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Abstract. The register allocation in loops is generally performed after or dur-
ing the software pipelining process. This is because doing a conventional register
allocation at first step without assuming a schedule lacks the information of in-
terferences between variable lifetime intervals. Thus, the register allocator may
introduce an excessive amount of false dependences that reduce dramatically the
ILP (Instruction Level Parallelism). We present a new framework for controlling
the register pressure before software pipelining. This is based on inserting some
anti-dependences edges (register reuse edges) labeled with reuse distances, di-
rectly on the data dependence graph. In this new graph, we are able to guarantee
that the number of simultaneously alive variables in any schedule does not ex-
ceed a limit. The determination of register and distance reuse is parameterized
by the desired critical circuit ratio (MII) as well as by the register pressure con-
straints - either can be minimized while the other one is fixed. After scheduling,
register allocation is done cyclically on conventional register sets or on rotating
register files. We give an optimal exact model, and another approximative one
that generalizes the Ning-Gao [12] buffer optimization heuristics.

1 Introduction

This article addresses the problem of register pressure in simple loop data dependence
graphs (DDGs), with multiple register types and non unit assumed latencies operations.
Our aim is to decouple the registers constraints and allocation from the scheduling pro-
cess and to analyze the trade-off between memory (register pressure) and parallelism
constraints, measured as the critical ratio MII 1 of the DDG.

The principal reason is that we believe that register allocation is more important as
an optimization issue than code scheduling. This is because the code performance is
far more sensitive to memory accesses than to fine-grain scheduling (memory gap) : a
cache miss may inhibit the processor from achieving a high dynamic ILP, even if the
scheduler has extracted it at compile time. Even if someone would expect that spill
codes exhibit high locality, and hence would likely produce cache hits, we cannot assert
it at compile time. The authors in [5] related that about 66% of application execution
times are spent to satisfying memory requests.

Another reason for handling register constraints prior to ILP scheduling is that reg-
ister constraints are much more complex than resource constraints. Scheduling under

1 We refer here to MIIdep since we will not consider any resource constraints.



resource constraints is a performance issue. Given a DDG, we are sure to find at least
one valid schedule for any underlying hardware properties (a sequential schedule in
extreme case, i.e., no ILP). However, scheduling a DDG with a limited number of reg-
isters is more complex. We cannot guarantee the existence of at least one schedule. In
some cases, we must introduce spill code and hence we change the problem (the input
DDG). Also, a combined pass of scheduling with register allocation presents an impor-
tant drawback if not enough registers are available. During scheduling, we may need
to insert load-store operations. We cannot guarantee the existence of a valid issue time
for these introduced memory access in an already scheduled code; resource or data
dependence constraints may prevent from finding a valid issue slot inside an already
scheduled code. This forces to iteratively apply scheduling followed by spilling until
reaching a solution.

All the above arguments make us re-think new ways of handling register pressure
before starting the scheduling process, so that the scheduler would be free from register
constraints and would not suffer from excessive serializations.

Existing techniques in this field usually apply register allocation after a step of soft-
ware pipelining that is sensitive to register requirement. Indeed, if we succeed in build-
ing a software pipelined schedule that does not produce more than R values simultane-
ously alive, then we can build a cyclic register allocation with R available registers [2,
13]. We can use either loop unrolling [2], inserting move operations [7], or a hardware
rotating register file when available [13]2. Therefore, a great amount of work tries to
schedule a loop such that it does not use more than R values simultaneously alive [8,
22, 12, 14, 11, 4, 15, 6, 9]. In this paper we directly work on the loop DDG and modify it
in order to satisfy the register constraints for any further subsequent software pipelining
pass. This idea is already present in [1] for DAGs and use the concept of reuse edge or
vector developed in [17, 18].

Our article is organized as follows. Sect. 2 defines our loop model and a generic ILP
processor. Sect. 3 starts the study with a simple example. The problem of cyclic regis-
ter allocation is described in Sect. 4 and formulated with integer linear programming
(intLP). The special case where a rotating register file (RRF) exists in the underlying
processor is discussed in Sect. 5. In Sect.6, we present a polynomial subproblem. Fi-
nally, we synthesize our experiments in Sect. 7 before concluding.

2 Loop Model

We consider a simple innermost loop (without branches). It is represented by a graph
G = (V,E, δ, λ), such that : V is the set of the statements in the loop body and E is
the set of precedence constraints (flow dependences, or other serial constraints). We
associate to each arc e ∈ E a latency δ(e) in terms of processor clock cycles and a
distance λ(e) in terms of number of iterations. We denote by u(i) the instance of the

2 Insertion of move operations or using a rotating register file requiresR+1 registers at most [2].



statement u ∈ V of the iteration i. A valid schedule σ must satisfy :

∀e = (u, v) ∈ E : σ
(
u(i)

)
+ δ(e) ≤ σ

(
v(i+ λ(e))

)

We consider a target RISC-style architecture with multiple register types, where T
denotes the set of register types (for instance, T = {int, f loat}). We make a difference
between statements and precedence constraints, depending if they refer to values to be
stored in registers or not. VR,t is the set of values to be stored in registers of type t ∈ T .
We consider that each statement u ∈ V writes into at most one register of a type t ∈ T .
The statements which define multiple values with different types are accepted in our
model if they do not define more than one value of a certain type. ER,t is the set of flow
dependence edges through a value of type t ∈ T . The set of consumers (readers) of a
value ut is then the set :

Cons(ut) = {v ∈ V | (u, v) ∈ ER,t}
To consider static issue VLIW and EPIC/IA64 processors in which the hardware

pipeline steps are visible to compilers (we consider dynamically scheduled superscalar
processors too), we assume that reading from and writing into a register may be delayed
from the beginning of the schedule time, and these delays are visible to the compiler
(architectural visible). We define two delay (offset) functions δr,t and δw,t in which :
the read cycle of ut from a register of type t is σ(u) + δr,t(u), and the the write cycle
of ut into a register of type t is σ(u) + δw,t(u).

For superscalar and EPIC/IA64 processors, δr,t and δw,t are equal to zero.

A software pipelining is a function σ that assigns to each statement u a scheduling
date (in terms of clock cycle) that satisfies at least the precedence constraints. It is
defined by an initiation interval, noted II , and the scheduling date σu for the operations
of the first iteration. The operation u(i) of iteration i is scheduled at time σu+(i−1)×
II . For all edge e = (u, v) ∈ E, this periodic schedule must satisfy:

σu + δ(e) ≤ σv + λ(e).II

Classically, by adding all such inequalities on any circuit C of G, we find that II
must be greater than or equal to maxC

∑
e∈C δ(e)∑
e∈C λ(e) , that we commonly denote as MII

(minimal initiation interval).
We consider now a number of available registers ρ and all the schedules that have

no more than ρ simultaneously alive variables. Any actual following register allocation
will induce new dependences in the DDG. Hence, register pressure has influence on the
expected II , even if we assume unbounded resources. What we want to analyze here is
the minimum II that can be expected for any schedule using less than ρ registers. We
will denote this value asMII(ρ) and we will try to understand the relationship between
MII(ρ) and ρ. Let us start by an example to fix the ideas.

3 Basic Ideas

We give now more intuitions to the new edges that we add between couples of op-
erations. These edges represent possible reuse by the second operation of the register
released by the first operation. This can be viewed as a variant of [1] or [17, 18].



Let us consider a simple loop that consists of a unique flow dependence from u
to v with distance λ = 3 (see Fig. 1.(a) where values to be stored in registers of the
considered type are in bold circles, and flows are in bold edges). If we have an un-
bounded number of registers, all iterations of this loop can be run in parallel since there
is no recurrence circuit in the DDG. At each iteration, operation u writes into a new
register. Now, let us assume that we only have ρ = 5 available registers. The differ-
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(a) Simple DDG (b) Antidependence

e
(δr,t(v)− δw,t(u), ρ− λ)

Fig. 1. Simple Example

ent instances of u can use only ρ = 5 registers to cyclically carry their results. In this
case, the operation u(i+ ρ) writes into the same register previously used by u(i). This
fact creates an anti-dependence from v(i + λ), which reads the value defined by u(i),
to u(i + ρ); this means an anti-dependence in the DDG from v to u with a distance
ρ−λ = 2. Since u actually writes into its destination register δw,t(u) clock cycles after
it is issued and v reads it δr,t(v) after it is issued, the latency of this anti-dependence
is set to δr,t(v) − δw,t(u) for VLIW or EPIC codes, and to 1 for superscalar (sequen-
tial) codes. Consequently, the DDG becomes cyclic because of storage limitations (see
Fig. 1.(b), where the anti-dependence is dashed). The introduced anti-dependence, also
called “Universal Occupancy Vector’ ’(UOV) in [17], must in turn be counted when
computing the new minimum initiation interval since a new circuit is created.

When an operation defines a value that is read by more than one operation, we
cannot know in advance which of these consumers actually kills the value (which is the
last reader), and hence we cannot know in advance when a register is freed. We propose
a trick which defines for each value ut of type t a fictitious killing task kut . We insert an
edge from each consumer v ∈ Cons(ut) to kut to reflect the fact that this killing task
is scheduled after the last scheduled consumer (see Fig. 2). The latency of this serial
edge is set to δr,t(v) because of the reading delay, and we set its distance to −λ where
λ is the distance of the flow dependence between u and its consumer v. This is done to
model the fact that the operation kut(i+λ−λ), i.e., kut(i) is scheduled when the value
ut(i) is killed. The iteration number i of the killer of u(i) is only a convention and can
be changed by retiming [10], without changing the nature of the problem.

Now, a register allocation scheme consists of defining the edges and the distances
of reuse. That is, we define for each u(i) the operation v and iteration µu,v such that
v(i + µu,v) reuses the same destination register as u(i). This reuse creates a new anti-
dependence from ku to v with latency equal to −δw,t(v) for VLIW or EPIC codes, and
to 1 for sequential superscalar codes. The distance µu,v of this edge has to be defined.



We will see in a further section that the register requirement can be expressed in terms
of µu,v.
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Fig. 2. Killing Tasks

Hence, controlling register requirement means, first, determining which operation
should reuse the register killed by another operation (where should anti-dependences
be added?). Secondly, we have to determine variable lifetimes, or equivalently register
requirement (how many iterations later (µ) should reuse occur)? The lower is the µ, the
lower is the register requirement, but also the larger is the MII .

Fig. 2.(a) presents a first reuse decision where each statement reuses the register
freed by itself. This is illustrated by adding an anti-dependence from ku (resp. kv) to
u (resp. v) with an appropriate distance µ, as we will see later. Another reuse decision
(see Fig. 2.(b)) may be that the statement u (resp. v) reuses the register freed by v (resp.
u). This is illustrated by adding an anti-dependence from ku (resp. kv) to v (resp. u).
In both cases, the register requirement is µ1 + µ2, but it is easy to see that the two
schemes do not have the same impact onMII: intuitively it is better that the operations
share registers instead of using two different pools of registers. The next section gives
a formal definition of the problem and provides an exact formulation.

4 Problem Description

4.1 Data Dependences and Reuse Edges

The reuse relation between the values (variables) is described by defining a new graph
called a reuse graph that we note Gr = (VR,t, Er, µ). Fig. 3.(a) shows the first reuse
decision where u (v resp.) reuses the register used by itself µ1 (µ2 resp.) iterations
earlier. Fig. 3.(b) is the second reuse choice where u (v resp.) reuses the register used
by v (u resp.) µ1 (µ2 resp.) iterations earlier. Each edge e = (u, v) ∈ Er with a distance
µ(e) in the reuse graph means that there is an anti-dependence between ku and v with a
distance µ(e). The resulted DDG after adding the killing tasks and the anti-dependences
to apply the register reuse decisions is called the DDG associated with a reuse decision :



Fig. 2.(a) is the associated DDG with Fig. 3.(a), and Fig. 2.(b) is the one associated with
Fig. 3.(b). We denote by G→r the DDG associated to a reuse decision r.
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Fig. 3. Reuse Graphs

A reuse graph must verify some constraints to be valid : first, the resulting DDG
must be schedulable; second, each value reuses only one freed register, and each register
is reused by only one value. The second constraint means that the reuse scheme is the
same at each iteration. Generalizing this condition by allowing different (but periodic)
reuse schemes is beyond the scope of this paper. This condition results in the following
lemma.

Lemma 1. [21] Let Gr = (VR,t, Er, µ) be a valid reuse graph of type t associated
with a loop G = (V,E, δ, λ). Then :

– the reuse graph only consists of elementary and disjoined circuits ;
– any value ut ∈ VR,t belongs to a unique circuit in the reuse graph.

Any circuit C in a reuse graph is called a reuse circuit. We note µ(C) the sum of
the µ distances in this circuit. Then, to each reuse circuit C = (u0, u1, .., un, u0), there
exists an image C ′ = (u0 ; ku0

, u1, ..., un ; kun , u0) for it in the associated DDG.
For instance in Fig. 2.(a),C ′ = (v, v1, kv, v) is an image for the reuse circuitC = (v, v)
in Fig. 3.(a). Such image may not be unique.

If a reuse graph is valid, we can build a cyclic register allocation in the DDG as-
sociated with it, as explained in the following theorem. We require µ(Gr) registers, in
which µ(Gr) is the sum of all µ distances in the reuse graph Gr.

Theorem 1. [21] Let G = (V,E, δ, λ) be a loop and Gr = (VR,t, Er, µ) a valid reuse
graph of a register type t ∈ T . Then the reuse graph Gr defines a cyclic register
allocation for G with exactly µt(Gr) registers of type t if we unroll the loop α times
where :

α = lcm(µt(C1), · · · , µt(Cn))

with C = {C1, · · · , Cn} is the set of all reuse circuits, and lcm is the least common
multiple.

For a complete and detailed proof, please refer to [21].
As a corollary, we can build a cyclic register allocation for all register types.



Corollary 1. [21] LetG = (V,E, δ, λ) be a loop with a set of register types T . To each
type t ∈ T is associated a valid reuse graphGrt . The loop can be allocated with µt(Gr)
registers for each type t if we unroll it α times, where

α = lcm(αt1 , · · · , αtn)

where αti is the unrolling degree of the reuse graph of type ti.

It should be noted that the fact that the unrolling factor may be significantly high
is not related to our method and would happen only if we actually want to allocate
the variables on this minimal number of registers with the computed reuse scheme.
However, there may be other reuse schemes for the same number of registers, or there
may be other available registers in the architecture. In that case, the meeting graph
framework [2] can help to control or reduce this unrolling factor.

From all above, we deduce a formal definition of the problem of optimal cyclic
register allocation with minimal ILP loss. We call it Schedule Independent Register
Allocation (SIRA).

Problem 1 (SIRA). LetG = (V,E, δ, λ) be a loop andRt the number of available regis-
ters of type t. Find a valid reuse graph for each register type such that the corresponding

µt(G
r) ≤ Rt

and the critical circuit in G is minimized.

This problem can be reduced to the classical NP-complete problem of minimal register
allocation [21]. The following section gives an exact formulation of SIRA.

4.2 Exact Formulation

In this section, we give an intLP model for solving SIRA. It is built for a fixed execution
rate II (the new constrained MII). Note that II is not the initiation interval of the
final schedule, since the loop is not already scheduled. II denotes the value of the new
desired critical circuit. Here, we assume VLIW or EPIC codes. For superscalar ones,
we only have to set the anti-dependence latency to 1.

Our SIRA exact model uses the linear formulation of the logical implication (=⇒)
and equivalence (⇐⇒) by introducing binary variables, as previously explained in [19–
21]. The size of our system is bounded by O(|V |2) variables and O(|E|+ |V |2) linear
constraints.

Basic Variables

– a schedule variable σu ≥ 0 for each operation u ∈ V , including one for each killing
node kut .

– a binary variables θtu,v for each (u, v) ∈ V 2
R,t, and for each register type t ∈ T . It

is set to 1 iff (u, v) is a reuse edge of type t ;
– µtu,v for reuse distance for all (u, v) ∈ V 2

R,t, and for each register type.



Linear Constraints

– data dependences (the existence of at least one valid software pipelining schedule,
including killing tasks constraints)

∀e = (u, v) ∈ E : σu + δ(e) ≤ σv + II × λ(e)

– there is an anti-dependence between kut and v if (u, v) is a reuse edge :
∀t ∈ T , ∀(u, v) ∈ V 2

R,t :

θtu,v = 1 =⇒ σkut − δw,t(v) ≤ σv + II × µu,v

– If there is no register reuse between two values (reuset(u) 6= v), then θtu,v = 0.
The anti-dependence distance µtu,v must be set to 0 in order to not be cumulated in
the objective function. ∀t ∈ T , ∀(u, v) ∈ V 2

R,t :

θtu,v = 0 =⇒ µtu,v = 0

The reuse relation must be a bijection from VR,t to VR,t :

– a register can be reused by only one operation :

∀t ∈ T , ∀u ∈ VR,t :
∑

v∈VR,t
θtu,v = 1

– one value can reuse only one released register :

∀t ∈ T , ∀u ∈ VR,t :
∑

v∈VR,t
θtv,u = 1

Objective Function We want to minimize the number of registers required for the reg-
ister allocation. So, we choose an arbitrary register type t which we use as objective
function :

Minimize
∑

(u,v)∈V 2
R,t

µtu,v

The other registers types are bounded in the model by their respective number of
available registers :

∀t′ ∈ T − {t} :
∑

(u,v)∈V 2
R,t′

µt
′
u,v ≤ Rt′

As previously mentioned, our model includes writing and reading offsets. The non-
positive latencies of the introduced anti-dependences generate a specific problem. In-
deed, some circuits C in the constructed DDG may have non-positive distance λ(C) ≤
0. Even if such circuits do not prevent a DDG from being scheduled, it may be so in the
presence of resource constraints. Thus, we prohibit such circuits. More details can be
found in [21]. Note that this problem does not occur for superscalar (sequential) codes,
because the introduced anti-dependences have positive latencies.



The unrolling degree is left free and over any control in SIRA formulation. This
factor may theoretically grow exponentially. Minimizing the unrolling degree is to min-
imize lcm(µi), the least common multiple of the anti-dependence distances of reuse
circuits. This non linear problem is very difficult an remains an open problem : as far as
we know, there is not a satisfactory solution for it. Fortunately, there exists a hardware
feature that allow to avoid loop unrolling. We study it in the next section.

5 Rotating Register Files

A rotating register file [3, 13, 16] is a hardware feature that moves (shift) implicitly
architectural registers in a cyclic way. At every new kernel issue (special branch op-
eration), each architectural register specified by program is mapped by hardware to a
new physical register. The mapping function is (R denotes an architectural register and
R′ a physical register) : Ri 7→ R′(i+RRB) mod s where RRB is a rotating register base
and s the total number of physical registers. The number of that physical register is
decremented continuously at each new kernel. Consequently, the intrinsic reuse scheme
between statements describes a hamiltonian reuse circuit necessarily. The hardware be-
havior of such register files does not allow other reuse patterns. SIRA in this case must
be adapted in order to look only for hamiltonian reuse circuits.

Furthermore, even if no rotating register file exists, looking for only one hamilto-
nian reuse circuit makes the unrolling degree exactly equal to the number of allocated
registers, and thus both are simultaneously minimized by the objective function.

Since a reuse circuit is always elementary (Lemma 1), it is sufficient to state that a
hamiltonian reuse circuit with n = |VR,t| nodes is only a reuse circuit of size n. We
proceed by forcing an ordering of statements from 1 to n according to the reuse relation.
Thus, given a loop G = (V,E, δ, λ) and Gr = (VR,t, Er, µ) a valid reuse graph of type
t ∈ T , we define a hamiltonian ordering hot as a function :

hot : VR,t → N
ut 7→ hot(u)

such that ∀u, v ∈ VR,t :

(u, v) ∈ Er ⇐⇒ hot(v) =
(
hot(u) + 1

)
mod |VR,t|

The existence of a hamiltonian ordering is a sufficient and necessary condition to
make the reuse graph hamiltonian, as stated in the following theorem.

Theorem 2. [21] Let G = (V,E, δ, λ) be a loop and Gr a valid reuse graph. There
exists a hamiltonian ordering iff the reuse graph is a hamiltonian graph.

Hence, the problem of cyclic register allocation with minimal critical circuit on rotating
register files can be stated as follows.

Problem 2 (SIRA HAM). Let G = (V,E, δ, λ) be a loop and Rt the number of avail-
able registers of type t. Find a valid reuse graph with a hamiltonian ordering hot such
that the

µt(G
r) ≤ Rt



in which the critical circuit in G is minimized.

An exact formulation for it is deduced from the intLP model of SIRA. We have only
to add some constraints to compute a hamiltonian ordering. We expand the exact SIRA
intLP model by at most O(|V |2) variables and O(|V |2) linear constraints.

1. for each register type and for each value ut ∈ VR,t, we define an integer variable
hout ≥ 0 which corresponds to its hamiltonian ordering ;

2. we add the linear constraints of the modulo hamiltonian ordering : ∀u, v ∈ V 2
R,t :

θtu,v = 1⇐⇒ hout + 1 = |VR,t| × βtu,v + hovt

where βtu,v is a binary variable that holds to the integer division of hout + 1 on
|VR,t|.
When looking for a hamiltonian reuse circuit, we may need one extra register to

construct such a circuit. In fact, this extra register virtually simulates moving values
among registers if circular lifetimes intervals do not meet in a hamiltonian pattern.

Proposition 1. [21] Hamiltonian SIRA needs at most one extra register than SIRA.

Both SIRA and hamiltonian SIRA are NP-complete. Fortunately, we have some
optimistic results. In the next section, we investigate the case in which SIRA can be
solved in polynomial time complexity.

6 Fixing Reuse Edges

In [12], Ning and Gao analyzed the problem of minimizing the buffer sizes in software
pipelining. In our framework, this problem actually amounts to deciding that each oper-
ation reuses the same register, possibly some iterations later. Therefore we consider now
the complexity of our minimization problem when fixing reuse edges. This generalizes
the Ning-Gao approach. Formally, the problem can be stated as follows.

Problem 3 (Fixed SIRA). LetG = (V,E, δ, λ) be a loop andRt the number of available
registers of type t. Let E ′ ⊆ E be the set of already fixed anti-dependences (reuse)
edges of a register type t. Find a distance µu,v for each anti-dependence (kut , v) ∈ E′
such that

µt(G
r) ≤ Rt

in which the critical circuit in G is minimized.

In following, we assume thatE ′ ⊆ E is the set of these already fixed anti-dependences
(reuse) edges (their distances have to be computed). Deciding (at compile) time for fixed
reuse decisions greatly simplifies the intLP system of SIRA. It can be solved by the fol-
lowing intLP, assuming a fixed desired critical circuit II . Here, we write a system for
VLIW or EPIC codes. For superscalar, we have to set the anti-dependence latency to 1.

Minimize ρ =
∑

(kut ,v)∈E′ µ
t
u,v

Subject to:
II × µtu,v + σv − σkut ≥ −δw(v) ∀(kut , v) ∈ E′
σv − σu ≥ δ(e)− II × λ(e) ∀e = (u, v) ∈ E − E ′

(1)



Since II is a constant, we do the variable substitution µ′u = II × µtu,v and System 1
becomes :

Minimize (II.ρ =)
∑
u∈VR,t µ

′
u

Subject to:
µ′u + σv − σkut ≥ −δw(v) ∀(kut , v) ∈ E′
σv − σu ≥ δ(e)− II × λ(e) ∀e = (u, v) ∈ E − E ′

(2)

There are O(|V |) variables and O(|E|)) linear constraints in this system.

Theorem 3. [21] The constraint matrix of the integer programming model in System 2
is totally unimodular, i.e., the determinant of each square sub-matrix is equal to 0 or to
± 1.

Consequently, we can use polynomial algorithms to solve this problem of finding the
minimal value for the product II.ρ.

We must be aware that the back substitution in µ = µ′
II may produce a non integral

value for the distance µ. If we ceil it by setting µ = d µ′II e, a sub-optimal solution may
result3. It is easy to see that the loss in terms of number of registers is not greater than the
number of loop statements that write into a register (|VR,t|). This algorithm generalizes
the heuristics proposed in [12]. We think that we can avoid ceiling µ by considering the
already computed σ variables, as done in [12].

Furthermore, solving System 2 has two interesting follow-ups. First, it gives a poly-
nomially computable lower bound for MIIrc(ρ) as defined in the introduction, for this
reuse configuration rc. Let us denote as m the minimal value of the objective function.
Then

MIIrc(ρ) ≥ m

ρ

This lower bound could be used in a heuristics such that the reuse scheme and the
number of available registers ρ are fixed. Second, if II is fixed, then we obtain a lower
bound on the number of registers ρ required in this reuse scheme rc.

ρrc ≥
m

II
There are numerous choices for fixing reuse edges that can be used in practical

compilers.

1. For each value u ∈ VR,t, we can decide that reuset(u) = u. This means that
each statement reuses the register freed by itself (no sharing of registers between
different statements). This is similar to buffer minimization problem as described
in [12].

2. We can fix reuse edges according to the anti-dependences present in the original
code : if there is an anti-dependence between two statement u and v in the original
code, then fix reuset(u′) = v with the property that u kills u′. This decision is
a generalization to the problem of reducing the register requirement as studied in
[22].

3 Of course, if we have MII = II = 1 (case of parallel loops for instance), the solution
remains optimal.



3. If a rotating register file is present, we can fix an arbitrary (or with a cleverer
method) hamiltonian reuse circuit among statements.

The next section summarizes our experimental results.

7 Experiments

All the techniques described in this paper have been implemented and tested on various
numerical loops extracted from different benchmarks (Spec95, whetstone, livermore,
lin-ddot). This section presents a summary.

Optimal and Hamiltonian SIRA In almost all the cases, both of the two techniques need
the same number of registers according to the same II . However, as proved by Prop.1,
hamiltonian SIRA may need one extra register, but in very few cases (about 5% of ex-
periments). Regarding the resulted unrolling degrees, even if it may grow exponentially
with SIRA (from the theoretical perspective), experiments show that it is mostly lower
than the number of allocated registers, i.e., better than hamiltonian SIRA. However,
some few cases exhibit critical unrolling degrees which are not acceptable if code size
expansion is a critical factor.

Optimal SIRA versus Fixed SIRA In a second step of experiments, we investigate the
fixed SIRA strategies (Sect. 6) to compare their results versus the optimal ones (optimal
SIRA). We checked the efficiency of two strategies : self reuse strategy (no register
sharing), and fixing an arbitrary hamiltonian reuse circuit. Resolving the intLP systems
of these strategies become very fast compared to optimal solutions, as can be seen the
first part of Fig. 4. We couldn’t explore optimal solutions for loops larger than 10 nodes
because the computation time became intractable.

Fig. 4. Optimal versus Fixed SIRA with II = MII

For II = MII , some experiments do not exhibit a substantial difference. But if we
vary II from MII to an upper-bound L, the difference is highlighted as follows.

– Regarding the register requirement, the self reuse strategy is, in most cases, far from
the optimal. Disabling register sharing needs a high number of registers, since each
statement needs at least one register. However, enabling sharing with an arbitrary
hamiltonian reuse circuit is much more beneficial.



– Regarding the unrolling degree, the self reuse strategy exhibit the lowest ones, ex-
cept in very few cases.

Fixed SIRA : System 1 versus System 2 The compilation time for optimal SIRA becomes
intractable when the size of the loop exceeds 10 nodes. Hence, for larger loops, we
advice to use our fixed SIRA strategies that are faster but allow sub-optimal results. We
investigated the scalability (in terms of compilation time4 versus the size of DDGs) for
fixed SIRA when solving System 1 (non totally unimodular matrix) or System 2 (totally
unimodular matrix). Fig. 5 plots the compilation times for larger loops (buffers and
fixed hamiltonian). For loops larger than 300 nodes, the compilation time of System 1
becomes more considerable. The error ratio, induced by ceiling the µ variable as solved
by System 2 compared to System 1, is depicted in Fig. 6. As can be seen, such error
ratio asks us to improve the results of System 2 by re-optimizing the µ variables in a
cleverer method as done in [12].
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Fig. 5. Compilation Time versus the Size of the DDGs

8 Conclusion

This article presents a new approach consisting in virtually building an early cyclic
register allocation before code scheduling, with multiple register types and delays in
reading/writing. This allocation is expressed in terms of reuse edges and reuse distances
to model the fact that two statements use the same register as storage location. An intLP
model gives optimal solution with reduced constraint matrix size, and enables us to
make a tradeoff between ILP loss (increase of MII) and number of required registers.

The spilling problem is left for future work. We believe that it is important to take
it in consideration before instruction scheduling, and our framework should be very
convenient for that.

When considering VLIW and EPIC/IA64 processors with reading/writing delays,
we are faced to some difficulties because of the possible non-positive distance circuits

4 counted as the time for generating and solving the intLP systems, and building the allocated
DDGs.
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Fig. 6. Error Ratio in Terms of Register Requirement, Induced by System 2, versus the Size of
the DDGs

that we prohibit. However, we allow anti-dependences to have non-positive latencies,
because this amounts to consider that the destination register is not alive during the ex-
ecution of the instruction and can be used for other variables. Since pipelined execution
time is increasing, this feature becomes crucial in VLIW and EPIC codes to reduce the
register requirement.

Each reuse decision implies loop unrolling with a factor depending on reuse circuits
for each register type. The unrolling transformation can be applied before the software
pipelining pass (the inserted anti-dependences restrict the scheduler and satisfy regis-
ter constraints) or after it during code generation step. It is better to unroll the loop
after software pipelining in order to do not increase the scheduling complexity under
resources constraints. Optimizing the unrolling factor is a hard problem and no satisfac-
tory solution exists until now. However, we do not need loop unrolling in the presence
of a rotating register file. We only need to seek a unique hamiltonian reuse circuit. The
penalty for this constraint is at most one extra register than the optimal for the same II .

Since computing an optimal cyclic register allocation is intractable in real loops, we
have identified one polynomial subproblem by fixing reuse edges. With this polynomial
approach, we can compute MII(ρ) for a given reuse configuration and a given register
count ρ. We can also heuristically find a register usage for one given II .

Our experiments show that disabling sharing of registers with a self reuse strategy
isn’t a good reuse decision in terms of register requirement. We think that how registers
are shared between different statements is one of the most important issues, and pre-
venting this sharing by self reuse strategy consumes much more registers than needed
by other reuse decisions.
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15. A. Sawaya. Pipeline Logiciel: Découplage et Contraintes de Registres. PhD thesis, Univer-
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de Versailles, France, June 2002. ftp.inria.fr/INRIA/Projects/a3/touati/thesis.

22. J. Wang, A. Krall, and M. A. Ertl. Decomposed Software Pipelining with Reduced Register
Requirement. In Proceedings of the IFIP WG10.3 Working Conference on Parallel Archi-
tectures and Compilation Techniques, PACT95, pages 277 – 280, Limassol, Cyprus, June
1995.


