) = 0, which is always the case for supply/demand problems.) A variant of
the Ford-Fulkerson Theorem states that the supply/demand problem is feasible if and only if

∀W ⊂ V : δ(W ) ≥ demand(W ) = o′(W ) − i(W ) = i(W ) − o′(W ).

It follows that the(n, k)-graph is valid if and only if

∀W ⊂ V : δ(W ) ≥ i(W ) − min{o′(W ) | o′ a faulty output function} (1)

1If o′(v) − i(v) < 0, then this means thatv suppliesi(v) − o′(v) units of flow; remark also that the problem is correctly defined as
demand(V ) = o′(V ) − i(V ) = 0.
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By definition,min{o′(W ) | o′ a faulty output function} is the minimum number of non-faulty outputs inW .
This minimum is attained either by choosing all the outputs in W to be faulty wheno(W ) ≤ k, or by choosingk
outputs inW to be faulty wheno(W ) ≥ k.

Hence,min{o′(W ) | o′ a faulty output function} = o(W ) − min{o(W ), k}. The property follows then from
equation 1. 2

Remark 6 min{o(W ), k} is the maximum number of faults that can occur inW , so the cut-criterion simply
states that the capacity of the border ofW is larger than the differencei(W ) − o(W ), plus the maximum number
of faults inW .

3 Reduction of(n, k)-networks to their Kernels

In what follows,we supposek ≥ 1.

We will see that we can apprehend all the interesting properties of an(n, k)-network by considering a bipartite
graph, called itskernel, associated to it.

The reduction is based on the following observations (see also [2]).

Property 7 In a minimal valid(n, k)-network withk ≥ 1, i(v) ≤ 1 for all verticesv.

Proof. Thecut criterionapplied to any single vertexv implies thati(v) ≤ 2. If i(v) = 2, theno(v) ≤ 0, since
k ≥ 1. Supposingi(v) = 2 and0(v) = 0, we haveδ(v) = 2. We can removev and connect the two inputs
directly to the two neighbors ofv, and obtain a smaller valid(n, k)-network. 2

This implies that there are two kinds of vertices in an(n, k)-network, those withi(v) = 1 and those withi(v) = 0.

Property 8 In a minimal valid(n, k)-network withk ≥ 1, vertices withi(v) = 1 do not form a circuit.

Proof. Let C be a minimal circuit formed by vertices withi(v) = 1. If C hasℓ vertices, theni(C) = ℓ and
δ(C) + o(C) = ℓ (as there areℓ edges insideC we have4ℓ = δ(C) + i(C) + o(C) + 2ℓ). By thecut criterion,
o(C) = 0, sincek ≥ 1. Therefore, we can removeC and connect theℓ inputs directly to the neighbors ofC, and
get a smaller valid(n, k)-network. 2

Intuitively the kernel will be a bipartite(n, k)-graph with two vertex classes: the “blocks” and “S-switches”. Most
of the blocks will correspond to the connected components formed by vertices withi(v) = 1. S-switches will be
in correspondence with vertices withi(v) = 0. In fact for simplicity and technical purposes, we have to introduce
“special blocks”.

Special blocks of typeα, Consider a vertexv of an(n, k)-network withi(v) = 0. If o(v) = 0, then it is anS-
switch. Ifo(v) ≥ 1, then associate anS-switchS to v with i(S) = 0, o(S) = 0, anddeg(S) = deg(v)+o(v) = 4,
joined too(v) new blocksB each withi(B) = 0, o(B) = 1, anddeg(B) = 1. (called blocks of typeα)

Now we are almost done, except that there can be adjacentS-switches in our present(n, k)-network. In order to
guarantee the kernel to be a bipartite graph, we introduce a second type of special blocks.

Special blocks of typeβ, If there is a link between twoS-switches, then we subdivide the link by inserting a
blockB with i(B) = o(B) = 0, anddeg(B) = 2 (called blocks of typeβ).

Let us summarise what we have done.

Definition 9 To every(n, k)-networkN , we can associate a bipartite(n, k)-graphK(N), called(n, k)-kernel
with two classes of vertices, blocks andS-switches.
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- Blocks are either maximal connected components of the(n, k)-network formed by vertices withi(v) = 1,
or special blocks of typeα or β.

- TheS-switches are in one-to-one correspondence with the vertices ofN with i(v) = 0.

Denote byB (resp.S) the set of blocks (resp.S-switches) of an(n, k)-graph, and puts = |S|.
The functionsi ando are interpreted inK(N) as follows : for every vertexu of K(N) representing a setU of N
we seti(u) = i(U), o(u) = o(U).

Property 10

(i) K(N) is bipartite,

(ii) i(VN ) = i(VK(N)) = n ando(VN ) = o(VK(N)) = n + k,

(iii) for everyS-switchS of K(N), i(S) = o(S) = 0,

(iv) for every blockB of K(N), deg(B) = i(B) + 2 − o(B),

(v) |V (N)| = n + s.

Proof. (i), (ii), and (iii) are true by definition.

(iv) holds for the special blocks of typeα andβ by definition. Suppose that the blockB is formed by a connected
componentB′ of b verticesv with i(v) = 1, so thati(B) = b. For everyv ∈ B′, deg(v) = 4 − i(v) − o(v) =
3 − o(v), hence

∑

v∈B′ deg(v) = 3b − o(B). BecauseB′ is connected and circuit free, there are exactlyb − 1
edges insideB′ anddeg(B) = δ(B′) =

∑

v∈B′ deg(v) − 2(b − 1) = b + 2 − o(B)

For (v), observe thati(S) = 0,
∑

B∈B i(B) = n, and there is a one-to-one correspondence between theS-switches
of K(N) and the vertices withi(v) = 0 of N . 2

4 The reduced problem

(E(W ) is defined in property 5)

Lemma 11 Let W be a set of vertices of a(n, k)-graph , and assume thatΓ(W ) contain a vertexv such that
d(v) ≤ i(v) − o(v) + 2 then the follwoing relation holds :

E(W ∪ {v}) ≤ E(W )

Proof. Let W1 = W ∪ {v}, i(W1) = i(W ) + i(v), o(W1) = o(W ) + o(v), andδ(W1) ≤ δ(W ) + deg(v)− 2 =
δ(W ) + i(v) − o(v). Hence, by definition we haveE(W1) = δ(W1) + o(W1) − i(W1) − min(k, o(W1)) ≤
δ(W ) + o(W ) − i(W ) − min{k, o(W ) + o(v)} ≤ E(W ). 2

Remark 12 Note that the above lemma can be applied either to ablock v of K(N) (as we haved(v) = i(v) −
o(v) + 2), or toa vertexv′ of N such that i(v′) = 1 (as thend(v′) = 3 − o(v′) = i(v′) − o(v′) + 2.

Lemma 13 N is a valid(n, k)-network if and only if thenK(N) is a valid(n, k)-graph.

Proof. First assume thatK(N) is non valid; equivalently it exists a subgraphW of K(N) with EK(N)(W ) < 0.
According to lemma 11 and remark 12 we can assume thatW contains all the blocks adjacent to it. We associate
to W a subsetW ′ of N obtained as follows :

5



- to aS-switch and to the blocksα, β adjacent to it we associate the corresponding vertex ofN ;

- to a normal blockB we associate the connected componentB′ of N .

We havei(W ) = i(W ′), o(W ) = o(W ′), δ(W ) = δ(W ′), soEN(W ′) = E(W ) < 0 ; soN is non valid.

Conversely, assume thatN is not valid, or suppose equivalently that it exists a connected subgraphW ′ with
EN (W ′) < 0. According to lemma 11 and remark 12 we can also assume thatW ′ is such that for any connected
componentC formed by vertices such thati(v) = 1 eitherC ⊂ W ′ or W ′ ∩ C = ∅.

So, according to the definition of the kernelK(N), we can associate toW ′ a subsetW of K(N) (by associating
to a connected componentB′ of N the corresponding normal blockB of K(N), and to a vertex withi(v) = 0 the
correspondingS-switch plus possibly some special blocksα, β). We haveE(W ) = E(W ′) < 0. HenceK(N) is
not valid. 2

The properties proved in Property 10 allow to formulate a simpler version of the design problem.

Problem 2 DenotingN ′(n, k) the minimum number ofS-switches in a valid(n, k)-kernel, the design problem
consists of finding an(n, k)-kernel having a number ofS-switches equal to (or close to)N ′(n, k).

In fact, Problem 2 is equivalent to Problem 1.

Theorem 14 N (n, k) = N ′(n, k) + n

Proof.

According to Property 10/(v) and Lemma 13 it is sufficient to prove that any(n, k)-kernel is the kernel of some
(n, k)-network. To do this we provide an inverse of the algorithm described in Definition 9. Note that the inverse
operation is not deterministic (the result is not unique), which is the consequence of the fact that several(n, k)-
networks has the same(n, k)-kernel. Apply the following operations on an(n, k)-kernelK = {(S ∪ B, E), i, o}.

(a) As long asK contains a blockB with i(B) = 0, o(B) = 0, deg(B) = 2 connected to twoS-switchesS1

andS2, replace it by an edge[S1, S2].

(b) As long asK contains a blockB with i(B) ≥ 2, replaceB by a chain ofi(B) vertices each withi(v) = 1.
Distributeo(B) among the vertices so that

∑i(B)
1 o(v) = o(B) respecting the conditiono(v) + i(v) +

deg(v) = 4, and connect the remainingdeg(B) edges of the chain to the neighbors ofB in an arbitrary
order. This can always be done, sincedeg(B) = i(B) − o(B) + 2.

(c) As long asK contains a blockB with i(B) = 0, o(B) = 1, deg(B) = 1 connected to a vertexS, deleteB
and leto(S) := o(S) + 1.

2

For an example see Figure 2.
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Figure 2: Equivalence between(n, k)-networks and(n, k)-kernels. The indices of the blocks indicate the number
of outputs of the blocks. In the bottom kernelS-switches are represented by dots, while blocks are represented by
circles.

5 Basic properties for kernels

First an immediate property.

Property 15 For k ≥ 3, the blocks of a valid(n, k)-kernel contains at most2 outputs.

Proof. Given a blockB, we compute the excess on the one-element set{B}. E({B}) = deg(B)+o(B)− i(B)−
min(k, o(B)) = 2−min(k, o(B)), becausedeg(B) = 2+i(B)−o(B). So, in a valid networkmin(k, o(B)) ≤ 2,
and fork > 2, o(B) ≤ 2. 2

From now onewe will always suppose thatk ≥ 3 ; according to Property 15, we will distinguish three types of
blocks :

Definition 16

- For i = 0, 1, 2, denote byBi the set of blocks containingi outputs (i.e.o(B) = i). Let bi be the number of
blocks ofBi, let ni the total number of inputs of the blocks ofBi, and letei =

∑

B∈Bi
deg(B).
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- ClearlyB = B0 ∪ B1 ∪ B2 (see Proposition 15);

Lemma 17 The blocks ofBi are adjacent toni + (2 − i)bi edges, in other words,

e0 = n0 + 2b0, e1 = n1 + b1, e2 = n2 (2)

Proof. Recall that by Property 10, the degree of a blockB ∈ Bi is exactlyi(B) + 2 − o(B) = i(B) + 2 − i. The
statement of Lemma 17 follows by summing over all blocks ofBi. 2

We have also the following set of equations.

Theorem 18 In a valid (n, k)-kernel, withk ≥ 3

n = n0 + n1 + n2 (3)

n + k = b1 + 2b2 (4)

4s = n + 2b0 + b1 (5)

4s = 2n + k + 2b0 − 2b2 (6)

Proof. Equation (3) follows from the fact that the total number of inputs isn. Equation (4) is obtained by counting
the outputs

∑

B∈B o(B) =
∑

i=0,1,2 ibi. For equation (5), consider the number of edges in the bipartite graph;
on the one hand we have

∑

i=0,1,2 ei = n + 2b0 + b1 (from 2); on the other hand there are4s edges. The last
equation is simply (5) - (4). 2

6 Lower bounds for k ≥ 3

As k increases, the optimal valueN ′(n, k) gets larger and larger. We will successively introduce counting argu-
ments fork = 4, 6, . . . , 12. The claims obtained for a given value ofk are always valid for largerk. The main
idea is to use several counting arguments and to determine which patterns are forbidden in a valid kernel for a
given value ofk.

Before deriving additional properties of kernel, we first consider the casesk = 3, 4 which can be solved immedi-
ately thanks to the reduction of the initial problem to kernel problem.

6.1 Casesk = 3, 4.

Note that the next result was first conjectured in [?] where the upper bound was proved.

Theorem 19 N ′(n, 3) = N ′(n, 4) =
⌈

n
4

⌉

.

Proof. N ′(n, 3),N ′(n, 4) ≥
⌈

n
4

⌉

is an immediate consequence of equation (5),

4s = n + 2b0 + b1 ≥ n.

For the upper bound, it is enough to construct a valid(n, 4) -kernel. Constructions are presented in section 9
but as it is theminimumexactly and extremely simple, we present here some constructions fork = 4, n = 4p.
According to equation (5), the lower bound can only be attained, if b0 = b1 = 0. That is when all the blocks are
in B2. To proceed with the construction, we need the following definition (that will be of use for larger values of
k, too)

Definition 20 A twin is a connected subgraph of an(n, k)-network formed by anS-switch adjacent two blocks
of B2 with one input each.
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S

1/2

1/2

Figure 3: A twin

A twin contains2 inputs and4 outputs. A twin can be considered as linking the2 blocks which are adjacent to the
S-switch contained in the twin. One construction is obtainedby connecting two large blocks ofB2 both of sizep
by p twins (see as example figure 4). We have then2p inputs in the two large blocks ofB2 and2p inputs in thep
twins,4 outputs in the two large blocks and4p outputs in thep twins,p S-switches each in a twin.

Figure 4 shows a minimum(16, 4)-kernel. There are2 · 4 = 8 inputs and2 · 2 = 4 outputs in the two large
blocks ofB2, each small blocks ofB2 contains1 input and2 outputs. In total, there are16 inputs,20 outputs and
4 S-switches.

(16, 4)-network

B2 B2

(16, 4)-kernel

twin

twin

twin

twin

Figure 4: One minimum(16, 4)-kernel, with4 S-switches.

The construction given in [2] (see Figure 5) is attained by connectingp − 1 pairs of blocks ofB2 with i(B) = 2.
The pairs form a chain where the extremal pairs are connectedby a twin and all the others pairs are connected to
S-switches.

(16, 4)-network

B2

B2B2

B2

B2

B2

(16, 4)-kernel

twin twin

Figure 5: Another minimum(16, 4)-kernel.

The validity of these constructions can be easily verified bychecking the cut-criterion. (See Section 9 for a short
proof.) 2
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7 Cut-criterion for (n, k)-kernels

In this section, we refine the general cut-criterion obtained in Property 5 for the case of(n, k)-kernels. ForX ⊂ S

Property 21 (cut-criterion) An (n, k)-kernelK = {(S ∪ B, E), i, o} is valid if and only if for every non-empty
X ⊂ S,

2|Γ(X)| ≥ 4|X |+ min(o(Γ(X)), k). (7)

Proof. First we prove that the criterion (5) implies (7). LetX ⊂ S and letW = X ∪Γ(X). AsK(N) is bipartite,
there are4|X | edges insideW . So δ(W ) = δ(Γ(X)) − 4|X |, o(W ) = o(Γ(X)), andi(W ) = i(Γ(X)). By
Property 10/(iv)

δ(Γ(X)) = i(Γ(X)) − o(Γ(X)) + 2|Γ(X)|,
and soE(W ) = δ(W ) + o(W ) − i(W ) − min(k, o(W )) = 2|Γ(X)| − 4|X | − min(k, o(Γ(X))).

If K(N) is valid, then, by Property 5E(W ) ≥ 0 for all W . Applying it for W = X ∪ Γ(X), we obtain (7).

Conversely, suppose that condition (7) is satisfied, but Property 5 is violated. We show that there is a setX ⊂ S
such thatE(X ∪ Γ(X)) < 0, contradicting condition (7).

If property 5 is violated, it exists a setW ⊂ S ∪ B such thatE(W ) < 0. Without loss of generality, we may
assume thatW is connected, otherwise take asW a connected component with strictly negative excess.

If W ⊂ B, thenW is reduced to a blockB, sodeg(B) = i(B) − o(B) + 2 but from Property (??) o(B) ≤ 2,
soE(W ) ≥ 0. If W intersectsS, let X = W ∩ S. As K(N) is bipartite andW is connected,W ⊂ X ∪ Γ(X).
By lemma 11 and remark12 , for everyB ∈ Γ(X) \ W , E(W ∪ {B}) ≤ E(W ) and soE(W ∪ {B}) < 0 and
E(X ∪ Γ(X)) < 0, contradicting (7). 2

In the example of Figure 6, there are4 blocks adjacent to anS-switchS, two blocks ofB2 containing5 and3
inputs, one ofB1 containing1 input, and one ofB0 containing3 inputs. PuttingX = {S}, and apply the cut-
criterion 7 with|Γ(X)| = 4 , o(Γ(X)) = 5, and4|X | = 4. We obtain4 ≥ min(5, k), so, wheneverk ≥ 5, no
(n, k)-kernel can contain the depicted sub-graph.

X ∪ Γ(X)
(5, 2) (3, 2) (1, 1) (3, 0)

S

Figure 6: AnS-switchS and its four adjacent blocks.

Note that the cut-criterion is due to parity the same fork = 2p + 1 andk = 2p + 2. So a valid(n, k)-kernel for
k = 2p + 1 also satisfies the cut-criterion fork = 2p + 2, but one output is missing. Hence it is enough to add
to the network one output, without violating the cut-criterion of such a network. It seems very likely that such a
transformation can always be done with a bounded number of extraS-switches. This justify the next conjecture

Conjecture 21.1 N ′(n, 2p + 1) = N ′(n, 2p + 2) + O(1).
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7.1 Casesk = 5, 6

In order to derive an accurate bound, we need to classify the set ofS-switches adjacent to the blocks ofB2.

Definition 22

- DenoteSi,j , i + j ≤ 4 the set ofS-switches which are adjacent toi blocks ofB2 and toj blocks ofB0 (and
hence to4 − i − j blocks inB1) Let si,j = |Si,j |.

- Let S2 = ∪jS2,j , S1 = ∪jS1,j andS0 = ∪jS0,j . As usual, lets2 = |S2|, s1 = |S1|, s0 = |S0|.

In the same way we define forA ⊂ S, Si,j(A) = Si,j ∩ A, andsi,j(A) = |Si,j(A)|.

Lemma 23 In a valid (n, k)-kernel withk ≥ 5, Si,j = ∅ wheneverj < i.

Proof. Consider anS-switchS ∈ S and apply the cut criterion (property 21) to the setX = {S}. 2|Γ(X)| ≥ 4 +
min(o(Γ(X)), k). As |Γ(X)| = 4, we obtainmin(o(Γ(X)), k) ≤ 4. Wheneverk ≥ 5, necessarilyo(Γ(X)) ≤ 4.

Finally observe that for anX = {S} with S anS-switch inSi,j , o(Γ(X)) = 2i + (4 − (i + j)) = 4 + i − j, so
wheneverk ≥ 5, o(Γ(X)) ≤ 4 impliesi ≤ j. 2

Note that Lemma 23 implies that everyS-switch has more neighbors inB0 than inB2. In particular,S2 = S2,2.

In the casek = 4, the minimum network that we constructed in 6.1 is such that all the S-switches are elements of
S4,0.

Lemma 24 In a valid (n,k)−network with k ≥ 5,

s2 ≤
(

b0

2

)

.

Proof. We say that two (not necessarily distinct) blocks ofB0 share anS-switchif they are adjacent to the same
S-switch ofS2. Associate an auxiliary multi-graphH(K) to any valid(n, k)-kernelK as follows.

- The nodes ofH(K) are the blocks ofB0.

- ConnectBa andBb by j edges, ifBa andBb sharej S-switches ofS2.

The graphH(K) hasb0 vertices ands2 edges. It suffice to prove thatH is a simple graph if the associated kernel
is valid, ass2 ≤

(

b0
2

)

holds for any simple graph withb0 vertices ands2 edges.

First we show thatH(K) does not contain loops. Consider anS-switch S ∈ S2, and apply the cut-criterion
(property 21) toX = {S}. We have|X | = 1, ando(Γ(X)) = 4 (sinceX ∈ S2). Somin(o(Γ(X)), k) ≥ 4, and
the cut-criterion implies|Γ(X)| ≥ 4, consequently,X is adjacent to4 distinct blocks.

Next we prove thatH(K) does not have double edges. Consider twoS-switchesSa, Sb ∈ S2 and letX =
{Sa, Sb}. The cut-criteria implies that2|Γ(X)| ≥ 8 + min(o(Γ(X)), k).

As o(Γ(X)) ≥ 4, we have2|Γ(X)| ≥ 12, so |Γ(X)| ≥ 6. Either |Γ(X)| = 6, but o(Γ(X)) = 4, which means
thatSa andSb are adjacent to the same pair of blocks ofB2, and therefore the pairs of blocks ofB0 adjacent toSa

andSb are distinct. Otherwise|Γ(X)| ≥ 7 which means thatSa andSb have at most one block ofB0 as common
neighbor. 2

Theorem 25 For k = 6, N ′(n, 6) ≥ n
4 +

√

n
8 + 3

2 .

11



Proof. Equation (6) can be written as
2b2 = 2n − 4s + k + 2b0. (8)

By definition ofS2, the number of blocks ofB2 is b2 ≤ 2s2 + (s − s2) = s + s2, that isb2 − s ≤ s2. Combining
it with (8) we get

2s2 ≥ 2(b2 − s) ≥ 2n − 6s + k + 2b0.

Assume thats < n
4 +

√

n
8 + 3

2 , then

2s2 >
n

2
+ k − 6

√

n

8
+

3

2
+ 2b0.

Applying Lemma 24, we deduce

b0(b0 − 1) > n
2 + k − 3

√

n
2 + 6 + 2b0.

Fork = 6, this implies

b0(b0 − 3) >
n

2
+ 6 − 3

√

n

2
+ 6 =

(
√

n

2
+ 6

) (
√

n

2
+ 6 − 3

)

,

so b0 >
√

n
2 + 6. Putting this in equality (5), we obtain a contradiction. Itfollows thats ≥ n

4 +
√

n
8 + 3

2 , as

required. 2

7.2 Casek = 7, 8.

For k ≥ 7, it is simpler to use a specific case of the cut criteria (property 21) for specific subgraphs that we call
patterns.

Definition 26 A patternP is a subsetP ⊂ S1 ∪ S2 such thatP ∪ (Γ(P ) ∩ B0) is a connected subgraph of the
kernel.

Lemma 27 (pattern condition) In a valid (n, k)-kernel, a patternP with o(Γ(P )) ≤ 2⌈k/2⌉ satisfies :

s1,2(P ) + 2(s2(P ) + s1,1(P )) ≤ 2

Proof. Let denotemi(P ), i = 0, 1, 2, the number of edges betweenP andΓ(P ) ∩ Bi

Remark that aso(Γ(P )) ≤ 2⌈k/2⌉ the cut criteria forP simplifies to4|P | ≤ 2|Γ(P )| − o(Γ(P )) Note that
o(Γ(P )) = |Γ(P ) ∩ B1| + 2|Γ(P ) ∩ B2|, so

2|Γ(P )| − o(Γ(P )) = |Γ(P ) ∩ B1| + 2|Γ(P ) ∩ B0|

P being a pattern, we have
|Γ(P ) ∩ B0| ≤ m0(P ) − |P | + 1

Combining these two equations leads to4|P | ≤ 2(m0(P )− |P |)+m1(P )+2. Now,4|P | = m0(P )+m1(P )+
m2(P ), som2(P ) ≤ m0(P ) − 2|P | + 2; equivalently

m2(P ) − m0(P ) + 2|P | ≤ 2

For aS-switchS in Si,j we havem2(S) − m0(S) + 2 = i − j + 2 (that is2 for S ∈ S2 ∪ S1,1, 1 for S ∈ S1,2

and0 for S ∈ S1,3). So,m2(P ) − m0(P ) + 2|P | = 2(s2(P ) + s1,1(P )) + s1,2(P ) . 2

12



Now, we derive new equations that will be used for the casesk = 7, 8 andk = 9, 10. Both equations hold,
however, for every valid minimal(n, k)-kernel withk ≥ 3.

Lemma 28

4s + 4s2 + 2s1 ≥ 2n + k + 2b0 + 2(e2 − b2) ≥ 2n + k + 2b0 (9)

4s −
∑

(j − i)si,j ≥ n + k + n1 + 2(e2 − b2) ≥ n + k + n1 (10)

Proof. Let us show the following inequality.

3e2 + e1 + e0 ≥ 2n + k + 2b0 + 2(e2 − b2). (11)

To see this, recall that by lemma 17e2 = n2, e1 = n1 + b1, ande0 = n0 + 2b0. Soe2 + 2e2 + e1 + e0 =
n2 + 2b2 + 2(e2 − b2) + n1 + b1 + n0 + 2b0 = 2n + k + 2b0 + 2(e2 − b2) by (3) and (4).

Inequality (9) is a combination of (11) and3e2 + e1 + e0 = (e2 + e1 + e0) + 2e2 = 4s + 4s2 + 2s1. Note that,
ase2 ≥ b2, this implies left part of inequality 9.

For inequality (10), we simply evaluatee1 + 2e2 =
∑

((4 + i − j) · si,j) = 4s − ∑

(j − i)si,j which is also
b1 + n1 + 2n2 = b1 + n1 + 2b2 + 2(n2 − b2) = n + k + n1 + 2(n2 − b2). 2

We will now focus on theS-switches ofS′ = S2 ∪ S1,1 ∪ S1,2. The blocks ofB0 adjacent toS′ will be of
importance sowe defineB′

0 as the set of blocks ofB0 adjacent to someS-switch ofS′.

Lemma 29 In a valid (n,k)−kernel with k ≥ 7, if a block ofB′
0 is adjacent to twoS-switches ofS′, then

necessarily bothS-switches are inS1,2.

Proof. Note that we simply consider a patternP with 2 S-switches. We haveo(Γ(P )) ≤ 8 and we can apply the
pattern condition 27 stating that2(s2(P )+ s1,1(P ))+ s1,2(P ) ≤ 2. This last equation is equivalent to the lemma.
2

Lemma 30 In a valid (n, k)-kernel withk ≥ 7,

b0 ≥ 2s2 + s1,1 +
√

4s1,2 (12)

Proof. LetB′′
0 be the set of blocks adjacent toS1,2, and letb′′0 = |B′′

0 |. . According to Lemma 29, the blocks ofB′
0

adjacent toS2 ∪ S1,1 are all distinct (that is|Γ(S2 ∪ S1,1)| = 2s2 + s1,1 blocks) moreover they are also distinct
from the blocks ofB′′

0 , so
b0 ≥ 2s2 + s1,1 + b′′0 (13)

It remains to show thatb′′0 ≥
√

4s1,2; for that we associate an auxiliary graphH(K) to every valid(n, k)-kernel
as follows.

- The vertices are the blocks ofB′′
0 .

- We put an edge between two blocks if they are adjacent to the sameS-switch ofS1,2. (Note that anS-switch of
S1,2 is adjacent to2 blocks ofB′′

0 .)

We show that the graphH(K) is simple and triangle free. First, lemma 29 assures thatH(K) is simple. Assume
now that the graphH(K) contains a triangle where the three edges correspond toS-switchesA1, A2, A3 ∈ S1,2

then an easy computation shows that the cut-criteria 21 is not satisfied for the setX = {A1, A2, A3} (contradic-
tion).

As H(K) is triangle free, it contains at most(
b′′
0

2 )2 edges, hences1,2 ≤ (
b′′
0

2 )2 andb′′0 ≥
√

4s1,2. The lemma
follows then from equation 13. 2
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Theorem 31 For k ≥ 7, N ′(n, k) ≥ n
3 + 2

3

√

n
3 + O(1).

Proof. Combining (9) with (12), we get4s + 4s2 + 2s1 ≥ 2n + k + 4s2 + 2s1,1 + 2
√

4s1,2 + 2(e2 − b2) or
equivalently

4s + 2(s1,2 + s1,3) ≥ 2n + k + 2
√

4s1,2 + 2(e2 − b2). (14)

This implies
6s ≥ 2n + k + 2

√

4s1,2. (15)

So,s ≥ n
3 + k

6 +

√
4s1,2

3 . Assume thats = n
3 + O(

√
n). Then by inequality (14) we must haves1,2 + s1,3 =

s + O(
√

n), (i.e. almost all theS-switches are inS1,2, andS1,3). Sos1,2 + s1,3 = n
3 + O(

√
n), Using equation

(10), we have4s − s1,2 − 2s1,3 ≥ n + k + O(
√

n).

3s1,2 + 2s1,3 ≥ n + k + O(
√

n).

Sos1,3 = O(
√

n) ands1,2 = n
3 + O(

√
n), and

√

S1,2 =
√

n/3 + O(1). Taking again equation (15), we obtain

6s ≥ 2n + 8 + 2
√

4n/3 + O(1). Finally s ≥ n
3 + 2

3

√

n
3 + O(1). 2

Remark 32 Consider a(n, 7)-kernel with n
3 + 2

3

√

n
3 + o(

√
n) S-switches, then it satisfies all the equations in a

tight way. So in such a network we have :

- All the blocksB2 excepto(
√

n) have degree1;

- b2 = e2 = s + o(
√

n) = n
3 + 2

3

√

n
3 + o(

√
n).

- s = s1,2 + s1,3 + o(
√

n).

- b1 = n + 7 − 2b2 = n
3 − 4

3

√

n
3 + o(

√
n).

- b0 = 2
√

n
3 + o(

√
n)

- e0 = 2s1,2 + 3s1,3 = n + 2
√

n
3 − s1,2 + o(

√
n)

- n1 = s1,2 − b1 = s1,2 − n
3 + 4

3

√

n
3 + o(

√
n)

Note that it impliess1,2 ≥ n
3 − 4

3

√

n
3 + o(

√
n) andn1 ∈ [0, 2

√

n
3 ]. So that the network is mostly build from

n
3 + O(

√
n) “groupsT7” made of1 blockB1, one blockB2 both with degree 1 and two blocks ofB0 altogether

adjacent to oneS-switch ofS1,2. (see Figure 7).

Ba ∈ B0 Bb ∈ B0

(1, 2) (0, 1)

Figure 7: The groupT7 contains1 input and2 outputs, the group can be considered as an “edge” linking two
blocks ofB0
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7.3 Casek = 9, 10

Fork ≥ 9, we defineB̂0 = B0 \ B′
0 (blocks ofB0 not adjacent toS′).

Lemma 33 In a valid (n, k)-kernel withk ≥ 9, there is no pattern made of3 S-switches inS1,2

Proof. Remark that such a patternP would satisfyo(Γ(P )) ≤ 10; so the pattern condition 27 can be applied, and
s1,2(P ) ≤ 2. 2

Lemma 34 In a valid (n, k)-kernel withk ≥ 9,

b0 ≥ b̂0 + 2s2 + s1,1 +
3

2
s1,2 (16)

Proof. As b0 = b̂0 + b′0, it suffices to considerb′0. According to Lemma 29, a blockB′
0 adjacent to twoS-switches

of S′ is adjacent to twoS-switches ofS1,2. Counting the blocks ofB′
0 we find2 distinct blocks for eachS-switch

in S2, 1 distinct block for eachS-switch inS1,1, and at least3/2 blocks for eachS-switch inS1,2 (in fact either
there are2 distinct blocks for oneS-switch inS1,2, or 3 distinct blocks for2 S-switches sharing a block ofB′

0 by
lemma 33). This impliesb′0 ≥ 2s2 + s1,1 + 3

2s1,2. 2

Lemma 35 In a valid (n, k)-kernel withk ≥ 9, anS-switchS of S1,3 cannot be adjacent to two blocks ofB′
0.

Proof. Let S be aS-switch ofS1,3 adjacent to two blocksBa, Bb ∈ B′
0, and letSa (resp.Sb) be aS-switch ofS′

adjacent toBa (resp.Bb). Let X = S, Sa, Sb then one can easily check that the cut-criteria 21 is not satisfied for
X . 2

Theorem 36 For k ≥ 9, N ′(n, k) ≥ 3
8n +

√
n

4 + O(1).

Proof. Combining inequalities (16) and (9), we obtain

4s + 2s1,3 ≥ 2n + k + 2b̂0 + s1,2 + 2(e2 − b2). (17)

Summing with equation (10) (4s− s1,2 − 2s1,3 − (s0 − s0,0) ≥ n + k + n1), we get

8s ≥ 3n + 2k + 2b̂0 + 2s1,2 + n1 + (s0 − s0,0 + 2(e2 − b2)). (18)

So we have already proven thats ≥ 3n+2k
8 . Suppose nows = 3

8n+O(
√

n), then every inequality used to establish
inequality (18) is tight within anO(

√
n) error. Particularly from inequality (18),n1 = O(

√
n), s1,2 = O(

√
n),

ands0,0 = s0 + O(
√

n), andn2 = e2 = b2 + O(
√

n).

As n1 = O(
√

n), almost all the blocks ofB1 have degree1 and no input, similarly,n2 = b2 + O(
√

n) implies
that almost all blocks ofB2 have degree1 and1 input. Note that noS-switchS in S1,1 ∪ S0,0 can be adjacent to
blocks inB1 ∪ B2 having all degree one (otherwise the setW = S ∪ Γ(S) would satisfyo(W ) − i(W ) ≥ 3 and
|Γ(W )| = 1). So,s1,1 + s0 = s1,1 + s0,0 + O(

√
n) = O(

√
n). Globally we get

s = s2 + s1,3 + O(
√

n) =
3n

8
+ O(

√
n)

Now, n + k = 2b2 + b1 = 2e2 + e1 + O(
√

n) = 4s2 + 2s1,3 + O(
√

n) = 3n
2 − 2s1,3 + O(

√
n). It follows that

s1,3 = n
4 + O(

√
n), s2 = n

8 + O(
√

n).

Consequently, the(n, k)-kernel is mostly made ofn8 S-switches ofS2 and approximately2
(

n
8

)

= n
4 S-switches

of S1,3. From Lemma 35, anS-switch S ∈ S1,3 cannot be adjacent to two blocks ofB′
0. As there is at least
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2s2 = n
4 + O(

√
n) blocks ofB′

0 and n
4 + O(

√
n) S-switches ofS1,3, we conclude that eachS-switch ofS1,3

shares exactly one block with anS-switch ofS2.

Moreover most of the common blocksB′
0 must have only degree2 and no input.

It follows that the(n, k)-kernel is mostly made ofT10 groups defined below.

Definition 37 A groupT10 is a subgraph of an(n, k)-graph formed by oneS-switch ofS2 and twoS-switches of
S1,3 sharing2 blocks ofB′

0 with no inputs (see Figure 8 for illustrations). Such a groupis adjacent to four blocks
of B̂0.

 1/2  1/2  1/2

0/00/0
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Figure 8: a groupT10 in two representations.

Let t10 be the number ofT10 groups, we just proved that supposings ≤ 3n
8 + O(

√
n) implies that

t10 =
n

8
+ O(

√
n)

We define an auxiliary graphG(K) as follows. LetV (G(K)) = B̂0, and connect two blocks of̂B0 by an edge in
G(K), if they are adjacent to oneS-switch ofS1,3 of a T10-group), as definedG(K) contains2t10 edges and̂b0

vertices.

Easy Applications of The cut-criteria (Property21), implies thatG(K) is simple and without triangle, therefore

2t10 ≤ ( b̂0
2 )2; which means that̂b0 ≥ √

n + O(1) Substituting this last value into inequality (18), we obtain

s ≥ 3
8n +

√
n

4 + O(1) as required. 2

8 Asymptotics

Lemma 38
∀k ≥ 9, N ′(n, k) ≥ n

2
− 2n

k

Proof. Let us assumek = 2p+8. The idea is to prove thatb0 ≥ b2− 2n
k , and to use Equation (6) which implies that

s ≥ n
2 + b0−b2

2 . LetS∗ be the set ofS-switches adjacent to at least one block ofB2 (i.eS∗ = S2∪S1,1∪S1,2∪S1,3).
We evaluate the number of blocks inB0 adjacent toS-switches inS∗, so letb∗0 = |Γ(S∗) ∩ B0| be this number.
Let us calladjacenttwo S-switches ofS∗ adjacent to the same block ofB0, and consider the set of connected
componentsK = K0, K1, . . . , Kp−1 of the graph that this relation induces on the vertex setS∗. Then, from
construction∪i=0,p−1Ki = S∗ andΓ(Ki) ∩ B0 ∩ ΓKj = ∅ ; hence we have :

b∗0 = Γ(S∗) ∩ B0 =
∑

i=0,p−1

|Γ(Ki) ∩ B0| (19)

We partitionK into two setsKsmall ∪ Kbig , whereKsmall containssmallcomponents (such thato(Γ(Ki)) ≤ k)
andKbig contains thebig ones (such thato(Γ(Ki)) > k). Applying cut-criteria to small component leads too :
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2|Γ(K)| ≥ 4|K| + 2|Γ(K) ∩ B2| + |Γ(K) ∩ B1|; aternatively :

K ∈ Ksmall, |Γ(K) ∩ B0| ≥ |Γ(K) ∩ B2| + (4|K| − |Γ(K)|) ≥ |Γ(K) ∩ B2| (20)

Now we evaluate|Γ(K) ∩ B0| for K a big component. Consider a subsetJ ⊂ K whereJ is connected and such
that|J | < p, the cut criteria implieso(Γ(J)) ≤ 2|J | + 4; soJ is a pattern satisfying condition 27. So we have

2(s1,1(J) + s2(J)) + s1,2(J) ≤ 2

If K can be written as the union of at mostq sub-componentsJ , we have

2(s1,1(K) + s2(K)) + s1,2(K) ≤ 2q (21)

The cut-criteria forK is2|Γ(K)| ≥ k+4|K|; as|Γ(K) ∩ B1|+|Γ(K) ∩ B2|| ≤ |K|+s2(K)+2s1,1(K)+s1,2(K)
this implies2|Γ(K) ∩ B0| ≥ k + 4|K| − (2|K|+ 2s2(K)+ 4s1,1(K)+ 2s1,2(K)). So we get the next equation :

|Γ(K) ∩ B0| ≥ |K| + k

2
− (2s1,1(K) + s2(K) + s1,2(K)) (22)

(23)

Using the equation
|Γ(K) ∩ B2| ≤ s2(K) + |K|

We obtain

|Γ(K) ∩ B0| ≥ |Γ(K) ∩ B2| +
k

2
− 2(s1,1(K) + s2(K)) − s1,2(K)

According to 21 this implies :

|Γ(K) ∩ B0| ≥ |Γ(K) ∩ B2| − (2q − k

2
)

We choose to splitK into setsJ of sizep, p + 1, so we haveq ≤ |K|
p .

Now the value
∑

K big component

(

2|K|
p − k

2

)

is maximum when there is only one big component that is
∑

K big component≤ 2n
p .

Now, summing over all the components (the big and the small) we obtain :

b∗0 =
∑

K∈K
|Γ(K) ∩ B0| ≥

∑

K∈K
|Γ(K) ∩ B2| −

2n

p
≥ b2 −

2n

p

Hence, ask = 2p + 8, b0 ≥ b2 − 4 n
k−8 ands ≥ n

2 − 2n
k

2

9 Upper bounds, Constructions

In this section, we give constructions of valid(n, k)-graphs fork = 6, 8, 10. We will see that the validity of the
constructions can be easily checked using the cut-criteria21.
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9.1 Casek = 3, 4

Proposition 39 The construction of Figure 4 fork = 4 is valid.

Proof. Note that everyS ∈ S is a twinS-switch, so for allS ∈ S, o(Γ({S})) ≥ 4. So, byt the cut criterion it
suffices to verify :

|Γ(X)| ≥ 2|X |+ 2, ∀X ⊂ S, X 6= ∅. (24)

Now, any setX ⊂ S is adjacent to the2 large block ofB2 and to2|X | distinct blocks ofB2 each having degree1.
So,Γ(X) = 2|X |+ 2. And property 24 is satisfied. 2

9.2 Casek = 5, 6

Theorem 40

N ′(n, 6) ≤ n

4
+

√

n

8
+ O(1).

According to the lower bound (Theorem 25), an optimal solution must be mainly build of twins connecting blocks
of B0, in such a way that the auxiliary graphH(K) is simple.

Proof.

First we describe the network

18



B0

B0

B0 B0 B0

B0

B0

B0B0

B0

B0

B0

B0 B0B0

B0B0

B0 B0

B0B0
B0

B0

B0

s

s

s

s s

s

s

s s

s

s

s

s ss

Figure 9: Generic(n, k)-kernel fork = 5, 6

Consider a toroidal grid of3 vertical line segments andℓ, ℓ/geq2 horizontal cycles. Each of the3ℓ vertices of the
grid represents anS-switch, and each of the6ℓ − 3 = b0 edges joining these vertices represents a block ofB0.

- Each of the6 S-switches of the first and last horizontal cycles is adjacentto 3 blocksB0; we add6 blocks
B1 with degree1 and no input and connect each of them to one of these6 S-switches. Note that the6
S-switches are inS0,3.

- The remaining3ℓ − 6 S-switches are adjacent to4 blocksB0 and hence belong toS04.

- Finally we add a twin (see definition 20) connecting any pairof blocksB0 not sharing aS-switch.

The network containsb0 = 6ℓ − 3 blocks inB0. Among themb0 − 12 share aS-switch with 6 others blocks,
6 share aS-switch with 5 blocks (corresponding to the6 vertical edges of the top and bottom), and6 share a
S-switch with4 blocks (corresponding to6 horizontal edges of the top and bottom). Lett be the number of twins,
a twin being adjacent to2 blocks

2t = (b0 − 12)(b0 − 6) + 6(b0 − 7) + 6(b0 − 4) = b0(b0 − 7) + 18

Note that each blockB0 is adjacent to2 S-switches in the grid and to twins, it follows thatn0 =
∑

B∈cB0
(deg(B)−

2) = 2t; moreovern1 = 0, n2 = 2t. Hence
n = 4t

Now, the number of outputs isb1 + 2b2 = 4t + 6 = n + 6. The number ofS-switches is

s = t + 3ℓ =
n

4
+

b0 + 3

2
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As t = b0(b0−7)+18
2 , b0 = 7

2 +
√

n
2 − 23

4 , ands ≤ n
4 +

√

n
8 − 23

16 + 3 + 1
4 .

For example withℓ = 2 we getb0 = 9, t = 18, s = t + 3ℓ = 24, n = 4t = 72. Hences = 18 + +
√

9 − 23/16+
3 + 1/4.

Now, we prove the validity of the kernel.

For this Note that the cut-criterion is now :

Γ(X) − 2|X | ≥ min(o(Γ(X))/2, 3)

To prove the statement, let denoteX ′ ⊂ X be the set of switches in the grid, and notet the number of twins inX
then|Γ(X)| − 2|X | ≥ Γ(X ′) + 2t − 2(t + |X ′|) = Γ(X ′) − 2|X ′|. Remark now thatΓ(X ′) is the number of
edges adjacent to a subset of vertices of the grid, and one check easily thatΓ(X ′) − 2|X ′| ≥ 3 as soon|X ′| ≥ 2,
so if |X ′| ≥ 2 the cut-critetion is ensured.

Note also that ift ≥ 3, one can remove on twin decreasingΓ(X) by at least2, and keepsmin(o(Γ(X))/2, 3)
unchanged, hence we can restrict ourselves too cuts with at most2 twins.

The only cases that still need to be considered are|X ′| ≤ 1, t ≤ 2. Those can be checked immediatly.

2

9.3 Casek = 7, 8

Theorem 41 For k ≤ 8,

N ′(n, k) ≤ n

3
+

2

3

√

n

3
+ O(4

√
n).

Proof. The network is constructed as follows :

Recall that according to the lower bound blocks ofB0 must be connected either by edges corresponding toT7

groups or by triangles corresponding toS1,3 S-switches whose adjacent blockB2 has degree1 (triangle group).
We will denotet7 (resp.y) the number ofT7 (resp. triangle) groups.

- First we use two setsC = {C1, C2, . . . , Cp} andD = {D1, D2, . . . , Dp} of p blocks ofB0 with deg(Ci) =
deg(Di) = p + 1; these blocks are connected into a bipartite graphKp,p, where edges areT7 groups, we
have

t7 = p2

Note that then each block ofC ∪ D must still be connected to aS-switch (see Figure 7 for an illustration).

- Secondly we add four setsE = {E1, E2, . . . , E√
p}, F = {F1, F2, . . . , F√

p}, I = {I1, I2, . . . , I√p}, and
J = {J1, J2, . . . , J√

p} of
√

p blocks ofB0 with deg(Ei) = deg(Fi) = deg(Ii) = deg(Ji) =
√

p + 2.

As |E||F| = C (resp. |I||J | = |D|) we can associate to each blockC ∈ C (resp. D ∈ D) to one pair
(EC , FC) (resp. (ID, JD) resp.) so that the mapping is one to one. Then, the triple{C, EC , FC} (resp.
{D, ID, JD} is connected by a triangle. Note that :

y = 2p.

and that each block ofE ∪ F ∪ I ∪ J must still be connected to2 S-switches and this is performed using a
grid like network (see figure).
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Let us count the number of inputs. outputs andS-switches.

- the number of inputs ist7 + y +
∑

B∈B0
(deg(B) − 2) = 3t7 + 2y = n = 3p2 + 4p.

- the number of outputs isb1 + 2b2 = 3t7 + 2y + 8 = n + 8.

- there aret7 S-switches inS1,2 plus y S-switches inS1,3 plus 8
√

p S-switches inS0,4 (in the grid-like
network).

Finally n = 3p2+4p,
√

n/3 = p+O(1), s = p2 +2p+8
√

p = 3p2+4p
3 + 2p

3 +O(n1/4) = n
3 + 2

3

√

n
3 +O(n1/4).
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S SSS
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E1 E1

E2E2

F1F1

F2F2

I1I1 J1J1

I2 I2 J2J2

C1 D1

C2 D2

C3 D3

C4 D4

groupsT7

S1,3

S1,3

S1,3

S1,3

S1,3

S1,3

S1,3

S1,3

Figure 10: The three layers of the construction fork = 8 andp = 4.

Now we prove the validity of such a network.
Call abad seta setX ⊂ S violating the cut-criteria, and assume that it exist a bad set. First, remark that there
exists a bad setA such thatA ∩ S0,4 = ∅
ForX ⊂ S, let Γ0(X) = Γ(X) ∩ B0 and letXt7 = X ∩ S1,2 andXy = X ∩ S1,3.

Note thato(Γ(A)) = 3|At7 | + 2|AY |, |Γ(A)| = 2|At7 | + |Ay| + |Γ0(A)|. So, whenevero(Γ(A)) ≥ 7 the
cut-criteria reduces to2|Γ0(A)| ≥ 8 + 2|Ay|, in other words :

Γ0(A) ≥ 4 + |Ay| (25)

Assume that it does not exist a bad set witho(Γ(A)) < 10. Consider a bad setB. We can assumeBt7 = ∅
(otherwise removing anyT7 S-switch leads also to a bad set as it decreaseΓ(B) ∩ B0 and letAy unchanged).
HenceB contains onlyS-switches inS1,3 , moreover aso(Γ(B)) ≥ 10 we have|B| = |By| ≥ 5. As 5 edges of a
bipartite graph are adjacent to a least5 nodesB is adjacent to at least5 blocks ofE ∪F ∪I ∪J and to|B| blocks
of C ∪ D, hence|Γ0(B)| ≥ |B| + 5.

Now we prove that no bad set witho(Γ(A)) < 10 exists.

For o(Γ(A)) ∈ [7, 9] it suffice to show thatΓ0(A) ≥ 4 + |Ay|. in this case eitherAy = 0, 1, 2; At7 = 3 − |Ay|;
or Ay = 3 andAt7 = 1 (these cases can be checked immediately).

Foro(Γ(A)) < 7, the criteria becomes2Γ0(B) ≥ 4|By| + 3|Bt7 | there are3 cases :

- |Bt7 | = 0, |By| ≤ 3, Γ0(B) ≥ 2|By|;

- |Bt7 | = 1, |By| ≤ 1, Γ0(B) ≥ 2|By| + 2 for

- |Bt7 | = 2, |By| = 0, Γ0(B) ≥ 3
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All can be checked immediately. 2

9.4 Casek = 9, 10

Theorem 42 For k ≤ 10,

N ′(n, k) ≤ 3n

8
+

√
n

4
+ O(n1/4)

Proof. The construction is the same that to the one given fork = 7, 8 (see section 9.3) except that in the first
bipartite graph edges corresponding whenk = 7, 8 to T7 groups are now replaced byT10 groups; indeed aT10

group replace2T7 groups. Precisely a pair of edges is replaced by at10 group, note to do so edges are paired
arbitrarily.

Let us count the number of inputs. outputs andS-switches.

- t10 = p2/2

- y = 2p

- the number of inputs is4t10 + y +
∑

B∈B0
(deg(B) − 2) = 8t10 + 2y = n = 4p2 + 4p.

- the number of outputs isb1 + 2b2 = 8t10 + 2y + 8 = n + 8.

- there are3t10 S-switches in theT10 groups plusy S-switches in the isolatedY groups plus10
√

p S-switches

in the grid-like network. Sos = 3p2

2 + 2p + 10
√

p

Finally n = 4p2 + 4p,
√

n
4 = p

2 + O(1), s = 3n
8 + p

2 + O(
√

p) = 3n
8 +

√
n

4 + O(n1/4).

Now we prove the validity of such a network.
Call abad seta setX ⊂ S violating the cut-criteria, and assume that it exist a bad set. First, remark that it exists
a bad setA such thatA ∩ S0,4 = ∅

Assume thatB ∩ S2 = ∅, theno(Γ(B)) = 2|B| and the criteria becomes|Γ(X) ∩ B| ≥ 3|X |, if |X | ≤ 5 and
|Γ(X) ∩ B| ≥ 2|X | + 5 for |X | ≥ 5. Note that allS-switches can be considered as edges of the two bipartite
graphs where vertices are block ofB0, if X denotes

with e edges in the large one ande′ in the small one (e + e′ = |X |), soΓ(X) ∩ B≥2(e + e′) + 2
√

e + 2sqrte′ =

2|X |+2
√

X. This is larger than3|X | for X ≤ 4. ForX = 5, we get at least5 vertices and the criteria is satisfied.

HUM PAS BIEN

First we show that if a bad set exists it contains less than14 inputs. To do this we check the cut-criteria forlarge
setsS (i.e such thato(Γ(S)) ≥ 10), for such sets, the criteria reduces toΓ(B) ∩ B≥2|B| + 5. Consider a bad set
B with o(Γ(B)) ≥ 10 and such that|B| is minimum. Then

- eithero(Γ(B)) ≥ 14 andS2(B) = ∅ (otherwise removing anyS1,3 S-switch leads also to a smaller bad set
as it decreaseB by 1 andΓ(B) ∩ B2 by 2). Moreover,B do not contains anyS1,3 block located inside a
T10 group (such a block would be adjacent to2 blocks (1B2 and1 B0 with zero input) that are otherwise
isolated, so it could be removed to obtain a smaller large badset.

So, B contains onlyS-switches ofS1,13 corresponding to the edges of the second bipartite graph, then
|Γ(B) ∩ B0| ≥ 2|B|+ 2

√

|B|, As |B| ≥ 7, |Γ(B) ∩ B0| ≥ 2|B|+ 7 (contradiction). Henceo(Γ(B)) ≤ 14

- or o(Γ(B)) ≤ 14.

It remains to check the criteria for set with less than14 inputs.

2
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9.5 Asymptotic

Lemma 43
∀k ∈ N, lim

n→∞
N ′(n, k) ≤ 1

2
n + O(k).

Proof. We describe a general construction for a valid(n, k)-kernel (k ≥ 6, 2|k) with n/2 + O(k) S-switches. It
is built almost exclusively ofZ-groups.

A Z-group is defined as follows. A blockB0 with i(B0) = 1, o(B0) = 0 and a blockB2 with i(B2) = 1,
o(B2) = 2 connected to anS-switch (see Figure 11.) It is in fact a combination of a groupY and block ofB0.

y

x y

x

x

x

y

y

(1, 2) (1, 0)S

Figure 11: AZ-group

For aZ-groupZ, ∆(Z) consists of four links. The role of these links is not symmetric, they are labeledx, x, y, y.

To describe the network, it is enough to define the interconnection between links ofZ-groups. Fork ≥ 6 and
n = kℓ (2 6 |ℓ), considerkℓ/2 Z-groups indiced asZi,j (i ∈ [0, k

2 − 1], j ∈ [1, ℓ]). Now connect the two links
labeledx in Zi,j to the links labeledy in Zi+1,j+2jk andZi+1,j−2jk (arithmetics on indices is considered in
(mod k

2 ) and(mod ℓ) resp.).

In this way, every extremal link is connected. The edges between the sets of groups{Zi,j : j ∈ [1, ℓ]} and
{Zi+1,j : j ∈ [1, ℓ]}) form a cycle denoted byKi. At each cycleKi, insert anS-switch with two exits in the
middle of one arbitrarily chosen edge. So the number of outputs exceeds the number of inputs by exactlyk.

Figure 12: interconnection of extremal links

Let X ⊂ S, so thatΓ∗(X) is connected. (For the moment we ignore thek
2 S-switches inserted ultimately).

Considering the auxiliary4-regular graphH formed byZ-groups. The girth ofH is at leastk. To see this,
observe that a cycle in the network represent a solution of the equation
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k−1
∑

i=0

xi2
ip = 0 mod ℓ.

Which means that
k−1
∑

i=0

|x1| ≥ k.

If |X | < k, thenX induces a treeX ′ in H , andδ(Γ∗(X)) = δ(X ′) = 2|X ′|+ 2 = |X |+ 2 = i(X) + o(X) + 2.

If X intersect aZ-group of every cycleKi, then at eachKi it either contains two edges ofKi, or it contains two
extra outputs inserted toKi. SoG(X) ≥ 0.

If X is not a tree and does not intersect aZ-group of every cycleKi, thenδ(Γ∗(X)) ≥ k, and henceG(X) ≥ 0.
2
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