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Abstract. This paper improves our previous research effort [1] by providing an
efficient method for kernel loop unrolling minimisation in the case of already
scheduled loops, where circular lifetime intervals are known. When loops are
software pipelined, the number of values simultaneously alive becomes exactly
known giving better opportunities for kernel loop unrolling. Furthermore, fixing
circular lifetime intervals allows us to reduce the algorithmic complexity of our
method compared to [1] by computing a new research space for minimal kernel
loop unrolling. The meeting graph (MG) [3] is one of the frameworks proposed
in the literature which models loop unrolling and register allocation together in
a common formal framework for software pipelined loops. Although MG signif-
icantly improves loop register allocation, the computed loop unrolling may lead
to unpractical code growth.
This work proposes to minimise the loop unrolling degree in the meeting graph
by making an adaptation of the approach described in [1]. We explain how to
reduce the research space for minimal kernel loop unrollingin the context of
MG, yielding to a reduced algorithmic complexity. Furthermore, our experiments
on SPEC2000, SPEC2006, MEDIABENCH and FFMPEG show that in concrete
cases the loop unrolling minimisation is very fast and the minimal loop unrolling
degree for75% of the optimised loops is equal to 1 (i.e. no unroll), while it is
equal to 7 when the software pipelining (SWP) schedule is notfixed.

1 Introduction

In production compilers, register allocation involves keeping as many variables as pos-
sible in registers, thereby avoiding the need to introduce spill code which is particular
danger in software-pipelined loops [5, 7, 9]. When no hardware support is available,
kernel loop unrolling is currentlythe onlymethod of code generation that avoids intro-
ducing unnecessary move and spill operations and does not alter the initiation interval
after software pipelining. However, the degree of unrolling should be minimised to con-
trol code size and hence I-cache performance.

Our objective in this research effort is the same as in [1]: weare interested in the
minimal value of kernel loop unrolling which allows a periodic register allocation for



software pipelined loops without exceeding the number of architectural registers. Pro-
hibitive unrolling degrees decrease the benefit of softwarepipelining because:

1. The code size increase is not appreciate for embedded systems;
2. The performance of large loops may suffer from I-cache effects;

When a loop is already scheduled, the meeting graph (MG) [5] is a formal frame-
work which proposes to achieve a periodic register allocation with a minimum number
of registers equal to MAXLIVE, the number of values simultaneously alive. This graph
describes how to find this allocation if we sufficiently unroll the pipelined loop. The
meeting graph is decomposed into its elementary circuits labelled with their weights
(wi), where each circuit corresponds to a reuse pattern. The drawbacks are that the un-
rolling factorα is the least common multiple of the weights(wi), and that it is difficult
to extract a circuit decomposition that minimisesα.

The current article adapts the loop unrolling minimisationmethod described in [1]
to reduce the kernel loop unrolling generated by the MG and proposes a new research
spaceS for minimal kernel loop unrolling. In addition, the asymptotic complexity of
our method for already software pipelined loops is reduced compared to [1].

Compared to our previous result [1], the current study handles already scheduled
loops (after SWP). In contrast, our previous result deals with unscheduled loops (before
SWP), which means that the computed unrolling factor was conservative and valid for
all subsequent SWP schedules. The difference resides in thefact that, when a loop is
already scheduled in the MG, circular lifetime intervals are fixed and hence we have (in
theory) better opportunities to minimise the unrolling degree. Actually, having an upper
bound for kernel loop unrolling (MAXLIVE or MAXLIVE+ 1) depending on whether
the MG has one or more strong connected components, we reducethe research spaceS
described in [1] by computing all the possible new kernel loop unrolling less or equal
to MAXLIVE or MAXLIVE + 1.

This article is organised as follows. Section 2 presents relevant related work. Sec-
tion 3 provides a brief recap of the meeting graph describinghow to perform peri-
odic register allocation for a software pipelined loop. Section 4 defines the problem of
minimising the kernel loop unrolling, then we describe our solution for loop unrolling
minimisation. Section 5 presents some experimental results, showing that our loop un-
rolling minimisation method is fast and efficient in practice. Finally, we summarise our
results and discuss some perspectives.

2 Code Generation Approaches for Cyclic Register Allocation

When a loop is software pipelined, we have three schemes for handling the overlapping
lifetimes :

1. Dynamic remapping via the use of rotating register files [4, 12]. Such hardware
support may find its place in high performance processors (such as Intel’s Itanium)
but is hardly ever found in embedded processors.

2. Software register renaming. This is achieved through theinsertion ofmove op-
erations [11]. However, inserting these operations may decrease the computation
throughput.



3. Kernel loop unrolling, which is more suitable for embedded processors. However,
brute force searching for the best solution using loop unrolling has a prohibitive
cost, existing solutions may either sacrifice the register optimality [6, 9, 12] or incur
large unrolling overhead [3, 14].

When no hardware support is available, the classical software solution that is guar-
anteed never to alter the computation throughput is loop unrolling. The following sec-
tion presents the best known techniques using loop unrolling.

2.1 Modulo Variable Expansion

Lam designed a general loop unrolling scheme calledmodulo variable expansion(MVE)
[9, 12]. This method defines a minimal unrolling degree to permit code generation after
a given periodic register allocation. This unrolling degree is obtained by dividing the
length of the longest lifetime (LT ) ((maxv LTv)) by the initiation interval(maxv LTv)

II
.

However, this method does not guarantee a register allocation with a minimal number of
registers equal to MAXLIVE and in general it may lead to unnecessary spills or move
operations negating the benefits of SWP. These extra spill ormove operations may in-
crease the initiation interval of the SWP. A concrete example of this limitation can be
found in [13].

2.2 SIRA Reuse Graphs

Usually the register allocation is performed after or during the software pipelining pro-
cess[3, 6]. This is because doing a conventional register allocation as a first step without
assuming a schedule lacks the information of interferencesbetween values live range.
However, there exists a theoretical approach, called Schedule Independent Register Al-
location (SIRA) [14] for controlling the register pressurebefore software pipelining.
This new method is based on inserting some anti dependence arcs (register reuse arcs)
labeled with reuse distancesµ, directly into the data dependence graphG. Such peri-
odic register allocation is modeled byreuse graphs. Reuse graphs are decomposed into
reuse circuits which model register reuse decisions between the instructions of the loop:
an arce = (u, v) in a reuse circuit labeled with a distanceµ(e) means that the instruc-
tion u of iterationi and the instructionv of iterationi+µ(e) share the same destination
register. The sum of these labels along the circuit defines its weight.

Reuse graphs have another use. They may be used to compute thesufficient un-
rolling degree that we should apply to the loop so that it is always possible to allocate
exactlyRmin = MAXLIVE registers, independently of the actual scheduling[14]. The
drawback of this allocation is that the unrolling factor is equal to the least common
multiple of the weight of all reuse circuits.

Another relevant approach using loop unrolling for alreadysoftware pipelined loops
is described in the next section.

3 Meeting Graph

Several algorithms have been proposed to achieve a periodicregister allocation with
a minimum number of registers [5, 6]. Themeeting graph(MG) [5, 10] describes how



to find a periodic register allocation with MAXLIVE registers if we sufficiently unroll
the pipelined loop. It is a more accurate graph than the usualinterference graph, as it
has information on the number of cycles of each variable lifetime and on the succes-
sion of the lifetimes all along the loop. It allows us to compute an unrolling degree
which enables an allocation of the loops withRmin = MAXLIVE registers. A MG
can have several connected components of weightµ1, . . . , µk (if there is only one con-
nected component, its weight isµ1 = Rmin), this leads to the upper bound of unrolling
α = lcm(µ1, ..., µk) (Rmin if there is only one connected component). Moreover a
possible lower bound is computed by decomposing the graph into as many circuits as
possible and then computing the lcm of their weights. The circuits are then used to com-
pute the final allocation. This method can handle variables that are alive during several
iterations. This allocation always finds an allocation withan optimal number of regis-
ters (MAXLIVE). The main drawback of this method is that the loop unrolling degree
can be high in practice although the number of registers usedis optimal.

An interval family representing variable lifetime is shownin Figure 1. From these
lifetimes, the corresponding meeting graph is drawn. The interval family has a width
equal toRmin = 4. This width means that we need at least 4 registers (colors) to be
allocated successfully. On each node, a weight equal to the number of clock cycles (time
steps) of the lifetime is added. The weight of the connected component is20

5 = 4, as
II = 5 and the sum of nodes’ weights is20.

Moreover it has 4 chords, so there are two ways to decompose it. One way leads to
an unrolling of lcm(1, 3) = 3 iterations and the second to an unrolling of lcm(2, 2) = 2
iterations. Here the maximal loop unrolling isRmin = 4, we have only one connected
component. Lelait’s solution [5] is to find the decomposition by searching for the great-
est number of chords whichdo not intersectinside the graph. This search is equivalent
to looking for the maximum stable set in the circle graph induced by the chords.
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4 Loop Unrolling Problem in the Meeting Graph

Code generation methods such as meeting graph [5] and SIRA [14] rely on the proof
that MAXLIVE registers are sufficient for periodic registerallocation if we unroll the
loop up to the least common multiple of the weights (total distance) of the reuse circuits.
Unfortunately, the resulting unrolling degree is often unacceptable.

We recently proposed a solution to dramatically reduce the cost of the unrolling
degree [1] inside the framework SIRA [14]. The results showed that the final loop un-
rolling degree is greatly reduced. The loop unrolling minimisation algorithm (LUM)
has exponential time complexity in the worst case but in practice the solution is very
fast (about 2 minutes in extreme cases) [1]. We aim in the current work to improve
the complexity of the algorithm and to show the effectiveness of this work on already
software pipelined loops using the meeting graph techniquefor the periodic register
allocation.

Figure 2 illustrates an example. We want to minimise the loopunrolling degree of
the five circuits of the meeting graph in Figure 2(b). Initially the meeting graph has
only one connected component withµ1 = MAXLIVE = 27 (see Fig 2(a)). Then,
the meeting graph is decomposed by following the different chords, which results5
circuits with the following weightsµ1 = 3, µ2 = 4, µ3 = 5, µ4 = 7, µ5 = 8 as
shown in Fig 2(b). The kernel loop unrolling degree resulting from this decomposition
is α = 840, the LCM of the weights of the different circuits. However, this bound is
very large and we cannot allow the loop to be unrolled840 times. The meeting graph
proposes in this case to unroll the loop MAXLIVE times. This bound is also large. In
order to minimise it, we apply the loop unrolling minimisation for the meeting graph
circuits. Let us assume that we haveRhw = 32 architectural registers. Hence we have
R = Rhw − Rmin = 32 − 27 = 5 remaining registers.

Our work aims to compute the minimal loop unrolling degreeα∗ for the software
pipelined loop using the meeting graph framework. We are willing to exploit the re-
maining registers, looking for a good distribution of theseregisters over all the different
strongly connected components. In Figure 2(b), the final loop unrolling degree found
with this method isα∗ = 8. The minimal number of registers added to each circuit of
the meeting graph are:r1 = 1, r2 = 0, r3 = 3, r4 = 1, r5 = 0. Note thatri is the
number of registers added to theith circuit of meeting graph. LUM guarantees that the
new number of allocated registers will not exceed the numberof architectural registers;
Ralloc ≤ Rhw.

In the next section, we briefly recall the formal descriptionfor minimising loop
unrolling in the meeting graph technique.

4.1 Adaptation of Loop Unrolling Minimisation Problem in Me eting Graph

The heart of our loop unrolling minimisation (LUM Problem) is based on the following
observation. LetRarchbe the number of available architectural registers in the processor;
when a periodic register allocation is performed, we may allocateRmin = MAXLIVE ≤
Rarch registers. Hence there areR = Rarch − Rmin free registers remaining. Our goal
is to exploit these remaining registers to minimise the loopunrolling degreeα. That is,
our loop compaction method is basedon using extra free registers if they existto reduce



a) Meeting graph with one strong connected component b) Decomposition of the meeting graph into elementary  circuits
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Fig. 2.Example of Loop Unrolling Minimisation in Meeting Graph

the unrolling degree, without adding extramove operations, and without altering the
II of the software pipelined schedule.

The formal description of LUM Problem in the meeting graph isas follows:

Problem 1 (LUM) LetR ∈ N be the number of remaining registers after the periodic
register allocation performed by the meeting graph technique. Letµ1, . . . , µk ∈ N be
the weights of the different circuits generated by decomposing the meeting graph fol-
lowing the different chords. Compute the added registersr1, . . . , rk ∈ N to the different
circuits such that:

–
∑k

i=1 ri ≤ R (validity constraint).
– α∗ = lcm(µ1 + r1, . . . , µk + rk) is minimal (optimisation objective).

The following section recalls the solution for LUM Problem described in [1].

4.2 Solution for Loop Unrolling Minimisation [1]

The solution ofLUM Problemis detailed in [1]. The procedure to compute the minimal
kernel loop unrollingα∗, using our solution consists of:

– constructing the setS of all possible value ofβ which can be a potential new loop
unrolling degree. The construction of the set is described in [1].

– checking if each valueβ in the search spaceS can be a solution for theLCM-
Problem[1]: it is guaranteed that the minimum of all these values is the minimal
loop unrolling degree.

In general, theLCM-Problemdetermines if a fixed loop unrolling degreeβ can be
the new loop unrolling. This is done by adding to each circuitweightµi of the meeting
graph, a minimal number of registersri from the remainingR registers such thatµi +
ri is the smallest divisor of the fixed loop unrollingβ greater or equal toµi. If the

additional registers do not exceed the number of remaining registers
k∑

i=1

ri ≤ R, then



β can be the new loop unrolling degree. In this case, the algorithm returns a predicate
success with the valuetrue.

Instead of computing all valuesβ of S which satisfy theLCM-Problemand finally
taking the minimal one, we describe in [1] an efficient way to traverse the setS in order
to find the minimal kernel loop unrolling. The solution is exponential in the worst case
but in practice it runs very fast [1]. This is due to reducing the research spaceS each
time a new loop unrolling degreeα′ less than the originalα is found.

Figure 3 illustrates the search space solution (a partial order between nodes). The
value of each node represents a potential new loop unrollingdegree and an arc between
two nodesa, b (a → b) means thata < b and the absence of an arc (ot a path) between
two nodes means that the order is unknown. If we assume thatµ = µk (maximum
weight of all the different circuits in the meeting graph) and R are remaining registers
after the periodic register allocation then we traverse thesetS by proceeding line by
line in the figure. In each line, we apply AlgorithmLCM-Problem[1] to each node in
turn until the value of the predicatesuccess returned by this algorithm istrue or until
we arrive at the last line whereβ = α. If the valueβ of the nodei of the linej verifies
the predicate (success = true), then we have two cases:

– case a: if the value of this node is less than the value of the first nodeof the next
line then we are sure that this value is optimal (α∗ = β). This is because all the
remaining nodes are greater thanβ (by construction of the setS).

– case b: otherwise we have found a new value of unrolling degree whichis less
than the originalα. We note this new valueα” and we try once again to minimise it
until we find the minimal (case a). The search space becomes smaller (S′ = {β ∈
N|∀r = 0..R : β is multiple of(µ + r) ∧ (j + 1) × µ ≤ β ≤ α′})

j ∗ µk

β = α′

µk µk + 1 µk + 2 µk + R

2 ∗ µk
2 ∗ (µk + 1) 2 ∗ (µk + 2) 2 ∗ (µk + R)

3 ∗ µk 3 ∗ (µk + 1) 3 ∗ (µk + 2) 3 ∗ (µk + R)

β = α′

j ∗ (µk + 1) j ∗ (µk + 2) j ∗ (µk + R)

α

α

Fig. 3.Loop Unrolling Values in the Search SpaceS [1]

We compute in the following sections the complexity of LUM Problem called LCM-
MIN algorithm in [1] and then explain how to improve it in the meeting graph.



4.3 Complexity of the LCM-MIN Algorithm [1]

The definition of theLCM-MIN Problemis:

– Input:µ1, . . . , µk (natural numbers) andR (natural number).
– Output:r1, ..., rk (natural numbers). Such that :

• r1 + . . . + rk ≤ R and
• LCM(µ1 + r1, . . . , µk + rk) is minimal

Let us say that we can solve theLCM-Problem[1] in an amount of time equal toT .
In the worst case, we visit every node in the setS (see fig 3).
The setS hasR×α

µk

nodes (assuming thatµk = maxµi andα = LCM(µ1, ..., µk)).

Hence, the algorithmic complexity ofLCM-MIN AlgorithmisTtotal = O(T×R×α
µk

).
Assuming thatµ1, ..., µk are relatively prime, thenα has its maximum valueα ≤

µ1 × µ2 × . . .× µk ≤ µk
k. Thus, the algorithlmic complexity ofLCM-MIN Algorithm

is Ttotal = O(T×R×µk
k

µk

) = O(T × R × µk
(k−1)). SinceR ≤ Rarch andk ≤ n (n

is the number of loop statements), we haveTtotal = O(T × Rarch × µk
(n−1)). If we

fix a processor architecture,Rarch becomes a constant and the worst case complexity
becomes equal toTtotal = O(T×µk

(n−1)). We conclude that the worst case complexity
of LCM-MIN Algorithm[1] is exponential on the value ofµk.

4.4 Improving LCM-MIN Algorithm for the Meeting Graph Frame work

Meeting Graph can have several strongly connected components of weightµ1, . . . , µk

(if there is only one connected component, its weight isµ1 = Rmin). This leads to
the upper bound of unrollingα = lcm(µ1, ..., µk) (MAXLIVE = Rmin if there is
only one connected component). In addition, ifα > MAXLIVE, MG proposes a new
upper bound of loop unrolling degreeumax equal to MAXLIVE or MAXLIVE + 1. In
fact, if MG has one strongly connected component then the maximum loop unrolling
degree isumax = Rmin = MAXLIVE. Otherwise, if it has several strongly connected
components, [5] proposes to create one strongly connected component by adding a
complete turn of unitary dummy intervals in the MG. One extraregister is needed to
achieve this, which yields to allocate MAXLIVE+ 1 registers by unrolling the loop
umax = MAXLIVE + 1. Consequently, we may need one extra register to cyclically
permute all the values in registers.

Moreover a possible lower bound is computed by decomposing the MG into as
many circuits as possible and then computing the lcm of theirweights. However, in
practice, the maximal loop unrolling degree can be high eventhough the number of
registers used is minimal.

Our research result finds the minimal loop unrolling degreeα∗ regarding a fixed
schedule using the MG technique. We use the LCM-MIN algorithm, looking for a good
distribution of the remaining registers over all the different MG circuits. Having an
upper bound for loop unrolling degree (MAXLIVE or MAXLIVE+ 1), we reduce
the search spaceS by computing all the possible new loop unrolling degreeβ less or
equal to MAXLIVE or MAXLIVE + 1 depending if the MG has one or more strongly
connected components. Figure 4 describes the new search spaceS in the MG.
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Fig. 4.The new Search SpaceS in the Meeting Graph

Contrary to [1], we are faced here to a fixed loop schedule. This reduces the cardinal
of the research spaceS (see Figure 4), the efficiency of solvingLCM-MIN Problemis
improved. Actually, in the worst case, we visit every node inthe new setS. In this case,
the setS hasR × MAXLIVE

µk

nodes (respectivelyR × MAXLIVE +1
µk

). So hence, the total

resolution time isTtotal = O(T × R × MAXLIVE
µk

).
In addition, the loop variables must be allocated with a number of register less or

equal to the number of architectural registersRarch. This amounts to the following
inequality:T ×R× MAXLIVE

µk

≤ T ×R× Rarch

µk

≤ T ×R×Rarch. SinceR ≤ Rarch,

we can writeT × R × MAXLIVE
µk

≤ T × R2
arch. By fixing a processor architecture,

Rarch becomes a constant and the complexity of solvingLCM-MIN Problembecomes
O(T ). From this complexity analysis, we conclude that in the meeting graphLCM-MIN
Algorithmcan be solved in a better time than in the previous approach [1].

5 Experimental Results

We integrated our loop unrolling minimisation method as a post-pass of the meeting
graph technique in LoRA [2] framework (Loop optimal Register Allocation). LoRA
implements the meeting graph technique and several heuristics (Lam’s heuristic [9] and
those of Hendren et al. [6]), for combining register allocation and loop unrolling for
SWP loops.

The following section presents our experimental results. We consider a machine
with a bounded number of architectural registersRarch. We variedRarch from 16 to 256
and we apply the meeting graph technique followed by our codeoptimisation method
on all data dependence graphs (DDGs). Afterwards, we made statistics on the resulting
data: the initial loop unrolling degreeα, the final loop unrolling degreeα∗ and the ratio
α
α∗

. For each configuration, we chose to graph the different results as boxplots, which
are a convenient way of graphically depicting groups of numerical data through their



five-number summaries: the smallest observations (min), lower quartile (Q1 = 25%),
median (Q2 = 50%), upper quartile (Q3 = 75%), and largest observations (max). In
addition, we looked for an arithmetic mean to represent the average ofα, α∗ and the
ratio.

5.1 Unroll Degree Minimisation with Fixed SWP Schedules

In this section, we start the study with smaller loops from various known benchmarks,
namely Spec92fp, Spec92int, Livermore loops, Linpack and Nas. The number of opti-
mised loops for these small benchmarks is 1935. All the loopsare scheduled with DESP
[8]. The next section will present experiences on loops of bigger applications.

Loop unrolling minimisation method is applied when meetinggraph finds a periodic
register allocation less than or equal to the number of architectural registers. Otherwise,
MG does not unroll the loop and proposes an heuristic to introduce spill code.

Table 1 shows the number of DDGs when MG finds periodic register allocation
without spilling among 1935 DDGs and the number of DDGs wherespill codes are
introduced.

Rarch Unrolled Loop with MGSpilled Loops with MG
16 1602 333
32 1804 131
64 1900 35
128 1929 6
256 1935 0

Table 1.Number of Unrolled Loops compared to the number of Spilled Loops resulting
from Meeting Graph technique

To highlight the improvements of our loop unrolling minimisation method on DDGs
where MG found a solution (no spill), we show in Figure 5 a boxplot for each processor
configuration. We remark that the final (minimised) loop unrolling of half of the DDGs
is under2 and that the minimised loop unrolling of75% of applications is less than or
equal to3, while the upper quartile of initial loop unrolling is less than or equal to6.
We note also that the maximum loop unrolling degree is improved in each processor
configuration. For example, in the machine with128 registers, the maximum loop un-
rolling degree is reduced from21840 to 41. In addition, we looked for an arithmetic
mean to represent the average of the initial loop unrollingα, the final loop unrolling
α∗ andratio =

P

α
P

α∗
. Table 2 shows that on average the final loop unrolling degreeis

greatly reduced compared to the initial loop unrolling degree.
For each configuration we also computed the number of loops where the minimised

loop unrolling degree is less than MAXLIVE. We draw in Table 3the different results.
It shows that in each configuration, the minimal loop unrolling degree obtained using
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our method is greatly less than MAXLIVE. Only a very small number of loops are
unrolled MAXLIVE times.



Rarch Average Initial Average Minimised Average Arithmetic
Loop Unrolling FactorsLoop Unrolling Factors Ratio

16 2.743 2.207 1.242
32 4.81 2.569 1.872
64 25.86 11.02 2.346
128 236.6 2.852 82.959
256 525.7 3.044 172.7

Table 2.Arithmetic Mean of Initial Loop Unrolling, Final Loop Unrolling and Ratio

Rarch Minimal loop unrollingnumber of loops unrolledTotal number
< MAXLIVE MAXLIVE times of loops

16 1601 1 1602
32 1801 3 1804
64 1893 7 1900
128 1929 0 1929
256 1935 0 1935

Table 3.Comparison between Final Loop Unrolling Factors and MAXLIVE

We made also statistics in order to check the timing of our approach. The results
shows that on average the execution time of loop unrolling minimisation in the meeting
graph is about5 microseconds. The maximum run-time is about600 microseconds.
These timing observations have been conducted on a regular Linux workstation (Intel
core Duo 2.4 GHZ).

The following section explains when should either use the meeting graph framework
or SIRA framework.

5.2 Comparison between the Meeting Graph Framework and SIRA

Our loop unrolling minimisation method is independent of the technique used for pe-
riodic register allocation. Consequently, it can be performed either before software
pipelining (where the method is implemented inside the SIRAframework as in [1]) or
after software pipelining (where the method is implementedinside LoRA as described
in this article).

In order to compare the final loop unrolling in both LoRA (MG) and SIRA, we
conducted other experiments on larger applications from both high performance and
embedded benchmarks: SPEC2000, SPEC2006, MEDIABENCH and FFMPEG. The
number of experimented loops is 9027. We consider a machine with a bounded number
of architectural registersRarch. We variedRarch from 16 to 256.

The experiments show that final loop unrolling degrees computed by LoRA (MG)
are lower than those computed by SIRA. In addition, the minimal loop unrolling degree
for 75% of SIRA optimised loop is less or equal to 7 meanwhile LoRA does not unroll
(unroll degree equal to 1).



We highlight in Table 4 some of the different results. We report the arithmetic mean
of final loop unrolling and the maximum final loop unrolling. It shows that in each con-
figuration, the average of minimal loop unrolling degree obtained thanks to our method
is small when using MG compared with the average of final loop unrolling in SIRA.
We also show that the maximum final loop unrolling degrees arelow in MG compared
to those in SIRA except in the case of FFMPEG. In the first line of Tab 4, we see that
the value 30 exceeds MAXLIVE+ 1, while our method should results in an unrolling
factor equal to at mostMAXLIV E + 1, if enough remaining registers exist. This ex-
treme case is due here to the fact that there is no register left to apply our loop unrolling
minimisation method.

The choice between the two techniques depends if the loop is already software
pipelined or not. If periodic register allocation should bedone for any reason before
software pipelining then SIRA is more appropriate; otherwise LoRA followed by loop
unrolling minimisation provides lower loop unrolling degrees.

Rarch Benchmarks
Average Final Loop UnrollingMaximum Final Loop Unroll
MG SIRA MG SIRA

16

FFMPEG 1.127 2.479 30 28
MEDIABENCH 1.175 2.782 12 26

SPEC2000 1.113 2.629 9 28
SPEC2006 1.085 2.758 9 16

32

FFMPEG 1.219 3.662 9 57
MEDIABENCH 1.185 3.032 9 84

SPEC2000 1.118 2.823 9 28
SPEC2006 1.09 2.966 9 26

64

FFMPEG 1.3 6.476 9 72
MEDIABENCH 1.426 3.225 63 84

SPEC2000 1.119 2.881 9 45
SPEC2006 1.09 3.001 9 26

128

FFMPEG 1.345 9.651 9 88
MEDIABENCH 1.215 3.338 14 84

SPEC2000 1.119 2.916 9 45
SPEC2006 1.09 3.063 9 275

256

FFMPEG 1.345 9.733 9 88
MEDIABENCH 1.214 3.384 14 84

SPEC2000 1.119 2.946 9 45
SPEC2006 1.09 3.256 9 27

Table 4.Optimised Loop Unrolling Factors: MG vs. SIRA (Large Benchmarks)



5.3 Comparison between the Meeting Graph Framework and MVE

Comparing MG and modulo variable expansion (MVE) is an old problem already ex-
plained in the literature. While MVE produces less unrolling in practice (in almost all
experiments, MVE does not unroll the loop), MVE does not havea mathematical guar-
antee that a periodic register allocation with MAXLIVE registers is possible, and no
upper bound is known. In practice, this means MVE may introduce spill code even
if MAXLIVE is lower than or equal to the number of architectural registers. In some
compiler construction contexts, such uncertainty is not acceptable. In our experiments,
this problem occurs in 86 loops of FFMPEG, 100 loops of MEDIABENCH, 240 loops
of SPEC2000 and 111 loops of SPEC2006. In contrast to MVE, MG followed by loop
unrolling minimisation has the formal guarantee that at most Rarch registers are allo-
cated. Experimentally, this solution is good since no unrolling is required in 75% of the
loops. In some extreme cases where the unrolling degree is still prohibitive with MG,
the compiler can choose to use MVE with a risk of spilling, or even not apply software
pipelining at all.

6 Conclusion

Contrary to maximal variable expansion [7, 9], periodic register allocation for soft-
ware pipelined loops requires exactly MAXLIVE registers, as proved for the Meet-
ing Graph [5]. This graph describes how to find a periodic register allocation with
MAXLIVE registers if we sufficiently unroll the pipelined loop. Although MG im-
proves significantly loop register allocation, the loop unrolling factor is equal to the
least common multiple of the weight of the different reuse circuits which can be high
in the practice.

This paper proposes to minimise the loop unrolling degree computed by MG by
adapting the approach described in [1]. We explained how to adapt loop unrolling min-
imisation in the MG framework. Considering fixed circular lifetime intervals allows to
have lower loop unrolling factors, while the algorithmic complexity of the optimisation
method is greatly reduced compared to [1]. We showed experimental results on a large
set of benchmark loops (FFMPEG, MEDIABENCH, SPEC2000, SPEC2006): in con-
crete cases the minimal loop unrolling degree for75% of scheduled loops is equal to 1
(i.e. no unroll), while it is equal to 7 when the SWP schedule is not fixed.

As a side-result of this work, we notice that our loop unrolling minimisation method
is independent of the technique used for periodic register allocation. Consequently, loop
unrolling minimisation [1] can be performed before or afterany periodic register alloca-
tion technique and the final loop unrolling seems to be a satisfactory solution to generate
code after periodic register allocation.
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