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Abstract—Program performance optimisations, feedback-
directed iterative compilation and auto-tuning systems [1] all
assume a fixed estimation of execution time given a fixed
input data for the program. However, in practice we observe
non-negligible program performance variations on hardware
platforms. While these variations are insignificant for sequential
applications, we show that parallel native OpenMP programs
have less performance stability.

This article does not try to quantify nor to qualify the factors
influencing the variations of program execution times, that we let
for a future work. This article demonstrates three observations:
1) The performance variations of sequential applications is
insignificant. 2) OpenMP program execution times on multi-core
platforms show important variations. 3) The distribution of the
execution times is not a Gaussian distribution in almost all cases.
We finish by a discussion explaining why considering the minimal
or the mean execution time within a sample of experiments is
not the best estimation of program performance.

I. INTRODUCTION

Every computer scientist working on the field of program
performance optimisation knows how to compute a speedup.
Let P be a program and I an input data set. The execution time
of the program P given an input data set is noted by T (P, I).
Computing the speedup of a program, given a fixed data input,
is easy [2]: if P ′ is a modified version of P , then the speedup is
computed by s(P ′, I) = T (P ′,I)

T (P,I) . The execution time is usually
observed by measurements, or can be simulated or predicted
with a performance model. In our study, we consider direct
measurements (either by hardware performance counters, or
by OS timing function calls).

Contrary to emulated or virtualised programs (such as Java
byte-codes), native program binaries are executed directly
on the hardware with possibly some basic OS requests (OS
function calls). Our current study focuses on this family
of programs: we consider the sample of SPEC 2006 and
SPEC OMP2001 benchmark applications. We do not consider
binary virtualisation or byte-code emulation because they
add software layers influencing the program performance in
a more complex way: garbage collector strategies, threads
organisation, caching and dynamic compilation techniques
all may dramatically influence the measurements of program
execution times. Direct measurements of native applications
have one software layer (namely the OS) between the user
code and the hardware.

Till now, program variations of large sequential applica-
tions such as SPEC CPU are materially neglected. In the

SPECPU2006 run rules, we can read: ¨A central idea of SPEC
benchmarking is to create tests that are repeatable: if you
run a benchmark suite multiple times, it is expected that
results will be similar, although there will be a small degree
of run-to-run variation .̈ Indeed, we confirm in this study
that large SPECPU2006 applications have minor variations
with the train input data. This of course does not guarantee
that the variations of sequential applications would always be
negligible. For instance code kernels and toy benchmarks have
small execution times, consequently the statistical variance
may be greater.

With the introduction of multi-core architectures, program-
ming in parallel is expected to take an increasing importance in
the future. OpenMP paradigm is one of the most used parallel
programming model on desktop machines: it assumes a shared
memory between threads, is used with simple pragmas that
allows or not the invocation of threads, etc. In this article,
we report extensive experiments on a representative sample
of OpenMP benchmarks (from SPEC) executed on an Intel
multi-core machine. We show that, contrary to sequential
applications, the variations of program execution times are
sensitive from a human usage point of view. Consequently,
considering an good estimation of T (P, I) becomes of crucial
importance and impose us to revisit the old performance
analysis methodology.

By now, the variability of T (P, I) must be correctly taken
into account for auto-tuning systems [1]. Also, it must be
considered to report confidence intervals for speedups. This
advice already exists in the literature since numerous decades
[2], [3] but not really followed in practice: the reason is that the
exact definition of the confidence interval of a speedup is not
known till yet. As far as we know, a correct formula based on
statistical and probability theory that estimates the confidence
interval of the fraction T (P,I)

T (P ′,I) is not defined. And defining
such formula is not easy, because the shape of the theoretical
distributions of program execution times is not known yet.

Our article is organised as follows. Sect. II presents some re-
lated efforts dealing with programs execution times variability.
Sect. III presents the heart of our experimental study. Sect. IV
develops some discussion before concluding.

II. RELATED RESEARCH ACTIVITY

Collective optimisation [4] is a valuable effort in the com-
munity of program optimisation aiming to log performance



numbers in a central database. One of the main motivations be-
hind this effort is the disparity of performance scores reported
in the literature, and the difficulty in comparing, checking and
reproducing them. A fraction of the non reproducibility of
experimental code optimisation results comes from the vari-
ability of program execution times; if not correctly reported
or evaluated, the overall reported speedups would have a low
chance of being reproduced.

Another effort dealing with variability is the article of
raced profiles [5]. That performance optimisation system is
based on observing the execution times of code fractions
(functions, and so on). The mean execution time of such code
fraction is analysed thanks to the test of student, aiming to
compute a confidence interval for the mean. We have two main
differences with the previous work. First, we execute multiple
times whole programs, not fractions of them. Consequently,
our successive executions are independent (this is not the case
when we execute the same function multiple times inside the
same program). Second, this previous article does not fix the
data input of each code fraction: the variability of execution
times when the data input varies cannot be analysed with
the test of student. Simply because when data input varies,
the execution time varies inherently based on the algorithmic
complexity, and not on the structural hazard. In other words,
observing distinct execution times when varying data input
cannot be considered as hazard, but as an inherent reaction of
the program under analysis.

Last, program execution times variability has been shown
to lead to wrong conclusions if some execution environment
parameters are not kept under control [6]. For instance, the
experiments on sequential applications reported in [6] show
that the size of Unix shell variables and the linking order
of object codes both may influence the execution times. In
our article, we do not provide explanation about the external
factors influencing the variability of program execution times.
We fix the execution environment as advised in [6], and we
observe the variations that comes from complex interaction
phenomena between software and hardware. Identifying such
factors is not the topic of this article and we start our effort
by analysing the performance variability.

III. EXPERIMENTAL RESULTS

This section presents our synthesis of multiple months of
experiments. We describe our experimental setup, then we
study the normality of the distribution of program execution
times. We then show the weak variability of SPEC sequential
applications while confirming the results presented in [6]. Fi-
nally, we demonstrate a larger variability of OpenMP program
execution times on a multi-core architecture.

A. Experimental Setup

Our experiments have been conducted on a Linux work-
station. The kernel version x86 64 2.6.26 is patched with
perfmon kernel 2.81 (libpfm and pfmon version
3.8). The micro-architecture of the processors is Intel Core 2,
quad-core Xeon E5345, FSB 1333. The core frequency is 2.33

GHz. The machine has two chips, each one has four cores.
Regarding the cache sizes, the L1 caches are private to each
core and have a size of 32 KB for instructions and 32 KB for
data (separate). The L2 cache level is shared between each
couple of cores. In our machine, there are two L2 caches on
each chip. The size of each L2 is 4 MB, for both instructions
and data. Inside a chip, two cores share 4 MB of L2. The main
memory size is 4 GB and the number of TLB entries is 512.

B. Experimental Methodology

The test machine was entirely dedicated during the exper-
iments to a single user. The OS services were all inactive,
except basic ones such as sshd. We used the build system
and scripts of SPEC CPU2006 and OMP2001 to compile
and optimise applications, launch them, measure execution
times, check validity of the results and report the performance
numbers. The compiler used are gcc 4.1.3 and 4.3.2,
and Intel icc 11.0. The compiler optimisation level we used
are -O2 and -O3. The option --fno-strict-aliasing
was used for perlbench benchmark because of a technical
error in that code (reported to SPEC and patched for future
versions). gcc was not able to compile the omp version of
mgrid_m because of a bug (Bugzilla Bug 33904). The paral-
lel execution of gafort_m failed because of a segmentation
fault (this execution error was also reported if we use Intel
icc 11.0). We also disactivated the random dynamic stack
allocation (this is an option in a Linux Kernel).

The SPEC system measuring the execution times relies on
the function gettimeofday that returns the real time with
a precision of micro-second.

Numerous software configurations were experimented:
1) For SPEC CPU 2006, we varied the size of the Unix

shell environment, as described in [6]. We also experi-
mented two code optimisation levels (-O3 and -O2).

2) For SPEC OMP 2001, we fixed the Unix shell envi-
ronment, and we varied the number of threads as: no
threads (sequential version), 1 thread (omp version with
a unique thread), 2, 4, 6 and 8 threads.

The input data used for experiments are the train set. The
successive executions are performed sequentially in a back-
to-back way. No more than one application was executed at a
time. We configured the SPEC runspec to perform 30 runs for
each software configuration. This high number of runs allows
us to report statistics with a high confidence level.

C. Normality Check Results

Each software configuration is executed 30 times, yielding
to report 30 distinct execution times of the same binary
program and train input data. We checked if these 30 dis-
tinct values follow a normal distribution or not. Surprisingly
enough, most of the execution times distributions are not
Gaussian: Using the standard Shapiro-Wilk normality check,
and a high confidence level equal to 95%, the normality check
fails in almost all SPEC CPU 2006 applications (except for
462.libquantum) and in all OMP2001 applications. When



the confidence level is reduced from 90% to 50%, the nor-
mality check succeeds in three SPEC CPU applications out of
11 (462.libquantum, 482.sphinx3 and 445.gobmk)
and in three OMP applications within 9 ( 310.wupwise_m,
324.apsi_m, 330.art_m). The normality check demon-
strates that the Gaussian function cannot be used as a general
distribution function for program execution times.

D. Variability of Spec CPU 2006 Execution Times

We use the violin plot1 to report in Fig. 1 the execution
times of each application, and for each Unix shell variable size.
Here we illustrate four cases with representative variability, the
article page size limitation does not allow the full report of all
experiments.

The X-axis of Fig. 1 represents the size of Linux shell
environment as studied in [6]. For each size, the Y-axis report
the 30 execution times. We deduce from all these figures that:
1) we confirm that the size of the Linux shell environment
may influence the execution times and 2) when we fix the
execution environment, the variations of the execution times
are minor (within one second). These observations are valid
for all the SPEC CPU 2006 applications that we experimented.

By using the Student’s t-test, we also report the mean
confidence interval of these benchmarks in Fig. 2. We can see
that these intervals are sufficiently tight. We deduce that the
sample mean of the execution times of SPEC CPU benchmarks
does not vary in a sensitive way.

From the experiments presented in this section, we deduce
in overall that the variability of the execution times of all
SPEC CPU2006 applications is negligible (less than 1 second)
whatever the optimisation level we used (-O2 or -O3 ). A
human user would not feel a difference when he executes
multiple times the same program with the same input data.

The next section shows that this situation is not always
the case if we use OpenMP applications on a multi-core
architecture.

E. Variability of Spec OMP 2001 Execution Times

We use violin plots to report in Fig. 3 the execution times of
each application compiled with gcc. The Unix environment
size was fixed. We chose four applications to highlight that the
variability is significant. The X-axis represents the different
software configurations for the application: sequential version
(no threads), OMP version with 1 thread, 2 threads, 4 and
8 threads. The Y-axis represents the 30 observed execution
times for each software configuration. We conclude three
observations:

1) The sequential and the single threaded versions do not
exhibit significant variability.

2) When we use thread level parallelism (2 or more
threads), the execution times decreases in overall but
with a deep disparity. Consider for instance the case
of swim in Fig. 3. The version with 2 threads runs
between 76 and 109 s, the version with 4 threads runs

1The Violin plot is similar to box plots, except that they also show the
probability density of the data at different values.
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Fig. 1. Observed Execution Times of some SPEC CPU 2006 Applications
(compiled with gcc)
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Fig. 2. Mean 95% Confidence Interval of some SPEC CPU 2006 Applications
(compiled with gcc)

between 71 and 90 s. This variability is also present
when swim is compiled with icc, see Fig. 4. The
example of wupwise in Fig. 3 is also interesting. The
version with 2 threads runs between 376 and 408 s,
the version with 6 threads runs between 187 and 204
s. This disparity between the distinct execution times of
the same program with the same data input cannot be
justified by accidents or experimental hazards, because
as we can observe the execution times are not normally
distributed, and frequently have a bias.

3) The case of the application galgel is also inter-
esting. In addition to the variability of the execution
times for each software configuration, we observe that
the performance of the program substantially decreases
when increasing the number of threads! This examples
illustrates that, on a multi-core architecture, increasing
thread parallelism may bring severe performance loss.
We checked the situation of galgel when we use
the Intel icc 11.0 compiler instead of gcc, and the
situation was radically different, see Fig. 4: increasing
the number of threads decreases the execution times. We
can observe a huge difference between the performance
of the program compiled with gcc vs. the icc, either in
terms of execution times and in terms of variability.

By using the Student’s t-test, we report the mean confidence
interval of these benchmarks in Fig. 5. Contrary to SPEC CPU
2006 applications, we can see here that these intervals are not
always tight. For instance, the case of swim shows a large
mean confidence interval, that does not allow for instance to
clearly distinguish between the average performance of 4 and 6
threads. Also, the mean confidence interval of galgel with 4
threads is [108,112], which cannot be considered as tight for
a sample mean. The other applications have tighter sample
mean confidence intervals, the question becomes now if the
sample mean is a good measure or not for the performance of
a program. The next section discusses this matter.

IV. DISCUSSION

Many reported performance numbers in the literature con-
sider the minimal observed execution time within a small
sample (between 3 and 10 executions). While it may be argued
that the observed minimum can be justified to have an idea
of the best observed performance, we think that it is not true
from a statistical and computer science point of view:

1) The minimal execution time may be rare, see the case
of galgel application with 2 threads in Fig. 3. If we
consider the min, then we may conclude that the version
with 2 threads is better than the sequential version. But
we can clearly see that the sequential version is better
than the 2 threaded version in overall.

2) The minimal execution time belongs to a distribution of
execution times obtained while input data and compiler
optimisations do not change. In any case, the execution
time variability, accounting for this minimum time, is
not yet under control and has to be taken into account
in measurements of speed-ups.
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Fig. 3. Observed Execution Times of some SPEC OMP 2001 Applications
(compiled with gcc)
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Fig. 4. Observed Execution Times of swim and galgel compiled with
intel icc

3) In statistics theory, estimating the confidence interval of
the mean and the median is based on the central limit
theorem, allowing to have a correct estimation with an
arbitrary confidence level. However, it is well-known
that the estimators of extreme values like minimum and
maximum are hard to define correctly. In other words,
considering the minimum of a sample of experiments
does not allow to compute a confidence interval if
the variability is important. Consequently, the minimal
value may have a huge variation when we consider
distinct samples. This variation of the minimum when
we consider multiple samples is a deep disadvantage for
reproducibility and check of the results.

As we studied in Sect. III, we showed that the distribution
of the execution times have bias and important variations in
the case of OMP applications. Consequently, the mean of the
observed execution times is not a good choice to report a
unique value for the execution time. We confirm then the
advices of [3], [7] to use the sample median instead of sample
mean to report execution times.

V. CONCLUSION

In this article, we report the experimental results of numer-
ous months of benchmarking. We considered the applications
of SPEC CPU2006 and SPEC OMP 2001. We used two
compilers (gcc and icc) with two optimisation levels (-O2
and -O3). We varied the Unix shell environment and the
number of threads. We also desactivated the randomisation
of the starting address of the stack option. We considered
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Fig. 5. Mean 95% Confidence Interval of some SPEC OMP 2001 Applica-
tions (compiled with gcc)

the train data input. For each combination of these software
configuration, we conducted 30 runs on an 8 cores Linux
machine allowing to have a high confidence level for our
statistics [3].

Our experiments demonstrate that, contrary to sequential
SPEC CPU applications, OpenMP applications have an impor-
tant variability of execution times. Dealing with this variability
will be an increasing challenge for auto-tuning systems [1].
We showed that the distribution function of the execution time
does not follow a Gaussian function in most of the cases. We
also showed that the distribution functions have bias, asking
as to revisit the classical speedup evaluation. We made a
discussion to give arguments against estimating the minimum
and the mean, and we advise to consider the observed median
execution time as proposed in [3], [7]

Our future work is oriented towards two directions: 1)
Determine and quantify the factors influencing the variability
of program execution times. 2) Study the distribution function
of program execution times.
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