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Chapter 1

Overview

This purpose of this deliverable is to describe ongoing work in the area of prefetching and
targetted loop transformations. Chapters 2 and 3 describe ongoing work in source-level
software prefetching while chapter 4 describes the integration of loop and data transfor-
mations for spatial and temporal locality.

Chapter 2 describes an annotation based approach to software prefetching. By using static
locality analysis, we can determine those memory references likely to incurr cache misses.
We can therefore avoid inserting unneccessary prefetch instructions for data likely yo be
already in the cache. Initial results suggest that this is a promising approach.

Chapter 3 decribes a different approach to prefetching, namely source to source software
pipelining. The main benefit of software -piplening is that we percolate up load instruc-
tions taking into consideration their anticipated latency. This novel work, applies this
previously considered low-level approach at the sourse level where preliminary results are
very encouraging.

Finally, in chapter 4 we consider targetted transformations. This work unifies the treatment
of loop and data transformations by embedding them in a new rank-modifying framework.
Within this framework any restructuring transformation has a inverse which can be used
to globally optimise a program. This framework allows the generation of a new family of
transformations and preliminary results are once again highly promising.



Chapter 2

SOFTWARE PREFETCHING

2.1 INTRODUCTION

Memory latency is a major issue for many modern microprocessor based systems. Al-
though microprocessors speeds have been increasing dramatically, the speed of memory
have not kept the pace. At the last years the speed of commercial microprocessors have
been doubling every three years while the speed of commodity DRAM has improved by
little more than 50highest priority in improving the capacity. The result is that, from
the perspective of the processor, memory is getting slower at a dramatic rate. Most of
computer systems rely on their cache hierarchy to reduce the effective memory access time
but while the effectiveness of caches is quite good for general-purpose codes is not as good
for scientific and engineering applications. Different techniques to reduce or tolerate la-
tency are caching, Locality Optimizations, Buffering and Pipelining, Software-Prefetching
and Multithreading. Reducing latency is preferable over tolerating latency since it ac-
tually reduces the demand for main memory bandwidth, wich can be crucial. Reducing
latency is preferable over tolerating latency since it actually reduces de demand of memory
bandwidth, which can be crucial. Caches provide the foundation for all the latency-hiding
techniques, and locality optimization are also attractive since they don’t require additional
hardware support. After reducing latency, we must to tolerate any remaining latency. The
first way to do that is buffering and pipelining accesses, which is an effective means to
reduce write latency and requires only a lockup-free cache. To address read latency as
well, the choices are either prefetching or multithreading. Software-controlled prefetching
appears to be more desirable solution since it requires significantly less hardware support
than hardware-controlled prefetching or multithreading and it only requires a single thread
of execution, while multithreading needs more than only one. Hardware prefetching is lim-
ited to the fact that it is limited to prefetching constat-stride accesses and they may entail
a significant hardware cost.
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2.1.1 What is software prefetching?

The concept of software prefetching is basically to add new memory instructions in the
original code. With these new instructions we can split apart the request of the data
and the use of the data, while finding enough parallelism to keep the processor busy in
between. To hide the latency within a single thread, the request of data has to be so far in
advance of the use of the data in the execution stream. This requires the ability to predict
what data is needed ahead of time. Software prefetch requires explicit prefetch instructions
to move data into the cache. The format of these instructions resembles a normal load
instruction, but without a register specifier. Prefetch instruction also differ from normal
load instructions in that they are non-blocking and they not take memory exceptions.
The non-blocking aspect allows them to be overlapped with computation, and the fact
that they don’t take exceptions is useful because it permits more speculative prefetching
strategies (e.g., dereferencing pointers before is certain that they point to legal addresses,
or the fact that is easiest to prefetch array references in the same loop than split it for
not prefetch not legal array points, they could be also illegal references). The challenges of
software-controlled software prefetching include the fact that some sophistication is needed
to insert the prefetches into the code, and also that the new prefetch instructions involve
some amount of execution overhead.

The following example illustrates how prefetching can hide memory latency.

Without Prefetching With Prefetching
Prefetch A — &
Time PrefetchB —
Fetch A
Fetch B
Load A LoadA —— l
LoadB ——Z
EA
Load B
Z

— Executing Instructions

I Stalled Waiting for Data

On the left we can see the case without prefetch where the processor stalls when it attempts
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to load two locations that are not in cache. On the right the prefetch can be issued far
enough in advance so the memory accesses don’t stall the processor because the memory
accesses will have completed before the loads are executed. Our approximation is software
prefetching because we only need compiler and hardware support. Hardware support
is guaranteed on last generation processors. At the next section we describe first the
supported architecture. Then in next sections we describe our tool and the future work.

2.2 THE SUPPORTED ARCHITECTURE

We have been developing our tool on a platform that allows us to use the Software Prefetch-
ing. For this we needed a processor that has prefetch instructions that not take memory
exceptions. Also we need a compiler that supports a prefetch instruction.

2.2.1 The MIPS R10000 processor

In this section we will talk about the hardware we have used. It includes the processor and
the memory hierarchy, although there are levels of this hierarchy inside the microprocessor.
We have been working with the MIPS R10000 microprocessor, which has implemented
the prefetch instruction. The R10k is a last generation microprocessor. It has branch
prediction, a non blocking cache, superscalar (it can issues at last 4 instruction at the
same time) and it has out of order execution. This last means that the processor can
execute instructions independent of its situation in the stream of execution while this
instruction wouldn’t depend on others that haven’t been executed. The out of order also
permits to hide some latency due to instructions behind a memory instruction that misses
can be executed if they don’t have any dependence. To support the out of order execution
the R10k has a window of 32 instructions that can be scheduled dynamically for best
performance. This microprocessor has built-in the first level of cache. It also implements
the control unit for the next level. These two levels are 2 way set associative. The first
level has 32 bytes per line while for the second level it can be chosen between 64 or 128, it
depends on the implemented system. The replacement algorithm is LRU for both caches.
In our case the second level cache is 4 Megabytes and has 128 bytes per line. The memory
latency between the first and the second level of cache is 3 cycles. This latency is enough
low to be hidden by the out of order execution. The latency for the main memory is around
40 cycles but it can be larger due to the factor that we are working on a SGI Silicon Origin
2000 that is a distributed shared memory multiprocessor computer.

* ISA for prefetch On the MIPS IV ISA there are two instruction for prefetch whose
mnemonic are 'pref’ and 'prefx’ respectively. Their format is the following:

PREF hint, offset(base) PREFX hint, offset(base)
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The only difference is the addressing mode. The address in the instruction is calculated
adding the 16-bit signed number (offset) that is inside the instruction with the value
contained in the register (base). For the PREFX instruction is the same but the offset is
in a register, so the address is calculated adding the two registers. The hint field supplies
information about the data is expected to be used. The hint field indicates which sort of
prefetch should be done, depending of the hint it could be done as a NOP. Values of this
hint field are: 0 (load), 1(store), 4 (load _streamed), 5 (store_streamed), 6 (load _retained)
and 7 (store_retained). For the 0 and 1 values (load and store) prefetch is done like normal
memory instructions (except for no work with registers). For 4 and 5 the data is expected
to be not reused extensively. For the 6 and 7 the data is expected to be retained in the
cache and reused extensively. 1.2.2 The SGI {77 MIPSpro Compiler

We work with the {77 MIPSpro Compiler. This compiler helps us to add compiling direc-
tives that tell where to put the prefetch instruction at the low level code. The compiler
also can add prefetch automatically. With these directives, software prefetching is also pos-
sible in high-level codes and the user may add prefetching without any knowledge about
assembler. Once the user has decided where to do prefetching he must add the compiler
directives. A directive is composed of the reference to prefetch and a stride. The stride
is the distance in loop iterations between different executions of the prefetch instruction.
Example of a code with this directive:

DO i = 1, 10000, 1
b(4xi) = 3
Cx$* PREFETCH_REF=b(4%*(i+33)) ,stride=4
a(4*xi) = 2+b(4%i)
ENDDO

In this example we can a prefetch directive in wich we take profit of the spatial locality
of the reference b(4*i). The reference must be prefetched with enough time in advance,in
this case 33 iterations of the loop. With the stride 4 we indicate to the compiler that
the prefetch must be executed only every 4 iterations of the original loop so that we only
prefetch once every 128 bytes (the item size is 8 bytes). When we prefetch an item all
the cache line the item belongs is loaded in the cache so only one prefetch for each line is
performed.

2.3 Structure of our tool

Our goal is to implement a tool that inserts prefetching instructions for a numeric codes
in a high level language as Fortran. To understand better the behaviour of the tool we
must differentiate two types of references. The first type is the static reference. An static
reference means the reference that is written in the code. The second type is the dynamic
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reference. A dynamic reference is an execution of an static one. This nomenclature is
also taken for prefetch instructions. The basic algorithm is divided in two major phases.
The first phase consists in a locality analysis that is necessary for knowing which references
produces misses. The second phase is the prefetch insertion, we need to transform dynamic
prefetches into static ones. This means that if we have a reference that produces one miss
per four dynamic executions we will have to isolate the dynamic reference (e.g. by unrolling
the loop and so the static reference will become into four), but is not needed to do this since
the compiler directives allow us to do this automatically without any loop transformation.

2.3.1 Locality analysis

To be sure that prefetches are not unnecessary we need to know which dynamic references
misses in the cache. To know the references a locality analysis is needed. With this
analysis we select the references to be prefetched. To do this analysis we use our tool of
static locality analysis (SPLAT). The first step of the locality analysis is the volume phase.
In this phase we consider the volume of data that the loop accesses. With this information
we have a good approximation of the data that will be loaded in the cache between two
dynamic references of the same reference and if this data may replace the line that the
reference accesses. A more precise analysis would require an interference analysis. With
this analysis we can know if a previous miss of a reference replaces a cache line because
set of conflicts. For the moment we are not able to apply an interference anaylis. This
analysis needs to obtain the base addresses of the data structures but for the moment
we are not able to obtain this information. Also the interference analysis that makes our
locality analysis is focused to direct mapped caches and the target processor has two-way
associative caches. However we have noticed that the main number of the interferences are
produced in a short interval of time where the prefetch can’t hide all the latency and in
many cases it adds overhead to the execution. Therefore, the interference analysis is not
so important for many codes.

2.3.2 Prefetch insertion

After the locality analysis is done we must to insert the prefetches instructions that will
hide the memory latency. At this moment we only add prefetching instructions to those
references that have no locality or only have self-spatial locality. We use the Ictineo com-
piler to get a low-level code and consider this information (the low-level instructions) to
put the prefetch far enough in advance. We also consider the information about the stride
of the loop and the factor that multiplies the loop index variable to be sure that a cache line
is prefetched only once. We don’t need to unroll the loop so this is made automatically by
the compiler. Although not always the compiler unrolls it enough times to insert the min-
imum number of prefetch instructions. It can result on unnecessary prefetch instructions.
We use this phase to put prefetches far in advance in the loop. For dynamic references we
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must to isolate them in static references. The reason for this is not to add of extra code
like conditional sentences in order to perform the prefetch only in some iterations. To do
that we can use techniques as unrolling or peeling, but is not necessary because within the
compiler directives of prefeching we can specify the stride that we want to put the prefetch
instructions. Then the compiler is who applies these techniques.

2.4 Status

At this moment our tool only performs prefetch for the innermost references of the loop-
nests. We don’t consider prefetching before a loop or interloops. We only consider a volume
analysis for the locality. We focus on the prefetch to the second level cache, where it seems
to have better results because the memory latency between the first and the second level
is hidden by the out of order execution. We are comparing our results with the automatic
prefetching of the MIPSpro Compiler. The code generated, with prefetch, by the compiler
has better performance than the normal version of the program (without prefetching) so our
goal is to improve the results obtained by the compiler. We have noticed that in some cases
the same code that would be worse in performance than the same code but with different
prefetch insertion can be more stables (better performance), but not in every execution.
This is due to the factor that in a multiprocess system cache lines can be replaced for
other lines from another process. In these cases unnecessary prefetches may be good for
performance so they minimize the effect of conflicts produced from other processes because
these prefetches refill the cache before data is required.

2.4.1 Results & examples

The following results are obtained using the hardware counters that provides the R10k
processor and our last version of the tool. To obtain results that are more significant the
example codes have been iterated many times, this is the reason why the number of cycles
is so large.

Example 1
INTEGER*8 A(1048576) ,B(1048576)
DO I=1,1048576-7,4
B(I+4)=3
A(I)=B(I)+2
ENDDO

For the above code we obtained the following results:

Example 1
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Time (in cycles) No prefetch | Automatic prefetch | Our tool
Exclusive 2003041281 1756707667 1753084128
Median (multiprocess) | 2336381137 1892494646 2152596719
Example 2

REAL*8 A(1048576) ,B(1048576) ,C(1048576)
DO I=1,1048576,4

A(I)=A(1048576-1I)
ENDDO

Time (in cycles) No prefetch | Automatic prefetch | Our tool
Exclusive 1408484347 1189681364 1083980160
Median (multiprocess) | 1482250224 1298606240 1238017425

In the first example we can notice that the results for our tool executing the code in exclu-
sive, i.e. like it was executed in a monoprocessor machine, are better than the automatic
prefetch made by the compiler. In the case of multiprocessor the code generated for the
machine tolerates better the latency due to the extra prefetch that the compiler adds. At
the second example the generated code from our tool is better in both cases. The reason
for this is the best location of the prefetch instructions. We allocate two prefetch instruc-
tions while the compiler only allocates one. But there are some codes where we add more
overhead. For instance the next example.

Example 3

REAL*8 A(393216) ,B(393216)
DO I=1,393216,8

A(I)=3
B(I)=4
ENDDO
Example 3
Time (in cycles) No prefetch | Automatic prefetch | Our tool
Exclusive 473617316 447621946 463165879
Median (multiprocess) | 575836003 491786244 548976407

2.5 Future work

In the next year, we will work to improve the performance of our tool in several aspects:

e point to do is to solve the problem with the interference analysis.
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e Work with different types of associativity. By this way our tool would be more
generic.

e The compiler not always isolates the prefetch instructions as good as possible. It is
due to its scheduling phase. The tool would have to do it automatically and force
the unroll either with compiler directives or unrolling it before.

e Work on different types of prefetch. For the moment, we only add innermost prefetch
instructions but there are some references whose behaviour of locality not depends
only of the innermost loop.

e We also seek to have a generic tool not depending on the architecture.

e Another interesting aspect we plan to research is to perform some sort of prefetch
for architectures without prefetch instructions.



Chapter 3

Software Pipelining and Prefetching

Abstract

Loop software pipelining is now a well known technique for exploiting Instruction Level
Parallelism present in most today’s high performance processors. Compilers usually per-
form software pipelining in a low level code where instructions are or are close to actual
assembly instructions because a precise timing information is needed. We present here the
TOPS source to source software pipelining framework that aims to act as a preprocessing
step in the compiling process very much like the usual automatic parallelizers. It is based
on an approximation of the architecture model but the progarmmer can specify through
directives presumed load latency for some memory access. Hence, data prefetching can be
controlled in softwareand combined with software pipelining. We present here the TOPS
tool for source to source software pipelining as well as preliminary experimental results.

3.1 INTRODUCTION

It is widely recognized that loops provide the largest source of optimization in common
numerical programs, and loop execution dominates almost total execution time of an ap-
plication program. A lot of researches have resulted into development of various techniques
for exploiting parallelism and data locality within nested loops.

The coarse grain parallelism present in multiprocessors can be exploited by a restruc-
turation of nested loops in the source code, whereas fine grain parallelism (also called
Instruction Level Parallelism [RF93| superscalar or VLIW) in today’s high performance
monoprocessors is rather exploited at the assembly code level by loop software pipelining
[AJLA95] .

Memory management is the other important feature of high performance architectures.

10
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It is also handled differently in multi- and mono-processors. In MIMD architectures, the
problem is to partition the data set among the local memories of the different processors;
this is usually done in the source code. In the mono-processors, the problem is to exhibit
good temporal or spatial data locality in the code - this can be performed in the source
code - or to efficiently use the registers available - this is usually performed in the assembly
code.

What is proposed in this paper is a first step towards a common framework for studying
the combination of these different optimizations. We have implemented source to source
software pipelining based on DESP [WEJS94| in the Sage++ [BBGS94| compiling environ-
nement. Software pipelining is a loop transformation that increases the parallelism within
the loop body by combining instructions from different iterations into the same loop body.
Because today’s microprocessors have dynamic features that make them able to exploit
local parallelism - we believe that this approach makes sense. We have also added the
possibility for the programmer to specify presumed latencies of some memory references
by means of directives. This allows first to keep data prefetching under control and sec-
ond, software pipelining reschedules intructions in order to take into account this data
prefetching. In the MHAOTEU framework, load latencies can be obtained by data locality
analysis that point out memory references that miss in the cache. We first describe the
TOPS tool for source to source software pipelining and then give preliminary experimental
results with and without specifying load latencies.

3.2 TOPS

There are many ways for improving the execution time of an application program. One
approach, termed hardware processing, and another, termed software processing or parallel
processing. Software pipelining is a software processing technique which restructures loops
by combining instructions from different iterations into the same loop body. For exemple,
let us consider an architecture consisting of four functional units: one Integer Unit, one
Load/Store Unit, and two Floating Point Units. A simple inner loop and its corresponding
simulation assembly code are shown in Figure 1(a) and 1(b). Without any transformation,
each loop iteration requires 9 cycles to execute on a given ILP processor. If the loop
is software pipelined (Figure 1(c)), each loop iteration in the kernel requires 4 cycles in
average. The instructions 2 and 0 can be executed in same cycle, as well as instructions
8-6-1, 4-3, 7-5.

The objective of software pipelining is to increase the ILP inside each inner loop. It
“removes” dependences between instructions within each iteration and replaces them by
dependence across iterations. This removal of dependences makes more instructions in-
dependent from each other and thereby increases the number of instructions that can be
executed concurrently.
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DO 10 1=3,N IF(1>6) IF(1>6)
B[i] = (A[1-1] +A[I-2] prelude instructions prelude instructions
+ A[1+1] +A[I+2])/D DOI=1,N,2 DOI=1N, 2
10 CONTINUE BlI] =r82 ! B7[i]__ o w2 |3
71=r52+161 | 2 r31 = rg’l r22 g
_ r3l=r21+r
(@) Original Loop r31=r12+r22 3 {51 = 131 + r42 4
ril=A[l] 4 121 =41
Inst.| pOl1=3N cyclg r51 =r31 + r42 5 181=r71/D 5
ol TiII=A[l] 0 r21 = A[l+1] 6 160 3
1| T2[l]=A[l+1] 1 r81=r71/D 7 BI1+1] = 81
2| TAN=TAN+TAN | 2 a1=A[+3 | 8 [t+1] =r 8
3 T4[|] :A[|+3] 3 r6l:A[|+4] 9 r72=r51+r62 9
4| THI]=T3[I] + T4[I] 4 B[I+1] =81 10 r32=r22+r21 10
5| T6[l]=A[l+4] 5 172=r51+162 | 11 r52=r32+r4l | 11
6| T7IN=T5I]+Te[l] |6 30 = 111 + 121 12 r22 =r42 12
T8MN1=T7[11/D 7 rss=r r r82=r72/D 13
7 {11 =T7[1]
8 riz=All+1) 13 r42 = A[1+4] 14
8| BlI=T8l] 9 r52=r32+r4l | 14 _ e
ENDDO 122 = A[1+2] 15 r62=A[l+5]
r82=r72/D 16 ENDDO
. . r42 = A[|+4] 17
(b) Simulation Assemble code 162 = A[1+5] 18
ENDDO
2 0 postlude instructions postlude instructions
8 6 1 remainder iterations remainder iterations
4 3 ELSE ELSE
7 5 sequential loop sequential loop

(c) Schedule of pipelined loop

8 loads, 2 stores/ 2 iterations

(d) Pipelined Loop

2 loads, 2 stores/ 2 iterations

(e) After Optimizing

Figure 3.1: Optimization steps
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The first problem is to simulate the low level 3-address instructions in the source code.
This is done by splitting instructions into virtual 3-address instructions. For avoiding
any preliminary assumptions on where the temporary variables are to be stored, we use
temporary arrays. It should be noted that this expansion of scalars into arrays is done only
internaly and does not remain in the final produced program.Then the usual dependency
graph is computed by Sage++. The loop is software pipelined by DESP, followed by
a phase of register allocation with possible unrolling. Then the elimination of redudant
load /store of subscripted variables [DE97| is performed.

3.2.1 STATEMENT TRANSFORMATION

In our approach, all statements of high level language are first transformed into virtual
3-address instruction. We use temporary array variable for replacing every expression of
original statement, including memory accesses, arithmetic operations, ... with the form of
T;(I) = e, where e is part of the right hand side expression of original statement. Figure
1(b) shows the transformed code. The transformed instructions provide all informations
of data dependence. Sage+-+ can compute the data dependence for FORTRAN program
by using Omega test [PW92a|. It should be noted that index and address computations
are not taken into account, hence it should be assumed that induction variables have been
identified in a preliminary step. Since we are mostly addressing memory problems, we could
also separate only memory accesses (loading of data into registers) and keep computation
expressions as there are.

3.2.2 SOFTWARE PIPELINING - THE DESP ALGORITHM

Software pipelining is usually performed by Modulo Scheduling. Modulo Scheduling is
an iterative algorithm that generates a schedule for one iteration of the loop body, such
that this schedule can be issued every II clock cycles [8]. In TOPS, we use the DESP
algorithm. DESP (DEcomposed Software Pipelining) [WEJS94| is a direct method for
loop software pipelining. The schedule is represented with a matrix of operations. In this
matrix, the row-number of an operation denotes its place in the final schedule whereas the
column-number denotes which iteration of that operation is placed in the loop body. DESP
takes the dependency graph and the resource constraints and returns the row-numbers and
column-numbers of each operation.

3.2.3 REGISTER ALLOCATION - LOOP UNROLLING

Software pipelining increases the lifetime of variables that may span more than one itera-
tion. This means that more than one instance of the same loop variable is alive at some
point of the loop, so that more than one register is needed for carrying all these instances.



CHAPTER 3. SOFTWARE PIPELINING AND PREFETCHING 14

For expliciting this register allocation in the software, there are two ways. The first way is
to use for some variable a set of registers that is shifted at each iteration. The other way
is to unroll the loop for describing explicitely in which registers the different instances of
some variable are hold. We have chosen to implement the latter technique in order to make
the code simple and also because loop unrolling increases in general the opportunities of
optimization by the compiler or the processor. Actually this strategy happened to have
interferences with the compiler that also unrolls loops.

DESP offers an option to allocate variables on the minimal number of registers. Since this
allocation in the source program consists in allocating variables into scalars, we decided to
use a very simple variant of the MVE (Modulo Variable Expansion) method. It consists
in unrolling the loop only a number of times u equal to the largest number of iterations
that a variable lifetime spans. Then u different scalars (“registers”) are assigned to each
variable.

3.2.4 LOOP RESTRUCTURING

After DESP, the code has to be rewritten according to the row-numbers and column-
numbers computed. The code scheme is the following. The first iterations are initialized in
the prelude P, until a steady state - the new loop K - is achieved. Then the last iterations
must be completed at the end of the loop in a postlude P,. This scheme works only
for a number of iterations greater than the number of iterations involved in the prelude.
If the number of iterations is less, then the sequential loop is executed (S;). Also, due
to unrolling and for avoiding conditional branchs in the final loop, there remains a little
number of iterations I; to perform. Hence the scheme for loop transformation can be
presented with [(IF)P,KP,R;(ELSE)S,|. Figure 1(d) shows a transformed loop unrolled
2 times.

3.3 CODE OPTIMIZATIONS

After the phase of loop software pipelining, there remain opportunities for optimization
by avoiding redundant memory acccess. Ideally, this optimization should be taken in con-
sideration simultaneously to the software pipelining process, since keeping array variables
in registers increases register pressure. For a preliminary evaluation, we have designed a
variant of the algorithm described in |9, 10, 11]. Future work will consider combination of
software pipelining with removal of redundant memory accesses.
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3.3.1 OPTIMIZATION ALGORITHM

Our optimization algorithm is based on the data dependence test [WT92, PW92a, PW92b)|.
We use the data dependence graph (DDQG) to illustrate the relationships between various
operations. The data dependence graph can be represented by G(N,E), where N is the
set of all nodes, and E is the set of all dependences edges. Some definitions are shown
in Figure 2. The algorithm consists of two parts: data dependence and variable reference
analysis.

Data Dependence Analysis: There are two steps in eliminating redundancy: loads and
stores elimination. First, we consider True and Input dependences in order to avoid partial
redundant loads. A load is redundant, if, on every control flow path ending at this node,
the loaded value is already available in a register. To detect redundant load, we use the
data dependence informations. That is, if there exist True and Input dependences within
the loop, some loads can be eliminated. For example in the loop of Figure 1(d), because of
the input dependence (S, S'*), we can remove the instruction 13 because the value loaded
by this instruction is already available in register r61. However, in order to avoid erasing
prematurely this value, we insert a move operation (shifting of registers) for saving the
value in r42. It may happen that this move instruction is unnecessary. This is discussed
in the next step of the algorithm.

Then, Output dependences are considered to eliminate redundant stores. A store S** in a
dependence S™ and S°“ is redundant and can be removed if there is no read access to this
variable between S™ and S°“*. Thus, the problem of detecting and eliminating redundant
stores can be solved by testing Output data dependence. The result of optimization is
shown in Figure 1(e). We can see that after this optimization, there are only two memory
loads operations instead of eight previously.

Variable Reference Analysis: In our approach, all memory loads and arithmetic op-
erations are allocated into virtual registers. If the dependence distance is bigger than
one, some register move operations are necessary for saving different instances of that
variable. For managing these register shifts precisely, we first analyse each register vari-
able. Our Variable Reference Analysis (VRA) is based on the extension of the methods
of [DGS93, BG95|. The number of shifts depends on the dependence distance. A shift
operation may be redundant if, on the path from the first definition of that register to the
node that uses it, the register that carries a copy of the variable is never used by other
instructions. For our example loop, a input dependence is found between instruction 15
and 4 (S'°, S*) with distance 1. In general, a shift should be inserted for replacing load
operation (instruction 4). From instruction S to S*, the definision of instruction 4 (r11)
is never used by other instructions, therefore the shift instruction can be eliminated and
A[I + 2] in instruction 15 can be directly loaded into 711. The details of the algorithm are
given in Figure 2. The result for our example is shown in Figure 1 (e).
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3.3.2 DATA PREFETCHING

The architecture model used currently in TOPS specifies latencies for each type of instruc-
tion. It is fixed for the whole software pipelining process. However, TOPS offers also
to the programmer the possibility to specify longer memory latencies. This is done by
means of directives (under comments in FORTRAN), where each memory access of the
next statement is given a special latency.

For instance, in the loop below, the first directive specifies that the next loop has to be
software pipelined. The second line gives the latencies assigned to the load operations of
the next statement (5 for A(I), 5 for B(I) and 1 for C(I-1), that is supposed to be already
present in the cache since it is computed in the previous iteration).

CPipeline_Loop
CLatencies (1, 5) (2, 5) (3, 1)
D020 I =2, N
C(I) = A(I)*B(I) + C(I-1)
20 CONTINUE

Typically one expects that a long latency is given to data that are known to miss. For taking
into account spatial locality, one can also unroll the loop a number of times equal to the line
size and prefetch only the first line element when known. This avoids useless prefetchings
that tend to increase register pressure. This is what is are currently implementing.

We are also considering connecting our TOPS tool to MHAOTEU. This can be done
by connecting TOPS to OCTAVE that has almost exactly the same library functions as
Sage++. Once it is connected, we will experiment on MHAOTEU benchmarks by using
the analysis tools of MHAOTEU for deciding which variables to prefetch. In the next
section, we give results of experiments with and without prefetching.

3.4 PRELIMINARY RESULTS

3.4.1 Without prefetching

In this section, we report our experimental results obtained by using only Software Pipelin-
ing described in section 3.2 and our array reference optimization method described in
section 3.3.1. The source Fortran codes are from Perfect Club Benchmark suites.

For examining the efficiency of our method, we first profile the program for finding fre-
quently executed program regions and we optimize them. Each benchmark with the high-
est percentage of execution time functions and with nested loops (CSS/terr, LGS/choos,
APS/trid, detdxf, SDS/matmul, chosol, LWS /interf and TIS/olda) are chosen to measure



Definition 1 :

Let G = (N, E) be a data dependence graph of a loop,
if 3 e = (S, S°Ut) € E, we say there is a dependence
between S‘™ and S°%!, and S°*! follows S*™.

Er C E is the set of flow dependence

Er C E is the set of input dependence

Eop C E is the set of output dependence

Definition 2 :

Let Rgey (Ruse) be a set of definition (use) references
Ryes
Rin

use

is node S*" definition reference
is node S'" use reference
REZ} is node S°%! definition reference

RS%t is node S°¥? use reference
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Algorithm :
FOR (every nodes S and S°“! € N)
IF (3 e=(S™,5°% ) e Ep (or € E;)) Then
compute the distance (d) of S and S°%!
IF (d == 0 ) THEN
del( S°Ut )
FOR (all r = R3%} € Ruse )
ENDIF r+ Ry, (orr« R:iﬂ;_f )
IF (d == 1) THEN
IF (3 r = RJ*Y € Ryse from S to S°ut)

de f
S°Ut ig replaced by a shift operation
ELSE

del( S°ut )
FOR (all r = R;;_‘} € Ruse )
r + R, (orr <« R::lz_f )
ENDIF
IF (d > 1) THEN
S°Ut is replaced by a set of shift operations
ENDIF

ENDIF

IF (3e=(S!", S°% ) € Ep ) Then
del( S°ut )
ENDIF
ENDFOR

Figure 3.2: OPTIMIZATION ALGORITHM USING DATA DEPENDENCE TEST
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the performance benefit of our efficient code transformation. The experimental loops are
single basic block loops that do not contain function call and branch. The target processor
assumed for these experiments are four issue rates processors. All speedups are reported
over the original progam with different optimization levels. The pipelined code is generated
by DESP algorithm and optimized by our techniques described in section.

Figure 3.3 shows the performance and speedup results of each benchmark. For comparing
the effectiveness of our approach, we compile and execute each program in every optimiza-
tion levels of FORTRAN compiler on DEC-Alpha processor. The software pipelined loops
in all programs on each optimization level required less registers than target machine has.
The performances can be improved till 20%. However, for function olda, after pipelining
loops, there was a larger amount of spill code generated on optimization level O5, the
performance is degraded. Also, we can see, at optimization level O2 or O3, the maximum
performance improvement are obtained.

Software pipeline and optimization techniques improve the performance of CSS, LGS and
APS by 0 to 3 percent. In these programs, the treated functions have only small percentage
of total execution time. However, for SDS and TIS program with 81 and 99 percent of
execution time, we can get over 20 percent of improved performance. Even so, our methods
can provide a significant performance improvement.

3.4.2 W.ith prefetching

For testing prefetching we analyzed Livermore loop 23 on UltraSparc and DEC-alpha.
We try different optimization levels because our source to source software pipeliner may
interfere with transformations done by the compiler. Results are given on figures 3.4 and
3.5. On these figures execution time for the five optimizations options and different values
for load latencies (5, 10, 20, 50, 100) and compared to the original code. We can observe
that in both cases small latencies give speedups and the best performance is obtained for
latency 5, that gives a speedup of 2. As expected, long latencies induce very high register
pressure and cause performance degradation. As a matter of fact, analysis of assembly code
shows a lot of spurious register spillings. It is also interesting to note that optimization
Ob gives surprisingly bad performance on Dec-alpha. This is because O5 optimization
performs already software pipelining, that results in another unrolling of the loop and code
size increase.

3.5 CONCLUSION AND FUTURE WORK

This paper presented the motivations and the implementation of a framework for source
to source software pipelining and software data prefetching. For preliminary experiments,
we have based the optimization on a simple virtual instruction-level parallel processor and
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a very greedy register allocation schme and show that we are able in some cases to attain
and sometime increase the performance of the code generated by the compiler with the
“software-pipelining” option O5. This is very encouraging for the future.

For improving software pipelining itself, there are many directions we are considering, for
instance mixing of load/store elimination and loop scheduling, incorporating a performant
register allocation algorithm, studying precisely the relationship between the number of
“virtual” registers explicited in the source code and the actual number of registers in the
assembly code.

As for data prefetching, our TOPS tool is very convenient for performing scheduling of loads
in advance. Experiments have highlighted sensitivity of software pipelining to specified load
latencies. We expect that this optimization gives good results when only missing references
(identified by MHAOTEU analysis) are fetched in advance, and different latencies are tried
for finding the best optimization scheme.
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Chapter 4

Targetted Global Optimisation

Abstract

This paper is concerned with integrating global data transformations and local loop trans-
formations in order to minimise overhead. By first developing an extended algebraic trans-
formation framework, a new technique to allow the static application of global data trans-
formations to reshaped arrays is presented, eliminating the need for expensive temporary
copies and hence eliminating any communication and synchronisation. In addition, by inte-
grating loop and data transformations, poor spatial locality and expensive array subscripts
that may have been introduced can be eliminated. A specific optimisation algorithm is de-
rived where initially experiments show it to give a significant improvement in execution
time over existing approaches

4.1 Introduction

In order to achieve acceptable performance on current distributed shared memory ma-
chines, it is essential to make efficient use of the memory hierarchy and minimise overhead.
Typically, a loop based approach [24] is used which is local in nature, as each loop nest
is separately examined and optimised. Although each loop nest in isolation may perform
well, they may perform poorly when combined due to significant communication between
loop nests.

Another approach is to consider data orientated techniques [13], traditionally developed
for distributed memory compilation but also used for distributed shared memory [1, 9|.
This approach is primarily concerned with mapping arrays to processors and has a global,
program wide, effect. It tries to globally trade off costs for an entire program, in contrast
to loop based approaches. However, this global approach breaks down when a particular
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array has two different layouts, for instance, when it is reshaped at a subroutine boundary.
At present, there is no efficient static means to apply data transformations to reshaped
arrays. Expensive temporary copies must normally be made at run-time on entry to the
procedure and restored on exit 7], introducing additional communication.

Another problem associated with global data transformations is that in determining an
optimisation that is globally acceptable, it may have an adverse affect on the performance
of a particular statement within a loop nest. For instance, data alignment may transpose
the layout of one array, reducing overall memory access, but in certain loop nests cause
poor stride access through the local data cache by destroying spatial locality.

These two problems of data transformations, namely, reshaped arrays and the adverse
effect on loop nests, are the subject of this paper. By developing an extended framework
for loop and data transformations, we have developed a technique to statically determine
the data layout for reshaped arrays, eliminating the need for temporary copies and the
associated overhead. To solve the second problem of the (potential) local adverse effects of
global data transformations on loop nests, loop transformations can be used to undo these
adverse effects.

In order to optimise programs globally, it is essential that a compiler is able to combine loop
and data transformations. Recent work |1, 6, 10, 22| has focussed on combining the loop
based with data layout approaches [13| in order to trade-off these conflicting requirements.
However, these approaches are restricted in that transformations, including strip-mining
and linearisation, cannot be directly incorporated within their representation.

This paper develops a new approach to combining loop and data transformations, introduc-
ing rank modifying transformations which allow generalised linearisation and strip-mining
of loop and data spaces. Its main practical use is that it allows, for the first time, the static
application of data transformations, such as global index reordering and data strip-mining
to reshaped arrays. Applying global data transformations to reshaped arrays can, however,
produce complex and inefficient code but, by integrating loop and data transformations, we
may also systematically eliminate any complex array access function introduced. This dra-
matically improves spatial locality by restructuring data to have stride-1 access wherever
possible.

This paper is organised as follows. In the next section, a motivating example showing the
applicability of our integrated approach is presented. Section 3 presents the notation used
within this paper and is followed by section 4 which describes the form and properties of
our novel rank modifying transformations. Sections 5 and 6 develop techniques for efficient
data layout propagation which is followed in section 7 by a small experiment showing the
significant improvement of such a scheme. Section 8 briefly reviews related work and is
followed by some concluding remarks.
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Original Code (1)

Reshaped Array (2)

Original Access (3)

Reshaped Access (4)

REAL A(0:3,0:3)

Do i=0, 2
Do j =1,3
ACi,j) = A(i+1,j-1)
+ D(j,1)
Enddo
Enddo

call Reshape(a)

Subroutine Reshape (B)
REAL B(0:1,0:7)
Do j=0,7
Do i = 0,
B(i,j)
Enddo
Enddo

1
=B(i,j) + 1

a

b

After Data Transformation(5)

Propagated Transformation (6)

New Access (7)

New Reshaped Access (8)

REAL A(0:3,0:3)

Do i = 0,2
Do j =1,3
A(j,1) = A(j-1,i+1)
+ D(j,1)
Enddo
Enddo

call Reshape(A)

Subroutine Reshape (B)
REAL B(0:1,0:7)
Do j=0,7
Do i = 0,1
B(mod (4*mod ((2*j+i) ,4)
+(2%j+i)/4,2),
(4% mod((2*j+i),4)
+(2%j+i)/4)/2) + =1
Enddo
Enddo

a

Loop Restructuring (9)

More Loop Restructuring (10)

Access Pattern(11)

Subroutine Reshape (B)

REAL B(0:1,0:7)

REAL B(0:1,0:7) Do j1 = 0,1
Do j =0, 3 Do j2 = 0,1
Do i =0,3 Do i = 0,3
B(mod(j,2),2%i+j/2) += 1 B(j2,2*i+j1) +=1
Enddo Enddo
Enddo Enddo
Enddo

Subroutine Reshape (B)

b

Data Restructuring (12)

Loop and Data Restructuring (13)

Access Pattern(14)

Subroutine Reshape (B)

REAL B(0:3,0:3)

REAL B(0:3,0:3) Do ji = 0.1
) Do i = 0,1
Do j =0,7 o
. Do j2 = 0,3
Do i =0,1 B(j2,i+2%j1) += 1
B(§/2,i+2%mod(j,2)) += 1 J€,1%2%]
Enddo
Enddo
Enddo Enddo
Enddo
Enddo

Subroutine Reshape (B)

b

Figure 4.1: Transformations
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4.2 Example

In this section, we consider a simple example to illustrate the two probelems tackled in this
paper: application of data transformations to reshaped arrays and the impact of global
data transformations on local loop structure. To illustrate one of the applications, consider
the program fragment in figure 1, box 1. In Fortran arrays are stored column-wise and
therefore the reference to array A has a non stride-1 access pattern. This is shown in the
diagram in box 3. The program fragment in box 2 contains references to B which are
reshaped reference to A'. Here, however, there is perfect stride-1 access to array B as shown
in box 4. One way to improve the access to array A, is to interchange the two loops. Loop
permutation of the code in box 1 is not possible, however, due to the data dependence
[1,—1]"and thus a compiler may wish to apply a data transformation described in [22] to
ensure stride-1 access. The necessary data transformation is a simple permutation matrix
which, when applied to array A, gives the code in box 5 with the corresponding stride-1
access pattern in box 7. Such an approach has the benefit of always being legal, though
its effect must be propagated to all accesses, including reshaped ones. Existing approaches
[7] do not propagate information when there is reshaping and prefer either to insert a
copy or prevent the data restructuring. Using the techniques described in section 6, we
can apply the data transformation to the reshaped array giving the code in box 6 and
the access pattern shown in 8. Although correct, it is immediately apparent that such
a code structure and access pattern will be expensive, outweighing any benefit to the
improved stride access to A. Even after application of the strength-reduction techniques for
mod operations described in [1], calculation of the access function of B will be prohibitive.
Furthermore, this will not improve the pathological “leapfrog” access to B.

The second table in figure 1 shows different attempts to improve the loop structure and data
access pattern of the code in box 6. Using a combination of strip-mining and linearisation,
the loop can be transformed to that shown in box 9. The access pattern, shown in box
11, is unchanged, but the access function is considerably simplified. By the application
of a further rank modifying loop transformation, we have the code in box 10, where all
mod and div operators have been removed. This, however, does not affect the data access
pattern shown in box 11. If instead a data transformation is applied to B, we have the code
shown in box 12. Finally, if both loop and data transformations are combined, we obtain
the code in box 13 which has stride-1 access shown in box 14. Thus, by a combination of
rank modifying data and loop transformations, we have stride-1 access on all arrays without
excessively expensive access functions. In section 7 we develop automatic techniques which
select the appropriate transformations and show the impact of such restructuring on actual
performance.

1Such aliasing can occur either due to equivalencing (as shown), or more usually, due to reshaping
across subroutine boundaries.
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4.3 Notation

In this section, we briefly describe the notation used to develop the transformation frame-
work. It is based on an algebraic representation of program constructs.

4.3.1 Iteration Spaces

The iterators in a Fortran program, surrounding any statement, can be represented as an
m X 1 column vector

J = [jl,jZa s ajm]T
where m is the number of enclosing loops or iterators. The loop range or affine bounds of
the iterators can be described by a system of inequalities defining the polyhedron

BJ<b (4.1)

where B is a (¢ x m) integer matrix and b an (¢ x 1) vector, for some ¢. The integer values
taken on by J define the iteration space of the iterators.

4.3.2 Index Spaces

The data storage of an array A can also be viewed as a polyhedron. We introduce formal
indices T for the array to describe the array index domain

T = [iy,d9,...,in]"

where N is the dimension of array A. The formal indices have a certain range which describe
the size of the array, or index space, as follows:

AT <a (4.2)

where A is a (£ X N) integer matrix and a an (¢ x 1) vector, for some £. The integer values
taken on by Z define the index space of the indices.

4.3.3 Array Accesses

The subscripts in a reference to an array A represent a function that maps the values of the
iteration space to the index domain. If J is the iteration vector, we assume in this paper
that these subscripts can be written in the following form:

UJ+u (4.3)

where U is a N X m matrix and v is a N x 1 vector. All access vectors and loop and array
bounds are assumed to start from 0 throughout this paper, for ease of presentation. The
transformations can be trivially extended to encompass non-zero offsets.
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4.4 Rank Modifying Transformations

In this section, we first describe the form and properties of rank modifying transformations.
This is followed by an illustrative example.

4.4.1 Data Transformations
A data transformation is applied to the index space of a particular array and all accesses to

that array throughout the program and is therefore global in nature. Rank-decreasing data
transformations, such as array linearisation, are frequently used in FORTRAN programs.

A (k x N) linearisation matrix L is a transformation which maps an N dimension index
vector Z to a new k dimension space Z'.

T'=1IT (4.4)

Each array access ¢ must be globally updated such that

U =ILu (4.5)

Data transformations are therefore left-hand transformations when applied to array access
functions. The new bounds of the new iteration space must also be determined. They are
of the form:

AT <a' (4.6)
where
A'=XAL'! and a' = Xa (4.7)
and
L O
=[5 9] s

In equation (4.7), L' is a transformation that is inverse to L on the index space of A. That
is, for every index point Z of A, LT(L(Z)) = Z. We call such an inverse transformation Lf
a local tnverse for L on the index space of A.

For rank decreasing transformations, the only additional condition to be added is that
k < N, i.e., the new index space is smaller than the original. The equations for applying a
singular transformation that increases the number of dimensions of an array are precisely
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Real A(0:3,0:7), B(0:3,0:7)
Do j = 0,3
Doi=20,3
A(i,j) = A(j,i) + B(i,3)
Enddo
Enddo
Figure 4.2: Example loop
Data Loop Combined
Real A(0:31), B(0:3,0:7) Real A(0:3,0:7), B(0:3,0:7) Real A(0:31), B(0:3,0:7)
[ 14 ] D;oj;oc’fs Do i = 0,15 Do i = 0,15

Enddo
Enddo

A(i+4%j) = A(j+4*i) +B(4,j)

A(mod(i,4),i/4) = A(i/4,mod(i,4))
+ B(mod(i,4),i/4)
Enddo

A(i) = A(i/4+4%(mod(i,4))
+ B(mod(i,4)+4%(i/4))
Enddo

Real A(0:1,0:1,0:7), B(0:3,0:7)

Do j =0,3
(J%Q Do i =0,3
A(mod(i,2),i/2,j) =
()/2 Amod(3,2),3/2,5) + B(4,3)
Enddo
Enddo

Real A(0:3,0:7), B(0:3,0:7)

Do j =0,3

Do i2 = 0,1

Do il = 0,1

A(i1+2%12,3) = A(j,i1+2%i2)
+ B(i1+2%i2,j)
Enddo

Enddo

Enddo

Real A(0:1,0:1,0:7), B(0:3,0:7)

Do j2 = 0,1

Do ji = 0,1
Do i2 = 0,1
Do i1l = 0,1

A(i1,i2,j1+2%j2)
= A(j1,j2,i1+2%i2)
+ B(i1+2%i2,j1+2%j2)

Enddo
Enddo
Enddo
Enddo

Figure 4.3: Loop and Data Transformations

the same form as that for rank-decreasing. In the case of rank increasing matrices used,
for instance, in strip-mining £ > N. For convenience we will denote such matrices by S.

4.4.2 Loop Transformations

Loop transformations are applied to the iterators in a loop nest and to all array accesses
within a loop nest and are thus local in nature. Rank-decreasing loop transformations,
such as loop collapsing, are used to reduce loop overhead while rank-increasing ones, such
as tiling, are frequently used to exploit locality.

A (k x m) linearisation matrix L is a transformation which maps an m dimensional index
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vector J to a new k dimensional vector J'.

J' =LJ (4.9)
Each access I/ within the loop nest must be updated such that

U =UuLt (4.10)

Thus, loop transformations are right-hand acting transformations when applied to array
accesses.

The new bounds of the new iteration space must be determined and are of the form:

B'J' <V (4.11)
where
B'= XBL! and b’ = Xb (4.12)
and
L O
=[5 9] (413)

Once again, the only additional condition to be added is that k¥ < N for rank-decreasing
transformations and k£ > N for rank increasing ones, which will be denoted by S.

4.4.3 Form of Transformation

In this paper, we restrict attention to generalised strip-mining and linearisation. In or-
der to describe such transformations in an algebraic framework, it is necessary that the
transformation matrices may now include integer division and modulo operations as well
as integers. If we need to include the operation “divide by n” as an entry in a matrix, we
will write this entry as (-)/n. Likewise, we write (-)%n for the “modulo n” operation.

We need to define how to calculate with these extended matrices. Briefly, if we multiply
a matrix with such entries with a vector, we simply substitute the values of the vector
elements into the operation. For example,

RriHEk e (1.14)

On the other hand, if we multiply such a matrix by another matrix, we multiply the input
or result of the operation by the appropriate integer. For example,

[1 4] x l (('_))?j] — [()%4 + 4% (()/4)] (4.15)
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This transformation maps an integer n to n%4 + 4 x (n/4). It can easily be checked that
n%4 + 4 x (n/4) = n and hence this transformation can be replaced by the 1 x 1 identity
matrix.

Now, on the index space of A(0:3,0:7),

(1) %4 110
l(')/‘l x[14]= 01 (4.16)
Hence these matrices are inverse to one another over the index space of A. In general, in
this paper we will use the following rank modifying matrices.

Lz[l ny, Ny Xng ... nlx---xnm_l] (4.17)
and
(-)%mo
. (Ol s

(()/(no X -+ X 1om_1)) %1t

where ng, ..., n,— are constants corresponding to the size of the appropriate index /iterator
dimension. It is clear that L and L' are local inverses.

4.4.4 Example

To illustrate this formulation, consider the program in figure 4.2 and the following trans-
formation which maps the 2 dimensional array A to a 1 dimensional linearised form:

(-)/4

In the previous section we have shown that these matrices are local inverses. The array
accesses to A are updated thus:

[1 4]><[§’é“”:[4 1]“] (4.20)
[1 4]xlé?“”:[1 4]“] (4.21)

ie, A(i,j) — A(i+4xj) and A(j,i) — A(j+4%1i).

L=[1 4] and Lf= l ()74 ] (4.19)

The new index space A'Z' < a’ is calculated as follows:

SRR U R S
0 1
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=1 4][’:1]:[1"1] (4.23)

0
ol = [3%] (4.24)
7

giving
L= [5r] (029

i.e., A(0:31). The updated array access and index space are shown in figure 4.3, row 1,
column 2. The application of a similar loop transformation is shown in column 3.

4.4.5 Combining Loop and Data Transformations

Although our formulation allows rank modifying loop and data transformations to be
applied independently, in practice they are often combined. For instance, the strip-mining
data transformation gives rise to access functions containing div and mod, both of which
will be prohibitively expensive. If, however, the surrounding loop were also strip-mined,
the accesses would become simplified. For example, consider the code in figure 4.3, row 2,
column 2, after the application of a rank-increasing data transformation. If a related loop
transformation is subsequently applied, we have the program shown in row 2, column 4,
where the accesses to A are now simplified. Thus, this framework allows a natural method
to apply dimension changing transformations, frequently avoiding the use of div and mod
without the need for special optimisations akin to strength reduction as described in [1].

4.5 Handling Data Transformations in the Presence of
Linearised Arrays

The previous sections have described the form of rank-modifying transformations. This
section illustrates the usefulness of such a framework by combining rank-modifying trans-
formations with more standard non-singular ones. It develops a technique to allow the
application of data transformations to linearised arrays without incurring excessive com-
munication and synchronisation overhead.

The first subsection describes a technique to apply data transformations to linearised ar-
rays. This is followed by a section describing how rank modifying loop transformation can
remove some of the introduced div and mod operators.
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Original Data Transformation Loop Transformation
. . . Real A(0:1,0:4) Real B(0:9)
Real A(0:1,0:3) Real B(0:7) Real A(0:1,0:4) Real B(0:9) Equivalence(A,B)
. Equivalence(A,B)
Equivalence(A,B)
. - Do j = 0,3
Do j = 0,3 D;oJi'_O(’)Bl Do i = 0,1
Do i = 0,1 L o . A(i,i+j)=B(3*i+2%j)+C(i,j
AGi,3)=B(i+2%j)+C(i,3) Ei((i(]i;1+J)—B(3*1+2*J)+C(1,J) Enddo
Enddo Fnddo Enddo
Enddo . Do j = 0,3
Do j = 0,7 Do j = 0,7 Do i = 0,1
B(j) = j*3 B(3*mod(q,2) + 2*(%/2)) - B(3%i + 24]) = Oi+6%;
9*mod (j,2) + 6%(j/2)
Enddo Fnddo Enddo
Enddo

Figure 4.4: Linearised Aliasing

4.5.1 Data Transformations on Linearised Arrays

Data transformations are left-hand transformations that must be applied to every reference
to the particular array throughout the program. Difficulties occur when references to a
linearised array access exist. Let Z; be the index domain of the array to be transformed
and Z, be the the linearised domain:

where L is the linearising transformation. We therefore have:

T, = L'T, (4.27)

If we wish to apply a non-singular data transformation .4 globally [22], this gives the new

index domain Z;:
I = ATy (4.28)

and analgeous to equation (4.26) we have
I, =LT (4.29)
where L' is the appropriate linearisation and therefore
T,=LT = L'AT, = ' AL'T, (4.30)

Thus, when applying A to the index domain Z;, we must apply L' AL! to the linearised
domain Z,. Now, given two references U; and Uy, where U is a linearised reference, then
on applying A we have as usual U] = AU;. However, for the linearised access we have
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Uy = L' AL'U, (4.31)

The linearisation transformations L and L' and their inverses are readily derived from the
array bounds before and after applying A. For example, in the case of a two dimensional
array we have

L=[1n] and L'=[1 n'] (4.32)
To illustrate this, consider the example in figure 4.4, column 1. Let
10
A= l 11 ] (4.33)

i.e., a simple data skew which is applied to the array A. The access to array A in the first

loop is readily found:
10 Lo _ L O]y
EREHIHE N =

i.e., A(i,i+j) which is shown in figure 4.4, column 2. To update the equivalenced access
to array B, we need to determine L' and L. Examining the original array bounds we have:

L=[1 2] and Li=[ (%2 ()/2] (4.35)
Applying A gives the new array bounds A(0:1,0:4) hence
L'=[1 2] (4.36)

If we apply L' AL to the linearised access to B in the first loop we get:
10 (1) %2 Jl_ . .
[1 2]><l1 llxl(_)m]x[z,uxli = [2%j,3 %] (4.37)

i.e., B(3%i + 2x%j) which is shown in figure 4.4 column 2. Repeating the procedure for the
second loop we have:

10 (-)%:2 o |
(1 2]x l L1 ] X l (/2 ] x [1] % [1] = [3 % (j%2) + 2 * (j/2)] (4.38)
i.e., A(3*mod(j,2) + 2%(j/2)) Thus, our formulation allows systematic application of
data transformations such as data alignment even in the presence of linearised array ac-
cesses.
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Example (N=64,128,256,512,1024)
80.0

Initial Propagation ——
70.0 Loop.Restructure..==:x-
More Loop Restructure -
Original -
60.0 Data-Transformation
Loop and Data Transformations -*--

50.0

40.0

time(secs)

20.0

10.0

0.0 R
64 128 256 512 1024
Data Size

Figure 4.5: N = 64... 1024

4.5.2 Reducing Access Overhead for Linearised Arrays

Although correct, the program in figure 4, column 2 is far from ideal due to the mod
and div operators. We wish to remove these by introducing two new iterator variables
corresponding to mod(j,2) and j/2 which is achieved by strip-mining.

The mod and div operators are introduced by rank-increasing transformation such as .S or,
in this case, the LT matrix in equation (4.30). If we can apply a transformation such that
this is eliminated, then the corresponding mod(j,2) and j/2 will be eliminated.

Let T be defined as follows:
T = U; ' L', (4.39)

and hence
T ' =U, 'Ly (4.40)

Applying this transformation to the loop and array accesses, using equation (4.31) gives
the new access matrix:

UT™ = L' ALTUU, " Lidy = L' Alhy (4.41)

which is free from any rank-increasing matrices. Applying such a transformation to the
second loop gives the code in column 3 of figure 4.4. Thus, by combining loop and data
transformations within one framework, we can can readily restructure programs so as to
partially undo the effect of previous transformation applications.
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4.6 Handling Data Transformations in the Presence of
Reshaped Arrays

This section extends the results of the previous section by developing a technique to allow
the application of data transformations to reshaped arrays without incurring excessive
communication and synchronisation overhead. However, this is at the cost of complex
subscripts and poor strides access and we therefore examine loop transformations to reduce
introduced overheads due to global data transformations.

4.6.1 Data Transformations for Reshaped Arrays

Application of data transformations for linearised accesses is relatively straightforward in
the sense that it is easy to determine both L’ and L. Difficulties occur with reshaped
arrays in that the shape of the array after application of a data transformation is not fixed,
i.e., there are several legal new array layouts. A reshaped array access can be considered
to be described by the following equation:

The reshaped domain Z, is considered to be constructed by first linearising 7Z; to a flat one-
dimensional array which is then strip-mined to the appropriate dimension and size. The
value of L is readily available given Z;, so for any Z,, S is easily derived. For instance, if an
array is declared of size A(0:7,0:3) in the main program but reshaped to size A(0:1,0:15)
in a subroutine we have:

()/2

Note that S x L # I otherwise no reshaping takes place. We therefore have

L=11,8 and S = l ()72 ] (4.43)

T, = L'S'T, (4.44)
If we wish to apply a data transformation A, this gives the new index domain 7]

T, = AT, (4.45)

and analogeous to equation 4.42 we have

I, =S'L'T, (4.46)
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for some S’ and L'. Therefore

T, =S'l'T, = S'I' AT, = S'L' AL'S'T, (4.47)

An access Uy to the reshaped array is transformed to Uj:

Uy = S'L' AL'SU, (4.48)

We have S, L and thus L. Again, L' is readily determined after applying A to Z;. The
difficulty occurs in determining S’ as there are no restrictions on its form except for legality.
In other words, the new dimensions of the reshaped array are not fixed after applying a data
transformation on the original domain. To illustrate this, consider the original program in
figure 4.1, box 1 and the reshaped access to array A, namely, B in box 2. Here

L=11,4 and L'= l (('_))%)j] (4.49)
_ | OR2 ] _
S_l /2 ] and ST=11,2] (4.50)

If we apply the permutation matrix

A= [(1) (1]] (4.51)
then
L' =1,4] (4.52)

As stated before, we have freedom with S’. If we choose S’ = S, i.e., preserving the original
shape of the array, we have the program in figure 4.1, box 6. As is immediately apparent,
though correct, this access function to B will be extremely costly.

4.6.2 Reducing Access Overhead for Reshaped Arrays

In this subsection we examine two methods whereby loop transformations may be used to
reduce any introduced overhead due to singular matrices. Just as in the case of linearised
arrays, we can remove some of the overhead due to mods etc. by applying a loop trans-
formation to remove some of those rank-increasing transformations which introduce mods.
Let T be the loop transformation to remove these operators

T = U, 'L'STU, (4.53)
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1. Given the original and reshaped array indices Z; and Z,, determine the transforma-
tions L, S, Lt and S*.

2. Given the data layout transformation A, update all reshaped array accesses such that
U = AL'SU

3. Update the reshaped array indices such that 7, = ALTSTT,.
4. Let T = AL'.

5. For each loop nest containing reference to the array, apply the loop transformation
T, if it is legal to do so.

Figure 4.6: Propagation Algorithm

and hence
T-' = U 'S L, (4.54)

Applying such a transformation would have the following affect on the access U} from
equation (4.48)
UT™ =S'LALSTU,T™ = S'L' Alhy (4.55)

If this transformation is applied to the code in box 6 in figure 1, we produce the program
shown in box 9. Although this removes some of the expensive functions, there still remain
mods due to S’. A possibly more straightforward approach would be to select the reshaping
matrix S’ to be S’ = L'f. This has the effect that arrays are remapped into the same shape
as the original array when applying a propagated data transformation A. Thus equation
(4.47) simplifies to:

T, =S'L'T, = S'L'AT, = AL'S'T, (4.56)

If we applied this data transformation to the code in box 6 of figure 1 we arrive at the
code in box 12. Finally, a simple method to improve performance is to examine the array
access matrix and then strip-mine those iterators which are arguments of divs or mod, and
reorder the iterators to give the code in box 13 with the stride-1 access shown in box 14.
In other words, apply a loop transformation T = AL' and update the loop bounds and
array accesses accordingly.

4.7 Experiments

In this section we develop a simple algorithm to eliminate the overhead associated with
reshaped arrays and apply the technique to three SPEC benchmarks demonstrating the
usefulness of our approach.
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4.7.1 Algorithm

In this subsection, we develop an algorithm for propagating data transformations to re-
shaped arrays. Given the techniques developed in sections 5 and 6, it is relatively straight-
forward to incorporate then into a compiler phase order. Consider the algorithm in figure
4.6. It is applied after the global data partitioning/alignment has been chosen and after
barrier synchronisation placement has been determined, but before loop optimisations and
code generation. Once our compiler has determined the global data layout, it must con-
sider reshaped arrays (step 1). The application of the reshaped data transformation (step
2) is followed by the update of array declarations (steps 3) before a loop transformation is
constructed (step 4) to remove any remaining mods etc (step 5). As step 5 may reorder the
loop nest, its legality must be checked before application.

4.7.2 Results

To show the use of the analysis developed in this section, we ran each of the program
versions shown in figure 1 on the SGi Challenge for varying data sizes. Figure 4.5 shows
their relative performance compared to the original program. The basic data propagation
scheme is more than twice as poor as the original. For this reason, it is not suprising that
compiler writers disable data transformations in the presence of reshaped arrays. Although
subsequent loop transformations do improve performance, they still do not match the
performance of the original. When both loop and data transformations are applied, we
finally have an improvement over the original. For N = 1024 this improvement is by over
a factor of 4.

4.8 Related Work

There is a large body of work concerned with improving program performance using pro-
gram transformations. In [24], unimodular loop transformations are used to improve local-
ity, which is extended to the non-singular case in [18]. These papers restrict themselves to
loop transformations and do not consider cases where there are conflicting loop orders. In
such instances, [20] proposes a simple heuristic, limited to just loop permutations, which
is extended to the unimodular case in [3|. Although usefull, these approaches are limited
in that they do not consider array layout transformations.

Other researchers have considered data transformations, primarily with respect to data
alignment and partitioning. In [2, 8, 13, 17| approaches based on graph theory, integer
programming and linear algebra are explored. Most of this work, however, considers align-
ment to be part of a mapping process rather than a program transformation and thus,
parallels with loop transformation are absent. In [21], alignment as a program level trans-
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formation is first presented while [16] uses a similar representation for uni-processor spatial
locality. In [6], data linearisation transformations are considered as a means to change ar-
ray layout, while data permutation and strip-mining transformations are considered in [1].
In |22], we developed a new framework describing non-singular data transformations equiv-
alent in standing to loop transformations and described how they may be used to improve
program performance. Again, these approaches are limited as they restrict themselves to
just data transformations.

There has been recent work considering the combination of loop and data transformations
in improving program performance. Using a hyperplane formulation of data transforma-
tions and non-singular loop transformations, an algorithm, which considers a restricted
set of loop and data transformations, is proposed as a means of improving locality [6].
In [10, 11], a similar formulation is used, but considers a wider class of transformations.
These approaches, however, have an asymmetric treatment of loop and data transforma-
tions. Furthermore, transformations such as iteration space [12] and data space tiling
have not been integrated into the above work. In [1], data tiling is used to improve spa-
tial locality, but the representation used does not allow easy integration with other data
space transformations or general loop transformations. In this paper, we overcome this
problem by developing an extended transformation framework based on rank modifying
transformations.

In [7], the general case of array aliasing, particularly across array boundaries, is consid-
ered and preliminary techniques to recover the structure of linearised arrays are developed.
They also develop ad hoc techniques to recover loop structure after data restructuring but
cannot, at present, handle the application of data transformations, such as data partition-
ing, across aliased arrays. The techniques developed in this paper, however, allow the static
application of data transformations, including array partitioning across reshaped arrays,
providing the necessary results for |7].

4.9 Conclusion

In this paper, we have presented a new algebraic framework that allows the integration of
loop and data transformations. This enables existing transformations to be described in a
unifying manner and provides also the basis for new program optimisations. In particular,
we develop techniques which allow the application of optimising data transformations to
reshaped arrays without incurring excessively expensive code. Future work will consider
integrating this with complete inter-procedural analysis.

There are, however, many other uses of such a framework such as auto-parallelisation
and locality optimisation. The central problem of loop or data only approaches is that of
balancing conflicting requirements throughout the program. More specifically, if one part of
a program, be it a loop or an array access, requires a particular transformation but another
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part requires a completely distinct transformation, how do we determine transformations
that trade-off such requirements to give a globally acceptable result? Future work will
investigate how conflicting requirements on a loop transformation may be resolved by
using a data transformation and vice-versa. Future work will also further investigate the
mathematical properties of the transformation representation used in this paper and, in
particular, develop formal validity tests and investigate further optimisation algorithms.
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