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An old debate about an open question

Phase ordering problem:
instruction scheduling before/after register allocation?

Highlighted in the 80’s for sequential code, with register minimisation

Wealth of heuristics for acyclic scheduling

What about cyclic scheduling?
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Related work

Software pipelining under resource constraints only
→ register pressure often goes out of control

Software pipelining under resource and register constraints
→ to spill or to increase the II – that is the question

Post-pass cyclic register allocation
→ necessary: modulo expansion (unrolling) and register assignment
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Our strategy for VLIW

1 Decoupling register pressure control from instruction scheduling
→ better compiler engineering
→ focus scheduling on the core objectives (II, hiding memory latency)

2 Handling register constraints before scheduled resource constraints
→ Memory operations have unknown static latencies→ Imprecise
scheduling and WCET analysis

3 Avoid spilling instead of scheduling spill code while taking care of II
→ Memory operations consume more power
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The target platform

ST231 processor

4-issue VLIW processor at 400 MHz

64 general purpose 32-bit registers (GR)

8 1-bit condition registers (BR)

1 LSU, 1 BCU, 4 ALU and 1 MAU functional units

32 KB 4-way Dcache, 32 KB direct-mapped Icache

Toolchain: ST200cc with LAO

Front-end compiler based on Open64

At -O3 optimization level, the LAO backend component performs
VLIW software pipelining

Post-pass register allocation in ST200cc
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SIRA: an example
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Comparing SIRA vs. existing work

Unique features of SIRA
I Optimise for multiple register types simultaneously or one after another
I Model (read and write) delays in accessing registers
I Model register banks, buffers or rotating register files.
I Register pressure guarantee independent of the scheduling algorithm
I Correctness proofs for the model and algorithms
I Reproducible results: standalone C library (SIRAlib), distributed with

experimental data

Validation of the effectiveness of SIRA in a production compiler
I Compiler construction: simplifies scheduling/allocation ordering
I Software engineering: SIRA as an independent C library plugable in any

compiler
I Reproducibility: the source code is publicly released (LGPL)
I Effectiveness: already published for standalone DDG, experimental

results of this talk for an integrated context.
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SIRA: schedule independent register allocation

Fundamental principle: Theorem [Touati2001]

Let G be a loop DDG. Let G′ the extended DDG of G associated with the
valid reuse graph Greuse,t for the register type t. Then, any software
pipelining σ of G does not require more then

∑
µt

u,v registers of type t,

where µt
u,v is the reuse distance between u and v in Greuse,t. Formally:

∀σ ∈ Σ(G),PeriodicRegisterRequirementt
σ(G) ≤

∑
µt

u,v

8 / 20



SIRA: How it works ?

The SIRALINA heuristic works in two polynomial steps:

1 Step 1: Computes the minimal reuse distances between every possible
couple of statements (i.e. Compute a function µ̂t : VR,t × VR,t → Z
for each register type t);

2 Step 2: Compute a bijection Ereuse,t : VR,t → VR,t that minimises∑
er∈Ereuse,t

µ̂t(er) for each register type t.
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SIRA: How it works ?

1 Step 1: It is a cyclic scheduling problem under precendence
constraints only. It may be solved optimally by a min-cost max flow
problem, or by a linear program with a totally unimodular constraints
matrix. The complexity is O(‖V‖3 log ‖V‖)

2 Step 2: It is a linear assignment problem, solved optimally by the
Hungarian algorithm in O(‖V‖3).
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SIRA: How it works ?
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Plugging SIRA into the ST231 toolchain
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Experiments

Setup

FFMPEG, MEDIABENCH and SPEC CPU2000 benchmarks

ST231 register count lowered to 32 GR, 4 BR, optimized
simultaneously

Instruction schedulers

SIRA frees aggressive scheduling from register pressure worries
1 Optimal: Integer Linear Programming, minimize II and schedule length
2 Unwinding heuristic: unrolling-based method to build modulo schedules
3 Lifetime-sensitive heuristic: minimizes the sum of life-ranges

Questions

Does SIRA improve performance? For which scheduler?

How does a lifetime sensitive heuristic compare with the combination
of SIRA with a pressure-unaware algorithm?
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Experiments

Setup

Instrumentation of the toolchain yields static numbers about spills
and II

For each benchmark and each scheduler, we compare the numbers
obtained with the scheduler alone to those obtained with both SIRA
and the scheduler
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Experiments

Mean spill variation =
P

(Spillwith SIRA−Spillwithout SIRA)P
Spillwithout sira

Mean II variation = (
P

IIwith SIRA−IIwithout SIRA)P
IIwithout SIRA
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Experiments: cross-comparison

Question

How does a lifetime sensitive heuristic compare with the combination of
SIRA with a pressure-unaware algorithm?

Setup

SIRA + unwinding scheduler vs. lifetime-sensitive scheduler alone

SIRA + optimal scheduler vs. lifetime-sensitive scheduler alone
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Experiments: cross-comparisons
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Experiments: spill code in post-pass
Does SIRA reduce spill or prevent it altogether?

Answer: evaluate Loops that do not have spill anymore once SIRA is used
Loops that had spill without SIRA

18 / 20



Conclusions

Using SIRA significantly decreases both II and spills, for all schedulers

Not surprisingly, results are less impressive on the lifetime-sensitive
scheduler, since the heuristic already reduce register pressure

The combination of SIRA with an aggressive scheduler outperforms
the lifetime-sensitive approach
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The speedup debate
Speedups depend on the data input, and the time fraction spend in
the SWP loops.
The compiler optimises for an architectural objective, while speedup
comes from a complex interaction with the micro-architecture and the
experimental environment.
If you get a speedup, who guarantees that it comes as a direct
consequence of the plugged optimisation ? Phase ordering, hidden
side effects, etc.
In our case: SWP loops account for 0% to 5% of the whole
applicatiosn execution times. Most of the speedups are equal to 1.
The other speedups vary from 0.85 to 2.4. Except in one case
(FFMPEG), all the observed speedups and slowdons come from
I-cache effects !
Do not trust speedups when you work on code optimisation ! Trust
what you can prove or demonstrate, not what you observ. Code
quality is a matter of many metrics, speedup is a single metric among
many others. 20 / 20


