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Modern telecommunication satellites are very complex wgleand an important industrial issue is to provide
robustness at the lowest possible cost. A key componentafammunication satellites is an interconnection
network which allows to redirect signals received by theltite to a set of amplifiers from where the signals will

be retransmitted. Designing such network is a complex prolthat was proposed by Alcatel Space Industries. A
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Introduction

detailed overview on the model and the motivations can bedau [2].

Informally, we are looking for a network interconnectinget sf input ports (at each of which a signal enters the
network) with a set of output ports (at each of which a sigeales after amplification). The connections are
made via costly switches withlinks, and the paths connecting inputs to outputs are ligjodit.

Here we suppose that signals are of the same kind so any sigmdde routed to any output (port). In practice,
amplifiers are subject to faults which cannot be repairetith®re is a valué such that the probability that more
than k faults occur is practically negligible. As a first approagiven a number of sighals and a maximal
numberk of faults, we should design a low cost network routingnputs and tolerating up te faulty amplifiers.
The first cost criterion is the number of amplifiers, and theogd is the number of switches. So we consider
networks withn inputs andn + k outputs. In [2] such networks are calléd, k)-networks. An(n, k)-network

is said to bevalid if for any set of at mosk faulty outputs, there exists a setofdisjoint paths interconnecting
then inputs to then non-faulty outputs. The design problem consists of deteingia valid(n, k)-network with

aminimum number of switches

We define ou(n, k)-network as follows.

Definition 1 An (n, k)-network is a tripleN = {(V, E), i, 0} whereG = (V, E) is a graph and, o are integral
functions defined ofY” calledinputandoutputfunctions, such that forany € V, i(v) 4+ o(v) + deg(v) = 4. The

*Research of the second author was done while visiting the@rbASCOTTE (formerly SLOOP), 1I3S-CNRS-INRIA in Sophiafpo-
lis.



total number of inputsig(V') = > .y i(v) = n, and the total number of outputsd§V’) = > . o(v) = n+k,
with k& > 0.

Note that this definition is different but equivalent to tb&f2] where inputs and outputs are introduced as vertices.
Our definition enables us to apply tools of flow theory.

Figure 1: A valid(4, 4)-network with4 inputs and8 outputs on the left, and the numeric representation of the
input/output functions on the right.

Any integral functiono’ defined onV' such that'(v) < o(v) for anyv € V, ando’ (V) = n is called afaulty
output function

Note thato(v) — o' (v) is the number of faults at vertex

Definition 2 An (n, k)-network isvalid, if for any faulty output functiorv’, there aren edge-disjoint directed
paths inG such that each vertaxe V is the initial vertex ofi(v) paths and the terminal vertex @f(v) paths.

Let us denote the minimum number of vertices in a vélidk)-network by (n, k). A valid (n, k)-network with
exactly N (n, k) vertices is called ainimum(n, k)-network.

Problem 1 The design problem consists of determinixign, k) and of constructing minimurtn, k)-networks,
or at least valid(n, k)-networks with a number of vertices close to the optimalealu

In [2], the authors proved that'(n,1) = N (n,2) = n and gave a general construction which yield$n +
n',k) < N(n, k) + N(n', k), under some conditions. In particular, they proved figh, 4) < n + [Z].

In this paper, we present an approach which simplifies thiggdgsoblem, and we apply it for practical values
of k (k < 12). In a first step we derive lower bounds #f(n, k), then we propose effective almost optimal
constructions. We also provide some asymptotic valuesafger values ok. In summary we prove that

N(n,4) = n+[%],

N(n,6) = n+%+/F+0(1),
N(n.8) = n+3+3/5+00Vn),
N(n,10) = n+ =2+ 0(y/n),
N(n,12) = n+ 32 +0(/n).

For larger values of, we show thatV'(n, k) < n 4 % + O(k), this bound is tight as we prove also that :

3n n

Nnk) > 5 - 0(%)



2 Validity and Cut-criterion

We introduce some notation that will be used throughoutghjser.
Given a functionf, we use the notatiofi(4) = > , f(a) for any finite setA.

For asetV c V of agraphG = (V, E), let us denote\ (W) the set of edges connectifig andiW = V \ W,
5(W) the cardinality ofA (W), andI'(1¥) the set of vertices adjacent to a verteXf

In order to prove structural properties, we generalize #feniion of (n, k)-networks. In this general definition,
we impose no restriction on the degree of the vertices.

Definition 3 An (n, k)-graph is a tripleN = {(V, E),i,0} whereG = (V, E) is a multi-graph and, o are
integral functions defined ol, where, for anyv € V, i(v) (resp. o(v)) denotes the number of inputs (resp.
outputs) at. The total number of inputs i§V) = n, and the total number of outputsd§V') = n + k, with
k>0.

Any integral functiono’ defined onV' such that'(v) < o(v) for anyv € V, ando’' (V) = n is called afaulty
output function

A crucial fact is that the validity of én, k)-graph is nicely expressed in term of a supply/demand flovblpro
(see [3, 1] for a definition).

Definition 4 An (n, k)-graphN = {(V, E),i,0} is valid if and only if for any faulty output functiorn’ the
following supply/demand flow problem is feasible in the drag = (V, E): for anyv € V the demand is
demand(v) = o (v) —i(v) 1 and the capacity of every edge Bfis one.

As integral flow problems admit integral solutions, this diibn is equivalent to state that, for any setdhults,
there exist pairwise edge-disjoint paths connecting inputs to nontyaalitputs.

2.1 A cut-criterion for (n, k)-graphs

As any input can be routed to any output, the validity prob&éra (n, k)-graph reduces to a simple flow problem
once the faulty outputs are identified (more formally whea fdwlty output function is fixed as in definition 4).
The next property characterises valid k)-graphs and is a direct consequence of the Ford-Fulkersomngm [3].

Property 5 (min cut & max flow criterion) An (n, k)-graph{(V, E), i, o} is valid if and only if, for any subset
of verticeslW C V theexcesof W,

E(W) = 8(W) + o(W) — i(W) — min{k, o(W)}

satisfies£ (W) > 0.

Proof. Let o’ be a fixed faulty output function, then a supply/demand floabfgm is defined by an integral
(not necessarily positive) demand at each nodén our case, the demand of a node= V' is demand(v) =
o'(v) —i(v). (Note thatdemand(V') = 0, which is always the case for supply/demand problems.) famaof
the Ford-Fulkerson Theorem states that the supply/demaidigm is feasible if and only if

YW CV: §(W) >demand(W) = o (W) —i(W) =i(W) — o (W).
It follows that the(n, k)-graph is valid if and only if

VW CV: §(W)>i(W)—min{o' (W) | o afaulty output functioh (1)

Uf o' (v) — i(v) < 0, then this means that suppliesi(v) — o’ (v) units of flow; remark also that the problem is correctly defires
demand(V) = o/ (V) —i(V) = 0.



By definition, min{o’ (W) | o’ a faulty output functioh is the minimum number of non-faulty outputs ¥.
This minimum is attained either by choosing all the outpnt#/ to be faulty whero(1W) < k, or by choosing:
outputs inW to be faulty whero(W) > k.

Hence,min{o (W) | o a faulty output functioh = o(W) — min{o(W), k}. The property follows then from
equation 1. m]

Remark 6 min{o(W), k} is the maximum number of faults that can occurlif, so the cut-criterion simply
states that the capacity of the bordeifis larger than the differen@¢iV’) — o(W), plus the maximum number
of faults in/.

3 Reduction of (n, k)-networks to their Kernels

In what follows,we suppose: > 1.

We will see that we can apprehend all the interesting pragsedf an(n, k)-network by considering a bipartite
graph, called iterne| associated to it.

The reduction is based on the following observations (sez[al).

Property 7 In a minimal valid(n, k)-network withk > 1, i(v) < 1 for all verticesv.

Proof. Thecut criterionapplied to any single verteximplies thati(v) < 2. If i(v) = 2, theno(v) < 0, since
k > 1. Supposing(v) = 2 and0(v) = 0, we havej(v) = 2. We can remove and connect the two inputs
directly to the two neighbors af, and obtain a smaller vali@h, k)-network. ]

This implies that there are two kinds of vertices in(ank)-network, those witli(v) = 1 and those witti(v) = 0.

Property 8 In a minimal valid(n, k)-network withk > 1, vertices withi(v) = 1 do not form a circuit.

Proof. Let C' be a minimal circuit formed by vertices witljv) = 1. If C' has/ vertices, then(C) = ¢ and
3(C) 4 o(C) = ¢ (as there aré edges insid€” we havet! = §(C) + i(C) + o(C) + 2¢). By thecut criterion,
o(C) = 0, sincek > 1. Therefore, we can remove and connect thé inputs directly to the neighbors ¢, and
get a smaller validn, k)-network. a

Intuitively the kernel will be a bipartitén, k)-graph with two vertex classes: the “blocks” argtswitches”. Most
of the blocks will correspond to the connected componemtadad by vertices withi(v) = 1. S-switches will be
in correspondence with vertices witfv) = 0. In fact for simplicity and technical purposes, we have toaduce
“special blocks”.

Special blocks of typea, Consider a vertex of an(n, k)-network withi(v) = 0. If o(v) = 0, then it is anS-
switch. Ifo(v) > 1, then associate afswitch.S tov with i(S) = 0, 0(S) = 0, anddeg(S) = deg(v)+o(v) = 4,
joined too(v) new blocksB each withi(B) = 0, o(B) = 1, anddeg(B) = 1. (called blocks of typex)

Now we are almost done, except that there can be adj#&tenitches in our preseltt, k)-network. In order to
guarantee the kernel to be a bipartite graph, we introduee@nsl type of special blocks.

Special blocks of types, If there is a link between twé-switches, then we subdivide the link by inserting a
block B with i(B) = o(B) = 0, anddeg(B) = 2 (called blocks of types).

Let us summarise what we have done.

Definition 9 To every(n, k)-network N, we can associate a bipartite, k)-graph K (N), called (n, k)-kernel
with two classes of vertices, blocks afeswitches.



- Blocks are either maximal connected components of thé)-network formed by vertices with(v) = 1,
or special blocks of type: or 5.

- TheS-switches are in one-to-one correspondence with the esro€N with i(v) = 0.

Denote byB (resp.S) the set of blocks (resph-switches) of ar{n, k)-graph, and put = |S|.

The functionsg ando are interpreted id{ (IV) as follows : for every vertex of K () representing a séf of v
we seti(u) = i(U), o(u) = o(U).

Property 10
(i) K(N)is bipartite,
(i) i(Vn) =i(Vk(ny) =nando(Vy) = o(Vk(ny) =n+k,
(iii) for every S-switchS of K (), i(S) = o(S) =0,
(iv) for every blockB of K(N), deg(B) = i(B) + 2 — o(B),
V) [V(N)| =n+s.

Proof. (i), (ii), and (iii) are true by definition.

(iv) holds for the special blocks of typeands by definition. Suppose that the bloékis formed by a connected
componentB’ of b verticesv with i(v) = 1, so thati(B) = b. For everyv € B’, deg(v) = 4 — i(v) — o(v) =

3 —o(v), hence)_, . deg(v) = 3b — o(B). Becauses’ is connected and circuit free, there are exabtly 1
edges insidé3’ anddeg(B) = 0(B') = ), cp deg(v) —2(b—1) =b+2 — o(B)

For (v), observe thal(S) = 0, > ;.3 i(B) = n, and there is a one-to-one correspondence betweefishgtches
of K(N) and the vertices witti(v) = 0 of N. a

4 The reduced problem

(E(W) is defined in property 5)

Lemma 11 Let W be a set of vertices of @, k)-graph , and assume th&(1¥) contain a vertex such that
d(v) < i(v) — o(v) + 2 then the follwoing relation holds :

EW U {v}) <EW)

Proof. Let Wy = W U {v},i(W1) = i(W) +i(v), o(W1) = o(W) + o(v), andd(Wy) < §(W )+deg(v) —2=
§(W) +i(v) — o(v). Hence, by definition we hav&(W;) = §(W1) + o(W1) — i(W1) — min(k,o(W7)) <
§(W) + o(W) —i(W) — min{k, o(W) 4 o(v)} < E(W). 0

Remark 12 Note that the above lemma can be applied eltherhtDek v of K(N) (as we havel(v) = i(v) —
o(v) + 2), ortoa vertexv’ of N such thati(v') = 1 (as thend(v') = 3 — o(v') = i(v') — o(v') + 2.

Lemma 13 N is a valid (n, k)-network if and only if thed (N) is a valid (n, k)-graph.

Proof. First assume thak (V) is non valid; equivalently it exists a subgraigh of K (N) with Ex(ny(W) < 0.
According to lemma 11 and remark 12 we can assumelthabntains all the blocks adjacent to it. We associate
to W a subsetV’ of IV obtained as follows :



- to a.S-switch and to the blocks, § adjacent to it we associate the corresponding vertéX;of

- to a normal blockB we associate the connected componghof N.

We havei(W) = i(W'),o(W) = o(W’), (W) = 6(W'), soEn(W') = E(W) < 0; soN is non valid.

Conversely, assume thaf is not valid, or suppose equivalently that it exists a cotercubgraphi?’”’ with
En(W') < 0. According to lemma 11 and remark 12 we can also assuméithé such that for any connected
component formed by vertices such thatv) = 1 eitherC ¢ W/ orW’' nC = 0.

So, according to the definition of the kerf€[ V), we can associate 1’ a subsetV of K (V) (by associating
to a connected componeBt of N the corresponding normal blodk of K (V), and to a vertex with(v) = 0 the
corresponding-switch plus possibly some special bloeks3). We haveS (W) = £(W') < 0. HenceK (N) is
not valid. a

The properties proved in Property 10 allow to formulate geémnversion of the design problem.

Problem 2 DenotingN’(n, k) the minimum number &§-switches in a validn, k)-kernel, the design problem
consists of finding afw, k)-kernel having a number &f-switches equal to (or close tdy’ (n, k).

In fact, Problem 2 is equivalent to Problem 1.
Theorem 14 N'(n, k) = N'(n, k) +n

Proof.

According to Property 10/) and Lemma 13 it is sufficient to prove that afwy, k)-kernel is the kernel of some
(n, k)-network. To do this we provide an inverse of the algorithmatlibed in Definition 9. Note that the inverse
operation is not deterministic (the result is not unique)iolu is the consequence of the fact that sevesak)-
networks has the sanie, k)-kernel. Apply the following operations on &n, k)-kernel K = {(SU B, E), i, 0}.

(a) Aslong ask contains a blockB with i(B) = 0, o(B) = 0, deg(B) = 2 connected to twa-switchesS;
and.Ss, replace it by an edgi, Sa].

(b) Aslong asK contains a blockB with i(B) > 2, replaceB by a chain ofi(B) vertices each witli(v) = 1.
Distribute o(B) among the vertices so thﬁtjll(B) o(v) = o(B) respecting the condition(v) + i(v) +
deg(v) = 4, and connect the remainintzg(B) edges of the chain to the neighbors®fin an arbitrary
order. This can always be done, sinkg(B) = i(B) — o(B) + 2.

(c) Aslong asK contains a blockB with i(B) = 0, o(B) = 1, deg(B) = 1 connected to a verte¥, deleteB
and leto(S) := o(S) + 1.

For an example see Figure 2.



(12,6)-kernel

Figure 2: Equivalence betweén, k)-networks andn, k)-kernels. The indices of the blocks indicate the number
of outputs of the blocks. In the bottom kerrteswitches are represented by dots, while blocks are repieséy
circles.

5 Basic properties for kernels

First an immediate property.

Property 15 For k& > 3, the blocks of a validn, k)-kernel contains at mogtoutputs.

Proof. Given a blockB, we compute the excess on the one-elemen{tBét £({B}) = deg(B)+o(B) —i(B) —
min(k, o(B)) = 2—min(k, o(B)), becausdeg(B) = 2+i(B)—o(B). So, in avalid networknin(k, o(B)) < 2,
and fork > 2, 0(B) < 2. ]

From now onewe will always suppose thatt > 3 ; according to Property 15, we will distinguish three typés o
blocks :

Definition 16

- Fori =0, 1,2, denote byB3; the set of blocks containingoutputs (i.e.o(B) = i). Letb; be the number of
blocks of B;, letn; the total number of inputs of the blocks Bf, and lete; = > ;5. deg(B).



- ClearlyB = By U B1 U B5 (see Proposition 15);
Lemma 17 The blocks oB3; are adjacentto; + (2 — i)b; edges, in other words,

€0 = ng + 2bg,e1 = ny + by, e2 = Ny (2)

Proof. Recall that by Property 10, the degree of a blétk B5; is exactlyi(B) + 2 — o(B) = i(B) +2 —i. The
statement of Lemma 17 follows by summing over all block8pf a

We have also the following set of equations.

Theorem 18 In a valid (n, k)-kernel, withk > 3

n = mng+ni+ne 3
nt+k = by +2by 4)
4s = n+2bg+b (5)
4s = 2n+ k+ 2by — 2b, (6)

Proof. Equation (3) follows from the fact that the total number gduits isn.. Equation (4) is obtained by counting
the outputs) 5.z 0(B) = 21207172 ib;. For equation (5), consider the number of edges in the hipaytaph;
on the one hand we ha\Ei:O’L2 e; = n + 2by + by (from 2); on the other hand there ate edges. The last
equation is simply (5) - (4). a

6 Lower bounds fork > 3

As k increases, the optimal valué’ (n, k) gets larger and larger. We will successively introduce tiogrargu-
ments fork = 4,6,...,12. The claims obtained for a given value lofare always valid for larget. The main
idea is to use several counting arguments and to determirahwlatterns are forbidden in a valid kernel for a
given value ofk.

Before deriving additional properties of kernel, we firshsmler the casels = 3, 4 which can be solved immedi-
ately thanks to the reduction of the initial problem to képreblem.

6.1 Cases = 3,4.

Note that the next result was first conjecturedihvhere the upper bound was proved.

Theorem 19 N7 (n, 3) = N'(n,4) = [2].

Proof. N”(n,3),N”(n,4) > [2] is an immediate consequence of equation (5),
4s =n+ 2by + by > n.

For the upper bound, it is enough to construct a valid 4) -kernel. Constructions are presented in section 9
but as it is thaminimumexactly and extremely simple, we present here some cotistngsdork = 4,n = 4p.
According to equation (5), the lower bound can only be a#idjnif by = b; = 0. That is when all the blocks are
in By. To proceed with the construction, we need the followingrdedin (that will be of use for larger values of
k, too)

Definition 20 A twin is a connected subgraph of &m, k)-network formed by arb-switch adjacent two blocks
of B, with one input each.
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Figure 3: A twin

A twin contains2 inputs andt outputs. A twin can be considered as linking thislocks which are adjacent to the
S-switch contained in the twin. One construction is obtaihg@onnecting two large blocks &, both of sizep
by p twins (see as example figure 4). We have thgimputs in the two large blocks a8, and2p inputs in thep
twins, 4 outputs in the two large blocks adg outputs in thep twins, p S-switches each in a twin.

Figure 4 shows a minimurfil6, 4)-kernel. There ar@ - 4 = 8 inputs and2 - 2 = 4 outputs in the two large

blocks of 52, each small blocks df, containsl input and2 outputs. In total, there are inputs,20 outputs and
4 S-switches.

twin

(16, 4)-kernel

(16, 4)-network

Figure 4: One minimuni16, 4)-kernel, with4 S-switches.

The construction given in [2] (see Figure 5) is attained byraxtingp — 1 pairs of blocks o3, with i(B) = 2.
The pairs form a chain where the extremal pairs are connégtedwin and all the others pairs are connected to

S-switches.

twin ‘ twin

(16, 4)-network (16, 4)-kernel

Figure 5: Another minimuni16, 4)-kernel.

The validity of these constructions can be easily verifiedhgcking the cut-criterion. (See Section 9 for a short
proof.) =]



7 Cut-criterion for (n, k)-kernels

In this section, we refine the general cut-criterion obtdiineProperty 5 for the case ¢f, k)-kernels. ForX C S

Property 21 (cut-criterion) An (n, k)-kernel K = {(SU B, E), i, 0} is valid if and only if for every non-empty
XcCS,
2[0(X)| > 4]X| + min(o(T(X)), k). )

Proof. First we prove that the criterion (5) implies (7). LEtC S and letW = X UT'(X). As K(N) is bipatrtite,
there aret| X| edges insidéV. Sod(W) = §(I'(X)) — 4|X]|, o(W) = o(T'(X)), andi(W) = i(T'(X)). By
Property 10/{v)

§(I'(X)) = i(I'(X)) — o(I'(X)) + 2[T(X)],

and sa€(W) = §(W) + o(W) — i(W) — min(k, o(W)) = 2|T'(X)| — 4|X| — min(k, o(I'(X))).
If K(N)is valid, then, by Property 5(W) > 0 for all W. Applying it for W = X UT'(X), we obtain (7).

Conversely, suppose that condition (7) is satisfied, bup&htg 5 is violated. We show that there is a &etc S
such that (X UT(X)) < 0, contradicting condition (7).

If property 5 is violated, it exists a séV C S U B such thatt (W) < 0. Without loss of generality, we may
assume thaltl” is connected, otherwise take @5 a connected component with strictly negative excess.

If W C B, thenW is reduced to a bloclB, sodeg(B) = i(B) — o(B) + 2 but from Property ??) o(B) < 2,
so&(W) > 0. If W intersectsS, let X = W N S. As K(N) is bipartite and¥ is connectediV’ ¢ X UT(X).
By lemma 11 and remark12 , for eveB € I'(X) \ W, E(W U {B}) < &(W) and so€(W U {B}) < 0 and
E(X UT(X)) < 0, contradicting (7). a

In the example of Figure 6, there ateéblocks adjacent to a§-switch S, two blocks of 3, containing5 and3
inputs, one of3; containingl input, and one oB, containing3 inputs. PuttingX = {S}, and apply the cut-
criterion 7 with|T'(X)| = 4, o(T'(X)) = 5, and4|X| = 4. We obtaird > min(5, k), so, whenevek > 5, no
(n, k)-kernel can contain the depicted sub-graph.

Figure 6: AnS-switch S and its four adjacent blocks.

Note that the cut-criterion is due to parity the sameifes 2p + 1 andk = 2p + 2. So a valid(n, k)-kernel for

k = 2p + 1 also satisfies the cut-criterion fér= 2p + 2, but one output is missing. Hence it is enough to add
to the network one output, without violating the cut-ciiberof such a network. It seems very likely that such a
transformation can always be done with a bounded numbert Sxswitches. This justify the next conjecture

Conjecture 21.1 N'(n,2p + 1) = N'(n,2p + 2) + O(1).

10



7.1 Cases =5,6

In order to derive an accurate bound, we need to classifyahefs-switches adjacent to the blocks65.

Definition 22

- DenoteS; j,7+ j < 4 the set ofS-switches which are adjacentidlocks of 3, and toj blocks of By (and
hence tol — i — j blocks inB;) Lets; ; = |S; ;.

- LetS; = UJ‘SQJ‘, S = UJ‘SLJ‘ andSy = UJ‘S()J‘. As usual, lets; = |82|, S1 = |Sl|, So = |S()|

In the same way we definefat C S, S; ;(A) = S;; N A, ands; ;(A) =1S;,;(4)].

Lemma 23 In a valid (n, k)-kernel withk > 5, S; ; = l whenevey < i.
Proof. Consider arb-switch S € S and apply the cut criterion (property 21) to the &et= {S}. 2|T'(X)| > 4+
min(o(T'(X)), k). As|T'(X)| = 4, we obtainmin(o(I'(X)), k) < 4. Whenevetk > 5, necessarilp(T'(X)) < 4.

Finally observe that for aX’ = {S} with S anS-switch inS; ;, o(I'(X)) = 2i+ (4 — (i +j)) =4+ —j, SO
wheneverk > 5, o(I'(X)) < 4impliesi < j. O

Note that Lemma 23 implies that eve$yswitch has more neighbors By than inB,. In particularS; = S 2.
In the caseé = 4, the minimum network that we constructed in 6.1 is such thalha .S-switches are elements of
Su,0.

Lemma 24 In a valid (n,k)-network with k > 5,
b
52 < <20) :

Proof. We say that two (not necessarily distinct) blockd3gfshare anS-switchif they are adjacent to the same
S-switch of S;. Associate an auxiliary multi-grapt (K') to any valid(n, k)-kernel K as follows.

- The nodes o (K) are the blocks oB,.
- ConnectB, and B, by j edges, ifB, and B;, sharej S-switches ofS,.

The graphH (K') hasb, vertices andi; edges. It suffice to prove théf is a simple graph if the associated kernel
is valid, ass, < (b;) holds for any simple graph withy, vertices and, edges.

First we show that (K) does not contain loops. Consider &rswitch S € S», and apply the cut-criterion
(property 21) toX = {S}. We have X | = 1, ando(T'(X)) = 4 (sinceX € S,). Somin(o(T'(X)), k) > 4, and
the cut-criterion implies’(X)| > 4, consequentlyX is adjacent tet distinct blocks.

Next we prove thatd (K) does not have double edges. Consider ivewitchesS,, S, € S; and letX =
{Sa, Sp}. The cut-criteria implies tha|I'(X')| > 8 + min(o(I'(X)), k).

As o(I'(X)) > 4, we have2|T'(X)| > 12, so|I'(X)| > 6. Either|I'(X)| = 6, buto(I'(X)) = 4, which means
thatS, andsS, are adjacent to the same pair of block€3ef and therefore the pairs of blocks 8§ adjacent taS,
andSs, are distinct. Otherwisd(X)| > 7 which means tha$, andS;, have at most one block &, as common
neighbor. a

Theorem 25 For k = 6, N"(n,6) > % + /% + 3.
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Proof. Equation (6) can be written as
2by = 2n — 4s + k + 2bg. (8)

By definition of Sz, the number of blocks 08s is by < 255 + (s — s2) = s+ s2, thatisby — s < s5. Combining
it with (8) we get
289 > 2(by — 8) > 2n — 6s + k + 2bg.

Assume that < 2 + /% + 3, then

n n 3
2 — 4+ k—6y/=+ =+ 2bg.
So > 5 +k—6 8 + 5 + 2bg
Applying Lemma 24, we deduce

bo(bo—l) > %+/€—3\/%+6+2b0.

For k = 6, this implies

bo(b0—3)>g+6—3\/g+6= <\/g+6) <\/g+6—3),

soby > /5 + 6. Putting this in equality (5), we obtain a contradictionfdliows thats > 7 + /% + % as
required. m]

7.2 Casek =7,8.

Fork > 7, itis simpler to use a specific case of the cut criteria (priypl) for specific subgraphs that we call
patterns

Definition 26 A patternP is a subse’ C S; U S, such thatP U (T'(P) N By) is a connected subgraph of the
kernel.

Lemma 27 (pattern condition) In a valid (n, k)-kernel, a patternP with o(T'(P)) < 2[k/2] satisfies :

s12(P) + 2(s2(P) + s1,1(P)) <2

Proof. Let denoten;(P),i = 0, 1, 2, the number of edges betweerandI'(P) N B;

Remark that as(I'(P)) < 2[k/2] the cut criteria forP simplifies to4|P| < 2|T'(P)| — o(T'(P)) Note that
o(T'(P)) = |T(P) N By| + 2|T(P) N Bs|, so

2[0(P)| = o(T(P)) = [D(P) N Bi| + 2[T'(P) N Bo|

P being a pattern, we have
IT(P) N By| < mo(P)—|P|+1

Combining these two equations leadg{®| < 2(mo(P) — |P|) +m1(P) + 2. Now,4|P| = mo(P) + m1(P) +
ma(P), soma(P) < mo(P) — 2|P| + 2; equivalently

ma(P) — mo(P) +2|P| <2

For aS-switch S in S, ; we havemsy(S) — mo(S) +2 =i —j + 2 (thatis2for S € So U S 1, 1for S € Sy 9
ando for S € &1,3). S0,ma(P) — mo(P) + 2|P| = 2(s2(P) + s1,1(P)) + s1,2(P) . O

12



Now, we derive new equations that will be used for the cdses 7,8 andk = 9,10. Both equations hold,
however, for every valid minimédl, k)-kernel withk > 3.

Lemma 28

48—|—482+28122n+k+2b0+2(62—b2)22n+/€+2b0 (9)
s =Y (j—i)si; =n+k+n+2(ea—by) >n+k+m (10)

Proof. Let us show the following inequality.
3es +e1+eg > 2n+k+2b0+2(€2 —bg). (ll)

To see this, recall that by lemma % = ns,e; = n1 + by, andey = ng + 2bg. SOes + 2e5 + €1 + €9 =
ng + 2bg + 2(62 — bg) +n1+b1 +ng+2bg =2n+ k + 2by + 2(62 — bg) by (3) and (4)

Inequality (9) is a combination of (11) ads + e1 + eg = (e2 + e1 + eg) + 2e2 = 4s + 4s2 + 2s1. Note that,
ases > bo, this implies left part of inequality 9.

For inequality (10), we simply evaluatg + 2ex = > ((4+¢ —j)-s;;) = 4s — > (j — 1)s,,; which is also
b1 +n1 + 2n9 :b1+n1+2b2—|—2(n2 —bg) =n+/€+n1+2(n2 —bg). O

We will now focus on theS-switches ofS’” = S, U 811 U S12. The blocks of3, adjacent taS” will be of
importance save defind3], as the set of blocks &, adjacent to somé&-switch ofS’.

Lemma 29 In a valid (n,k}-kernel with k& > 7, if a block of 5], is adjacent to twaS-switches ofS’, then
necessarily bott$-switches are irf; 5.

Proof. Note that we simply consider a pattePhwith 2 S-switches. We have(T'(P)) < 8 and we can apply the
pattern condition 27 stating thafs, (P) + s1,1(P)) + s1,2(P) < 2. This last equation is equivalent to the lemma.
O

Lemma 30 In a valid (n, k)-kernel withk > 7,

bo > 252 4+ 51,1 + /4512 (12)

Proof. Let B be the set of blocks adjacentd$ », and lethy = |B{/|. . According to Lemma 29, the blocks Bf,
adjacent taS; U &1 are all distinct (that i$I'(S2 U S11)| = 2s2 + s1,1 blocks) moreover they are also distinct
from the blocks of3(, so

bo Z 282 + S1,1 + b(/)/ (13)

It remains to show thaltj > ,/4s; o; for that we associate an auxiliary graph{ K') to every valid(n, k)-kernel
as follows.
- The vertices are the blocks 5.

- We put an edge between two blocks if they are adjacent toameS-switch ofS; ». (Note that anS-switch of
S1 2 is adjacent t@ blocks of3§.)

We show that the grapH (K) is simple and triangle free. First, lemma 29 assuresihdt) is simple. Assume
now that the grapl# (K') contains a triangle where the three edges correspofiestitchesA, Az, As € S12
then an easy computation shows that the cut-criteria 21tisattsfied for the seX’ = {4, A5, A3} (contradic-
tion).

As H(K) is triangle free, it contains at mo(s-’fé)2 edges, hence; » < (}’73)2 andby > /4s1 2. The lemma
follows then from equation 13. a
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Theorem 31 For k > 7, N'(n, k) > 2 + 2,/Z + O(1).

Proof. Combining (9) with (12), we gets + 4so + 2s1 > 2n + k + 452 + 2511 + 2 /4512 + 2(ez — be) OF
equivalently

4s + 2(81’2 + 81’3) >2n+k+24/4512 + 2(ea — ba). (24)
This implies
6s > 2n + k + 2,/451 2. (15)

So,s> 2+ k4N 4;1’2. Assume that = 2 + O(y/n). Then by inequality (14) we must hawes + 51,3 =
s+ O(y/n), (i.e. almost all the5-switches are i 2, andS; 3). Sos12 + 51,3 = § + O(y/n), Using equation
(10), we havels — S1,2 — 28173 >n+k+ O(\/ﬁ)

38172 + 28173 >n+k+ O(\/ﬁ)

Sosi3 = O(y/n) ands; o = & + O(y/n), and,/S1 2 = \/n/3 + O(1). Taking again equation (15), we obtain
65 > 2n+ 8+ 2/4n/3+ O(1). Finallys > 2 + 2, /7 + O(1). o

Remark 32 Consider gn,7)-kernel with% + 2, /% + o(,/n) S-switches, then it satisfies all the equations in a
tight way. So in such a network we have :

All the blocks B, excepto(y/n) have degreé;
-by=ex=s+o(y/n)=%+2/T +o(yn).

- 5 =512+ 513+ 0(y/n).

- by =n+4+T7-2by =% —3/% +o(v/n).

- bo =2,/% +o(y/n)

- e0=2s12+ 3513 =n+2,/F — 512+ 0(y/n)

-my=s12— b1 =s12— %+ 3/% +o(v/n)

Note that it impliess; » > % — 3,/% + o(y/n) andny € [0,2,/%]. So that the network is mostly build from
% + O(y/n) “groupsT;” made of1 block B, one blockB, both with degree 1 and two blocks 5 altogether

adjacent to on&-switch ofS; ». (see Figure 7).

L]
BGEBO BbEBO

Figure 7: The groufd7; containsl input and2 outputs, the group can be considered as an “edge” linking two
blocks of B,
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7.3 Casek =9,10

Fork > 9, we definel3, = By \ B}, (blocks ofB3; not adjacent taS’).

Lemma 33 In a valid (n, k)-kernel withk > 9, there is no pattern made 8fS-switches inS; »

Proof. Remark that such a pattefwould satisfyo(I'(P)) < 10; so the pattern condition 27 can be applied, and
8172(P) S 2. O

Lemma 34 In a valid (n, k)-kernel withk > 9,

N 3
bo > bo + 252 + 51,1 + 5512 (16)

Proof. As by = by + b}, it suffices to consider). According to Lemma 29, a blod), adjacent to twas-switches
of &’ is adjacent to twa-switches ofS; 5. Counting the blocks oB{, we find2 distinct blocks for eacly-switch
in Sz, 1 distinct block for eacts-switch inS; 1, and at leas8/2 blocks for each5-switch inS; 2 (in fact either
there are2 distinct blocks for ones-switch inS; 2, or 3 distinct blocks for2 S-switches sharing a block &, by
lemma 33). This impliesf, > 25 + s1,1 + 351,2. O

Lemma 35 In a valid (n, k)-kernel withk > 9, anS-switch.S of S; 3 cannot be adjacent to two blocks Bf.

Proof. Let S be aS-switch ofS; 5 adjacent to two block®,, B, € B;, and letS, (resp.S;) be aS-switch of S’
adjacent taB, (resp.By). Let X = S, 5,, S, then one can easily check that the cut-criteria 21 is nogfeedi for
X. O

Theorem 36 For k > 9, N”(n, k) > 3n + ¥ 4+ O(1).

Proof. Combining inequalities (16) and (9), we obtain
48—}-28173 > 2n+k+260+8172+2(62 —bg). (17)
Summing with equation (10%é — s1,2 — 2s1.3 — (So — S0,0) > n + k + n1), we get

8s > 3n + 2k + 260 + 28172 +n1 + (80 — 80,0 + 2(62 — bg)) (18)

So we have already proven that % Suppose now = §n+0(\/ﬁ), then every inequality used to establish
inequality (18) is tight within arO(y/n) error. Particularly from inequality (18,1 = O(v/n), s12 = O(v/n),
and8070 = 8o + O(\/ﬁ), andng = ey = by + O(\/ﬁ)

As n; = O(y/n), almost all the blocks oB; have degreé and no input, similarlyps = by + O(y/n) implies
that almost all blocks 0B, have degre& and1 input. Note that n&-switch S in S; 1 U Sp ¢ can be adjacent to
blocks inB; U B, having all degree one (otherwise the Bét= S U I'(S) would satisfyo(W) — ¢(W) > 3 and
IT(W)| =1). So,s1,1 + so = s1,1 + S0,0 + O(y/n) = O(y/n). Globally we get

s=s2+s13+0(/n)= % +O(Vn)

Now,n + k = 2bs + by = 2e3 + e1 + O(y/n) = 4s2 + 2513+ O(y/n) = 37” — 2813+ O(y/n). It follows that
s13=9+0(/n),s2 =% +0(/n).

Consequently, then, k)-kernel is mostly made of S-switches ofS, and approximatelp (g) = 7 S-switches
of §1 3. From Lemma 35, at$-switch S € S; 3 cannot be adjacent to two blocks Bf. As there is at least
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2so = 4 + O(y/n) blocks of B; and 4 + O(y/n) S-switches 0fS; 3, we conclude that eachi-switch of S; 3
shares exactly one block with ghswitch of Ss.

Moreover most of the common block must have only degrezzand no input.

It follows that the(n, k)-kernel is mostly made dfy o groups defined below.

Definition 37 A groupT, is a subgraph of afn, k)-graph formed by ong-switch of S, and twoS-switches of
81,3 sharing2 blocks of B;, with no inputs (see Figure 8 for illustrations). Such a grisuadjacent to four blocks

g B
eise

Figure 8: a groufly in two representations.

Lett,o be the number o’y groups, we just proved that supposinet ‘%" + O(y/n) implies that
tho = g +0(v/n)

We define an auxiliary grapf(K) as follows. LetV (G(K)) = By, and connect two blocks @, by an edge in
G(K), if they are adjacent to ong-switch of S; 3 of aTio-group), as defined(K') contains2t,, edges andy
vertices.

Easy App]ications of The cut-criteria (Property21), ingglithatG(K) is simple and without triangle, therefore
2ty < (%0)2; which means that, > v/n + O(1) Substituting this last value into inequality (18), we ohtai
s> 3n 4 Y% + O(1) as required. O

8 Asymptotics

Lemma 38
2_n
k

Vk>9, N'(n,k)>

|3

Proof. Letus assumg = 2p+8. Theidea s to prove thay > by — 27" and to use Equation (6) which implies that
s> %erf)%b?. LetS* be the set of-switches adjacentto at least one blociBef(i.e S* = SoUS; 1US 2US) 3).
We evaluate the number of blocks By adjacent taS-switches inS*, so letbf = |I'(S*) N By| be this number.
Let us calladjacenttwo S-switches ofS* adjacent to the same block 8f), and consider the set of connected
componentsC = Ko, K1,...,K,_; of the graph that this relation induces on the vertex&et Then, from
constructionJ;—g ,—1 K; = S* andI'(K;) N By NT'K; = () ; hence we have :

by =T(S)NBy= Y [I(K;)N By (19)

i=0,p—1

We partitionkC into two setsiCoqi U Keig, WherekCs,,q; containssmallcomponents (such thatl'(K;)) < k)
and K;, contains thebig ones (such thai(T'(K;)) > k). Applying cut-criteria to small component leads too :
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2IT(K)| > 4|K| + 2|T(K) N Ba| 4 [T(K) N By |; aternatively :
K € Ksman, [T(K) N Bo| = [T'(K) N Ba| + (4| K| — [I(K)[) = [T(K) N By (20)

Now we evaluatél'(K) N By| for K a big component. Consider a subget K where.J is connected and such
that|J| < p, the cut criteria implies(I'(J)) < 2|J| 4 4; soJ is a pattern satisfying condition 27. So we have

2(8171(:]) + SQ(J)) + 8172(J) <2
If K can be written as the union of at mgssub-componentg, we have

2(81’1(K) + s2(K)) + Slyz(K) < 2q (21)

The cut-criteriafot( is2|T'(K)| > k+4|K|; as|T'(K) N B1|+|T(K) N Ba|| < |K|+s2(K)+2s11(K)+s1,2(K)
this implies2|T'(K) N By| > k+4|K| — (2| K|+ 2s2(K) 4+ 4s1,1(K) + 251 2(K)). So we get the next equation :
k
IT(K) N Bo| > | K|+ 5~ (251,1(K) + s2(K) + s1,2(K)) (22)
(23)

Using the equation
|IT(K) N By| < s2(K) + | K|

We obtain L
|F(K) n BO| > |F(K) ﬂBQ| + 5 — 2(8171(K) + SQ(K)) — 8172(K)

According to 21 this implies :

ID(K) N Bo| > [D(K) 1 Bo] — (20— )

We choose to splik into setsJ of sizep, p + 1, so we have < %

Now the value)_ pig component(% - g) is maximum when there is only one big component that is

. 2n
2~k big component< 5

Now, summing over all the components (the big and the sma&lphtain :
2n 2n
by= Y [NE)NBy| > DY T(E)NBy| — = >by— —
KeK KeK p p

Hence, 35§<3=2p+8,b02b2—4ki_8 ands > %—QTTL

9 Upper bounds, Constructions

In this section, we give constructions of valid, k)-graphs fork = 6, 8,10. We will see that the validity of the
constructions can be easily checked using the cut-critdria
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9.1 Casek =34
Proposition 39 The construction of Figure 4 fdt = 4 is valid.

Proof. Note that everys € S is a twin S-switch, so for allS € S, o(T'({S})) > 4. So, byt the cut criterion it
suffices to verify :

T(X)| >2|X]|+2, VXCS, X#0. (24)

Now, any setX C S is adjacent to the large block of3; and to2| X | distinct blocks of3; each having degrele
So,I'(X) = 2| X| + 2. And property 24 is satisfied. O

9.2 Casek =5,6

Theorem 40
N'(n,6) <

+ \/§+ O(1).

According to the lower bound (Theorem 25), an optimal solutnust be mainly build of twins connecting blocks
of By, in such a way that the auxiliary gragh(K) is simple.

13

Proof.

First we describe the network
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] ] ]

Figure 9: Generi¢n, k)-kernel fork = 5,6

Consider a toroidal grid o vertical line segments artl¢/geq2 horizontal cycles. Each of tH vertices of the
grid represents a-switch, and each of th&/ — 3 = by edges joining these vertices represents a blodk,of

- Each of thes S-switches of the first and last horizontal cycles is adjateBtblocks By; we add6 blocks
B; with degreel and no input and connect each of them to one of tlieSeswitches. Note that the
S-switches are it 3.

- The remaining? — 6 S-switches are adjacent toblocks By and hence belong 16§,4.

- Finally we add a twin (see definition 20) connecting any péablocks By not sharing &-switch.

The network containgy, = 6£ — 3 blocks inBy;. Among themby — 12 share aS-switch with 6 others blocks,
6 share aS-switch with 5 blocks (corresponding to th& vertical edges of the top and bottom), ahdhare a
S-switch with4 blocks (corresponding t® horizontal edges of the top and bottom). Léie the number of twins,
a twin being adjacent t? blocks

2t = (bo — 12) (b — 6) + 6(bo — 7) + 6(bo — 4) = bo(by — 7) + 18

Note that each block, is adjacentta@ S-switches in the grid and to twins, it follows thag = > 5 . (deg(B)—
2) = 2t; moreovem; = 0,ny = 2t. Hence
n =4t

Now, the number of outputs ig + 2b, = 4t + 6 = n + 6. The number of-switches is

n  byp+3
=t+30=-
s + 4+ 5
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Ast = bolbos D18 [y Ty fn 2 ands < B4 /n -2 1341

For example witll = 2 we gethy = 9,¢t = 18, s =t + 3¢ = 24, n = 4t = 72. Hences = 18 + ++/9 — 23/16 +
3+1/4.

Now, we prove the validity of the kernel.

For this Note that the cut-criterion is now :
[(X) — 2|X| = min(o(T(X))/2,3)

To prove the statement, let dendfé C X be the set of switches in the grid, and nothe number of twins inY
then|I'(X)| — 2| X| > T'(X') + 2t — 2(¢t + | X'|) = T'(X’) — 2| X’|. Remark now thal'(X”) is the number of
edges adjacent to a subset of vertices of the grid, and o efasily thaf’(X') — 2|X’| > 3 as soonX’| > 2,
so if | X'| > 2 the cut-critetion is ensured.

Note also that it > 3, one can remove on twin decreasifigX) by at leas, and keepsnin(o(I'(X))/2, 3)
unchanged, hence we can restrict ourselves too cuts witlosttonwins.

The only cases that still need to be considered &€ < 1,¢ < 2. Those can be checked immediatly.

9.3 Casek=17,8

Theorem 41 For k < 8§,

N'(n, k) < g + g\/§+ o(v/n).

Proof. The network is constructed as follows :

Recall that according to the lower bound blocksAf must be connected either by edges correspondifig to
groups or by triangles correspondingdes S-switches whose adjacent bloék has degreé (triangle group).
We will denotet; (resp.y) the number ofl; (resp. triangle) groups.

- Firstwe use two set§ = {C1,C>,...,Cp}andD = {D1, D,, ..., D,} of p blocks of By with deg(C;) =
deg(D;) = p + 1; these blocks are connected into a bipartite graph,, where edges aré; groups, we
have

tr =p°

Note that then each block 6fu D must still be connected to.g-switch (see Figure 7 for an illustration).

- Secondly we add four se&= {F1, Ea, ..., E 5}, F = {F1, Fs, ..., F 5}, T = {I1,I5,...,1 5}, and
J ={J1,J2,...,J s} of /p blocks of By with deg(E;) = deg(F;) = deg(I;) = deg(J;) = \/p + 2.

As |E||F| = C (resp. |Z||J| = |D]) we can associate to each blocke C (resp. D € D) to one pair
(Ec, Fe) (resp. (Ip, Jp) resp.) so that the mapping is one to one. Then, the tfipleF, F} (resp.
{D, Ip, Jp} is connected by a triangle. Note that :

y = 2p.

and that each block &f U F UZ U J must still be connected .5-switches and this is performed using a
grid like network (see figure).
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Let us count the number of inputs. outputs afidwitches.

- the number of inputs is; +y + Y 55, (deg(B) — 2) = 3t7 + 2y = n = 3p” + 4p.
- the number of outputs & + 2b2 = 3t7 +2y +8 =n + 8.
- there aret; S-switches inS; > plusy S-switches inS; 3 plus8,/p S-switches inSy 4 (in the grid-like

network).

Finallyn = 3p*+4p, \/n/3=p+0(1),s = p* +2p+8,/p = WTJF@—F%—”—FO(MM) = %+§\/§—|—O(n1/4).

0o O O 0

s s s S

s s s s::Z\

s s s S

s s s s@\
S S

s s s s@\

S s s S

s s s s@\

Figure 10: The three layers of the constructionffee 8 andp = 4.

Now we prove the validity of such a network.

Call abad seta setX C S violating the cut-criteria, and assume that it exist a bad Best, remark that there
exists a bad set such thatA N Sy 4 = 0

ForX C S, 1etI'%(X) =T(X) N By and letX;, = X N S1 2 andX, = X NSy 5.

Note thato(I'(A)) = 3|A,| + 2|Ay|, [T(A)] = 2|4, | + |4, + [T°(A)|. So, wheneven(T'(4)) > 7 the
cut-criteria reduces tB|T'°(A)| > 8 + 2|4, ], in other words :

I0(A) > 4+4,| (25)
Assume that it does not exist a bad set wifl'(4)) < 10. Consider a bad se8. We can assum@;. = {)
(otherwise removing an¥* S-switch leads also to a bad set as it decrda@@) N B, and let4, unchanged).
HenceB contains onlyS-switches inS; 3 , moreover ag(I'(B)) > 10 we havelB| = |B,| > 5. As’ edges of a

bipartite graph are adjacent to a leastodesB is adjacent to at leastblocks of£ U FUZ U J and to| B| blocks
of CU D, hencel'’(B)| > |B| + 5.

Now we prove that no bad set withI'(A4)) < 10 exists.

Foro(I'(A)) € [7,9] it suffice to show thal'®(A) > 4 + | A4,|. in this case eithed, = 0,1,2; A;, = 3 — |4,];
or A, = 3andA;, = 1 (these cases can be checked immediately).

Foro(I'(A)) < 7, the criteria becomeal™®(B) > 4|B,| + 3| B, | there are3 cases :

- |Bi.| = 0,]By| < 3,T°(B) > 2|B,|;
- |Bi,| = 1,|By| < 1,T%(B) > 2|B,| + 2 for
- |Bi.| =2,|B,| =0,1°(B) = 3
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All can be checked immediately. ]

9.4 Casek=9,10

Theorem 42 For k < 10,
N'(n, k) < %” + 4 +Om/4

Proof. The construction is the same that to the one giverkfer 7,8 (see section 9.3) except that in the first
bipartite graph edges corresponding wheg- 7,8 to T groups are now replaced I, groups; indeed &3
group replaceTr; groups. Precisely a pair of edges is replaced by,agroup, note to do so edges are paired
arbitrarily.

Let us count the number of inputs. outputs afdwitches.

- t10 = p?/2

“y=2p

- the number of inputs i$t1o +y + - gcp, (deg(B) — 2) = 8t1g + 2y = n = 4p* + 4p.
- the number of outputs s + 2b2 = 8t19 + 2y + 8 =n + 8.

- there are8t;o S-switches in the';o groups plug; S-switches in the isolate® groups plud0,/p S-switches
in the grid-like network. Sg = % +2p+10/p

Finally n = dp® +4p, 2 =2+ O(1), 5 = 32 + 2 + O(\/p) = 32 + " + O(n'/4).

Now we prove the validity of such a network.
Call abad seta setX C S violating the cut-criteria, and assume that it exist a badfest, remark that it exists
a bad setd such thatd N Sy 4 = 0

Assume that3 N Sy = 0, theno(T'(B)) = 2|B| and the criteria becoméE(X) N B; > 3|X], if | X| < 5 and
IT'(X)N B > 2|X|+ 5 for [X| > 5. Note that allS-switches can be considered as edges of the two bipartite
graphs where vertices are block®f, if X denotes

with e edges in the large one antlin the small oned + ¢’ = | X|), soI'(X) N B>2(e + €’) + 2\/e + 2sqrte’ =
2|X|+2v/X. Thisis larger thas| X | for X < 4. For X = 5, we get at least vertices and the criteria is satisfied.

HUM PAS BIEN

First we show that if a bad set exists it contains less thgimputs. To do this we check the cut-criteria farge
setsS (i.e such thab(I'(S)) > 10), for such sets, the criteria reduced¥a3) N B>2|B| + 5. Consider a bad set
B with o(T'(B)) > 10 and such thaftB| is minimum. Then

- eithero(I'(B)) > 14 andS»(B) = () (otherwise removing an§; s S-switch leads also to a smaller bad set
as it decreas® by 1 andI'(B) N B2 by 2). Moreover,B do not contains ang; s block located inside a
T1o group (such a block would be adjacenttblocks (1B, and1 By with zero input) that are otherwise
isolated, so it could be removed to obtain a smaller largeskad

So, B contains onlyS-switches ofS; ;3 corresponding to the edges of the second bipartite grajeh, th
IT(B) N By| > 2|B|+2+/|B|,As|B| > 7,|T'(B) N By| > 2|B| + 7 (contradiction). Hence(I'(B)) < 14

- oro(T'(B)) < 14.

It remains to check the criteria for set with less thHarinputs.
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9.5 Asymptotic

Lemma 43 )
Vk € N, lim N'(n, k) < 5” + O(k).

n—oo

Proof. We describe a general construction for a vahdk)-kernel ¢ > 6, 2|k) with n/2 + O(k) S-switches. It
is built almost exclusively o -groups.

A Z-group is defined as follows. A block, with i(By) = 1, o(By) = 0 and a blockB; with i(By) = 1,
o(B2) = 2 connected to a-switch (see Figure 11.) It is in fact a combination of a grélpnd block of3.

Figure 11: AZ-group

For aZ-groupZ, A(Z) consists of four links. The role of these links is not symiicethey are labeled, x, y, y.

To describe the network, it is enough to define the intercotime between links o¥Z-groups. Fork > 6 and

n = k¢ (2 ¢), considerk(/2 Z-groups indiced a&; ; (i € [0,£ — 1],5 € [1,4]). Now connect the two links
labeledz in Z; ; to the links labeled; in Z; 14 j 195, and Z; 1 ;_o;) (arithmetics on indices is considered in
(mod %) and(mod ¢) resp.).

In this way, every extremal link is connected. The edges éemwthe sets of groupgsZ; ; : j € [1,4]} and
{Zi+1, : j € [1,4]}) form a cycle denoted by;. At each cycleK];, insert anS-switch with two exits in the
middle of one arbitrarily chosen edge. So the number of datpxceeds the number of inputs by exaétly

1

ok

N

111

Figure 12: interconnection of extremal links

Let X C S, so thatl'™*(X) is connected. (For the moment we ignore @FS-switches inserted ultimately).
Considering the auxiliaryi-regular graphd formed by Z-groups. The girth ofH is at leastk. To see this,
observe that a cycle in the network represent a solutioneoétiuation
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=1
Z ;2 =0 mod /4.
i=0

Which means that
k—1

> fan] > k.

=0
If | X| <k, thenX inducesatreX’in H,ando(T* (X)) = 6(X') =2|X'|+ 2= |X|+2=i(X) 4+ o(X) + 2.

If X intersect aZ-group of every cycles;, then at eacli; it either contains two edges &f;, or it contains two
extra outputs inserted t;. SoG(X) > 0.

If X is not a tree and does not intersec yroup of every cyclds;, thens(I'*(X)) > k, and henc& (X) > 0.
O
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