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Integrating register allocation and software pipelining of loops is an active research area. We focus on techniques
that pre-condition the dependence graph before software pipelining in order to ensure that no register spill in-
structions are inserted by the register allocator in the software pipelined loop. If spilling is not necessary for the
input code, pre-conditioning techniques insert dependence arcs so that the maximum register pressure MAXLIVE
achieved by any loop schedule is below the number of available registers, without hurting the initiation interval
if possible. When a solution exists, a spill-free software pipeline is guaranteed to exist.

Existing pre-conditioning techniques consider one register type (register class) at a time [Karine Deschinkel
and Sid-Ahmed-Ali Touati 2008]. In this paper, we extend pre-conditioning techniques so that multiple register
types are considered simultaneously. First, we generalise the existing theory of register pressure minimisation for
cyclic scheduling. Second, we implement our method inside the production compiler of the ST2xx VLIW family,
and we demonstrate its efficiency on industry benchmarks (FFMPEG, MEDIABENCH, SPEC2000, SPEC2006).
We demonstrate a high spill reduction rate without a significant initiation interval loss.

Categories and Subject Descriptors: D.3.4 [Processor]: Compilers, Code generation, Optimisation

1. INTRODUCTION

Media processing applications such as voice, audio, video, and image processing, spend most of their run-time in inner
loops. Software pipelining is the key instruction scheduling technique used to improve performances, by converting
loop-level parallelism into instruction-level parallelism (ILP) [Lam 1988; B. Ramakrishna Rau 1994]. However, on
wide issue or deeply pipelined processors, the performance of software-pipelined loops is especially sensitive to the
effects of register allocation [Lam 1988; Christine Eisenbeis and Sylvain Lelait and Bruno Marmol 1995; Joseph A.
Fisher and Paolo Faraboschi and Clifford Young 2005], in particular the insertion of memory access instructions for
spilling the live ranges.

Usually, loops are software pipelined assuming that no memory access miss the cache, and significant amount of
research has been devoted to heuristics that produce near-optimal schedules under this assumption [B. Ramakrishna
Rau and Michael S. Schlansker and P. P. Tirumalai 1992; John Ruttenberg and G. R. Gao and A. Stoutchinin and
W. Lichtenstein 1996]. The code produced by software pipelining is then processed by the register allocation phase.
However, a cache miss triggered by a spill instruction introduced by the register allocator has the potential to reduce
the dynamic instruction level parallelism (ILP) below the level of the non software pipelined loop without the cache
miss.

In addition to limiting the negative effects of cache misses on performances, reducing spill code has other advantages
in embedded VLIW processors. For instance, energy consumption of the generated embedded VLIW code is reduced
because memory requests need more power than regular functional units instructions. Also, reducing the amount of
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spill code improves the accuracy of static program performance models: indeed, since memory operations have un-
known static latencies (except if we use scratch-pad memories), the precision of WCET analysis and static compilation
performance models is altered. When performance prediction models are inaccurate, static compiler transformation
engines may be guided to bad optimisation decisions. Consequently, we believe that an important code quality criteria
is to have a reduced amount of memory requests upon the condition of not altering ILP scheduling.

In a previous research achievement, we have proposed a theoretical framework called SIRA [Sid-Ahmed-Ali Touati
and Christine Eisenbeis 2004] (schedule-independent register allocation) for the class of software pipelining tech-
niques known as modulo scheduling [Lam 1988; B. Ramakrishna Rau 1994]. In particular, we use the SIRA frame-
work to pre-condition the data dependence graph (DDG) before software pipelining in order to guarantee that the
maximum register pressure MAXLIVE created by any instruction schedule does not exceed the number of available
registers. In case of inner loops, this guarantees that a spill-free register allocation exists [Dominique de Werra and
Christine Eisenbeis and Sylvain Lelait and Bruno Marmol 1999; Laurie J Hendren . and Guang R. Gao and Erik R
Altman and Chandrika Mukerji 1992]. Given a number of available registers for each register type, SIRA add arcs
to the DDG while trying to avoid increasing the critical circuit length if possible. This increase of the critical circuit
length is the objective function to minimise.

In this paper, we augment the SIRA framework to address the problem of bounding register pressure in presence
of multiple register types, without hurting the initiation interval (II) if possible. Optimising the register requirements
of each register type separately cumulates the increases of the critical circuit length. As our experiments show, con-
sidering all the register types simultaneously when trying to minimise the increase of the critical cycle length gives
good results. This is because loop statements are connected by complex data dependencies, and some statements may
create multiple results with distinct register types.

This article is organised as follows. Section 2 presents relevant related work on periodic register allocation for
innermost loops scheduled with software pipelining. Section 3 defines our loop model. Section 4 recalls the SIRA
framework and the reuse graphs. It then proposes an efficient heuristic for controlling register pressure with multiple
register types. Section 5 presents experimental results on well known benchmarks collections (MEDIABENCH, FFM-
PEG, SPEC2000, SPEC2006), showing that our method is effective in practice. Finally, we summarise our results and
discuss some perspectives.

2. RELATED WORK IN PERIODIC REGISTER ALLOCATION

Classic register allocation involves three topics: which live ranges to evict from registers (register spilling); which
register-register copy instructions to eliminate (register coalescing); and what architectural register to use for any live
range (register assignment). The dominant framework for classic register allocation is the graph colouring approach
pioneered by Chaintin et al. [Gregory Chaitin 2004] and refined by Briggs et al. [Preston Briggs and Keith D. Cooper
and Linda Torczon 1994]. This framework relies on the vertex colouring of an interference graph, where vertices
correspond to live ranges and edges to interferences. Two live ranges interfere if one is live at the definition point of
the other and they carry different values.

In the area of software pipelining, live ranges may span multiple iteration, so the classic register allocation tech-
niques are not directly applicable because of the self-interference of such live ranges. One solution is to unroll the
software pipelined loop until no live range self-interferes, then apply classic register allocation. A better solution is
to rely on techniques that understand the self-interferences created by loop iterations, also known as periodic register
allocation techniques.

Because the restrictions on the inner loops that are candidate to software pipelining, the periodic register allocation
techniques mostly focus on the issues related to register spilling and register coalescing. In particular, the register
coalescing problem of a software pipeline can be solved by using modulo expansion and kernel unrolling [Dominique
de Werra and Christine Eisenbeis and Sylvain Lelait and Bruno Marmol 1999; Laurie J Hendren . and Guang R. Gao
and Erik R Altman and Chandrika Mukerji 1992; Lam 1988; B. Ramakrishna Rau and M. Lee and P. P. Tirumalaiand
and Michael S. Schlansker 1992], or by exploiting hardware support known as rotating register files [B. Ramakrishna
Rau and M. Lee and P. P. Tirumalaiand and Michael S. Schlansker 1992]. Without these techniques, register-register
copy instructions may remain in the software pipelined loop [Alexandru Nicolau and Roni Potasman and Haigeng
Wang 1992]. For the register spilling problems, one can either try to minimise the impact of spill code in the software
pipeline [Santosh G. Nagarakatte and R. Govindarajan 2007], or pre-condition the scheduling problem so that spilling
is avoided [Sid-Ahmed-Ali Touati and Christine Eisenbeis 2004].

The SIRA framework [Sid-Ahmed-Ali Touati and Christine Eisenbeis 2004] generalises previous research on pe-
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riodic register allocation [Dominique de Werra and Christine Eisenbeis and Sylvain Lelait and Bruno Marmol 1999;
Laurie J Hendren . and Guang R. Gao and Erik R Altman and Chandrika Mukerji 1992] by considering both sched-
uled and unscheduled loops. As a result, it can be used both for a pre-pass periodic register allocation to prevent
live range spilling, or as a post-pass periodic register allocation to prevent live range splitting. SIRA also allows to
handle rotating register files. It provides a framework that is general enough to model any cyclic register allocation
heuristic: indeed the proposed reuse graphs (See Section 4) model any cyclic register allocation solution. SIRA was
the first theoretical model that considered delays in accessing registers (important characteristics for VLIW and EPIC
processors), with multiple register types.

The SIRA motivations for handling register constraints by pre-conditioning software pipelining are as follows:

(1) Separating Register Pressure Control from Instruction Scheduling With the increase of loop code size of media
processing applications, methods that formulate software pipelining under both register pressure and resource
constraints as integer linear programming problems [Alexandre E Eichenberger and Edward S. Davidson 1997;
Santosh G. Nagarakatte and R. Govindarajan 2007; John Ruttenberg and G. R. Gao and A. Stoutchinin and W.
Lichtenstein 1996] are not applicable in practice. Indeed, such exact methods are limited to loops with a few
dozen instructions. In real media processing applications, it is not uncommon to schedule loops with hundreds
of instructions. So, in order to reduce the difficulty of scheduling large loops, we satisfy the register constraints
before the scheduled resource constraints (issue width, execution units).

(2) Handling Registers Constraints before Scheduled Resource Constraints This is because register constraints are
more complex: given a bounded number of available registers, increasing the loop initiation interval (II) to reduce
the register pressure does not necessarily provide a solution, even with optimal scheduling. Sometimes, spilling
is mandatory to reduce register pressure. Spilling modifies the DDG, bringing an iterative problem of spilling
followed by scheduling. By contrast, resource constraints are always solvable by increasing the II. For any DDG,
there always exists at least one schedule under resource constraints, whatever these resource constraints are.

(3) Avoiding Spilling instead of Scheduling Spill Code This is because spilling introduces memory instructions whose
exact latencies are unknown. Consequently, when the code is executed, any cache miss may have dramatic effects
on performance, especially for VLIW processors. In other terms, even if we succeed to optimally schedule
spill instructions as done in [Santosh G. Nagarakatte and R. Govindarajan 2007], actual performance does not
necessarily follow the static schedule, because spill instructions may not hit the cache as assumed by the compiler.

3. LOOP MODEL

In a target architecture with multiple register types (for instance, T = {int, float, branch}), we consider an innermost
loop (with possible recurrences). It is represented by a data dependence graph (DDG), such that :

(1) VR,t is the set of values to be stored in registers of type t ∈ T . Our theoretical model considers that each statement
u ∈ V may write to multiple registers, however there is at most one write per register type t ∈ T . We denote by
ut the value of type t defined by the statement u.

(2) ER,t is the set of flow dependence arcs through a register of type t ∈ T . Any arc e has the form e = (ut, vt),
where δ(e) is the latency of the arc e in terms of processor clock cycles and λ(e) is the distance of the arc e in
terms of number of iterations. This set also defines the set of consumers (readers) of each variable ut ∈ VR,t as
the sink of all flow dependence arcs starting from u:

Cons(ut) = {v ∈ V |(u, v) ∈ ER,t}

A software pipeline (SWP) is defined by a scheduling function σ that assigns to each statement u ∈ V a scheduling
date (in terms of processor clock cycles) that satisfies at least the data dependence constraints or other constraints
(resources, registers, etc.). SWP is defined by an initiation interval (II), and the scheduling date σu for the operations
of the first iteration. Operation u of iteration i (noted u(i)) is scheduled at time σu + (i− 1)× II , ∀e = (u, v) ∈ E.
Such instruction schedule must satisfy the usual cyclic data dependencies: σu + δ(e) ≤ σv + λ(e)× II .

By aggregating all these constraints on all the DDG circuits, we find that II ≥ MIIdep = maxany circuit C
δ(C)
λ(C) ,

where δ(C) =
∑
e∈C δ(e) and λ(C) =

∑
e∈C λ(e). Any circuit C of the DDG that maximises the fraction δ(C)

λ(C) is
called a critical circuit since it imposes a lower limit on the value of the II . Since an efficient SWP schedule must
minimise the value of II , we need to take care of not increasing the cost of the critical circuits.
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In our SIRA model, we take into account specific delays for accessing registers. On some VLIW architectures (such
as Philips Trimedia and the VelociTI / TMS320C6xxx), delays for accessing registers are architecturally defined. In
our model, we define two integral delay functions δr and δw,t. ∀u ∈ V , the operation u reads its source registers at
date σu + δr(u). ∀u ∈ VR,t, the operation ut writes its result at date σu + δw,t(u).

4. BOUNDING REGISTER PRESSURE IN PRESENCE OF MULTIPLE REGISTER TYPES

In the following section, we recall the notion of reuse graphs used inside SIRA. Then we provide an efficient formally
defined heuristic for SIRA using a combination of linear programming and linear assignment algorithm.

4.1 SIRA and Reuse Graphs

A simple way to explain and recall the concept of SIRA is to provide an example. All the theory has already been
presented in [Sid-Ahmed-Ali Touati and Christine Eisenbeis 2004]. Figure 1(a) provides an initial DDG with two
register types t1 and t2. Statements producing results of type t1 are in dashed circles, and those of type t2 are in bold
circles. Statement u1 writes two results of distinct types. Flow dependence through registers of type t1 are in dashed
arcs, and those of type t2 are in bold arcs.

As an example, Cons(ut22 ) = {u1, u4} and Cons(ut13 ) = {u4}. Each arc e in the DDG is labeled with the pair of
values (δ(e), λ(e)). In this simple example, we assume that the delay of accessing registers is zero (δw,t = δr = 0).
Now, the question is how to compute a periodic register allocation for the loop in Figure 1(a) without increasing the
critical circuit if possible.
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As formally studied in [Sid-Ahmed-Ali Touati and Christine Eisenbeis 2004], periodic register allocation is modeled
thanks to reuse graphs. We associate a reuse graph Grt to each register type t, see Figure 1(b). The reuse graph has to
be computed by the SIRA framework, Figure 1(b) is one of the examples that SIRA may produce. Note that the reuse
graph is not unique, other valid reuse graphs may exist.

A reuse graph Grt contains VR,t, i.e., only the nodes writing inside registers of type t. These nodes are connected by
reuse arcs. For instance, inGrt2 , the set of reuse arcs is {(u2, u4), (u4, u2), (u1, u1)}. Each reuse arc (ut, vt) is labeled
by an integral distance µtu,v . The existence of a reuse arc (ut, vt) of distance µtu,v means that the two operations ut(i)
and vt(i + µtu,v) share the same destination register. Hence, reuse graphs allows to completely define a periodic
register allocation for a given loop, either before SWP (unscheduled loop) or after SWP (already scheduled loop, as
done with meeting graphs [Christine Eisenbeis and Sylvain Lelait and Bruno Marmol 1995]).

In order to be valid, reuse graphs should satisfy two main constraints [Sid-Ahmed-Ali Touati and Christine Eisenbeis
2004]: 1) They should describe a bijection between the nodes; that is, they must be composed of elementary and
disjoint circuits. 2) The associated DDG should be schedulable, i.e., it has at least one valid SWP.

Now, let us describe what we mean by the DDG associated with a reuse graph. Once a reuse graph is fixed before
SWP, say the reuse graph of type t2 in Figure 1(b), the periodic register allocation creates new scheduling constraints
between statements. These scheduling constraints result from the anti-dependencies created by register reuse. Since
each reuse arc (ut, vt) in the reuse graph Grt describes a register sharing between ut(i) and vt(i + µtu,v), we must
guarantee that vt(i + µtu,v) writes inside the same register after the execution of all the consumers of ut(i). That is,
we should guarantee that vt(i + µtu,v) writes its result after the killing date of ut(i). If the loop is already scheduled,
the killing date is known. However, if the loop is not already scheduled, then the killing date is not known and hence
we should be able to guarantee the validity of periodic register allocation for all possible SWP.

Guaranteeing precedence relationship between lifetime intervals for any subsequent SWP is done by creating the
associated DDG with the reuse graph. This DDG is an extension of the initial one in two steps:

(1) First, we introduce dummy nodes representing the killing dates of all values. This idea was already present in
[Benoı̂t Dupont-de-Dinechin 1997]. For each value ut ∈ VR,t, we introduce a node Kut which represents its
killing date. The killing node Kut must always be scheduled after all ut’s consumers. Consequently, we add the
set of arcs {(v,Kut)|v ∈ Cons(ut)}. Figure 1(c) illustrates the DDG after adding all the killing nodes for all
register types. For each added arc e = (v,Kut), we set its latency to δ(e) = δr(v) and its distance to −λ, where
λ is the distance of the flow dependence arc (u, v) ∈ ER,t. As explained in [Sid-Ahmed-Ali Touati and Christine
Eisenbeis 2004], this negative distance is a mathematical convention, it simplifies our mathematical formula and
does not influence the fundamental results of reuse graphs.

(2) Second, we introduce new anti-dependence arcs implied by periodic register allocation. For each reuse arc (ut, vt)
in Grt , we add an arc e′ = (Kut , vt) representing an anti-dependence in the associated DDG. We say that the anti-
dependence e′ = (Kut , vt) in the DDGG is associated to the reuse arc (ut, vt) inGrt . The added anti-dependence
arc has a latency equal to δ(e′) = −δw,t(v) and has a distance equal to the reuse distance λ(e′) = µtu,v . Figure 1(d)
illustrates the DDG associated to the two reuse graphs of Figure 1(b). Periodic register allocation with multiple
register types is done conjointly on the same DDG even if each register type has its own reuse graph. The reader
may notice that the critical circuits of the DDG in Figure 1(a) and (c) are the same and equal to MIIdep = 4

2 = 2
(a critical circuit is (u1, u2)). The set of added anti-dependence arcs of type t is noted Ert (do not confuse with
ER,t)). In Figure 1(d), Ert1 = {(Kt1

u1
, u3), (Kt1

u3
, u1)} and Ert2 = {(Kt2

u1
, u1), (Kt2

u2
, u4), (Kt2

u4
, u2)}.

As can be seen, computing a reuse graph of a register type t implies the creation of new arcs with µ distances. We
proved in [Sid-Ahmed-Ali Touati and Christine Eisenbeis 2004] that if a reuse graph Grt is valid, then it describes a
periodic register allocation with exactly

∑
µtu,v registers of type t.

Now the SIRA problem is to compute a valid reuse graph with a minimised
∑
µtu,v , without increasing the critical

circuit if possible. Or, instead of minimising the register requirement, SIRA may simply look for a solution such that∑
µtu,v ≤ Rt, where Rt is the number of available registers of type t. We may propose many exact method models

(the problem has been proved NP-complete in [Sid-Ahmed-Ali Touati and Christine Eisenbeis 2004]) or heuristics
based on the SIRA framework. The following section presents SIRALINA, an efficient two steps heuristic.

4.2 SIRALINA: A Two-Steps Polynomial Heuristic for Multiple Register Types

Our resolution strategy is based on the analysis of the exact integer linear model of SIRA published in [Sid-Ahmed-Ali
Touati and Christine Eisenbeis 2004]. As the problem involves scheduling constraints and assignment constraints, and
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the reuse distances are the link between these two sets of constraints, we attempt to decompose the problem into two
sub-problems:

—A scheduling problem: to find a scheduling for which the potential reuse distances are as small as possible. This
step essentially minimises the total sum of all lifetime intervals for all register types t ∈ T , i.e. the total sum of the
times between the killing nodes schedules σkut and the nodes schedules σut . This first step is independent of the
reuse graph. The next step creates a correct reuse graph based on the costs computed in this first step.

—An assignment problem: to select which pairs of statements will share the same register. Based on the schedule
information of the first step, this second step builds reuse arcs (with their corresponding anti-dependences) and a
correct valid reuse graph.

For the case of a unique register type, a similar two steps heuristics has been presented in [Karine Deschinkel and
Sid-Ahmed-Ali Touati 2008] and demonstrated effective on some toy benchmarks. Here, we provide a generalisation
of that heuristic in the case of multiple register types, with full industry-quality implementation and experimentation.

4.2.1 Variables for the Linear Problem

—An integer schedule variable σu ∈ N for each statement u ∈ V . We assume a finite upper bound L for such schedule
variables (L sufficiently large, L =

∑
e∈E δ(e));

—∀t ∈ T, ut ∈ VR,t has a killing node Kut , thus a scheduling variable σKut ∈ N.
—A reuse distance µtu,v ∈ N, ∀(u, v) ∈ V 2

R,t,∀t ∈ T .
—A binary variables θtu,v for each (u, v) ∈ V 2

R,t,∀t ∈ T . It is set to 1 iff (Kut , v) is an anti-dependence arc ((u, v) is
a reuse arc); That is, θtu,v = 1 iff the operations u(i) and v(i+ µtu,v) share the same destination register.

When we have multiple register types, we are faced to optimise multiple objectives. Ideally, given a number Rt
of available registers of type t, we seek for a solution such as ∀t ∈ T,

∑
(u,v)∈V 2

R,t
µtu,v ≤ Rt. Let note zt =∑

(u,v)∈V 2
R,t
µtu,v . We combine all these objective functions into a single linear objective function by introducing

general weights between register types:

Minimise
∑
t∈T

αtz
t

=
∑
t∈T

αt
∑

(u,v)∈V 2
R,t

µtu,v

where αt defines a weight associated to the register type t. For instance, the branch register type on a VLIW
processor such as ST231 may be more critical than the general purpose register type: this is because there are few
branch registers, and they are single bits so not easily spillable. Consequently, we may be asked to give higher weights
for a register type against another if needed. In our context, a unit weight (αt = 1,∀t) is sufficient to have satisfactory
results as will be shown later in the experiments. However, other contexts may require distinct weights that the user is
free to fix depending on the priority between the registers types.

4.2.2 Step 1: The Scheduling Problem. This scheduling problem is built for a fixed II which indeed describes the
desired critical circuit of the DDG when SIRA is performed before SWP. We first solve a periodic scheduling problem
for the DDG described in Figure 1(c), independently of a chosen reuse graph. That is, we handle the DDG with killing
nodes only without any anti-dependences. The goal of this first step of SIRALINA is to compute the potential values
of all µtu,v variables for all pairs (u, v) ∈ V 2

R,t, independently of the reuse graph that will be constructed in the second
step.

If e = (Kut , v) is an anti-dependence arc associated to a reuse arc (ut, vt) (this will be decided in the second step of
SIRALINA, i.e. to decide if θtu,v = 1), then its reuse distance must satisfy the following inequality [Sid-Ahmed-Ali
Touati and Christine Eisenbeis 2004]:

∀(Kut , v) ∈ Ert : µtu,v ≥
1
II

(σKut − δw,t(v)− σv) (1)

This inequality gives a lower bound for each reuse distance of anti-dependence arc; We recall that Ert denotes the set
of anti-dependence arcs of type t.
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If (Kut , v) is not an anti-dependence arc then θtu,v = 0. In this case, according to [Sid-Ahmed-Ali Touati and
Christine Eisenbeis 2004], µtu,v is equal to zero:

∀(Kut , v) /∈ Ert : µtu,v = 0 (2)

Now we can write:

zt =
∑

(u,v)∈V 2
R,t

µtu,v =
∑

(Kut ,v)∈Er
t

µtu,v +
∑

(Kut ,v)/∈Er
t

µtu,v

From Equation. 2, we know that
∑

(Kut ,v)/∈Er
t
µtu,v = 0. Consequently, by considering Inequality 1:

zt ≥ 1
II

∑
(Kut ,v)∈Er

t

(
σKut − δw,t(v)− σv

)
(3)

As the reuse relation is a bijection from VR,t to VR,t, then Ert describes a bijection between the set of killing nodes
of type t and VR,t. This bijection implies that, in the right sum of Inequality 3, we can have one and only one σKut

term. Also, we can have one and only one σv term. Inequality 3 can then be separated into two parts as follows:

∑
(Kut ,v)∈Er

t

(
σKut − δw,t(v)− σv

)
=

∑
u∈VR,t

σKut −
∑

v∈VR,t

(δw,t(v) + σv)

=
∑

u∈VR,t

σKut −
∑

v∈VR,t

σv −
∑

v∈VR,t

δw,t(v)

(4)

We deduce from Equality 4 a lower bound for the number of required registers of type t:

zt ≥ 1
II

 ∑
u∈VR,t

σKut −
∑

v∈VR,t

σv −
∑

v∈VR,t

δw,t(v)

 (5)

In this context, it is useful to find an appropriate schedule in which the right hand side of Inequation 5 is minimal
for all register types t ∈ T . Since II and

∑
v∈VR,t

δw,t(v) are two constants, we can ignore them in the following
linear optimisation problem. We consider the scheduling problem (P):


min

∑
t∈T αt

(∑
u∈VR,t

σKut −
∑
v∈VR,t

σv

)
subject to:
σv − σu ≥ δ(e)− II × λ(e), ∀e = (u, v) ∈ E
σKut − σv ≥ δr(v) + II × λ(e), ∀t ∈ T, ∀ut ∈ VR,t, ∀v ∈ Cons(ut)

(6)

These constraints guarantee that the resulting reuse graph is valid, i.e., its associated DDG is schedulable with SWP.
As can be easily seen, the constraints matrix of the integer linear program of System 6 is an incidence matrix, so it is
totally unimodular [A. Schrijver 1986]. Consequently, we can use a polynomial algorithm to solve this problem. We
can for instance use a linear solver instead of a mixed integer linear one. Also, we can use a min-cost network-flow
algorithm to solve this scheduling problem in O(|V |3 log |V |) [Ravindra K. Ahuja Ravindra and Thomas L. Magnanti
and James B. Orlin 1991].

The resolution of problem (P) (by simplex method or by network-flow algorithm) provides optimal values σ∗u for
each u ∈ V and optimal values σ∗Kut

for each killing node Kut .
The objective function of the scheduling problem described above tries to minimise the sum of the lifetime intervals

of all register types considering them as weighted. In the experiments described later, we give the same weights αt = 1
to all register types, and this works well for our case.

4.2.3 Step 2: The Linear Assignment Problem. The goal of this second step is to decide about reuse arcs (compute
the values of θtu,v variables) such that the resulting reuse graph is valid. Once the scheduling variables have been fixed
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in the same conjoint scheduling problem (P) for all register types, the minimal value of each potential reuse distance

becomes equal to µtu,v = d
σ∗K

ut
−δw,t(v)−σ∗v
II e according to Inequation 1. Knowing the reuse distance values µtu,v , the

periodic register allocation becomes now a problem of deciding which instruction reuses which released register, i.e.,
compute the value of θtu,v variables. This problem can be modeled as a linear assignment problem for each register
type t. The constraints is that the produced reuse graph (modeled by an assignment relationship) should be a bijection
between loop statements. We consider the linear assignment problem (At) for the register type t as:



min
∑

(u,v)∈V 2
R,t
µtu,vθ

t
u,v

Subject to∑
v∈VR,t

θtu,v = 1, ∀u ∈ VR,t∑
u∈VR,t

θtu,v = 1, ∀v ∈ VR,t
θtu,v ∈ {0, 1}

(7)

where µtu,v is a fixed value for each arc e = (u, v) ∈ V 2
R,t.

Each linear assignment problem At is optimally solved with the well known Hungarian algorithm in O(n3) com-
plexity. The Hungarian algorithms computes for each register type t the optimal values θtu,v

∗. If θtu,v
∗ = 1, then

(Kut , v) is a anti-dependence arc and the reuse distance is equal to µtu,v . Otherwise, (Kut , v) does not exist. Our
two step heuristic has now computed all what we need for a valid periodic register allocation for all register types: the
set of anti-dependence arcs of type t (represented by the set of θtu,v

∗ variables equal to one), and the reuse distances
(represented by the values µtu,v).

Finally, provided a number Rt of available registers of type t, we should check that ∀t ∈ T |
∑
µtu,v ≤ Rt. If not,

this means that SIRALINA did not find a solution for the desired value of the critical circuit II . We thus increase II:
since it is proved in [Sid-Ahmed-Ali Touati 2007] that the minimal periodic register need is a non increasing function
of II , we can then use a binary search for II (between MinII and the upper limit L). If we reach the upper limit
for II without finding a solution, this means that the register pressure is too high and spilling becomes necessary:
we can do spilling either before SWP (this is an open problem), or after SWP (as currently done in our experiments).
The SIRA framework does not insert any spill, it is let for a subsequent pass of the compiler (the register allocator for
instance).

The next section shows that SIRALINA is efficient in practice. We clearly demonstrates that performing SIRALINA
before SWP is a better approach for spill code reduction than a regular SWP followed by register allocation without
statistically significant hurt of II .

5. EXPERIMENTAL STUDY

5.1 Experimental Setup

Our experimental setup is based on st200cc, a STMicroelectronics production compiler based on the Open64 tech-
nology (www.open64.net), whose code generator has been extensively rewritten in order to target the STMicro-
electronics ST200 VLIW processor family. These VLIW processors implement a single cluster derivative of the Lx
architecture [Geoffrey Farabosch and Joseph A Fisher and Giuseppe Desoli and Fred Homewood 2000], and are used
in several successful consumer electronics products, including DVD recorders, set-top boxes, and printers. At the end
of 2008, the number of shipped ST200 processors was over 33 million units.

The ST231 processor used for our experiments executes up to 4 operations per cycle with a maximum of one control
operation (goto, jump, call, return), one memory operation (load, store, prefetch), and two multiply
operations per cycle. All arithmetic instructions operate on integer values with operands belonging either to the
General Register (GR) file (64 × 32-bit), or to the Branch Register (BR) file (8 × 1-bit). Floating point computation
are emulated by software. In order to eliminate some conditional branches, the ST200 architecture also provides
conditional selection. The processing time of any operation is a single clock cycle, while the latencies between
operations range from 0 to 3 cycles.

The st200cc compiler augments the Open64 code generator with super-block instruction scheduling optimisations,
including a software pipeliner based on a generalised variant of decomposed software pipelining [Benoı̂t Dupont-de-
Dinechin 1997; Jian Wang and Christine Eisenbeis and Martin Jourdan and Bogong Su 1994]. We inserted the SIRA
optimiser that preconditions the dependence graph before software pipelining in order to bound MAXLIVE for any
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subsequent schedule. The present register allocator inside st200cc is called after SWP. It is a heuristic based on Chow
priority based method.

The st200cc compiler has the capability of compiling for variants of the ST200 VLIW architecture, including
changes in the instruction latencies, the issue width, and the number of allocatable registers. When we configure
the processor to have 64 GR and 8 BR registers, we find that the register pressure is not problematic in most of the
applications (only few spill instructions are generated): when register pressure is low, any weak register optimisation
method would work fine and it is not necessary to use more clever method as we experiment in this article. In
order to highlight the efficiency of a register optimisation method as ours, we must experiment harder constraints
by compiling for smaller processors with less registers. For this work, we configured the compiler to assume the
embedded VLIW processors to have 32 general-purpose registers (GR) and 4 branch registers (BR). The compiler
can use all the available registers for SWP loops, or can dedicate a subset of them for other scalar variables (scalar
promotion, global variables, etc.). In our experiments we can either decide to dedicate all available registers to SWP
or not. We experimented both of the two configurations:

(1) In a first configuration, we dedicate all the available registers to SWP (32 GR and 4 BR). The experimental results
we obtained are similar to the second configuration. Since our conclusions are equivalent, the experimental results
we report in this section are conducted with the following configuration since it makes a higher stress on register
pressure and on SWP;

(2) In a second configuration, we allocate a reasonable subset of available registers to SWP. We configured the com-
piler to dedicate 22 GR and 3 BR registers to SWP, the remaining available registers can be used for other purposes.
According to STMicroelectronics, these restrictions are representative of mainstream small embedded processors
used for media processing.

5.2 Qualitative Benchmarks Presentation

We conducted an extensive set of experiments on both high performance and embedded benchmarks. We chose to
optimise the set of the following collections of well known applications programmed in C and C++.

(1) FFMPEG is the reference application benchmark used by STMicroelectronics for their compilation research and
development. It is a representative application for the usage of ST231 (video mpeg encoder/decoder). The appli-
cation is a set of 119 C files, containing 112997 lines of C code.

(2) MEDIABENCH is a collection of ten applications for multimedia written in C (encryption, image and video
processing, compression, speech recognition, etc.). In its public version, MEDIABENCH is not a portable to
any platform because some parts are coded in assembly language of some selected workstation targets (excluding
VLIW targets). Our used MEDIABENCH collection has first been ported to ST231 VLIW platform. The whole
MEDIABENCH applications have 1467 C files, containing 788261 lines of C code.

(3) SPEC2000 is a collection of applications for high performance computing and desktop market (scientific com-
puting, simulation, compiler, script interpreters, multimedia applications, desktop applications, etc.). It is a group
of 12 big applications of representative integer programs and 4 big applications of floating point programs. The
whole collection contains 469 C files, 151 C++ files (656867 lines of C and C++ code).

(4) SPEC CPU2006 is the last collection of applications for scientific computing, intensive computation and desktop
market. Compared to SPEC2000, SPEC2006 has larger code size and data sets (2386 C file, 528 C++ files,
3365040 C/C++ lines).

Both FFMPEG and MEDIABENCH collections have successfully been compiled, linked and executed on the em-
bedded ST231 platform. For SPEC2000 and SPEC CPU2006, they have been successful compiled and statically
optimised but not executed because of one of the three following reasons:

(1) Our target embedded system does not support some required dynamic function libraries by SPEC (the dynamic
execution system of an embedded system is not as rich as a desktop workstation).

(2) The large code size of SPEC benchmarks does not fit inside small embedded systems based on ST231.
(3) The amount of requested dynamic memory (heap) cannot be satisfied at execution time on our embedded platform.

Consequently, our experiments report static performance numbers for all benchmarks collections. The dynamic perfor-
mance numbers (executions) are reported only for FFMPEG and MEDIABENCH applications. This is not a restriction
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of the study because neither SPEC2000 nor SPEC2006 are representative of the embedded applications we target; we
statically optimise SPEC2000 and SPEC2006 applications to simply check and demonstrate at compile time that our
spill optimisation method works also well for these kind of large applications.

The next section provides some useful quantitative metrics to analyse the complexity of our benchmarks. These
quantitative measures allow to analyse the practical efficiency of SIRALINA heuristic. Since our heuristic complexity
is O(|V |3 log |V |), a detailed quantitative analysis of the benchmarks gives more hint about the input problems sizes
and their complexity.

5.3 Quantitative Benchmarks Presentation

Our spill reduction strategy is plugged inside the st200cc compiler. It is called just before SWP module. The total
number of optimised loops with SIRALINA is equal to 9027 (all benchmarks collections). SIRALINA followed by
SWP are called by the compiler for optimising innermost loops at the backend level. The st200cc compiler may
apply multiple code transformations before SWP (instruction selection, super-block formation, function inlining, loop
unrolling, scalar promotion, etc.). Consequently, the loops optimised at the backend level are not necessarily correlated
with the loops of the source codes.

Our SIRALINA heuristic has an algorithmic complexity equal to O(|V |3 log |V |. In order to have a precise idea
on problem sizes treated by SIRALINA, we report six metrics using histograms (the x-axis represent the values, the
y-axis represent the number of loops of the given values):

(1) The numbers of nodes (loop statements) are depicted in Figure 2 for each benchmark collection. The whole
median1 is equal to 24 nodes; the maximal value is 847. FFMPEG has the highest median of nodes numbers (29).

(2) The number of nodes writing inside general registers (GR) are depicted in Figure 3. The whole median is equal
to 15 nodes; the maximal value is 813 nodes. FFMPEG has the highest median (21 nodes).

(3) The numbers of nodes writing inside branch registers (BR) are depicted in Figure 4. The whole median is equal to
3 nodes; the maximal value is 35 nodes. Both FFMPEG and MEDIABENCH has a median of 1 node, meaning that
half of their loops has a unique branch instruction (the regular loop branch). As can be remarked, our framework
considers loops with multiple branch instructions inside their bodies.

(4) The numbers of arcs (data dependences) are depicted in Figure 5 for each benchmark collection. The whole
median is equal to 73 arcs; the maximal value is 21980 arcs. The highest median is FFMPEG one (99 arcs).

(5) The MinII values are depicted in Figure 6. We recall that MinII = max(MIIdep,MIIres). The whole median
of MinII values is equal to 12 clock cycles; the maximal value is 640 clock cycles. The highest median is the one
of FFMPEG (20 clock cycles).

(6) The numbers of strongly connected components are depicted in Figure 7. The whole median is equal to 9 strongly
connected components, which means that, if needed, half of the loops can be splitted by loop fission into 9 smaller
loops; The maximal value is equal to 295. FFMPEG has the smallest median (7 strongly connected components).

Theses quantitative measures show that the FFMPEG application brings a priori the most difficult and complex DDG
instances for code optimisation. This analysis is confirmed by our experiments below.

The next section shows statistics on the compilation times consumed by SIRALINA.

5.4 SIRALINA Compilation Times

The st200cc compiler is used as a cross compiler on a regular workstation. First, we measured the run time in
milliseconds of our SIRALINA method when executed on a 1.6 GHz Pentium R dual core workstation (4 Gbytes
of memory, and 1 MBytes of cache per core). We measured the optimisation times of all SWP loops when all register
types are optimised conjointly, as well as when we optimise each register type separately (BR followed by GR, and
vice-versa). This section demonstrates that optimising each register type separately (in any order) requires more
resolution time that optimising all register types conjointly.

Tables I -II -III illustrate full statistics on each benchmark collection. These tables present the siralina resolution
times in mili seconds for three scenarios: 1) conjoint optimisation of all register types, 2) separate optimisation of GR
followed by BR, 3) and BR followed by GR. We report the minimal compilation time per loop, the first quartile value

1We deliberately choose to report the median value instead of the mean value, because the histograms show a skewed (biased) distribution [Raj
Jain. 1991].
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Fig. 2. Histograms on the Number of Nodes (Loop Statements): |V |

(25% of the observed compilation times are below this limit), the median value (50% of the observed compilation
times are below this limit), the mean compilation time, the third quartile (75% of the observed compilation times are
below this limit) and the maximal compilation time per loop. We also compute, thanks to the test of student [Raj Jain.
1991], the confidence interval of the mean with a confidence level equal to 99%. We present below a synthesis of our
observation (a graphical comparison between the three alternatives is shown in Figure 8):

—For any scenario, for any benchmark collection, we observe that siralina resolution times are reasonably low (in
terms of median an mean). Consequently, our method is fast enough to be considered as a solution for register
pressure reduction inside a commercial quality cross compiler such as st200cc.

—For any scenario, for all benchmarks (see last column of Tables I -II -III), we observe that the average resolution time
is greater than the third quartile. According to [Raj Jain. 1991], we conclude that the distribution of the resolution
times is skewed (has a bias). Consequently, we should not rely on the average (mean) to have a comparative study
between the three scenarios, but we must better rely on the quartiles (first quartile, median, third quartile).

—For each scenario, FFMPEG requires more resolution times than the other benchmarks collections. If we compare
the FFMPEG’s quartiles in each scenario against the quartiles of the other benchmarks, we see that they are always
greater or equal. This confirms our assumption observed in Section 5.3 that FFMPEG application brings the most
complex cases for register pressure reduction.

—When we consider all benchmarks (last column of Tables I -II -III), we observe that the quartiles of the first scenario
(all register types optimised conjointly) are below the quartiles of the other scenarios (when we optimise register
types separately). We conclude that, in terms of resolution times, performing SIRALINA on all types conjointly is
a better alternative than performing SIRALINA on each register type separately.
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Fig. 3. Histograms on the Number of Statements writing inside General Registers |VGR|

Metric FFMPEG MEDIABENCH SPEC2000 SPEC2006 All Benchmarks
Minimal Observed Resolution Time 0.7 0.6 0.7 0.7 0.6
First Quartile Observed Resolution Time 2.3 2.0 2.4 2.4 2.3
Median Observed Resolution Time 7.0 3.4 3.7 3.8 3.8
Mean Observed Resolution Time 133.8 7.3 5.3 6.5 29.3
Third Quartile Observed Resolution Time 43.0 6.2 5.9 6.7 7.4
Maximal Observed Resolution Time 33958.5 521.1 108.8 152.0 33958.5
Mean Confidence Interval (99% of conf.) [74.1, 193.5] [6.0, 8.6] [5.0, 5.6] [5.9, 7.2] [18.4, 40.3]

Table I. Resolution Times of SIRALINA per Benchmark Family (in mili seconds): Conjoint Optimisation of BR and GR

Metric FFMPEG MEDIABENCH SPEC2000 SPEC2006 All Benchmarks
Minimal Observed Resolution Time 1.1 0.9 0.9 1.2 0.9
First Quartile Observed Resolution Time 3.6 3.0 3.4 3.0 3.5
Median Observed Resolution Time 8.6 4.9 5.4 5.5 5.4
Mean Observed Resolution Time 111.9 10.0 7.3 9.1 27.2
Third Quartile Observed Resolution Time 34.8 7.9 7.8 8.4 9.3
Maximal Observed Resolution Time 27949.4 1733.7 110.5 214.0 27949.4
Mean Confidence Interval (99% of conf.) [74.4, 149.5] [6.9, 13.2] [6.9, 7.6] [8.3, 9.9] [18.2, 36.3]

Table II. Resolution Times of SIRALINA per Benchmark Family (in mili seconds) : Separate Optimisation of GR then BR
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Fig. 4. Histograms on the Number of Statements writing inside Branch Registers |VBR|

Metric FFMPEG MEDIABENCH SPEC2000 SPEC2006 All Benchmarks
Minimal Observed Resolution Time 1.0 0.9 0.9 1.2 0.9
First Quartile Observed Resolution Time 3.6 3.0 3.6 3.6 3.5
Median Observed Resolution Time 10.1 4.9 5.2 5.4 5.4
Mean Observed Resolution Time 118.0 10.1 8.0 10.0 28.8
Third Quartile Observed Resolution Time 39.7 9.0 8.3 9.0 10.2
Maximal Observed Resolution Time 28313.0 856.0 208.6 680.0 28313.0
Mean Confidence Interval (99% of conf.) [67.7, 168.3] [8.2, 12.1] [7.5, 8.4] [8.7, 11.2] [19.6, 38.1]

Table III. Resolution Times of SIRALINA per Benchmark Family (in mili seconds) : Separate Optimisation of BR then GR

The next section shows statistics on the code quality generated when applying SIRALINA before SWP followed by
register allocation.

5.5 Static Performance Results

5.5.1 Spill Code Reduction. Without applying SIRALINA, the absolute initial spill statements counts in our SWP
loops are: FFMPEG=294, MEDIABENCH=416, SPEC2000=1396, SPEC2006=585. These spill numbers are pro-
duced when the st200cc compiler applies SWP followed by register allocation. We then statically measure the amount
of spill code reduced thanks to our SIRALINA method. Again, we test three scenarios: SIRALINA with multiple
register types, SIRALINA on each register type separately (BR followed by GR, and vice-versa). Here, the SIR-
ALINA method is applied before software pipelining, so we add arcs to the DDG to bound MAXLIVE for any
software pipelining schedule. The spill code decrease is computed for all SWP loops. It is measured on all loops
as InitialSpill Count−ReducedSpillCount

InitialSpillCount . Figure 9 plots the spill code decrease in each benchmarks collection: the plotted bars
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Fig. 5. Histograms on the Number of Data Dependences |E|

correspond to FFMPEG, MEDIABENCH, SPEC2000 and SPEC2006 benchmarks. The suffixes BRGR and GRBR on
each benchmark name correspond to the case when we apply SIRALINA on each register type separately as studied in
[Karine Deschinkel and Sid-Ahmed-Ali Touati 2008]: the label BRGR means that we first optimise BR registers then
GR registers, while GRBR corresponds to the opposite order. When neither BRGR or GRBR is specified, it means
that both register types have been optimised conjointly by the SIRALINA method explained in Section 4.

For FFMPEG and MEDIABENCH (the representative collection of embedded applications), optimising all register
types conjointly reduces the spill and outperforms the case when we optimise each register separately. For SPEC2000
and SPEC2006 (high performance and desktop applications), optimising each register type separately seems to better
reduce the spill code. However, it is not clear in which order (BR then GR or GR followed by BR). Because of the
complex nature of data dependences, it is not easy to decide about the best order a priori for optimising the register
types. In this situation, we advise to optimise all the register types conjointly, since it brings significant spill code
reduction (between 40% and 50 %) in less compilation time. If compilation time is not an issue, then optimising the
register types separately (by exploring all possible orders) using SIRALINA may be a first beneficial solution. Having
|T | register types, the number of possible orders is equal to |T | !. Usually, |T | is a small value (2 or 3 in general),
yielding to small number of distinct orders (2! = 2 or 3! = 6).

From Figure 9 we can clearly conclude that using SIRALINA greatly reduces the amount of spill code. Optimising
all types conjointly is more beneficial for MEDIABENCH and FFMPEG rather than SPEC2000 and SPEC2006, where
optimising each register type separately seems to be a better choice.

5.5.2 The Impact on the Crtitical Circuits of the Data Dependance Graphs (MIIdep). The way SIRALINA adds
arcs to the DDG before software pipelining may in theory increase the critical circuit of the data dependence graphs.
More precisely, it may increase the so called MIIdep (minimal initiation interval defined by recurrent dependences).
In order to measure this impact, we statically counted the number of DDG in which applying SIRALINA before
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Fig. 6. Histograms on MinII Values

software pipelining increased MIIdep or not, see Figure 10. As can be seen, in most of the cases, the critical circuit
is not altered. The percentage of loops for which the critical circuit increases or for which spilling is necessary is
reasonable.

This subsection showed that adding arcs in the DDG before SWP using SIRALINA does not have significant mod-
ification of MIIdep. The next section studies the impact on the final SWP schedule quality when we consider both
resources and data dependence constraints.

5.5.3 The Impact on the Initiation Interval (II). One could think that introducing arcs inside the DDG before
software pipelining would also restrict the ILP scheduling, since extra constraints are added. In practice, this is not
true because the usual software pipelining heuristics are not optimal. Consequently, adding extra arcs to the DDG
can even help the scheduler. It amounts to better II in many cases: by better, we mean that the II computed by the
SWP step on the modified DDG (after applying SIRALINA) is less than the II computed by SWP on the initial DDG
(without applying SIRALINA). This is a positive unexpected side effect of SIRALINA, since in theory adding arcs
to a DDG could alter SWP (while in practice, the SWP heuristic does not really suffer from these added arcs). In
Table IV, we measured the average II increase resulting from our constraints on all loops. We computed the mean
II increase as

P
II2−II1P
II1

, where II2 corresponds to the II computed after software pipelining of the constrained
DDG (when applying SIRALINA), and II1 corresponds to the II computed after software pipelining of the initial
DDG (without applying SIRALINA). Except in FFMPEG where II increases in a marginal way (0.5%), all other
benchmark families show minor improvement in II . We conclude from Table IV that the II is not really altered when
we apply SIRALINA before software pipelining. The improvement of II is not caused by the reduction of spill code
(spill code is inserted after SWP), but because the added arcs to the DDG help the SWP heuristic to find better SWP
schedule.
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Fig. 8. Graphical comparison for the SIRALINA resolution times (all benchmarks). We clearly observe that optimising all the registers types
conjointly is a faster approach than optimising each register type separately.
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Fig. 9. Percentage of Spill Code Decrease in Each Benchmark Family
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Benchmark Family Mean of II Increase
FFMPEG 0.005
FFMPEGyBRGR 0.005
FFMPEGyGRBR 0.004
MEDIABENCH -0.013
MEDIABENCHyBRGR -0.014
MEDIABENCHyGRBR -0.015
SPEC2000 -0.005
SPEC2000yBRGR -0.006
SPEC2000yGRBR -0.003
SPEC2006 -0.015
SPEC2006yBRGR -0.021
SPEC2006yGRBR -0.017

Table IV. Mean II Increase when Applying SIRALINA before Software Pipelining

Statically, we can say that our method is a success, and this is our main target in the article. We want to reduce
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the static number of spill code, without hurting II if possible. The static performance numbers shown in the current
section does not favour an execution path against another, since no typical data input are assumed in each optimised
application. The next section shows the impact of our spill code reduction on the dynamic speedup.

5.6 Execution Time Performance Results

This section provides performance numbers when we execute the generated binary code on an ST231 VLIW processor,
all compiled with -O3 optimisation level. We warn the reader to remember that some optimised loops may or may
not belong to hot execution paths, depending on the application and the chosen program input. This section plots
the performance using the standard input of MEDIABENCH and FFMPEG. Other input data sets may exist, bringing
distinct speedups for the same applications. Also, depending on the application, software pipelining (SWP) may or
may not bring a significant speedup, all depends on the time fraction spent in the software pipelined loops.

5.6.1 Speedups. In this section, we report the speedup of the whole application, not the speedups of the individual
loops or code kernels optimised by SIRALINA. The best speedup we get is g721 where the execution speed is accel-
erated by a factor of more than 3, see Figure 11. For the other benchmarks, we notice satisfactory speedups compared
to optimising each register type separately in adpcm-decode, gsm-decode, ffmpeg, g721, jpeg-decode, jpeg-encode,
pgp-encode. Some cases do not bring significant speedup such as epic and pegwit-decode. Unfortunately, we also
have some cases of slowdown such as in adpcm-encode, gsm-decode, mesa and pegwit-encode. We explain below the
reason for these slowdowns.
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Fig. 11. Program Speedups

5.6.2 Impact on Icache Effects. Nowadays, with the numerous code optimisation methods implemented inside
optimising compilers, inserting a new code optimisation inside an existing complex compiler suffers from the phase
ordering problem and from the interaction between complex phenomena [Sid-Ahmed-Ali Touati and Denis Barthou
2006]. For instance, register allocation seems to be a code optimisation that alters spill code (Dcache effects) and
instruction scheduling (ILP extraction). But it also influences the instruction cache behaviour since the instruction
schedule is altered. While reducing the amount of spill code reduces the code size, and should in theory improve
Icache phenomena, this is not really the case. The reason is that Icache in our embedded VLIW processors is direct
mapped. Consequently, Icache conflicts account for a large fraction for Icache misses: depending on the code layout
in memory, multiple hot functions and loops may share the same Icache lines, even if their size fit inside the Icache
capacity [Christophe Guillon and Fabrice Rastello and Thierry Bidault and Florent Bouchez 2005]. If Icache is fully
associative, capacity Icache conflicts could benefit from the reduction of code size, but this is not what happens
with direct mapped caches. At our level of optimisation, we have no control on Icache effects when we do register
allocation. Other code optimisation methods could be employed to improve the interaction with direct mapped Icache
[Christophe Guillon and Fabrice Rastello and Thierry Bidault and Florent Bouchez 2005].
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Now, we show the performance numbers that demonstrate that Icache conflicts are the main reason for our slow-
downs. We measured the execution time in clock cycles and we characterise it into the five main categories of stalls
on ST231: computation + Dcache stalls + Icache stalls + interlock stalls + branch penalties. Figure 12 illustrates the
cases of mesa and gsm-decode. The first bar corresponds to the execution time of the code generated without using
SIRALINA. The second bar shows the execution time of the code generated when we use SIRALINA, optimising all
register types conjointly. he last two bars show the execution times when we apply SIRALINA on each register type
separately. We can clearly see that the Icache effects increase in all cases, explaining the origin of the slowdowns.
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Fig. 12. Performance Characterisation to Explain Slowdowns Due to Icache Effects

6. CONCLUSIONS

We present a new efficient periodic register pressure optimisation technique that simultaneously considers multiple reg-
ister types. Our experiments on the embedded ST231 VLIW processor cover a significant range of high-performance
and media processing benchmarks (FFMPEG, MEDIABENCH,SPEC2000, SPEC2006). These experiments demon-
strate the practical applicability and the benefits of our approach: compared to the st200cc production compiler lifetime
sensitive software pipelining heuristic, our SIRALINA heuristic avoids the generation of spill code in most of soft-
ware pipelined loops. When register pressure is too high, inserting spill code becomes necessary. SIRALINA greatly
reduces its amount (between 40% and 60% of spill code reduction). In overall, we showed that it is better to optimise
all register types conjointly instead of one by one.

The algorithmic complexity of our heuristic is polynomial and equal to O(n3 log n). By considering the sample of
9027 optimised SWP loops in FFMPEG, MEDIABENCH,SPEC2000 and SPEC2006, we observe a median compi-
lation time on a linux pentium R desktop equal to 3.8 ms. The 99%−confidence interval of the average compilation
time is equal to [18.4ms, 40.3ms].

SIRALINA works before software pipelining by adding extra arcs to restrict the software pipeliner by bounding
MAXLIVE for any cyclic schedule. In theory, we may alter the extracted II . However, surprisingly enough, restricting
data dependence graphs actually help to improve the II . This is because heuristics of software pipelining are not
optimal by definition, so adding arcs to the DDG does not hurt in practice. It sometimes helps the scheduler to
compute better schedules (lower values for II).

In terms of execution times of the generated binaries, the speedups depend on program input and on complex
micro-architectural characteristics. We obtained satisfactory speedups in many benchmarks (up to x3 for g721), but
also some slowdowns. We did a careful performance characterisation of the slowdown cases, and we found that they
originate from Icache effects. Indeed, periodic register allocation alters the instruction scheduler, which in turn alters
the memory layout. Since the Icache of the ST231 is direct mapped, modifying the memory layout of the code greatly
impacts Icache conflicts. These phenomena show again that code optimisation is complex, because optimising one
aspect of the code may hurt another uncontrolled aspect.

As far as we know, our work on periodic register pressure (SIRA framework) is the only one that handles multiple
register types conjointly, with explicit delays in read and writes from/into registers, all based on formal methods

19



demonstrated efficient in practice. When comparing register allocation techniques, we are faced with difficulties:
1) The source codes of published register allocation techniques are not always made available. 2) Some published
articles are not formal enough, or do not contain enough implementation details to reproduce the results. 3) Even
if the published articles are detailed enough, it requires too much effort for the community to re-implement already
published work. 4) Even if the work has been reimplemented, reproducing the exact results is not so easy because the
data dependence graphs (DDG) are not made public, and distinct compilers may generate distinct DDG for the same
source code (depending on the internal compilation passes, chosen heuristics, data dependence analysis techniques,
intermediate language, target architectures, etc.). So, in order to enable an exact reproducibility of our results, we make
public our software implementation in an independent library called SIRAlib [Sébastien Briais and Sid-Ahmed-Ali
Touati 2009]. This library is under LGPL licence and can be plugged inside any optimising compiler.
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