
On Instruction-Level Method for Reducing Cache Penalties in Embedded VLIW
Processors

Samir AMMENOUCHE, Sid Ahmed Ali TOUATI, William JALBY

University of Versailles Saint-Quentin en Yvelines, France

Abstract

Usual cache optimisation techniques for high perfor-
mance computing are difficult to apply in embedded VLIW
applications. First, embedded applications are not always
well structured, and few regular loop nests exist. Real world
applications in embedded computing contain hot loops with
pointers, indirect arrays accesses, function calls, indirect
function calls, non constant stride accesses, etc. Con-
sequently, loop transformations [12] for reducing cache
misses are impossible to apply, especially at the back-end
level. Second, the strides of memory accesses do not ap-
pear to be constant at source code level, because of indirect
accesses. Hence, usual prefetching techniques are not ap-
plicable. Third, embedded VLIW processors are ”cheap”
products, they have limited hardware dynamic mechanisms
compared to high performance processors [8]: no out-of-
order execution, reduced memory hierarchies, small direct
mapped caches, lower clock frequencies, etc. Consequently,
the code optimisations methods must be simple and take
care of code size. This article presents a back-end code
optimisation for tolerating non-blocking cache effects atthe
instruction level (not at the loop level). Our method is based
on a robust combination of memory pre-loading with data
prefetching, allowing us to optimise both regular and irreg-
ular applications at the assembly level. Our experiments
with mediabench and SPEC2000 benchmarks suites on the
ST231 VLIW processor show a positive performance gain
(compared to codes generated with -O3 compiler optimisa-
tion flag). Our method induces negligible code size growth
(less than 3.9 % in the extreme case).

Keywords Data prefetching, pre-loading, non-blocking
cache, embedded systems, VLIW.

1. Introduction

Program transformations for reducing cache penalties is
a well established research area in high performance com-

puting and desktop applications. Nowadays high perfor-
mance processors offer many hardware mechanisms help-
ing either to hide or to tolerate memory latencies[8]: mul-
tiple cache levels, higher cache sizes and degrees of asso-
ciativity, memory banking and interleaving, non-blocking
caches and out-of-order execution, etc. All these hardware
mechanisms combined with program transformations at the
loop nest level produce positive speed-ups, in general.

In addition to a better harmony between hardware and
software, cache optimisation has been also introduced at the
operating system (OS) level. Thanks to multitasking com-
bined with multicore architectures, we can now envisage
methods where an independent parallel thread or OS ser-
vice can prefetch application data. The OS can also detect
some situations when dynamic re-compilation during exe-
cution is necessary to generate better codes regarding cache
miss penalties.

Consequently, nowadays cache optimisation strategies
for high performance and desktop applications require more
and more the conjunction between multiple complex tech-
niques at various levels: application (loop nest or CFG),
operating system and hardware (processor and memory).

The case of embedded applications is quite different.
First, an embedded VLIW processor is at least hundred
times cheaper than a high performance processor: few hard-
ware mechanisms for cache optimisation exist (if any); the
computation power is also reduced, there is a little margin
to tolerate code optimisation based on aggressive specula-
tion. Second, some embedded systems execute with a light
OS, or even at bare mode (without any OS): no dynamic
services or tasks can be used in parallel to improve cache
effects. Third, embedded applications are rarely statically
controlled programs with regular control or regular data ac-
cesses: such applications cannot meet the model require-
ments for loop transformations [12] and for usual software
prefetching with regular strides. Fourth and last, code size
growth is an additional constraint to deal with.

In this article, we present our method to reduce processor
stalls due to cache misses in presence of non-blocking cache
architectures. We implement our method at the back-end
level where loop structures disappear. Our principal aim is

not to reduce cache misses (as usually done with loop trans-
formations) but to reduce the processor stalls due to them.
It is a combination of software data prefetching (inserting
special prefetch instructions) with pre-loading (increasing
static load latencies) as studied in [13]. As we will explain
later, it is especially designed for future VLIW in-order pro-
cessor that would include non-blocking caches instead of
blocking caches.

Our article is organised as follows. Sect. 2 presents some
interesting related work on reducing cache miss penalties.
Sect. 3 presents the problem of cache effects in instruc-
tion level parallelism (ILP). Sect. 4 presents the practical
ST231 VLIW processor that we use as a target example in
this study. Sect. 5 presents our methodology for pre-loading
and prefetching in the compiler back-end. Before conclud-
ing, we demonstrate in Sect. 6 the efficiency of our code
optimisation method on applications from mediabench and
SPEC2000 benchmark suites executed on ST231.

2 Related Work

Improving the cache effects at instruction level is a well
studied topic. We can classify related work following two
directions: a theoretical one, where some studies were done
on instruction level scheduling taking into account the cache
constraints. The second direction is more practical. As a
theoretical work we quote Touati who included the impact
of the compulsory misses in an optimal acyclic schedul-
ing problem [15] in a single basic block. He models the
exact scheduling problem by including the constraint of
data dependences, functional units, registers and compul-
sory misses. Our current work is different because we try to
cover all kinds of cache misses (compulsory, capacity and
conflict). Also, we do not restrict ourselves to a single DAG
(basic block) only, we are interested in optimising an appli-
cation as a whole.

We are interested here on practical ways which treat min-
imising cache miss penalties with two techniques: prefetch
and instruction scheduling techniques. Using the prefetch
solution, Al-Sukhniet al. [2] classified the load operations
as intrinsic andextrinsicstreams and developed a prefetch
algorithm based on automaton taking into account the den-
sity and the affinity of these streams. The experiments were
done on a simulator of a superscalar out-of-order proces-
sor (freescale): out-of-order execution helps hiding cache
miss penalties at execution time, in opposition to our case
which is an in-order VLIW processor. Abrahamet al. [14]
proposed a prefetch technique. They described their tech-
nique by automaton: the first step of this automaton is pro-
filing of load instructions, the second one is the selection
phase of loads that miss the cache. The final state is the
prefetching of these delinquent loads. Another prefetch so-
lution is dynamic prefetching as proposed by Beyleret al.

[3]. They studied a dynamic prefetch mechanism using the
load latency variation to classify the loads. The framework
is based on finite state machine. They obtained positive re-
sults on Itanium processor where the Intel compiler (icc)
automatically generates prefetch instructions. Always on
dynamic prefetching, we quote Luet al. [7] who developed
a framework called ADORE. They proceed on three steps:
tracking delinquent loads, selecting the data references and
finally prefetching these loads. This solution is based on
hardware monitor of the Itanium processor. The two pre-
vious work [3] and [7] were done on Itanium architecture
which is used for high performance computing. Our work is
done on alight embedded VLIW processor which generally
executes a single task; so, the dynamic prefetch mechanism
is an inappropriate solution for our kind of architecture.

Our work can target two cache architectures: a block-
ing cache architecture and a non-blocking one. In case of
blocking cache architectures, only the prefetch method is
used in our case. If non-blocking cache is present, prefetch
is also used combined with pre-loading (as explained later).
This later case is more interesting because future VLIW
processor would include non-blocking caches. Blocking
cache architecture and optimisations were treated in many
studies. Tienet al. [4] studied the effects of pipelined
loads and prefetch in MIPS3000 single issue processor, and
tried some compiler optimisations such as changing static
load latencies to exploit the pipelined execution of loads.
Whereas in our work, we study the cache effects for a VLIW
(multiple issue) processor.

For a non-blocking cache architecture, Oneret al. [9]
made a study of kernel scheduling on a MIPS processor.
The authors increased the load-use dependency distance in
loop kernel using loop pipelining. In addition to the kernels,
our method is applied on basic blocks, functions and whole
applications. In other words, we have no code granularity
restrictions.

Ding et al. [5] based their work on reuse informationi.e.
they made a first step static analysis to collect load statistics
of selected kernels. Then, they used the collected statis-
tics to combine data prefetching and instruction scheduling
techniques to hide cache effects. Contrary to the work of
Ding et al., we do not restrict ourselves to loops and we do
not use a virtual superscalar machine. Our target architec-
ture is a real VLIW in the market (used in many embedded
systems).

The authors in [6] did a performance evaluation to study
the hardware complexity of non the blocking cache archi-
tecture using SPEC92 benchmarks. They showed that a
simple hit-under-miss non-blocking cache implementation
(i.e. only two overlapped loads at the same time) is, the best
trade-off between hardware cost and performance. How-
ever, recent work done by Ammenoucheet al [13] showed
that non-blocking caches do not provide any performance

2

improvement in the case of embedded VLIW processors,
because execution is in-order and no dynamic instruction
scheduling is done to hide cache miss penalties as in the
case of superscalar processors. However, Ammenoucheet
al showed on two applications that non-blocking caches
may provide good performance improvement if low-level
code optimisation based on pre-loading is used. Our current
article confirms this fact, and extends the previous work by
adding a prefetch method and making a more complete ex-
perimental study using mediabench and SPEC benchmarks.

To clearly explain the position of our contribution in the
current literature, we say that our study aims to improve
(at the software level) the efficiency of the non-blocking
cache architecture on VLIW processors. We combine data
prefetching and pre-loading in conjunction with a global
scheduler that handles a complete function. Such global
scheduler does not necessarily target regular codes such as
loop nests. As we will explain later, our framework is based
on profiling and trace analysis.

3. Problems of Optimising Cache Effects at the
Instruction Level

Nowadays cache memory is widely used in high perfor-
mance computing. It is generally organised in a hierarchical
way making a trade-off between cost and performance. The
drawback of this memory architecture is the unpredictabil-
ity of the data location. Indeed, at any time during the pro-
gram execution, we are uncertain about the data location:
data may be located in any cache level, or in the main mem-
ory or in other buffers. This situation can be acceptable
in high performance architecture, but cannot be appreci-
ated in embeddedsoft real time systems because data ac-
cess latencies are unpredictable. We focus our work on em-
bedded systems, especially VLIW processors. In this case,
one of the most important aspects is the instruction schedul-
ing. A static scheduling method considering a cache model
would be ideal to hide/tolerate the unpredictability of execu-
tion times. Nowadays, general purpose compilers like gcc,
icc and the st200cc (the compiler provided for the VLIW
ST2xx architecture) do not manage the cache effects: mem-
ory access latencies are considered fixed during compilation
because the latencies of the load instructions are unknown
statically. Many instruction scheduling techniques are de-
veloped and have been commented upon the literature, but
they always suppose well defined latencies for all kinds of
instructions. The fact is that the proposed models are sim-
plified because of the lack of knowledge about data location
and thus about load latencies.

Loop scheduling is a good example to assert our idea:
software pipelining is a well-matured scheduling technique
for innermost loops. It’s aim is usually to minimise the Initi-
ation IntervalII and the prologue/epilogue length. The com-

piler assumes that the total execution time of the pipelined
loop is the sum of the prologue and epilogue length and the
kernel (II) multiplied by the number of iterations. Since
almost all scheduling techniques assume fixed instructions
latencies, the compiler has an artificial performance model
for code optimisation. Furthermore, the compilers above
quoted schedule the load instructions with optimistic laten-
cies, since they assume that all data reside in lower cache
levels, and they schedule the consumer of the loaded data
close to the load operation. Consequently, low level in-
struction schedulers of compilers have optimistic view of
the performance of their fine-grain scheduling. The case
of the st200cc is relevant, this compiler schedules the con-
sumers of a load only 3 cycles after the load (3 corresponds
to the cache hit latency, while a cache miss costs 143 clock
cycles). If a load misses the cache, the processor stalls for
at least 140 cycles, since a VLIW processor has no out-of-
order mechanism. The icc compiler for Itanium has also the
same behaviour and schedule all loads with a fixed latency
(7 cycles), a latency between the L2 (5 cycles) and L3 (13
cycles) levels of cache.

Another problem of instruction scheduling taking into
account cache effects is the difficulty to precisely predict
the misses in the front-end of the compiler. While some
cache optimisation techniques are applied on some special
loop constructs, it is hard for the compiler front-end to de-
termine the cache influence on fine-grain scheduling and
vice-versa. Sometimes, this fact makes compiler designers
implement cache optimisation techniques in the back-end
where the underlying target architecture is precisely known
(cache size, cache latencies, memory hierarchy, cache con-
figuration, other available buffers). However, in the com-
piler back-end, the high level program is already trans-
formed to a low level intermediate representation and high
level constructs such as loops and arrays disappear. Conse-
quently, loop nest transformations can no longer be applied
to reduce the number of cache misses. Our question be-
comes how to hide the miss effect rather than how to avoid
the miss.

Another important criterion for applying cache optimi-
sations at different levels is the regularity of the program.
At compilation step, regularity can be seen on two orthogo-
nal axis: regularity of control and regularity of data access.
Due to the orthogonality of these two axis, four scenarios
are possible:

1. Regular code with regular data access: Data prefetch
can be used in this case, for instance to prefetch regular
array accesses. For instance:
while(i ≤ max) a+=T[i++];

2. Regular code with irregular data access: Depend-
ing on the shape of irregularity, data can sometimes
be prefetched. Another possible solution is the pre-

3

loading (explained later in Sect. 5.2). For instance:
while(i ≤ max) a+=T[V[i++]];

3. Irregular code with regular data access: The data
prefetching solution is possible, but inserting the
prefetch code has to take care of multiple execution
paths. For instance:
while(i ≤ max) {if(cond) a+=T[i++]}

4. Irregular code with irregular data access: also depend-
ing on the shape of irregularity data can sometimes
be prefetched. The pre-loading (explained later in
Sect. 5.2) is more suitable in this case. For instance:
while(i ≤ max){ if(cond) a+=T[V[i++]]}

Note that while data prefetching usually requires some reg-
ularity in data access, pre-loading can always be applied at
the instruction level.

4 Target Processor Description

In our study, we use theST231core [1] which is cur-
rently the latest processor of theST2xxfamily from STmi-
croelectronics. These VLIW processors implement a sin-
gle cluster derivative of the Lx architecture [11], and are
used in several successful consumer electronics products,
including DVD recorders, set-top boxes, and printers. At
the end of 2008, the number of shipped processor was over
33 million units. ST231 is an integer 32 bits VLIW pro-
cessor with five stages in the pipeline. It contains four inte-
ger units, two multiplication units and one load/store unit.
It has a 64 KB L1 cache. The latency of the L1 cache is
3 cycles. The data cache is 4 way associative. It operates
with write-back no-allocate policy. A 128 bytes write buffer
is associated with the Dcache. It also includes a separated
128bytes prefetch buffer which can store up to eight cache
lines. As for many embedded processors, the power con-
sumption should be low, hence limiting the amount of ad-
ditional hardware mechanisms devoted to program acceler-
ation. In addition, the price of this processor is very cheap
compared to high performance processors: a typical high
performance processor costs more than one hundred times
compare to the ST231.

Regarding the memory cache architecture, the current
marketed ST231 includes a blocking cache architecture. In
[8], the non-blocking cache is presented as a possible solu-
tion for performance improvement in Out-Of-Order (OoO)
processors. So, several high performance OoO proces-
sors use this cache architecture. The interesting aspect of
this cache architecture is the ability to overlap the execu-
tion and the long memory data access (loads). Thanks to
non-blocking cache, when a cache miss occurs, the pro-
cessor continues the execution of independent operations.
This produces an overlap between bringing up the data

from memory and the execution of independent instruc-
tions. However, the current embedded processors do not
include yet this kind of memory cache because the ratio be-
tween its cost (in terms of energy consumption and price),
and its benefit in terms of performance improvement was
not demonstrated till the recent results of [13]. Further-
more, in order to efficiently exploit the non-blocking cache
mechanism, the main memory must be fully pipelined and
multi-ported while these architectural enhancements are not
necessary in case of blocking cache, Kroft [10] proposed a
scheme with special registers called MSHR (Miss informa-
tion Status Hold Registers), also called pending load queue.
MSHR are used to hold the information about the outstand-
ing misses. He defines the notion ofprimaryandsecondary
miss. The primary miss is the first pending miss request-
ing a cache line. All other pending loads requesting the
same cache line are secondary misses - these can be seen as
cache hits in a blocking cache architecture. The number of
MSHR (pending load queue size) is the upper limit of the
outstanding misses that can be overlapped in the pipeline.
If a processor hasn MSHRS, then the non-blocking cache
can servicen concurrent overlapped loads. When a cache
miss occurs, the set of MSHRS is checked to detect if there
is a pending miss to the same cache line. If there is no pend-
ing miss to the same cache line the current miss is set as a
primary miss and if there is an available free MSHR, the tar-
geted register is stored. If there is no available free MSHR,
the processor stalls.

5. Our Methodology of Instruction-Level Code
Optimisation

Our method aims to hide the cache penalties (proces-
sor stalls) due to cache misses. We want to maximise the
overlap between the stalls due to Dcache misses with the
processor execution. For this purpose, we focus our study
on delinquent loads, wherever the delinquent loads occur in
loops or in other parts of code. We do not limit our study to
a certain shape of code, we consider both regular and irregu-
lar control flow and data streams. We study two techniques,
each of them corresponds to a certain case:

• For the case of irregular data memory accesses, we use
the pre-loading technique.

• For the case of regular data memory accesses, we use
the prefetch technique.

It’s well known that combining many optimisation tech-
niques doesn’t lead to better performances. This fact is due
to the sensibility of these optimisations techniques one over
the other. This leads to a hard phase ordering problem. Our
methodology solves this problem for the two combined op-
timisations. Since these two techniques are complementary,

4

we can also combine them in the same function. Let us ex-
plain in detail the usage of these two techniques.

5.1. Low Level Data Prefetching Method

The cache penalty is very expensive in terms of clock cy-
cles (more than 140 cycles in the case of the ST231). The
current hardware mechanisms fail to fully hide such long
penalty. In the case of a superscalar processor as the Intel
Pentium, the out of order mechanism can partially hide the
cache effects during few cycles (up to the size of a window
of instructions in the pipeline). Rescheduling the instruc-
tions, with a software (compilation) method or hardware
technique (execution) cannot totally hide the cache penalty.

The prefetching technique is an efficient way to hide the
cache penalty. However, usual prefetching methods work
well for regular data accesses that are analysed at source
code level. In our embedded applications, data accesses
do not appear to have regular strides when analysed by the
compiler because of indirect access for instance. Further-
more, the memory access is not always inside a static con-
trol loop. Consequently, usual prefetching techniques fail.
In our method, we analyse the regularity of a stride thanks
to a precise profiling.

Our data prefetching is based on predicting the addresses
of the next memory access. If the prediction is correct the
memory access will be costless. In the case of bad predic-
tion, the penalty is low (theST231include a prefetch buffer,
so thebadprefetched data does not pollute the cache). The
only possible penalty consists of adding extra instructions in
the code (code size growth) and executing them. However,
in case of VLIW, we can take care of inserting these ex-
tra instructions inside free slots because not all the bundles
contain memory operations. Consequently no extra cost is
added, neither in terms of code size nor in terms of execu-
tions. So, the most important aspect with this technique is
the memory address predictor, or how to generate a code
that computes the address of the next prefetched data.

Our method of prefetching requires the process of three
phases: profiling the code to generate a trace, then select-
ing some delinquents loads and finally inserting the prefetch
instructions.

5.1.1 Application Profiling Phase

This step is the most expensive in terms of processing time,
because we have to perform a precise profiling of the code
by generating a trace. Classical profiling, as done withgprof
for instance, operates at semi-coarse grain level (functions).
In our case, we proceed in the finest profiling granularity,
that is at the instruction level. To do this, we use a spe-
cial software plugin device, which can manage the execu-
tion events and statistics. This plugin interfaces with the

simulator which is completely programmable. We use the
plugin to select all the loads which miss the cache, and for
each load, collect its accessed addresses inside a trace. This
trace highlights the delinquents loads. A load is said to be
delinquent, if it produces a large number of cache misses.
In practice, we sort the loads according to the number of
cache misses they produce, and we defined the top ones as
delinquents. We perform an on-line identification of these
delinquent loads using the plugin explained above. The re-
sult of this profiling phase is a precise cartography of the ac-
cessed memory data addresses, tagged with the delinquent
loads. The next step of our work is to select the right loads
to prefetch within the set of delinquent loads.

5.1.2 Load Selection Phase

Selecting which delinquent loads to prefetch depends on
two parameters: the number of cache misses and the reg-
ularity of memory accesses. The most important criterion
is the number of misses. Indeed, in order to maximise the
prefetch benefit, it is important to prefetch loads with a high
frequency of cache misses. Choosing loads which produce
many cache misses allows to hide the cost of extra prefetch
instructions: prefetch instructions may introduce some ad-
ditional bundles in the original code. Increasing the code
size or changing the code shape, may produce very unde-
sirable effects and may slowdown the performance because
of the direct mapped structure of instruction cache. Con-
sequently, for a given identified delinquent load, the higher
number of misses we get, the better performance we can
achieve. We do not care about the ratio of hit/miss of the
delinquent load, we just measure the frequency of cache
misses and sort the loads according to this value.

Once a delinquent load is selected as a good candidate
for prefetching, we should analyse the second parameter,
which is the memory access regularity. The authors in [16]
classify the load with the next data stride patterns:

• Strong single stride: It is a load with a near constant
stridei.e. the stride occurs with a very high probability.

• Phased multi-stride: It is a load with many possible
strides that occur frequently together.

• Weak single stride: It is a load with only one of
the non-zero stride values that occurs somewhat fre-
quently.

Once we select delinquent loads with strong single stride
or with phased multi-stride, we can proceed to the last step
of prefetch instruction insertion.

5.1.3 Prefetch Instruction Insertion Phase

This step consists of adding a single or many prefetch in-
structions in the code. The syntax of a load instruction

5

on theST231is: LD Rx= immediate[Ry]. The first
argument of the instruction isRx the destination register,
while the second argument is the memory address defined
as the content of the index registerRy plus an immediate
offset. The prefetch instruction has the same syntaxPFT
immediate[Ry] except that it does not require a desti-
nation register. Executing a prefetch instruction brings data
to the prefetch buffer and does not induce any data depen-
dence on a register. However, we should take care of not
adding an extra cost of the added prefetch instruction. In or-
der to achieve this purpose, the prefetch instruction should
be inserted inside a free memory slot inside a VLIW (each
bundle may contain up to one memory access instruction).
If no free slot is available, we could insert a new bundle
but with the risk of increasing the code size and altering the
execution time (making the critical path longer in a loop,
disturb the instruction cache behaviour, etc.).

Now, let us give more details on the inserted prefetch
instruction. If the delinquent load has this formLD Rx=
immediate[Ry] and has a single strides, then we insert
a prefetch instruction of the formPFT s[Ry]. If the delin-
quent load has multiple stridess1, s2, . . ., then we insert a
prefetch instruction for each stride. However our experi-
ments hint us that it is not efficient to prefetch more than
two distinct strides. The left column of Tab. 1 shows an ex-
ample of prefetching with a data stride equal to 540 bytes.
The bundle following the load includes the prefetch instruc-
tion: it prefetches the data for the next instance of the load.

Now, if the used index registerRy is altered/modified by
the code after the delinquent load, this index register cannot
be used as base address for the prefetch instruction. We
provide two solutions:

• UseRz another free register (if available) to perform
the prefetch. A copy operationRz=Ry is inserted just
beforeRy modification. In almost all cases we found
free slots to schedule such additional copy operations,
but it is not always possible to find a free register.

• If no free register exists, then we insert a new VLIW
bundle that contains the prefetch instruction. This new
bundle is inserted between the delinquent load bundle
and the bundle that modifiesRy.

The right column of Tab. 1 shows an example. Here, the
base register$r27 is changed in the bundle after the load.
The register$r27 is saved on a free register, say$r62.
Then the prefetch instruction is inserted in a free load slot.

As mentioned before, the prefetch technique is an effi-
cient low level code optimisation that reduces the frequency
of cache misses. Its main weakness is the difficulty to make
an efficient address predictor. It is especially hard to predict
the right addresses to prefetch in irregular data accesses.For
this case, the prefetch technique cannot be applied. Thus,

we propose in the next section the pre-loading technique
which can be applied for the case of irregular data access.

5.2 Our Pre-Loading Method

The pre-loading technique is used if the processor in-
cludes a non-blocking cache. The authors [13] performed
experiments to check the efficiency of non-blocking cache
architectures on In-Order processors (such as VLIW). Their
results can be summarised in four points:

1. If the code is not transformed by the compiler (re-
compiled for considering the new cache architecture),
replacing a blocking cache architecture with a non-
blocking one does not bring benefit.

2. No slowdown was noticed due to non-blocking cache.

3. If pre-loading is used (to be explained later), then a
performance gain is observed.

4. A maximal performance gain was observed with 8
MSHRs.

In high performance OoO processors, replacing a blocking
cache with a non-blocking cache provides speed-up even if
the binary code is not optimised for. In the case of VLIW
In-Order processors, the benefit of non-blocking caches is
zero if the code is not modified. In order to understand this
fact we need to introduce the two following definitions:

• Definition of Static Load-Use Distance:Static load-
use distance is the distance in the assembly code (in
terms of VLIW bundles) between a load instruction
and the first consumer of the loaded data. This static
distance is equivalent to a static measure of clock cy-
cles between a load and its first consumption.

• Definition of Dynamic Load-Use Distance:Dynamic
load-use distance is the distance in terms of processor
clock cycles between the execution time of a load in-
struction and the execution time of the first consumer
of this loaded data.

In [13], we showed that the static load-use distance in the
set of experimented benchmarks is short, about 3 bundles,
i.e. thest200cc compiler has an optimistic compilation
strategy regarding load latencies. It assumes that all data
reside in the L1 cache. The VLIW compiler schedules the
consumer of a data too close to its producer (load) in order
to keep the register pressure low. In the case of an In-Order
processor with non-blocking cache architecture, it would
be ideal if the compiler could generate codes with longer
load-use distances. The problem is to compute the right la-
tency for each loadi.e. to consider the delinquent loads with
higher latencies during instruction scheduling. This method

6

L? 3 69: L? BB37 14:
· ·

ldw $r32=28[$r15] ldw $r28=16[$r27]
;; mov $r62 = $r27
cmpeq $b5=$r32,$r0 ;;
pft 540[$r15] sub $r27=$r27,$r21
;; ;;
brf $b5, L? 3 69: pft 32[$r62]

;;
brf $b4, L? BB37 14

Simple Prefetch with a Using $r62 Register to Save the
Stride of 540 byte Address to Prefetch

Table 1. Examples of Prefetch: Simple Case,
Using Extra Register Case

is called pre-loading. Of course, the purpose of pre-loading
is not to increase the static load latencies of all load oper-
ations, otherwise this would increase the register pressure
and no speedup would be obtained. Our pre-loading strat-
egy selects a subset of delinquent loads as candidates. We
proceed in two phases, explained below.

The first phase of our pre-loading strategy is the same
used for the prefetching,i.e. we start with a precise profiling
phase. This profiling allows us to detect delinquent loads as
well as the code fragments to which they belong (function
or loop).

The second phase of our pre-loading strategy defines the
right load-use distance to each load. This is a major diffi-
culty in practice: a compile time prediction of the proba-
bility of cache misses and hits is difficult (if not impossi-
ble) at the back-end level. This is why the initial phase of
fine-grain profiling provides useful information. Depend-
ing on ratio of hit/miss for each load, we compute a certain
probability of dynamic load latencies that we set at com-
pile time. For instance, if a load misses the cache 30%
of the times (143 cycles of latency) and hits 70% of the
time (3 cycles of latency), then its static latency is set to
0.3× 143 + 0.7 × 3 = 45. If the register pressure becomes
very high because of this long static latency, the compiler
cannot extract enough ILP to hide this latency, then we re-
duce the latency. Currently, our method iterates on different
values of static load latencies until reaching a reasonable
performance gain. For our case of embedded systems, the
compilation time is allowed to last during such iterative pro-
cess.

Thanks to our pre-loading technique, we can achieve a
pretty good performance increase. However, we must take
care of the following points:

• Increasing static load latencies renders the compiler
more aggressive regarding ILP extraction (deeper loop
unrolling, global scheduling, super-block formation,
etc.). Consequently, the code size may increase, or the
memory layout of the code can be modified. This can
have negative effects on instruction cache misses. Fur-
thermore, it is better to skip the pre-loading optimisa-
tion for shorter trip count loop. It is especially the case
of software pipelined loop with few iterations: increas-
ing the static load latency increases the static II. If the
number of loop iterations is not high enough, then the
software pipelining would be too deep for reaching the
steady state of the kernel.

• For other kinds of code (i.e. non-loop code), if the new
load latencies are too long, the compiler may not find
enough independent instructions to schedule between
the load and its costumer. To avoid that, many tech-
niques can be applied in combination with pre-loading
such as tail duplication, region scheduling, super-block
instruction scheduling, trace scheduling, scheduling
non-loop code with prologue/epilogue of loop blocks,
etc. And all these aggressive ILP extraction methods
usually yield a code size increase.

• The last important point is that when increasing the
load latency, the register pressure may increase. This
fact can have bad effects if there are not enough free
registers and oblige the compiler to introduce spill
code to reduce the simultaneously alive variables. If
spill code cannot be avoided, pre-loading should not
be applied.

The pre-loading technique is efficient and practical be-
cause it can be applied on irregular codes with/without ir-
regular data strides. It can also be applied in combina-
tion with other high or low level code optimisation tech-
niques. Algorithm 1 details our whole methodology of data
prefetching and pre-loading.

6. Experiments

For our experimentation, we used a cycle accurate simu-
lator provided by STmicroelectronics. The astiss simulator
offers the possibility to consider non-blocking cache. We
fix the number of MSHR (the pending loads queue) to eight.
We make the choice of eight MSHR because during exper-
imentation, we observe that the ILP and register pressure
reach a limit when MSHR is set to eight; a larger MSHR
does not bring more performance.

In our experimental study, we use a precise cycle accu-
rate simulator provided by the vendor because of many rea-
sons:

7

Algorithm 1 The Prefetching and Pre-loading Algorithm
Require: struct ld<list> Tload;
{ Our methodology is profile guided, it’s needs a profil-
ing information about loads and their strides. The profil-
ing information is summarized in a sorted listTload (by
the number of misses) of loads and attached to each load
a sorted list of stridesTstride (sorted by occurrence of
each stride). So Tload is a list of list. Each element of
the main list is a structure which contain a load identi-
fier (object adress), and a list of strides. Each element of
the stride list is a structure which contain a stride and his
occurrence.}

Require: float P;
{ P is the ratio to define a single strong stride, it’s used to
discard the noise values}

Require: int N;
{N is the maximum number of added pft instructions}
LOAD <list> iterator it1;
{ the it1 iterator is used to browse the Tload list}
for (it1=Tload.begin();it1=!Tload.end();it1++)do

if (occurrence of the most frequent stride> P% ×
sum of all occurrences)then
{The first stride is used more thanP % of time, case
of strong single regular stride}
look in assembly source in a load free bundle avail-
able
if (free load bundle available)then

insert prefetch instruction with the right stride
else

insert a new bundle with the prefetch instruction
end if

else
{browse the list of strides to get more thanP % of
cumulated frequency stride}
int b,sum=0;
while (sum< P%× sum of all occurrences)do

b++;
end while
{b is the number minimum of strides to achieve
more than(P)% of all strides.}
if (b > N) then
{case of phased multi-stride}
look in assembly sourceN free loads bundles
available
if (N freel oads bundles are available)then

insertN prefetch instruction with each stride
else

insert aN new bundles each one contains one
prefetch instruction

end if
else
{fully irregularity of the strides use of the preload
solution}
ld use = miss ratio × miss penalty +

hit ration × hit penalty

for (while available free registers are available
and enough ILP)do

increase the load to use distance
end for

end if
end if

end for

• We do not have a physical machine based on a VLIW
ST231 processor. These processors are not sold for
workstations, and are parts of embedded systems such
as mobile phones, DVD recorders, digital TV, etc.
Consequently, we do not have a direct access to a
workstation for our experiments.

• The ST231 processor has a blocking cache architec-
ture, while we conduct our experimental study on a
non-blocking one. Only simulation allows to consider
non-blocking cache.

• Our experimental study require precise performance
characterisation that is not possible with direct mea-
surement on executions: the hardware performance
counters of the ST231 do not allow to characterise pro-
cessor stalls we are focusing on (stalls due to Dcache
misses). Only simulation allows to measure precisely
the reasons of the processor stalls.

Interlock Stall
Dcache Stall
Icache Stall
Branch
Bundle

 0%

 20%

 40%

 60%

 80%

 100%

1
6

4
_

g
z
ip

1
7

5
_

V
p

r

1
7

6
_

G
c
c

1
8

1
_

m
c
f

1
8

3
_

e
q

u
a

k
e

1
8

6
_

c
ra

ft
y

1
8

8
_

a
m

m
p

1
9

7
_

p
a

rs
e

r

2
5

3
_

p
e

rl

2
5

5
_

V
o

rt
e

x

2
5

6
_

B
z
ip

A
d

p
c
m

E
p

ic

G
7

2
1

G
h

o
s
ts

c
ri
p

t

G
s
m

J
p

e
g

M
e

s
a

M
p

e
g

2

P
g

p

ff
m

p
e

g

E
x
e

c
u

ti
o

n
 T

im
e

 R
e

p
a

rt
it
io

n

Benchmark

Figure 1. Time Execution Repartition for Spec
Benchmark

Concerning the compilation phase, we use the -O3 com-
pilation option for all tested benchmarks with the st200cc
compiler. The st200cc is the commercial compiler provided
by STmicroelectronics. Pre-loading strategy has been im-
plemented inside this compiler to set the loads latencies at
different granularity levels: loops, functions, application.
The compiler does not insert prefetch instructions, so we
insert them inside the assembly code using our prefetch al-
gorithm.

Concerning the used benchmarks for experimentation,
we use well known benchmarks such as Spec2000 and
mediabench. Furthermore, we use the vendor benchmark
called ffmpeg used for their internal research. At a first
time, we made a precise performance characterisation of all
these benchmarks. We express the total execution time in

8

terms of the following formula:T = Calc + DC + IC +

InterS +Br. Where:T : is the total execution time in pro-
cessor clock cycles,Calc : is the effective computation time
in cycles,DC is the number of stall cycles due to Dcache
misses,IC is the number of stall cycles due to instruction
cache misses,InterS is the number of stall cycles due to
the interlock mechanism and finallyBr is the number of
branch penalties. Fig. 1 plots the performance characteri-
sation of the used benchmarks. As can be seen for media-
bench applications, only small fraction of execution time is
lost due to Dcache penalties, except in the case of jpeg. So,
most of the mediabench applications will do not take advan-
tage from Dcache optimisation techniques on ST231. The
best candidates for our low level cache optimisation method
are the benchmarks which contains large Dcache penalty
fractions. As shown in Fig. 1, Mcf and Gzip seem to be the
best candidates for Dcache improvement. Indeed Mcf has
more 76% of Dcache penalty, Gzip has more than 56% of
Dcache penalty. Other benchmarks have smaller fractions
of Dcache penalties, between 10% and 20% depending on
the benchmark. However, these benchmarks have enough
Dcache misses to expect some positive results. The bench-
marks that have negligible fraction due to Dcache stalls are
ignored for our optimisation strategy.

For each optimised benchmark, we made a precise trace
analysis to determinate the regularity of the delinquent
loads. We apply the prefetching and pre-loading techniques
described before and we compare the results to the perfor-
mance of the generated code with the -03 compiler optimi-
sation level. Fig. 2 illustrates our experimental results (per-
formance gain). As shown, the prefetch technique allows
to have positive overall speed-up till 9.12 % (mcf). Thanks
to prefetching, some cache misses are eliminated. How-
ever, prefetching requires regular data streams to be applied
efficiently. If the data stream is not regular (non constant
strides), the pre-loading technique is more efficient. While
it requires a compilation trade-off between register pressure
and load latencies, the produced performance gain is satis-
factory in practice: we can get up to 6.83 % overall per-
formance gain for bzip. The pre-loading technique gives
good results except in crafty benchmark. After a deep study
of crafty, we observed that specifying larger latencies for
load instructions has a negative impact on a critical software
pipelined loop. This loop causes a slowdown due to instruc-
tions cache penalty because the memory layout of the code
changes, creating conflict misses. Note that we can obtain
higher speed-up when we combine the two techniques con-
jointly. As shown in Fig. 2, jpeg gains more than 14% of
execution time.

Regarding cache size, our prefetching technique does not
introduce any extra code in practice; we succeed to schedule
all prefetch instructions inside free VLIW slots. However,
the pre-loading technique may introduce some additional

Original O3
 Preload
 Prefetch
 Preload + Prefetch

 0%

 20%

 40%

 60%

 80%

 100%

 120%

 140%

M
cf

G
zi

p

B
zi

p

V
o

rt
e

x

C
ra

ft
y

E
q

u
a

ke

G
cc A
rt

P
a

rs
e

r

Jp
e

g

A
m

m
p

ff
m

p
e

g

E
xe

cu
tio

n
 T

im
e

 S
p

e
e

d
−

u
p

Figure 2. Efficiency of Prefetching and Pre-
loading

negligible code size growth (3.9% in extreme case of mcf),
see Fig. 3.

Original code size with −O3 optimisation
 code size with preloading optimisation

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

Mcf Gzip Bzip Vortex Crafty Equake Gcc Art Parser Jpeg Ammp ffmpeg

B
a

s
ic

 b
lo

c
k
 c

a
c
h

e
 s

iz
e

 r
e

d
u

c
ti
o

n

Figure 3. Comparison between Initial and
New Codes Sizes

7 Conclusion

Our article presents an assembly level code optimisa-
tion method for reducing cache miss penalties. We target
embedded VLIW codes executing on an embedded pro-
cessor with non-blocking cache architecture. For experi-
mental purpose, we used an embedded system based on a
VLIW ST231 core. Contrary to high performance or com-
putational intensive programs, the embedded applications
that we target do not have regular data access or control
flow, and the underlying hardware is cheap and simple. Our
code optimisation method is based on a combination of data

9

prefetching and pre-loading.
Our method of data prefetching selects one or two delin-

quent loads that access a regular data stream that is not
possible to analyse statically. Then, we insert one or two
prefetch instructions inside a VLIW bundle for bringing
data before time to the prefetch buffer or to cache. This sim-
ple method is efficient in case of blocking and non-blocking
caches, where we can get a whole application performance
gain up to 9 %. The code size doesn’t increase in this situ-
ation. Our method of pre-loading consists of increasing the
static load distance inside a selected loop or a function. This
method allows the instruction scheduler to extract more ILP
to be exploited in the presence of non-blocking cache. With
pre-loading, we can get a minor code size growth (up to
3.9%) with an application performance gain up to 28.28 %.
The advantage of pre-loading vs. prefetching is that it is
not restricted to regular data streams. When we combine
data prefetching with pre-loading in the presence of non-
blocking cache, we get a better overall performance gain (up
to 13 %) compared to optimised codes with -O3 compilation
level. These performances are satisfactory in our case. The
results of our study clearly show that the presence of non-
blocking caches inside VLIW processors is a viable archi-
tectural improvement if the compiler applies some low level
code optimisations, as we propose. Our future work will be
devoted to improve data prefetching for embedded appli-
cations with irregular data accesses. We should be able to
make a better usage of available caches and prefetch buffers
present in the embedded processor.

Acknowledgements

This research result has been supported by the ANR
MOPUCE project (number 05-JCJC-0039) and the French
Ministry of Industry. We thank Francesco PAPARIELLO

and Giuseppe DESOLI from STMicroelectronics-Milano
for their valuable effort in implementing the non-
blocking cache simulator. We also thank Benoit
DUPONT-DE-DINECHIN and Christophe GUILLON from
STMicroelectronics-Grenoble for their effort in implement-
ing the pre-loading technique in the ST compiler.

References

[1] ST231 Core and Instruction Set Architecture Manual, 2005.
[2] C. D. Al-Sukhni H.F, Holt J.C. Improved stride prefetch-

ing using extrinsic stream characteristics. InPerformance
Analysis of Systems and Software, 2006 IEEE International
Symposium on Volume, pages 166–176, 2006.

[3] J. C. Beyler and P. Clauss. Performance driven data cache
prefetching in a dynamic software optimization system. In
ICS ’07: Proceedings of the 21st annual international con-
ference on Supercomputing, pages 202–209, New York, NY,
USA, 2007. ACM.

[4] T.-F. Chen and J.-L. Baer. Reducing memory latency via
non-blocking and prefetching caches. InProceedings of
the fifth international conference on Architectural support
for programming languages and operating systems, Boston,
Massachusetts, United States, 1992.

[5] C. Ding, S. Carr, and P. H. Sweany. Modulo Scheduling with
Cache Reuse Information. InEuro-Par ’97: Proceedings
of the Third International Euro-Par Conference on Parallel
Processing, pages 1079–1083, London, UK, 1997. Springer-
Verlag.

[6] K. I. Farkas and N. P. Jouppi. Complexity/performance
tradeoffs with non-blocking loads.SIGARCH Comput. Ar-
chit. News, 22(2):211–222, 1994.

[7] Jiwei Lu and Howard Chen and Rao Fu and Wei-Chung Hsu
and Bobbie Othmer and Pen-Chung Yew and Dong-Yuan
Chen. The Performance of Runtime Data Cache Prefetching
in a Dynamic Optimization System. InMICRO 36: Pro-
ceedings of the 36th annual IEEE/ACM International Sym-
posium on Microarchitecture, page 180, Washington, DC,
USA, 2003. IEEE Computer Society.

[8] John L. Hennessy and David A. Patterson.Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufman CA,
1996.

[9] Koray Öner and Michel Dubois. Effects of memory laten-
cies on non-blocking processor/cache architectures. InICS
’93: Proceedings of the 7th international conference on Su-
percomputing, pages 338–347, New York, NY, USA, 1993.
ACM.

[10] D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache Or-
ganization. InISCA ’81: Proceedings of the 8th annual sym-
posium on Computer Architecture, pages 81–87, Los Alami-
tos, CA, USA, 1981. IEEE Computer Society Press.

[11] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F.
Homewood. Lx: A Technology Platform for Customizable
VLIW Embedded Processing. InProceedings of the 27th
International Symposium of Computer Architecture (ISCA),
pages 203–213, June 2000.

[12] Randy Allen and Ken Kennedy.Optimizing Compilers for
Modern Architectures. Morgan and Kaufman, 2002.

[13] Samir Ammenouche and Sid-Ahmed-Ali Touati and
William Jalby. Practical Precise Evaluation of Cache Ef-
fects on Low Level Embedded VLIW Computing. InHPCS,
ECMS proceedings, Nicosia, Cyprus, June 2008.

[14] Santosh G. Abraham and Rabin A. Sugumar and Daniel
Windheiser and B. R. Rau and Rajiv Gupta. Predictabil-
ity of load/store instruction latencies. InMICRO 26: Pro-
ceedings of the 26th annual international symposium on Mi-
croarchitecture, pages 139–152, Los Alamitos, CA, USA,
1993. IEEE Computer Society Press.

[15] Sid-Ahmed-Ali Touati. Optimal acyclic fine-grain schedul-
ing with cache effects for embedded and real time systems.
In CODES ’01: Proceedings of the ninth international sym-
posium on Hardware/software codesign, pages 159–164,
New York, NY, USA, 2001. ACM.

[16] Y. Wu. Efficient discovery of regular stride patterns inirreg-
ular programs and its use in compiler prefetching.SIGPLAN
Not., 37(5):210–221, 2002.

10

