
Register Saturation in Instruction Level Parallelism

Sid-Ahmed-Ali TOUATI

University of Versailles, PRiSM laboratory, France
touati@prism.uvsq.fr

Abstract

The registers constraints are usually taken into account during the scheduling pass of an acyclic data dependence graph
(DAG): any schedule of the instructions inside a basic blockmust bound the register requirement under a certain limit. In this
work, we show how to handle the register pressure before the instruction scheduling of a DAG. We mathematically study an
approach which consists in managing the exact upper-bound of the register need for all the valid schedules of a considered
DAG, independently of the functional unit constraints. We call this computed limit the register saturation (RS) of the DAG.
Its aim is to detect possible obsolete register constraints, i.e., when RS does not exceed the number of available registers.
If it does, we add some serial edges to the original DAG such that the worst register need does not exceed the number of
available registers. We propose an appropriate mathematical formalism for this problem. Our generic processor model takes
into account superscalar, VLIW and EPIC/IA64 architectures. Our deeper analysis of the problem and our formal methods
enable us to provide nearly optimal heuristics and strategies for register optimization in the face of ILP.

Keywords Register Requirement, Register Pressure, Instruction Level Parallelism, Integer Linear Programming, Optimiz-
ing Compilation.

1 Introduction

The introduction of instruction level parallelism (ILP) has rendered the classical techniques of register allocationfor se-
quential code semantics inadequate. In [16], the authors showed that there is a phase ordering problem between classical
register allocation techniques and ILP instruction scheduling. If a classical register allocation is done early, the introduced
false dependences inhibit instruction scheduling from extracting a schedule with high amount of ILP. However, this conclu-
sion does not prevent a compiler from effectively performing an early register allocation, with the condition that the allocator
is sensitive to the scheduler, as done in [2, 18, 20, 23, 25, 26].

Some other studies [5, 8, 16, 24, 28] claim that it is better tocombine instruction scheduling and register allocation ina
single complex pass, arguing that applying each method separately has a negative influence on the efficiency of the other.
However, we think that this phase ordering problem arises only if the applied first pass (ILP scheduler or register allocator)
is “selfish”. Indeed, we can effectively decouple register constraints from instruction scheduling if enough care is taken. In
this paper, we show how we can treat register constraints before scheduling, and we explain why we think that our methods
provide better techniques than the existing solutions.

The principal reason for handling register constraints before instruction scheduling is that register allocation is more im-
portant as an optimization issue than code scheduling. Thisis because performance is far more sensitive to memory accesses
than to fine-grain scheduling (memory gap): a cache miss may inhibit the processor from achieving a high dynamic ILP,
even if the scheduler has extracted it at compile time. Even if we expect spill code to exhibit high locality, and hence likely
produces cache hits, this cannot be asserted at compile time. It is very hard for a compiler to guarantee the existence of data
inside a memory hierarchy level. Consequently, it is difficult to really guarantee the latency of a memory operation at compile
time. So, the schedule of the instructions computed by the compiler wouldn’t act in harmony with the dynamic execution of

1

+
Register Allocation

DAG

(Modified) DAG

Register Saturation Reduction

Scheduling

Register Saturation Computation

Figure 1. Early Register Pressure Management

the hardware. The authors in [15] relate that about 66% of application execution times are spent satisfying memory requests.
Furthermore, memory requests exhibit a high potential for conflicts, even if they are data independent. These conflicts are
due to micro-architectural restrictions and simplifications in the memory disambiguation mechanisms (load/store queues) and
possible banking structure in cache levels [21]. These possible conflicts may cause severe performance degradation even in
the presence of high levels of ILP, and even if the data is located in the cache [22]. Of course, our claim that spill code is
more damaging than a weak static ILP extraction is more appropriate for those architectures where memory access latencyis
very long compared to the delay of calculation. This is the case in almost all high performance processors. If memory access
delay is not critical, the register saturation concept may be useless.

Another reason for handling register constraints prior to ILP scheduling is that register constraints are much more com-
plex than resource constraints. Scheduling under resourceconstraints is a performance issue. Given a data dependence
graph (DDG), we are sure to find at least one valid schedule forany underlying hardware properties (a sequential schedule
in extreme case,i.e., no ILP). However, scheduling a DDG with a limited number of registers is more complex. Unless we
generate superscalar codes with sequential semantics, we cannot guarantee in the case of VLIW the existence of at least
one schedule. In some cases, we must introduce spill code andhence we change the problem (the input DDG). Also, a
combined pass of scheduling with register allocation presents an important drawback if not enough registers are available.
During scheduling, we may need to insert load-store operations if not enough free registers exist. We cannot guarantee the
existence of a valid issue time for these introduced memory accesses in already scheduled code; resource or data dependence
constraints may prohibit all possible issue slots inside the scheduled code. This fact forces an iterative process of scheduling
followed by spilling until reaching a solution. Even if we can experimentally reduce the backtracking as in [31], this iterative
aspect adds a high algorithmic complexity factor to a pass integrating both register allocation and scheduling. As far as we
know, there is no formal solution that effectively solves this problem.

The above arguments suggest that we consider new ways of handling register pressure before starting the scheduling pro-
cess. The scheduler should be freed from register constraints so that the schedule does not suffer from excessive serialization.
This article synthesizes our contributions from [29, 30]. We study the concept of register saturation (RS), which prevents a
DAG from producing an excessive number of simultaneously live values for all the valid schedules. Our pre-pass analyzesa
DAG (with respect to control flow) to deduce the maximum register need among all schedules. We call this limit theregister
saturation(RS), because the register need can reach this limit but never exceed it. If RS exceeds the number of available
registers, we introduce new edges in the DAG to reduce RS, as illustrated in Figure 1. In this paper, we give some theoret-
ical results on RS and provide exact (optimal) and approximate methods for the problems of computing and reducing RS.
After our RS analysis pass, the DAG is free from register constraints and can be sent to the scheduler and the register allocator.

This article is organized as follows. Section 2 presents ourDAG and processor model which can be used for most of
existing ILP architectures (superscalar, VLIW, EPIC/IA64). Section 3 provides some theoretical results on computingthe RS
that prove the NP-completeness of this problem. Section 4 presents an algorithmic heuristics for computing RS. Computing

2

the optimal RS by integer linear programming (intLP) is given in Section 5. Our intLP formulation use the linear writing of
logical formulas (=⇒,⇐⇒, ∨) and the max operator (max(x, y)) by introducing extra binary variables. If the RS exceeds
the number of available registers, RS must be reduced. Section 6 proves that this problem is NP-hard. An algorithmic
heuristics for reducing RS is given in Section 7 and an exact optimal solution is presented in Section 8. Section 9 presents our
large range of experiments, which show that our heuristics are nearly optimal in practice. Before concluding, in Section 10
we discuss why the RS concept is a better way to handle register constraints prior to ILP scheduling compared to register
minimization. To enhance readability, only the most important formal proofs are presented in this paper. The complete
theoretical proofs are provided in the cited references.

2 DAG and Processor Model

A DAG G = (V, E, δ) in our study represents the data dependences between the operations and any other serial constraints.
Each operationu has a strictly positive latencylat(u). The DAG is defined by its set of nodes (operations)V , its set of edges
(data dependences and serial constraints)E = {(u, v)| u, v ∈ V }, andδ such thatδ(e) is the latency of the edgee in terms
of processor clock cycles. We assume that the initial DAG contains only edges with positive latencies. This assumption is
useful for some formal proofs. However, we will see in later sections (when reducing RS) that we can insert new edges with
non-positive latencies.

A scheduleσ of G is a function which gives an integer execution (issue) time for each operation:

σ is valid⇐⇒ ∀e = (u, v) ∈ E, σ(v) − σ(u) ≥ δ(e)

The set of all valid acyclic schedules of G is denoted byΣ(G).
To simplify the writing of some mathematical formulas, we assume that the DAG has one source (⊤) and one sink (⊥).

If not, we introduce two fictitious nodes(⊤,⊥) representing nops (evicted at the end of the RS analysis). Weadd a virtual
serial edgee1 = (⊤, s) to each source withδ(e1) = 0, and an edgee2 = (t,⊥) from each sink with the latency of the sink
operationδ(e2) = lat(t). The total schedule time of a schedule is thenσ(⊥). The null latency of an added edgee1 is not
inconsistent with our assumption that latencies must be strictly positive because the added virtual serial edges do notexist
in the original DAG. Furthermore, we can avoid introducing these virtual nodes without any impact on our theoretical study,
since their purpose is only to simplify some mathematical expressions.

We consider a target RISC-style architecture with multipleregister types, whereT denotes the set of register types (for
instance,T = {int, f loat}). We differentiate between statements and precedence constraints, based on whether they refer
to values to be stored in registers or not.

• VR,t ⊆ V is the set of statements (operations) which define values to be stored in registers of typet ∈ T . We simply
call such statementsvalues. We assume that each statementu ∈ VR,t writes into at most one register of a typet ∈ T .
Statements which define multiple values with different types are accepted in our model if they do not define more than
one value of a single type. We denote byut the value of typet defined by the operationu.

• ER,t ⊆ E is the set of data flow dependence edges through a value of typet ∈ T . We call themflowedges.

• All the edges inE − ER,t, i.e. edges which are not data flow dependences, are calledserial edges.

Basically, there are three types of ILP codes : superscalar,VLIW and EPIC. Superscalar codes can be simply considered
as linear sequential programs. Even if the compiler try to generate efficient superscalar codes, the processor is the unique
responsible for dynamically extracting ILP at execution time. So, code generation for such ILP codes write sequential ones,
as if they would be executed by a sequential processor. However, VLIW codes contain information about parallel operations.
The compiler has the task of statically extracting ILP and then generating the code by compacting the parallel operations
into Very Long Instructions Words. The processor executes such instructions (containing many independent operations) se-
quentially. So, the compiler has the complete control of thedynamic execution of VLIW codes (except dynamic events, such
as cache misses, exceptions, etc.). EPIC codes have a semantics that may be considered as a mixture between VLIW and
superscalar: while the compiler include information aboutILP in the code, the processor can use such ILP information at
execution time, or can simply execute sequentially the program. From the compiler point of view, an EPIC processor can be
viewed as a sequential (superscalar) or as VLIW processor.

3

a

fd

g

c

e

h

b

i

a

j

k

(a) code before scheduling and register allocation

5

3

3

5

4

0 0 0

17

14

4
4

44

4

3 5

1

j
k

b

h

ed

c

f

⊤

⊥

⊥

(a) fload [i1], fRa

(b) fload [i2], fRb

(c) fload [i3], fRc
(d) fmult fRa, fRb, fRd

(g) ftoint fRc, iRg

(i) iadd iRg, 4, iRi

(h) fdiv fRd, iRe, fRh

(e) imultadd fRa, fRb, fRc, iRe

(j) gf ? fadd setbnz fRj, 1 , fRj, gj

(k) gf|gj ? fsub fRk, 1 , fRk

(f) fmultadd setz fRb, iRi, fRc, fRf,gf

(c) PK(G)(b) the DDGG

Figure 2. DAG Model

To accommodate static issue VLIW and EPIC/IA64 processors in which the hardware pipeline steps are visible to com-
pilers (we allow for dynamically scheduled superscalar processors as well), we assume that reading from and writing into
a register may be delayed from the beginning of the schedule time, and these delays are visible to the compiler (archi-
tecturally visible). We define two delay (offset) functionsδr,t andδw,t in which: the read cycle ofut from a register of
type t is σ(u) + δr,t(u), and the write cycle ofut into a register of typet is σ(u) + δw,t(u). By definition, we have
δr,t(u) ≤ δw,t(u) < lat(u). For instance, according to superscalar and EPIC/IA64 codesemantics,δr,t andδw,t are equal
to zero. This is because, according to the semantics provided by the vendors, such codes can be considered as sequential
(linear). Any register written by operationu at time slotc in the code, that register is assumed as busy at the program point c
(no delay is architecturally visible). The same remark holds when reading from registers.

Figure 2.b gives the DAG that we use in this paper constructedfrom the code of part (a). In this example, we focus on
the floating point registers: the values and flow edges are illustrated by bold lines. We assume for instance that each read
occurs exactly at the schedule time and each write at the finalexecution step (δr(u) = 0, δw(u) = lat(u) − 1). The nodes
with non-bold lines are any other operations that do not write into registers (as stores), or write into registers of unconsidered
types. The edges with non-bold lines represent the precedence constraints that are not flow dependences through registers,
such as data dependences through memory, or through registers of unconsidered types, or any other serial constraints.

Notation and Definitions on DAGs

In this paper, we use the following notations for a given DAGG = (V, E) (as those usually used in lattices and orders
algebra):

• Γ+
G(u) = {v ∈ V |(u, v) ∈ E} successors ofu in the graphG;

• Γ−
G(u) = {v ∈ V |(v, u) ∈ E} predecessors ofu in the graphG;

• ∀e = (u, v) ∈ E source(e) = u ∧ target(e) = v. u, v are calledendpoints;

• ∀u, v ∈ V : u < v ⇐⇒ ∃ a path(u, . . . , v) in G;

• ∀u, v ∈ V : u||v ⇐⇒ ¬(u < v) ∧ ¬(v < u). u andv are said to beparallel;

• ∀u ∈ V ↑ u = {v ∈ V |v = u∨ v < u} u’s ascendants includingu. In other terms, a nodeu is an ascendant of a node
v iff u = v or if there exists a path fromu to v;

• ∀u ∈ V ↓ u = {v ∈ V |v = u ∨ u < v} u’s descendants includingu. In other terms, a nodeu is a descendant of a
nodev iff u = v or if there exists a path fromv to u;

• two edgese, e′ areadjacentiff they share an endpoint;

• A ⊆ V is an antichain iff all nodes belonging toA are parallel. Formally,A ⊆ V is an antichain inG iff ∀u, v ∈
A, u||v;

4

• AM is amaximalantichain iff its size in terms of number of nodes is maximal.Formally,AM is amaximalantichain
∀A antichain inG, |A| ≤ |AM |;

• theextendedDAG G\E
′

of G generated by the edges setE′ ⊆ V 2 is the DAG obtained fromG after adding the edges
in E′. As a consequence, any valid schedule ofG′ is necessarily a valid schedule forG:

G′ = G\E
′

=⇒ Σ(G′) ⊆ Σ(G)

• an extended graph has a similar definition as above, but it is not restricted to be a DAG;

• let I1 = [a1, b1] ⊂ N andI2 = [a2, b2] ⊂ N be two integer intervals. We say thatI1 is beforeI2, noted byI1 ≺ I2, iff
b1 < a2. We say thatI1 finishesI2 iff b1 = b2.

3 Some Theoretical Results on Computing Register Saturation

In this section, we study some formal properties of registersaturation in order to help us compute it algorithmically. For
clarity and without loss of generality, let us focus on a single register type. Accordingly, our notation becomesVR for the
set of values of the implicit type we consider,ER for the set of flow edges through a register of that type, andδr andδw for
reading/writing delays. Also, we use the notationu for both the operationu and the value it produces.

3.1 Register Need of a Schedule

Given a DAGG = (V, E, δ), a valueu ∈ VR is alive from the point just after the writing clock cycle ofu until the point
of its last use (consumption). Values which are not read inG or are still alive when exiting the DAG are assumed to be kept
in registers as exit values. We model these exit values by considering that the bottom node⊥ consumes them. We define the
set of consumers for each valueu ∈ VR as:

Cons(u) =

{

{v ∈ V |(u, v) ∈ ER} if ∃(u, v) ∈ ER

⊥ otherwise

Given a scheduleσ ∈ Σ(G), the last consumption of a value is called the killing date and noted :

∀u ∈ VR, killσ(u) = max
v∈Cons(u)

(

σ(v) + δr(v)
)

All the consumers ofu whose reading time is equal to the killing date ofu are called the killers ofu1. We assume that a
value written at instanti in a register is available one step later. That is to say, if operationu reads from a register at instant
i while operationv is writing in the same register at the same time,u does not getv’s result but, gets the value previously
stored in the register. Then, thelifetime intervalLTσ(u) of a valueu according toσ is]σ(u)+δw(u), killσ(u)]. This interval
is left-open by convention only and can be changed without any consequence on our mathematical study.

Given the lifetime intervals of all the values, the registerneed ofσ is the maximum number of values simultaneously alive:

RNσ(G) = max
0≤i≤σ(⊥)

|vsaσ(i)|

wherevsaσ(i) = {u ∈ VR|i ∈ LTσ(u)} is the set of values alive at time stepi. A maximal set of values simultaneously
alive are calledexcessive values. In other terms, if the register need at time stepi is maximal, then all the values alive at
this time step are called excessive values. Figure 3 is an example of a valid schedule for the previous DAG that needs three
FP registers. The bars represent the lifetime intervals.{e, f} are the killers ofb. {a, b, d} is a set of FP excessive values
since they are the maximum number of values simultaneously alive of type float. 9 is a FP excessive clock cycle since at this
time there are three FP values simultaneously alive. Note that we may have more than one set of excessive values, since the
register need may be defined with many sets of values simultaneously alive.

1While it is evident that a killer is unique in the case of linear codes (superscalar), VLIW codes may leads to multiple killers per value.

5

12: h ; i

0: a ; b ; c

4: d ; g

16:

3:

28:

11:

8:

time

LT(i)

LT(d)

LT(h)

9: e ; f
is the write cycle of the value

LT(b)LT(a)

LT(e)

29: ⊥

RNσ(G) = 3

LT(f)

Figure 3. Register Need of Acyclic Schedules

3.2 Register Saturation Problem

The RS is the maximal register need for all the valid schedules of the DAG:

RS(G) = max
σ∈Σ(G)

RNσ(G)

We callσ a saturating scheduleiff RNσ(G) = RS(G). In this section, we study how to computeRS(G). We will see that
this problem comes down to answering the question “which operation must kill this value ?” When looking for saturating
schedules, we do not worry about the total schedule time. Ouraim is only to prove that the register need can reach the RS but
cannot exceed it. Minimizing the total schedule time is considered in Section 6 when we reduce the RS. Furthermore, we will
prove that, for the purpose of maximizing the register need,looking for only one suitable killer of a value is sufficient rather
than looking for a group of killers: for any schedule that assigns more than one killer for a valueu, we can build another
schedule with at least the same register need such that this valueu is killed by only one consumer. Therefore, the purpose of
this section is to select a suitable killer for each value in order to saturate the register requirement.

Since we do not assume any schedule, the lifetime intervals are not defined yet, so we cannot know at which date a value is
killed. However, we can deduce which consumers inCons(u) are impossible killers for the valueu. If v1, v2 ∈ Cons(u) and
∃ a path(v1 · · · v2), v1 is always scheduled beforev2 by at leastlat(v1) processor cycles. Thenv1 can never be the last reader
of u (remember our assumption of positive latencies in the initial DAG). We can consequently deduce which consumers can
“potentially” kill a value (possible killers). We denote bypkillG(u) the set of operations which can kill a value.u ∈ VR:

pkillG(u) =
{

v ∈ Cons(u)| ↓ v ∩ Cons(u) = {v}
}

A potential killing operation for a valueu is simply a consumer ofu that is neither a descendant nor an ascendant of another
consumer ofu. One can check that all operations inpkillG(u) are parallel inG. Any operation which does not belong to
pkillG(u) can never kill the valueu. The following lemma proves that for any valueu and for any scheduleσ, there exists
a potential killerv that is a killer ofu according toσ. Furthermore, for any potential killerv of a valueu, there exists a
scheduleσ that makesv a killer of u.

Lemma 1 Given a DAGG = (V, E, δ), then∀u ∈ VR

∀σ ∈ Σ(G), ∃v ∈ pkillG(u) : σ(v) + δr(v) = killσ(u) (1)

∀v ∈ pkillG(u), ∃σ ∈ Σ(G) : killσ(u) = σ(v) + δr(v) (2)

6

c

i

h

c

i

h g

fe

ba

d

g

fe

ba

d

0 0

⊥⊥

⊤

(b) Ge

h

⊤

(a) Ge

i

Figure 4. Each Potential Killing Operation can Kill the Valu e

Proof :

The proof of (1) is directly derived from the definition ofpkill. Since

v ∈ pkill(u) =⇒ ∄v′ ∈ Cons(u) v < v′

then the killing date ofu must be the schedule date of some operations inpkill(u). Let us prove that

∀u ∈ VR, ∄v′ ∈ Cons(u)− pkill(u), ∃σ ∈ Σ(G) : killσ(u) = σ(v′) + δr(v
′)

Suppose the converse is true.

∃v′ ∈ Cons(u)− pkill(u) =⇒ ∃v ∈ pkill(u)|v′ < v

Let lp(v′, v) be the longest path fromv′ to v.

sincelp(v′, v) ≥ lat(v′) > δr(v
′) =⇒ σ(v) − σ(v′) > δr(v

′)

Sinceδr(v) ≥ 0:

σ(v) + δr(v)− σ(v′) > δr(v
′) =⇒ σ(v) + δr(v) > σ(v′) + δr(v

′)

Then
killσ(u) ≥ σ(v) + δr(v) > σ(v′) + δr(v

′)

In order to prove (2) we create an extended DAGGu
v = G\E

′

, for eachv ∈ pkill(u), to enforcev to be the last
read of the valueu. ∀v′ ∈ pkill(u)−{v}, we add a serial edgee from v′ to v with latencyδ(e) = δr(v

′)−δr(v).
Then, any scheduleσ ∈ Σ(Gu

v) ensuresσ(v) + δr(v) ≥ σ(v′) + δr(v
′) which meanskillσ(u) = σ(v). Let’s

prove thatGu
v is still a DAG. Suppose the converse is true,i.e., ∃u ∈ VR, ∃v ∈ pkill(u) such thatGu

v is cyclic.
Let C = (v, · · · , v′, v) be this cycle where the introduced edge is(v′, v). We know that all the potential killing
operationspkill(u) of a valueu are parallel inG. However, before introducing this edge, a pathP = v ; v′

means thatv < v′ in G which is a contradiction.

Figure 4 shows the two extended DAGs associated withe. The original DAG is presented in Figure 4. Here, we
assume that all read delay are null.e has two potential killing operations{h, i}, so we have two extended DAG:
Ge

i ensures thati kills e, andGe
h that ensures thath kills e.

y

7

A potential killing DAGof G, notedPK(G) = (V, EPK), is built to model the potential killing relations between the
operations, (see Figure 2.c), where:

EPK = {(u, v)| u ∈ VR ∧ v ∈ pkillG(u)}

There may be more than one operation candidate for killing a value. Next, we prove that looking for a unique suitable killer
for each value is sufficient for maximizing the register need: the next theorem proves that for any schedule that assigns more
than one killer for a value, we can build another schedule with at least the same register need such that this value is killed by
only one consumer. Consequently, our formal study will lookfor a unique killer for each value instead of looking for a group
of killers.

Theorem 1 Let G = (V, E, δ) be a DAG and a scheduleσ ∈ Σ(G). If there is at least one excessive value that has more
than one killer according toσ, then there exists another scheduleσ′ ∈ Σ(G) such that:

RNσ′

(G) ≥ RNσ(G)

and each excessive value is killed by a unique killer according toσ′.

Proof :

We suppose that there exists a scheduleσ ∈ Σ(G) with at least one excessive value that has more than one killer:

∃σ ∈ Σ(G), ∃u ∈ EV σ(G) : |killersσ(u)| > 1

whereEV σ(G) is a set of excessive values assumingσ as a schedule forG. We show in this proof how to build
a new scheduleσ′ ∈ Σ(G) such thatu is killed by a unique killer andσ′ needs at least as many registers asσ
does.

Suppose thatu hasj killers according toσ, and we note them:

killersσ(u) = {k1, ..., kj}

with killσ(u) = σ(k1) + δr(k1) = · · · = σ(kj) + δr(kj). We choose one killer within this set to be the only
one killer ofu according toσ′, sayk1. We buildσ′ by “shifting” downk1 and all its descendants with a strictly
positive factor, say 1:

∀v ∈ V σ′(v) =

{

σ(v) + 1 if v ∈↓ k1

σ(v) otherwise

Now, we prove thatσ′ is valid and needs at least as many registers asσ does, and thatk1 is the only killer ofu
according toσ′.

σ′ is valid: we can easily check that any dependence∀e = (v1, v2) ∈ E is satisfied byσ′:

1. if bothv1, v2 6∈↓ k1, then
σ′(v2)− σ′(v1) = σ(v2)− σ(v1) ≥ δ(e)

2. in the case wherev1 6∈↓ k1 ∧ v2 ∈↓ k1

σ′(v2)− σ′(v1) = σ(v2) + 1− σ(v1) > δ(e)

3. the case ofv1 ∈↓ k1 ∧ v2 6∈↓ k1 is impossible because the edgee = (v1, v2) exists;

4. in the case where bothv1, v2 ∈↓ k1, then

σ′(v2)− σ′(v1) = σ(v2) + 1− σ(v1)− 1 ≥ δ(e)

8

RNσ′

≥ RNσ: let t be an excessive clock cycle according toσ, i.e, a clock cyclet where the excessive values
are simultaneously alive during it:

∀v ∈ EV σ(G) : t ∈ LTσ(v)

=⇒ ∀v ∈ EV σ(G) : σ(v) + δw(v) < t ≤ killσ(v)

Here, we want to prove that these excessive values accordingto σ are still alive duringt according toσ′. Any
valuev ∈ EV σ(G) has the same definition date inσ′ as inσ, this is because only↓ k1 nodes have been shifted
down and :

∀v ∈ EV σ(G)− {u} : v 6∈↓ k1

otherwiseLTσ(u) ≺ LTσ(v) which is in contradiction withu, v ∈ EV σ(G). Then

∀v ∈ EV σ(G) : σ′(v) = σ(v)

However, the killing date of any excessive valuev ∈ EV σ(G) could be increased by the translation factor 1:

∀v ∈ EV σ(G) : killσ(v) ≤ killσ′(v)

which gives
∀v ∈ EV σ(G) : σ′(v) < t ≤ killσ′(v)

=⇒ RNσ′

≥ |EV σ(G)| = RNσ(G)

k1 is the unique killer of u: sincek1 ∈ pkillG(u), there is no other potential killerk ∈ pkill(u) ∧ k 6= k1

such ask ∈↓ k1. Otherwise,k1 cannot kill u (pkill operations property). In this caseσ′(k) = σ(k) while
σ′(k1) = σ(k) + 1. We conclude

∀k ∈ pkillG(u)− {k1} σ′(k1) + δr(k1) > σ′(k) + δr(k) =⇒ killersσ′(u) = {k1}

Finally, generalizing to an arbitrary number of excessive values likeu (those that have more than one killer and
that are simultaneously alive withu) is obviously done by iteratively building newσ′ schedule for each of these
values. However, we must take a precaution. Indeed, if we treat an excessive valueu1 by shifting down one
of its killers, and then we proceed to another excessive value u2, we cannot guarantee that shifting downu2’s
killer would not shift down otheru1 consumers (and hence,u1 becomes killed by multiple consumers). To break
this recursivity, we proceed as follows. When we treat an excessive valueu by shifting down its killerk(v), we
add an edge to the DAG from each potential killer ofu (exceptk(u)) to k(u). Hence, when we iterate over the
remaining excessive values, any shifting down action wouldalways guarantee the existence of a unique killer for
the previously treated values. The added edges does not introduce a cycle since they define a strict order between
the potential killing nodes.

y

Corollary 1 Given a DDGG = (V, E, δ), there is always a saturating schedule forG with the property that each saturating
value has a unique killer.

Proof :

Direct consequence of Theorem 1.

y

9

a

j

k

b

h

ed

c

f

j

k

a

fd

g

c

e

h

b

i1

1

1

a cb

h

d f

j

k

f

b

ed

a c d

h

f kh j
⊥

⊤

⊥

⊥

(b) G→k (c) DVk(G)(a)PK(G) with k (d) B(G)

Figure 5. Valid Killing Function and Bipartite Decompositi on

s_1

s_4

s_1

s_4

s_3

s_6

s_5

s_2

t_1 t_2 t_3

s_7s_3

s_6

s_5

s_2

t_1 t_2 t_3

s_7

1 1

1

(a) An arbitrary DAG G with a killing function (b) The extended graph associated with the killing function

Figure 6. An Example of an Invalid Killing Function

Let us begin by assuming akilling function, k, which guarantees that an operationv ∈ pkillG(u) is the killer ofu ∈ VR.
If we assume thatk(u) is the unique killer ofu ∈ VR, we must always verify the following assertion:

∀v ∈ pkillG(u)− {k(u)} : σ(v) + δr(v) < σ
(

k(u)
)

+ δr

(

k(u)
)

(3)

There is a family of schedules that ensures this assertion. In order to define them, we extendG by new serial edges that
force all the potential killing operations of each valueu to be scheduled beforek(u). This leads us to define an extended
DAG associated withk and denotedG→k = G\Ek where:

Ek =
{

e = (v, k(u))|u ∈ VR v ∈ pkillG(u)− {k(u)} with δ(e) = δr(v)− δr

(

k(u)
)

+ 1
}

Then, any scheduleσ ∈ Σ(G→k) ensures Property 3. The necessary existence of such a schedule defines the condition
for a valid killing function:

k is a valid killing function⇐⇒ G→k is acyclic

Figure 5 gives an example of a valid killing functionk. This function is illustrated by bold edges in part (a), where each target
of a bold edge kills its source. Part (b) is the DAG associatedwith k.

According to our definition, invalid killing functions may exist. Figure 6 is an example, where Part (a) illustrates an
arbitrary DAG with a killing function (the source of each bold edge is killed by its sink). Part (b) shows that the extended
graph associated with the killing function is cyclic. According to our definition, the killing function defined in Part (a) isn’t
valid.

Provided a valid killing functionk, we can deduce the values which can never be simultaneously alive for any σ ∈
Σ(G→k). Let ↓R (u) =↓ u ∩ VR be the set of the descendant operationsofu ∈ V that are values. We call themdescendant
values.

Lemma 2 Given a DAGG = (V, E, δ) and a valid killing functionk, then:

10

1. the descendant values ofk(u) cannot be simultaneously alive withu:

∀u ∈ VR, ∀σ ∈ Σ(G→k), ∀v ∈↓R k(u) : LTσ(u) ≺ LTσ(v) (4)

2. there exists a valid schedule which makes any values non-descendant ofk(u) simultaneously alive withu, i.e. ∀u ∈
VR, ∃σ ∈ Σ(G→k):

∀v ∈

⋃

v′∈pkillG(u)

↓R v′

− ↓R k(u) : LTσ(u) ∩ LTσ(v) 6= φ (5)

Proof :

A complete proof is given in [30], Appendix A, Section A.1.4,page 253.

y

We define a DAG which models the values that can never be simultaneously alive when assumingk as a killing function.
Thedisjoint value DAGof G associated withk, and denotedDVk(G) = (VR, EDV) is defined by:

EDV =
{

(u, v)|u, v ∈ VR ∧ v ∈↓R k(u)
}

Any edge(u, v) in DVk(G) means thatu’s lifetime interval is always beforev’s lifetime interval according to any schedule
of G→k, see Figure 5.c (this DAG is simplified by transitive reduction). This definition permits us to state Theorem 2 as
follows.

Theorem 2 Given a DAGG = (V, E, δ) and a valid killing functionk, letAMk be a maximal antichain in the disjoint value
DAGDVk(G). Then:

• the register need of any schedule ofG→k is always less than or equal to the size of a maximal antichainin DVk(G).
Formally,

∀σ ∈ Σ(G→k), RNσ(G) ≤ |AMk|

• there is always a schedule which makes all the values in this maximal antichain simultaneously alive. Formally,

∃σ ∈ Σ(G→k), RNσ(G) = |AMk|

Proof :

First property Let us begin by proving that:

∀σ ∈ Σ(G→k) : RNσ(G) ≤ |AMk|

DVk(G), the disjoint value DAG, models the order between value lifetime in any schedule ofG→k. The defini-
tion of the disjoint value DAG states that∀σ ∈ Σ(G→k), ∀u, v ∈ VR:

u < v in DVk(G)⇐⇒ u < k(u) ≤ v in G→k

If v = k(u), thenσ(u)+δw(u) < σ(v)+δr(v), because of true data dependence. By hypothesis on DAG model
we haveδr(v) ≤ δw(v), thenσ(u) + δw(u) < σ(v) + δw(v). In the case wherev 6= k(u), any path fromk(u)
to v is a data dependence path with strictly positive integer latencies. We deduce that:

∀σ ∈ Σ(G→k) σ
(

k(u)
)

+ δr

(

k(u)
)

≤ σ(v) + δw(v)

11

That is,
killσ(u) ≤ σ(v) + δw(v)

We deduce that the following assertion is correct:

∀σ ∈ Σ(G→k) u ∼ v in DVk(G) =⇒ LTσ(u) ∩ LTσ(v) = φ

We rewrite it:∀σ ∈ Σ(G→k)

LTσ(u) ∩ LTσ(v) 6= φ =⇒ u||v in DVk(G)
=⇒ {u, v} ∈ vsaσ(c) , c ∈ LTσ(u) ∩ LTσ(v)

Then, any values simultaneously alive forσ ∈ Σ(G→k) belong to an antichain inDVk(G):

∀0 ≤ c < σ, ∃A an antichain ofDVk(G) vsaσ(c) ⊆ A

SinceRNσ(G→k) = max0≤c≤σ |vsaσ(c)| and|vsaσ(c)| ≤ |AMk|, we conclude thatRNσ(G) = max0≤c≤σ |vsaσ(c)| ≤
|AMk|.

Second PropertyNow, given a set of excessive valuesAMk, we must prove that:

∃σ ∈ Σ(G→k) : RNσ(G) = |AMk|

We have to build a scheduleσ such thatRNσ(G) = |AMk|. For this purpose, we considerG→k in order to en-
sure the killing relation, and we add some serial edges to enforce the values inAMk in order to be simultaneously
alive. This leads us to a new extended DAGG′ = G→k\

E′

and

∀σ ∈ Σ(G′) ∀u, v ∈ AMk : LTσ(u) ∩ LTσ(v) 6= φ

A sufficient condition that two valuesu, v in AMk must satisfy to be simultaneously alive for any schedule of
G→k is

[

v < u < k(v) ∧ lp(v, u) ≥ δw(v)− δw(u) ∧

∧ lp
(

u, k(v)
)

> δw(u)− δr

(

k(v)
)

]

(6)

∨
[

u < v < k(u) ∧ lp(u, v) ≥ δw(u)− δw(v) ∧

∧ lp
(

v, k(u)
)

> δw(v)− δr

(

k(u)
)

]

(7)

∨
[

k(u) = k(v)
]

(8)

with lp(u, v) for u, v ∈ V denoting the longest path fromu to v.

These conditions ensure that∀σ ∈ Σ(G→k) ∀u, v ∈ VR:

u, v satisfy (6) =⇒ σ(u) + δw(u) ≥ σ(v) + δw(v)
∧ σ(k(v)) + δr(k(v)) > σ(u) + δw(u)

u, v satisfy (7) =⇒ σ(v) + δw(v) ≥ σ(u) + δw(u)
∧ σ(k(u)) + δr(k(u)) > σ(v) + δw(v)

u, v satisfy (8) =⇒ killσ(u) = killσ(v)

Then, by using usual interval order algebra notations:

u, v satisfy Cond. (6) =⇒ ¬(LTσ(u) ≺ LTσ(v) ∨ LTσ(u) ≻ LTσ(v))
u, v satisfy Cond. (7) =⇒ ¬(LTσ(u) ≻ LTσ(v) ∨ LTσ(u) ≺ LTσ(v))
u, v satisfy Cond. (8) =⇒ LTσ(u) finishesLTσ(v)

12

If two values inu, v ∈ AMk do not satisfy any of these conditions, then we use Algorithm1 to enforce them. This
algorithm uses the boolean functionvsaG′(u, v) to check if two valuesu, v satisfy one of the above conditions.
We add iteratively serial edges until all values inAMk satisfy one of these conditions. The added serial edges
do not introduce a cycle and any scheduleσ of G′ hasRNσ(G′) = |AMk|. All this is proved by Lemma 3, as
follows.

y

Algorithm 1 ExtendedG→k to enforce values to be simultaneously alive
Require: a valid killing functionk

construct the extended graphG→k associated withk
G′ ← G→k {the final extended graph is initialized}
search for a maximal antichainAMk in the disjoint value DAGDVk(G)
for all u ∈ AMk do

for all v ∈ AMk| u 6= v do
if ¬vsaG′(u, v) then

if u||v in G′ then
if ¬(k(u) < v) then

add the serial edgese = (u, v), e′ = (v, k(u)) to G′ with δ(e) = δw(u) − δw(v) andδ(e′) = δw(v) −
δr

(

k(u)
)

+ 1
else{¬(k(v) < u) certainly}

add the serial edgese = (v, u), e′ = (u, k(v)) to G′ with δ(e) = δw(v) − δw(u) andδ(e′) = δw(u) −
δr

(

k(v)
)

+ 1
end if

else
if v < u then

add the serial edgese = (v, u) ande′ = (u, k(v)) to G′ with δ(e) = δw(v) − δw(u) andδ(e′) = δw(u) −
δr

(

k(v)
)

+ 1
else{u < v}

add the serial edgese = (u, v) ande′ = (v, k(u)) to G′ with δ(e) = δw(u) − δw(v) andδ(e′) = δw(v) −
δr

(

k(u)
)

+ 1;
end if

end if
end if

end for
end for

Lemma 3 Let G = (V, E, δ) be a DAG. Letk be a killing function andAMk be a maximal antichain in the disjoint value
DAGDVk(G). The extended graphG′ = G→k\

E′

produced by Algorithm 1 has the two following properties:

1. it a DAG;

2. for any scheduleσ of G′, the lifetime intervals of any two values belonging to the maximal antichainAMk interfere.
Formally,

∀u, v ∈ AMk, ∀σ ∈ Σ(G′) : LTσ(u) ∩ LTσ(v) 6= φ

Proof :

We proceed by induction. We prove that after exiting Algorithm 1,G′ is still a DAG. We also prove that the
algorithm makes all values inAMk satisfying one of the conditions (6), (7) or (8). For this last condition, if
two values do not satisfy it in the DAGG→k, they cannot satisfy it inG′: this is because the killing operations

13

u

w w

v

e

e’

u

e

e’

v

k(v)

(a) u < v <k(u) (b) v < u <k(v)

impossible impossible

k(u)

Figure 7. Making Values Simultaneously Alive

has been fixed inG→k. So, if u, v do not satisfy Condition (8), Algorithm 1 can only force themto satisfy
Condition (6) or Condition (7).

We prove also the following property

∀u, v ∈ AMk ¬
(

k(v) < u ∨ k(u) < v
)

in G′

which is the same as proving that Algorithm 1 guarantees thatall values inAMk are forced to be simultaneously
alive inG′:

∄u, v ∈ AMk|u ∼ v in DVk(G′)

Initially, this is correct becauseu, v ∈ AMk =⇒ u 6∈↓R k(v)∧ v 6∈↓R k(u). In this proof, we noteG′
i the graph

built after exiting iterationi. Suppose that after exiting iterationi− 1, G′
i−1 is still a DAG and

∀u, v ∈ AMk ¬
(

k(v) < u ∨ k(u) < v
)

in G′
i−1

Let ui andvi be the two chosen values at iterationi which do not satisfy any of the conditions. Let us prove
now thatG′

i is still a DAG and the two chosen valuesui, vi ∈ AMk satisfy one of the conditions after exiting
iterationi. Furthermore, we prove that after exiting this iteration

∄w ∈ AMk|k(ui) < w ∨ k(vi) < w in G′
i

Our algorithm introduces serial edges in four cases:

1. ui||vi in G′
i−1, then

• if ¬(k(ui) < vi), the two introduced edgese = (ui, vi), e
′ = (vi, k(ui)) cannot introduce a cycle,

becauseui < k(ui) in G′
i−1, see Figure 7.a. Now they are satisfying Cond. (7). Also, after introducing

these edges, the following property is satisfied:

∄w ∈ AMk|k(ui) < w ∨ k(vi) < w in G′
i

Suppose the converse is true,i.e.,

∃w ∈ AMk|k(ui) < w ∨ k(vi) < w in G′
i

If k(ui) < w in G′
i, =⇒ k(ui) < w in G′

i−1 because we have not introduced a serial edge fromk(ui),
which is impossible because of induction hypothesis.
If k(vi) < w in G′

i, =⇒ k(vi) < w in G′
i−1 because we have not introduced a serial edge fromk(vi),

which is also impossible because of induction hypothesis;

14

• else¬(k(vi) < ui) certainly, because otherwise

vi < k(vi) < ui ∧ ui < k(ui) < vi =⇒ ui < vi ∧ vi < ui in G′
i−1 (impossible)

Then the introduced edgese = (vi, ui), e
′ = (ui, k(vi)) cannot introduce any cycle becausevi <

k(vi) in G′
i−1, see Figure 7.b. Now they are satisfying Cond. (6). Also, after introducing these edges,

the following property is satisfied:

∄w ∈ AMk|k(ui) < w ∨ k(vi) < w in G′
i

The proof is similar to the above case;

2. if vi < ui in G′
i−1, then by induction hypothesis¬(k(vi) < ui) in G′

i−1. The two introduced edges
e = (vi, ui) ande′ = (ui, k(vi)) cannot cause any cycle. Now they are satisfying Cond. (6). Also, after
introducing these edges,

∄w ∈ AMk|k(ui) < w ∨ k(vi) < w in G′
i

The proof is similar to the case above;

3. ui < vi in G′
i−1, this case is similar to above. Now they are satisfying Cond.(7).

After n = |AMk|
2 iterations, we conclude that :

∀u, v ∈ AMk u, v satisfy one of the conditions (6), (7) or (8)

and then∀u, v ∈ AMk ∀σ ∈ Σ(G′) LTσ(u) ∩ LTσ(v) 6= φ

y

Theorem 2 allows us to rewrite the RS formula as

RS(G) = max
k a valid killing function

|AMk|

whereAMk is a maximal antichain inDVk(G). We refer to the problem of finding such a killing function as themaximizing
maximal antichainproblem (MMA). We call each solution for the MMA problem asaturating killing function, andAMk

its saturating values. A saturating killing function means a killing function that produces a saturated register need. The
saturating values are the values that are simultaneously alive, and their number reaches the maximal possible registerneed.
Unfortunately,

Theorem 3 Given a DAGG = (V, E, δ), computing a saturating killing function is NP-complete.

Proof :

A complete proof is given in [30], Appendix A, Section A.1.5,page 253.

y

Corollary 2 Given a DAGG = (V, E, δ), computing the register saturation is NP-complete.

Proof :

A complete proof is given in [30], Appendix A, Section A.1.6,page 257.

y

15

4 A Heuristics for Computing the RS

This section presents our heuristics to approximate an optimal k by another valid killing functionk∗. An optimalk is
simply a killing function that defines the optimal register saturation. We have to choose a killing operation for each value
such that we maximize the parallel values inDVk(G). Our heuristics compute a valid killing function by focusing on the
potential killing DAGPK(G), starting from source nodes to sinks. Our aim is to select a group of killing operations for a
group of parents that keeps as many descendant values alive as possible. The main steps of our heuristics are:

1. decompose the potential killing DAGPK(G) into connected bipartite components;

2. for each bipartite component, search for the best saturating killing set (defined below);

3. choose a killing operation within the saturating killingset (defined below).

We decompose the potential killing DAG into connected bipartite components (CBC) in order to choose a common saturating
killing set for a group of parents. Our purpose is to have a maximum number of children and their descendant’s values
simultaneously alive with their parent’s values. A CBCcb = (Scb, Tcb, Ecb) is a partition of a subset of operations into two
disjoint sets where:

• Ecb ⊆ EPK is a subset of the potential killing relations;

• Scb ⊆ VR is the set of the parent values, such that each parent is killed by at least one operation inTcb;

• Tcb ⊂ V is the set of the children, such that any operation inTcb can potentially kill at least one value inScb.

A bipartite decomposition of the potential killing graphPK(G) is the set (see Figure 5.d)

B(G) = {cb = (Scb, Tcb, Ecb)| ∀e ∈ EPK ∃cb ∈ B(G) : e ∈ Ecb}

Note that the parents, as well as the children, are parallel inside the potential killing DAGPK(G). Formally,

∀cb ∈ B(G) ∀s, s′ ∈ Scb ∀t, t
′ ∈ Tcb : s||s′ ∧ t||t′ in PK(G)

A saturating killing setSKS(cb) of a bipartite componentcb = (Scb, Tcb, Ecb) is a subset of childrenT ′
cb ⊆ Tcb. Such

subset provides a unique killer for each value present in thesetScb of parents. Such unique killer is chosen so as to minimize
the number of descendant values of all the killers inTcb. The dual consequence is to get a maximal number of values
simultaneously alive with the parent values belonging toScb.

Definition 1 (Saturating Killing Set) Given a DAGG = (V, E, δ), a saturating killing setSKS(cb) of a connected bipar-
tite componentcb ∈ B(G) is a subsetT ′

cb ⊆ Tcb, such that:

1. killing constraints: each parent must be killed

⋃

t∈T ′

cb

Γ−
cb(t) = Scb

2. objective function: minimize the number of descendant values ofT ′
cb

min |
⋃

t∈T ′

cb

↓R t|

Unfortunately, computing a SKS is also NP-complete (the proof is the same as Theorem 3’s proof).

16

A Heuristics for Finding a SKS Intuitively and according to Lemma 2, we should choose a subset of children in a bipartite
component that would kill the greatest number of parents while minimizing the number of descendant values. We define a
cost functionρ that enables us to choose the best candidate child. Given a bipartite componentcb = (Scb, Tcb, Ecb) and a set
Y of (cumulated) descendant values and a setX of not (yet) killed parents, the cost of a childt ∈ Tcb is :

ρX,Y (t) =

|Γ−

cb
(t)∩X|

|↓Rt∪Y | if ↓R t ∪ Y 6= φ

|Γ−
cb(t) ∩X | otherwise

The first case enables us to select the child which covers the greatest number of non-killed parents, with a corresponding
minimum number of descendant values. If there are no descendant values, then we choose the child that covers the most
non-killed parents.

Algorithm 2 Greedy-k: a heuristics for the MMA problem

Require: a DAGG = (V, E, δ)
for all valuesu ∈ VR do

k∗(u) = ⊥ {all values are initially non killed}
end for
buildB(G) the bipartite decomposition ofPK(G).
for all bipartite componentcb = (Scb, Tcb, Ecb) ∈ B(G) do

X := Scb {all parents are initially uncovered}
Y := φ {initially, no cumulated descendant values}
SKS∗(cb) := φ
while X 6= φ do {build the SKS forcb}

select the childt ∈ Tcb with the maximal costρX,Y (t)
SKS∗(cb) := SKS∗(cb) ∪ {t}
X := X − Γ−

cb(t){remove covered parents}
Y := Y ∪ ↓R t {update the cumulated descendent values}

end while
for all t ∈ SKS∗(cb) do {in decreasing cost order}

for all parents ∈ Γ−
cb(t) do

if k∗(s) = ⊥ then {kill non killed parents oft}
k∗(s) := t

end if
end for

end for
end for

Algorithm 2 gives a greedy heuristics that searches for an approximationSKS∗ and computes a killing functionk∗ in
polynomial time. Our heuristics has the following property.

Corollary 3 LetG = (V, E, δ) be a DAG. IfPK(G) is a tree, then Greedy-k computes an optimal register saturation with
a polynomial time complexity.

Proof :

Trivially, each value has at most one possible killer,i.e., there is only one choice for the killing function. Then,
the saturating values are simply the sources of the potential killing DAG PK(G). Expression trees for instances
belong to this class of DAGs, because their potential killing DAGs are trees.

y

17

a cb

d

h

f

j

k

a

j

k

cb

h

d fe

4

3/1

2/2 2/3

1/1

⊥

(a)PK(G) with k∗ (b) DVk∗ (G)

Figure 8. Example of Computing the Register Saturation

Since the approximated killing functionk∗ is valid, Theorem 2 ensures that we can always find a valid schedule which
requires exactly|AMk∗ | registers. Consequently, our heuristics do not compute an upper bound of the optimal register
saturation, and the optimal RS can be greater than the one computed by Greedy-k. A conservative heuristic which computes
a solution exceeding the optimal RS cannot ensure the existence of a valid schedule which reaches the computed limit, and
hence it would imply an unnecessary RS reduction process anda waste of registers. The validity of the killing function is
a key condition because it ensures the existence of a register allocation requiring exactly|AMk∗ | registers. As a summary,
here are our steps to compute the RS:

1. apply Greedy-k onG. The result is a valid killing functionk∗;

2. construct the disjoint value DAGDVk∗(G);

3. find a maximal antichainAMk∗ of DVk∗(G) using Dilworth decomposition [11]. The approximated set ofsaturating
values is the nodes belonging toAMk∗ . The approximated RS is equal toRS∗(G) = |AMk∗ | ≤ RS(G).

Figure 8.a shows a saturating killing functionk∗ computed by Greedy-k: bold edges mean that each source is killed by its
sink. Each killer is labeled by its costρ. Part (b) gives the disjoint value DAG associated withk∗. The Saturating values are
{a, b, c, d, f, j, k}, so the RS is 7.

5 Exact Register Saturation Computation

First, if |VR,t|, the total number of values of typet, is less than or equal toRt, the number of available registers of typet,
then we are sure that any schedule cannot require more than|VR,t| ≤ Rt registers. Otherwise, we must compute the register
saturation (RS).

Let RNσ
t (G) denote the register need of register typet given a scheduleσ ∈ Σ(G), which is equal to the maximal number

of values of typet simultaneously alive. The RS of a register typet for a DAGG is the maximal register need of typet among
all valid schedules ofG:

RSt(G) = max
σ∈Σ(G)

RNσ
t (G)

Below, we give the set of variables and constraints of an exact integer linear programming (intLP) formulation for com-
puting the optimalRSt(G). Our intLP formulation expresses the logical operators (=⇒, ∨, ⇐⇒) and the max operator
(max(x, y)) by introducing extra binary variables. However, expressing these additional operators requires that we bound
the domain of the integer variables, as explained below.

5.1 Expressing Logical Operators by Integer Programming

In [17], the authors show how to model the disjunctive operator∨. Consider the problem:
{

maximize (or minimize)f(x)
subject to :g(x) ≥ 0 ∨ h(x) ≥ 0

18

By introducing a binary variableα ∈ {0, 1}, this disjunction is equivalent to:

{

g(x) ≥ αg
h(x) ≥ (1− α)h

whereg andh are two known non null finite lower bounds forg andh respectively. We deduce the linear constraints of any
other logical operator:

1. g(x) ≥ 0 =⇒ h(x) ≥ 0 can be writteng(x) < 0 ∨ h(x) ≥ 0

2. g(x) ≥ 0⇐⇒ h(x) ≥ 0 can be written
(

g(x) ≥ 0 ∧ h(x) ≥ 0
)

∨
(

h(x) < 0 ∧ g(x) < 0
)

Also, z = max(x, y) can be written

{

x ≥ y =⇒ z = x
y ≥ x =⇒ z = y

.

Thanks to the use of binary variables for expressing logicaloperators, our intLP formulation of register constraints contains
a polynomial number of variables and constraints,i.e, it depends only on the number of nodes and edges of the input DAG.
Unfortunately, this is not the case of the existing techniques in the literature where the number of variables and constraints
is pseudo-polynomial, since this number depends on the total schedule time. The following section presents our intLP
formulation of RS computation.

5.2 Scheduling Variables

For all operationsu ∈ V , we define the integer variableσu ≥ 0 that identifies the schedule time for each operation. Note
that these schedule variables do not represent the final schedule under resource constraints (that will be computed after our
RS pass), they only represent intermediate variables for our intLP formulation. The first linear constraints are those that
describe precedence relations (the constraints that ensure the existence of at least one valid schedule), so we write into the
intLP system:

∀e = (u, v) ∈ E : σv − σu ≥ δ(e)

In order to bound the domain set of our variables, we defineT a worst possible schedule time. We chooseT sufficiently
large, where for instanceT =

∑

e∈E δ(e) is a suitable worst total schedule time (the extreme case of asequential schedule,
i.e, no ILP). Then, we write the following constraint:

σ⊥ ≤ T

As a consequence, we deduce for anyu ∈ V :

• σu ≥ σu = LongestPathTo(u) is the shortest schedule time;

• σu ≤ σu = T − LongestPathFrom(u) is the longest schedule time according to the worst total schedule timeT .

5.3 Register Need Constraints

Interference Graph The lifetime interval of a valueut of typet is (given a scheduleσ)

LTσ(ut) =]σu + δw,t(u), max
v∈Cons(ut)

(

σv + δr,t(v)
)

]

That is, we assume that a value written at instantc in a register is available one step later. Thus, if an operationu reads from
a registerr at instantc while another operationv is writing to ther at the same time,u does not getv’s result, but rather gets
the value previously stored inr. Note that these semantics are explicitly chosen and encoded in the definition ofLTσ(ut),
and are not a limitation of the model.

We define for each valueut the variablekut ≥ 0 which computes its killing date (the last time thatut is read). Since our
variable domains are bounded (assuming a finiteT), we know thatkut is bounded by the two following finite schedule times:

∀t ∈ T , ∀ut ∈ VR,t : kut < kut ≤ kut

where

19

• kut = σu + δw,t(u) is the first possible definition date ofut;

• kut = maxv∈Cons(ut)

(

σv + δr,t(v)
)

is the latest possible killing date ofut.

We use the linear constraints of the max operator to computekut as explained in Section 5.1. We write into the intLP system:

∀ut ∈ VR,t : kut = max
v∈Cons(ut)

(

σv + δr,t(v)
)

Now, we can considerHt the undirected interference graph ofG for the register typet. For any pair of distinct values
ut, vt ∈ VR,t, we define a binary variablest

u,v ∈ {0, 1} such that it is set to 1 if the two lifetimes intervals of typet interfere:
∀t ∈ T , ∀ coupleut, vt ∈ VR,t:

st
u,v =

{

1 if LTσ(ut) ∩ LTσ(vt) 6= φ
0 otherwise

The number of variablesst
u,v is the number of combinations of two values among|VR,t|, i.e.,

(

|VR,t| × (|VR,t| − 1)
)

/2.
LTσ(ut) ∩ LTσ(vt) = φ means that one of the two lifetime intervals is “before” the other,i.e.,

(

LTσ(ut) ≺ LTσ(vt)
)

∨
(

LTσ(vt) ≺ LTσ(ut)
)

, where≺ denotes the “before” relation in interval algebra. Then, wehave
to express the following constraints:

st
u,v = 1⇐⇒ ¬

(

LTσ(ut) ≺ LTσ(vt) ∨ LTσ(vt) ≺ LTσ(ut)
)

whereLTσ(ut) ≺ LTσ(vt) iff kut ≤ σv + δw,t(v). The negation of this constraint iskut > σv + δw,t(v), i.e.,
kut − σv − δw,t(v)− 1 ≥ 0. Sincest

u,v ∈ {0, 1}, these variables are constrained as follows :

st
u,v ≥ 1⇐⇒

{

kut − σv − δw,t(v) − 1 ≥ 0
kvt − σu − δw,t(u)− 1 ≥ 0

Given three logical expressions(P, Q, S), (P ⇐⇒ (Q ∧ S)) is equivalent to the expression(P ∧ Q ∧ S) ∨ (¬P ∧ ¬Q) ∨
(¬P ∧ ¬S). We write these two disjunctions with linear constraints byintroducing binary variables [30]) and by computing
the finite lower bounds of the linear functions.

Maximal Clique in the Interference Graph The maximum number of values of typet simultaneously alive corresponds
to a maximal clique inHt = (VR,t, Et), where(ut, vt) ∈ Et iff their lifetime intervals interfere (st

u,v = 1). For simplicity,
rather than considering the interference graph itself, we prefer to consider its complementary graphH ′

t = (VR,t, E
′
t) where

(ut, vt) ∈ E ′t iff their lifetime intervals donot interfere (st
u,v = 0). Then, the maximum number of values of typet simulta-

neously alive corresponds to a maximal independent set inH ′
t.

To write the constraints that describe independent sets (IS), we define a binary variablexut ∈ {0, 1} for each value
xut ∈ VR,t such thatxut = 1 if ut belongs to some IS ofH ′

t. We express in the model the following linear constraints:

∀xut , xvt ∈ VR,t : st
u,v = 0 =⇒ xut + xvt ≤ 1

This equations means that if two nodesu andv are connected inH ′, then one and only one of them may belong to a given
IS.

5.4 Linear Objective Function and General Remarks

The register requirement of typet is a maximal IS inH ′
t, i.e., the maximal

∑

ut∈VR,t
xut . Thus, the register saturation of

typet is computed by:
Maximize

∑

ut∈VR,t

xut

The total number of integer variables in the intLP formulation is bounded byO(|V |2), and the total number of constraints
is at mostO(|E|+ |V |2). Note that our intLP formulation may be optimized by considering that:

20

• an edgee = (u, v) in the initial DAG is redundant for the scheduling constraints and can be safely ignored iflp(u, v) >
δ(e) wherelp(u, v) denotes the longest path fromu to v (with the condition that this edge doesn’t belong to this longest
path);

• two values(ut, vt) ∈ VR,t can never be simultaneously alive iff for all the possible schedules, one value is always
defined after the killing date of the other. This is the case ifany of the two following conditions is satisfied:

∀v′ ∈ Cons(vt) : lp(v′, u) ≥ δr(v
′)− δw(u)

∨ ∀u′ ∈ Cons(ut) : lp(u′, v) ≥ δr(u
′)− δw(v)

The next section explores the problem of reducing RS if it exceeds the number of available registers.

6 The Complexity of Register Saturation Reduction

In the case where the register saturationRSt(G) exceeds the number of available registersRt of the typet, then we
must add extra serial edges into the DAGG to reduceRSt(G) below this limit. The added edges must save ILP as much as
possible by taking care of the critical path. We note byE the set of extra edges that we add toG to build a new extended
DAG, namelyG = G\E , such thatRSt(G) ≤ Rt. We want to first solve the formal problem stated below.

Definition 2 (ReduceRS Problem)LetG = (V, E, δ) be a DAG. LetRt andP be two positive integers. Does there exist an
extended DDGG = G\E of G such that:

RSt(G) ≤ Rt

and
CriticalPath(G) ≤ P

Note that an extended DDG may contain a cycle (as we will see later), while an extended DAG is restricted to stay a DAG.

Theorem 4 The ReduceRS problem is NP-hard.

Proof :

We prove that ReduceRS problem reduces from the problem of scheduling under register constraints (SRC). Let
us start by defining the latter problem. For the sake of clarity, we assume that the considered register typet is
implicit (we do not includet in our notations inside this proof).

Definition 3 (SRC problem) Let G = (V, E, δ) be a DAG,R be a positive integer, andP be a length. Does
there exist a valid scheduleσ ∈ Σ(G) such that:

RNσ(G) ≤ R

and
total schedule time≤ P

The SRC problem has been proven NP-hard in [13]. Now we prove the equivalence of ReduceRS and SRC in
terms of computational complexity.

1. ReduceRS=⇒ SRC
Let G be a solution for the ReduceRS problem. Then trivially, any “as soon as possible” scheduleσ ∈ Σ(G) is
a solution for SRC.

2. SRC=⇒ ReduceRS
Let σ be a solution for SRC,i.e., RNσ(G) ≤ R with a total schedule time of≤ P . We build an extended DDG
G by adding serial edges to impose the same precedence relations as defined byσ on the value lifetimes of any
schedule ofG. Then,∀u, v ∈ VR|LTσ(u) ≺ LTσ(v) we add the following edges:

21

• If v ∈ Cons(u), add serial edges from the readers ofu (exceptv) to v; the set of added edges is:
{

e = (u′, v)| u′ ∈ Cons(u)− {v}
}

• Otherwise, add serial edges from allu’s readers tov; the set of added edges is:
{

e = (u′, v)| u′ ∈ Cons(u)
}

The latency of these added edges has to be assigned based on the target architecture. There are two cases:

1. in the case of superscalar codes, there are sequential code semantics. So, the latency of each added edge is
set to 1;

2. in the case of VLIW or EPIC/IA64, there are reading and writing offsets. Thus, for each added edge
e = (u′, v), the latency is set toδ(e) = δr(u

′)− δw(v).

Indeed, the added edges and the chosen latencies force the following assertion:

LTσ(u) ≺ LTσ(v) =⇒ ∀σ′ ∈ Σ(G) : LTσ′(u) ≺ LTσ′(v)

Then, for all values not simultaneously alive according toσ, there is no scheduleσ′ of G that makes them
simultaneously alive. Formally, :

¬
(

∃u, v ∈ VR, LTσ(u) ≺ LTσ(v), ∃σ′ ∈ Σ(G)| LTσ′(u) ∩ LTσ′(v) 6= φ
)

In other words, we ensure that any schedule ofG will guarantee the precedence relations between the lifetime
intervals ofG accordingσ. Consequently, any scheduleσ′ of G cannot require more than the register need ofσ
and

RS(G) = RNσ(G) ≤ R

A solution for the SRC problem may create a cycle in the solution of ReduceRS. We are sure that if any cycle
is introduced inG, then it must be non-positive because there exists at least the valid scheduleσ ∈ Σ(G). Con-
sequently, a solution of the ReduceRS problem may produce a cyclic DDG. We will see later how to eliminate
these solutions.

With regard to the critical path ofG, the introduced serial edges ensure that at leastσ ∈ Σ(G). Since there exists
such a schedule with a total time≤ P , the critical path ofG cannot be longer thanP .

y

The next section provides an algorithmic heuristics that tries to reduce RS below a limit. This section follows the ideas
and notations used in Section 4.

7 An Algorithmic Heuristics for Reducing the Register Saturation

For clarity and without loss of generality, let us focus on only one register type2. Then, our notations becomeVR for
the set of values of the implicit type we consider,ER for the set of flow edges through a register of that type,δr andδw for
reading/writing delays, andRNσ(G) for the register need of the type we consider. Also, we use thenotationu for both the
operationu and the value of the considered type it produces.

In this section we build an extended DAGG = G\E such that the RS is limited by a strictly positive integer (number of
available registers) with the respect of the critical path.LetR be this limit. Then :

∀σ ∈ Σ(G) : RNσ(G) ≤ RS(G) ≤ R

2If more than one register type exists, we apply our algorithmon each type.

22

a

j

k

b

h

ed

c

f

a

fd

g

c

e

h

b

i

a

d

c

e

h

b

f
i

g

a

d

c

e

h

b

f
i

g

5

3

3

5

4

17

14

4
4

44

4

3 5

1

j
k

j
k

j
k

0 00

−2 −2−2

⊥

⊥

⊤

⊥

⊤

⊥

⊤

(a) the DDGG (c) a → d(b) PK(G) (d) a → k

Figure 9. Value Serialization

This section presents a heuristics that adds serial edges toprevent some saturating values inAMk (according to a saturating
killing function k) from being simultaneously alive for any schedule. Also, wetake care not to increase the critical path, if
possible.

Serializing two valuesu, v ∈ VR means that the killing ofu must always be carried out before the definition ofv, or
vice-versa, as illustrated by Figure 9. A value serializationu→ v for two valuesu, v ∈ VR is defined by:

• if v ∈ pkillG(u) then add the serial edges
{

e = (v′, v)|v′ ∈ pkillG(u) − {v}
}

. Textually, this means that ifv is a
potential killer ofu, the value serializationu→ v means to add a serial edge from any potential killer ofu (exceptv)
to v itself, see Figure 9.c.

• otherwise add the serial edges
{

e = (u′, v)|u′ ∈ pkillG(u) ∧ ¬(v < u′)
}

Textually, this means that ifv is not a
potential killer ofu, the value serializationu→ v means to add a serial edge from any potential killer ofu to v itself,
see Figure 9.d.

The latency of these added edges has to be chosen depending onthe target codes. We have two cases:

1. in the case of superscalar codes, the semantics is sequential. So, the latency of each added edge is set to 1;

2. in the case of VLIW or EPIC/IA64, there exist reading and writing offsets3. Thus, for each added edgee = (u′, v), the
latency is set toδ(e) = δr(u

′)− δw(v).

In order to not violate the DAG property (we must not introduce a cycle), some serializations must be filtered out. The
condition for applyingu→ v is that∀v′ ∈ pkillG(u) : ¬(v < v′). We chose the best serialization within the set of all the
possible serializations by using a cost functionω(u→ v) = (ω1, ω2), such that:

• ω1 = µ1−µ2 tries to predict how much RS would be reduced (in the best case) if we carry out this value serialization,
where

– µ1 is the number of saturating values serialized afteru if we carry out this value serializationu→ v;

– µ2 is the predicted number ofu’s descendant values that can become simultaneously alive with u;

• ω2 is the predicted increase in the critical path.

Our heuristics is described in Algorithm 3. It iterates value serializations within the saturating values until we get the limitR
or until no more serializations are possible (or none is expected to reduce the RS). One can check that if there is no possible
value serialization in the original DAG, our algorithm exits at the first iteration of the outer while-loop. If it succeeds, then
any schedule ofG needs at mostR registers. If not, it still decreases the original RS, and thus limits the register need.
Introducing and minimizing the spill code is another NP-complete problem studied in [3, 4, 9, 10, 27] and is not addressed
in this article.

Now, we explain how to compute the prediction parametersµ1, µ2, ω2. We noteGi the extended DAG of stepi, ki its
saturating function, andAMki

its saturating values and↓Ri
u the descendant values ofu in Gi:

3On EPIC/IA64 architectures, a writer and a reader can be scheduled at the same instruction group, so the writing delay is statically considered as zero.

23

1. (u→ v) ensures thatki+1(u) < v in Gi+1. According to Lemma 2,µ1 = | ↓Ri
v ∩AMki

| is the number of saturating
values inGi which cannot be simultaneously alive withu in Gi+1;

2. new saturating values could be introduced intoGi+1: if v ∈ pkillGi
(u), we forceki+1(u) = v. According to Lemma 2,

µ2 =

∣

∣

∣

∣

∣

∣

⋃

v′∈pkillGi
(u)

↓Ri
v′

− ↓Ri
v

∣

∣

∣

∣

∣

∣

is the number of values which could be simultaneously alive with u in Gi+1. µ2 = 0 otherwise;

3. if we carry out(u → v) in Gi, the introduced serial edges could enlarge the critical path. Let lpi(v
′, v) be the longest

path going fromv′ to v in Gi. The new longest path inGi+1 going through the serialized nodes is:

max
introducede=(v′,v)

δ(e)>lpi(v
′,v)

lpi(⊤, v′) + lpi(v,⊥) + δ(e)

If this path is greater than the critical path inGi, thenω2 is the difference between them, 0 otherwise.

Algorithm 3 Value Serialization Heuristics

Require: a DAGG = (V, E, δ) and a strictly positive integerR
G := G
computeAMk, saturating values ofG;
while |AMk| > R do

construct the setUk of all admissible serializations between saturating values inAMk with their costs (ω1, ω2);
if ∄(u→ v) ∈ U |ω1(u→ v) > 0 then {no more possible RS reduction}

exit;
end if
X := {(u→ v) ∈ U |ω2(u→ v) = 0} {the set of value serializations that do not increase the critical path}
if X 6= φ then

choose a value serialization(u→ v) in X with the minimum costR− ω1;
else

choose a value serialization(u→ v) in X with the minimum costω2;
end if
carry out the serialization(u→ v) in G;
compute the new saturating valuesAMk of G;

end while
ensure potential killing operations property{check longest paths between pkill operations}

At the end of the algorithm, we apply a general check step to ensure the potential killing property proved in Lemma 1 (page
6) for the original DAG. Lemma 1 proves that the operations which do not belong topkillG(u) cannot kill the valueu.
After adding the serial edges that buildG, we may violate this assertion because we introduce some edges with negative
latencies. If this assertion is not verified, the computed RSmay be incorrect. To overcome this problem, we must guarantee
the following assertion:∀u ∈ VR, ∀v′ ∈ Cons(u)− pkillG(u) :

∃v ∈ pkillG(u)|v′ < v in G =⇒ lpG(v′, v) > δr(v
′)− δr(v) (9)

In fact, this problem occurs if we create a path inG from v′ to v wherev, v′ ∈ pkillG(u). If assertion (9) is not verified, we
add a serial edgee = (v′, v) with δ(e) = δr(v

′)− δr(v) + 1 as illustrated in Figure 10: after two value serializationsduring
step 1 and 2, assertion (9) is forced to be verified during step3.

Example 1 Figure 11 gives an example of reducing the RS of our initial DAG (Figure 2 page 4) from 7 to 4 registers. Remem-
ber that the saturating values ofG areAMk = {a, b, c, d, f, j, k}. Part (a) shows all the possible value serializations within
these saturating values. Our heuristics selectsa → f as a candidate, since it is expected to eliminate 3 saturating values

24

d

b c

fe
1-2

-2

a

d

3

b c

fe

3 3 3

a

d

b c

fe
-2

a

d

b c

fe

-2

-2

a

initial DAG (1) b → d (2) a → f (3) ensure pkill property fore andf

Figure 10. Checking the Potential Killers Property

f

j

k

h

d

a

c
b

a

j

k

b

h

ed

c

f

a

h

d

b
c

k

f

j

j

k

a

fd

g

c

e

h

b

i

(a) all the possible value serializations

-4

1

-4

1

⊥

⊤

⊥

(c) PK(G) with k∗ (d) DVk∗ (G)(b) G

Figure 11. Register Saturation Reduction

without increasing the critical path. The maximal introduced longest path through this serialization is(⊤, a, d, f, k,⊥) = 8,
which is less than the original critical path (26). The extended DAGG is presented in part (b) where the value serialization
a→ f is introduced: we add the serial edges(e, f) and(d, f) with a -4 latency. Finally, we add the serial edges(e, f) and
(d, f) with a unit latency to ensure thepkillG(b) property. The whole critical path does not increase and RS isreduced to 4.
Part (c) gives a saturating killing function forG, presented with bold edges inPK(G). DVk(G) is presented in part (d) to
show that the new RS is 4 floating point registers.

After providing an approximate algorithm for RS reduction,the next section presents an optimal exact method using
integer linear programming.

8 An Optimal Method for RS Reduction

The proof of Theorem 4 gives the intuition for our optimal solution for the ReduceRS problem using integer programming.
It is computed in two steps:

1. we first compute a valid scheduleσ such that the register need of typet is maximized but does not exceedRt, while
the total schedule time is bounded. Again, this schedule is different from the final one to be computed under resource
constraints;

2. then, we add serial edges as described by the proof of Theorem 4. This results in an extended DDG that has a bounded
register saturation with a minimized critical path.

In order to compute such a minimal schedule that does not require more thanRt registers, we use our intLP formulation
previously defined in Section 5 that maximizes the register need. We keep all the constraints and variables of Section 5,
except those that compute a maximal independent set. Now, weuse a binary variablexi

ut for each valueut which is set to 1
if the valueut is stored in the registeri. Since there areRt available registers, we have at most|V | ×Rt variables. SinceRt

is a constant in our problem (the number of registers in the target machine), the number of these variables isO(|V |).
The intLP system tries to build a coloring of the interference graph with exactlyRt colors (the maximal number of

available registers). If no solution can be found withRt registers, then solve another intLP after decrementingRt (until to
1). If no final solution can be found when reaching one available register, then the register saturation cannot be reducedand
spilling is unavoidable. The variablesxi

ut are computed using the following constraints.

25

• a valueut is stored in only one register of typet:

∀t ∈ T , ∀ut ∈ VR,t :

Rt
∑

i=1

xi
ut = 1

• if two values interfere, then they cannot share the same register:

∀t ∈ T , ∀ coupleut, vt ∈ VR,t : st
u,v ≥ 1 =⇒

(

xi
ut + xi

vt ≤ 1, ∀i = 1, ...,Rt

)

There are at mostO(V 2 ×Rt) = O(V 2) such constraints.

• The objective function minimizes the total schedule time:

Minimiseσ⊥

As explained before, our DAG and processor model includes writing and reading offsets. Consequently, in some cases,
the optimal RS reduction may need to introduce non-positivecycles into the original DAG. Even if such non-positive cycles
do not prevent the graph from being scheduled, they still violate the DAG property and impose hard scheduling constraints
that may not be satisfiable under resource constraints in thesubsequent instruction scheduling pass. We must eliminatesuch
optimal solutions as explained in the following section.

Eliminating Cycles with Non-positive Latencies

As presented in the proof of Theorem 4, the latency of any added edgee = (u′, v) is equal toδ(e) = δr(u
′) − δw(v) in

the case of VLIW code. Thus, ifδr(u
′) ≤ δw(v) thenδ(e) becomes non-positive, producing possible non-positive cycles.

Remember that the purpose of the register saturation analysis is to ensure in the first steps of compilation that any schedule
of a given DAG will not require more registers than those available. The scheduling phase is mainly constrained by resources
(functional units) of the target architecture. If the extended DDG produced by the register saturation reduction contains a non-
positive cycle, we cannot guarantee the existence of a schedule under resource constraints. This is because non-positive cycles
introduce some “not later than” scheduling constraints which may not be satisfied in the presence of resource constraints4.

For instance, let us assume a zero weighted cycle between twooperationsu andv. Theoretically, any schedule such that
σ(u) = σ(v) satisfies this zero weighted cycle. However, if we have a resource constraint that prohibits these two operations
from being scheduled at the same clock cycle, then there is novalid schedule that meets these constraints. When we reduce
the register saturation, we must ensure than there is alwaysa schedule for any resource constraints. The following example
gives an illustration.

Example 2 We use Figure 12 in this example. The register saturation of the DAG in Part (1) is equal to 3 (easy to see that
we can schedule{a, b, c} to be simultaneously alive). Here we assume that the readingand writing delays are equal to zero.
Let ask the question: does there exist an extended DDG of the DAG in Part (1) with a RS equal to two while the critical path
is equal to eight ? The answer is yes. The extended DDG is presented in Part (3). The VLIW schedule in Part (2) shows that
it requires two registers while its total schedule time is equal to 8. As can be seen, the extended DDG constructed from this
schedule has a null cycle betweenc andd. We can easily see that we cannot construct any extended DDG without a cycle,
since the minimal register need of the DAG is 2: the lifetimesintervals of the valuesc andd must be necessary serialized after
the intervals ofa andb if we want to require only two registers. These two lifetime intervals serializations are responsible
for introducing the null cycle betweenc andd. Now, if we accept the extended DDG of Part (3) as a solution, we cannot
guarantee the existence of a schedule under any resource constraints. For instance, ifc andd cannot be scheduled in parallel
because of resource conflicts, then no valid schedule exists. We do admit such situation in the process of RS reduction.

Note that the problem of non-positive cycles does not arise for superscalar (sequential) codes because all the introduced edges
have a positive latency equal to 1. As example, the minimal register saturation (in the case of superscalar codes) of the DAG
in Figure 12.(1) is equal to 3 (instead of 2 in the case of VLIW codes). The superscalar schedule is presented in Part (4) with
its corresponding extended DAG in Part (5).

To eliminate this problem of non-positive cycles, we imposethe restriction that the extended graphG must be a DAG.
This is done by guaranteeing the existence of a topological sort for the extended graph. Therefore, we add some variables
and constraints to the optimal intLP system.

4Such constraints are similar to real time constraints, which cannot always be satisfied.

26

LT(d)

LT(a) LT(b)

4: c
time

LT(a)

0: a LT(b)

5: d

 b

0: a ; b

4: c ; d
LT(c) LT(d)

time

LT(c)

(4) Optimal Superscalar Code

9: ⊥

8: ⊥

(2) Optimal VLIW code

a b

c d

a b

c d

a b

c d
4 4

4 4

(1) DAG Example

1

(5) Optimal Extended DAG

⊥

⊥

0

0

⊥

(3) Optimal Extended DDG

Figure 12. Example of Non-positive Cycles

• We define integer variables that hold a topological orderingof the graph. For eachu ∈ V , we associate an integer
variabledu, such that for any two nodesu andw, du < dw means thatu is topologically sorted beforew.

• We bound the topological sort by the number of nodes:∀u ∈ V : du ≤ |V |

• We write the topological sort constraints for each edge in the original DAG:∀e = (u, v) ∈ E : du < dv

• If we add a serial edge in the extended DDG, we must satisfy thetopological sort constraints. If two lifetime intervals
LTσ(ut) andLTσ(vt) do not interfere with each other, serial edges will be introduced.∀u, v ∈ VR,t :

– if v ∈ Cons(ut), serial edges will be added from theu’s other readers tov. We then write the constraints:

LTσ(ut) ≺ LTσ(vt) =⇒
(

∀u′ ∈ Cons(ut)− {v} : du′ < dv

)

That is,
σv + δw,t(v)− kut ≥ 0 =⇒

(

∀u′ ∈ Cons(ut)− {v} : du′ < dv

)

– if v 6∈ Cons(ut), serial edges will be added from allu’s readers tov. We then write the constraints:

LTσ(ut) ≺ LTσ(vt) =⇒
(

∀u′ ∈ Cons(ut) : du′ < dv

)

That is,

σv + δw,t(v)− kut ≥ 0 =⇒
(

∀u′ ∈ Cons(ut) : du′ < dv

)

Note that these constraints may be optimized by consideringthe fact that some values can never interfere, see Section 5.4.
We add at mostO(|V |3) variables andO(|V |3+|E|) constraints to guarantee that reducing RS always produces an acyclic

extended DAG. Again, these constraints are only added for VLIW and EPIC codes, not for superscalar codes.

We continue in the next section with the result of our experimental implementation.

27

9 Experiments

This section presents our experimental results from some DDGs extracted from SpecFP, whetstone, livermore and lin-
pack. Such graphs can be explored in [30]. These DDGs are those that have been used in the prior studies [12, 19]. In our
experiments, we focus on floating point registers and we assume that we target superscalar codes. The DAGs used for the
experiments are the loop bodies. This section presents our concluding analysis.

Before starting the presentation of our experiments, we would like to argue why we chose to evaluate our method using
graphs instead of implementing it inside a real compiler. First, since our study focuses on register optimization in DDGs, we
decide to check the efficiency of our heuristics on some realistic graphs extracted from real codes. This way of evaluation
that does not require a complete implementation inside a compiler allows us to isolate our contribution by demonstrating the
efficiency of our heuristics on DDGs. If we include our heuristics inside an existing optimizing compiler, it would be hard
to isolate our contribution, since the optimizing compilation passes are numerous nowadays, and their interactions (whether
they are with the hardware or with other compilation passes)are difficult to analyze. In other words, for any value of the
resulted speedup (positive or negative), it is very hard to certify that the speedup gain or loss results directly and only from
our heuristics. It is possible that the interaction with other compilation passes may inhibit or accentuate the performance
gain. So, we think that it is better for us to concentrate our attention on graphs.

Second, we think that our experiments are realistic becauseour theoretical model takes into account VLIW, EPIC and
superscalar codes. Usually, not all register optimizationmethods, even those implemented inside compilers, work forthese
three types of program semantics. Third and last, our experiments clearly demonstrates nearly optimal results, which is an
important aspect in our case of combinatorial problems.

9.1 Computing RS

The first experiments check the efficiency of our Greedy-k algorithm compared to optimal RS (computed by integer
programming). The next section summarizes our results.

9.1.1 Optimal vs. Approximated Methods

Let RS denote the optimal register saturation computed by intLP, andRS∗ the approximated RS as computed by our heuris-
tics. The experimental results show that our approximate algorithm is very efficient: in almost all cases, it computes the exact
register saturation. The maximal experimental error is 1,i.e., the optimal register saturation is one larger than the saturation
computed by our heuristics. We have unrolled the loops to increase register pressure in order to study the efficiency of our
heuristics in larger DAGs. DAGs are the bodies of these unrolled loops: the number of nodes in these unrolled loops ranges
from 4 to 120.

Our approximated algorithm clearly computes nearly optimal solutions in polynomial time. In the 134 DAGs used in
this study (up to 120 nodes per DAG), we do not reach RS optimality in only 7 cases. Our worst empirical error is 1,i.e.,
RS∗ ≤ RS ≤ RS∗ + 1.

After evaluating the efficiency of our method, we use it to experimentally study the RS behavior in unrolled loops.

9.1.2 RS Behavior in Unrolled Loops

In this experiment, we study the RS evolution as a function ofthe unrolling degree in each loop. Figure 13 shows the plots
of RS (computed by our heuristics) versus the unrolling degree. Loops are unrolled from 1 to 20 times, producing DAGs
with between 4 to 400 nodes, which is sufficient to study the RSbehavior in real applications. As we expect, RS is evidently
a non-decreasing function: since unrolling a loop producesmore values because of loop bodies duplication, RS could not
decrease. The RS versus the unrolling factor produces a function that can be one of the two following cases:

1. constant or non strictly increasing because of recurrentdata dependences;

2. linear in the case of, for instance, fully parallel loops.

If the number of available registers is bounded, we must keepRS under control. The next section summarizes our results.

28

 0
 8

 16
 24
 32
 40
 48
 56
 64
 72
 80
 88
 96

 104
 112
 120
 128
 136
 144
 152
 160

 2 4 6 8 10 12 14 16 18

R
eg

is
te

r
S

at
ur

at
io

n

Unrolling factor

lin-ddot
liv-loop1

liv-loop23
liv-loop5

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44
 48
 52
 56
 60
 64
 68
 72
 76
 80
 84

 2 4 6 8 10 12 14 16 18

R
eg

is
te

r
S

at
ur

at
io

n

Unrolling factor

spec-dod-loop1
spec-dod-loop2
spec-dod-loop3
spec-dod-loop7

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44
 48
 52
 56
 60

 2 4 6 8 10 12 14 16 18

R
eg

is
te

r
S

at
ur

at
io

n

Unrolling factor

spec-fp-loop1
spec-spice-loop1

spec-spice-loop10
spec-spice-loop2

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44
 48
 52
 56
 60
 64
 68
 72
 76
 80
 84

 2 4 6 8 10 12 14 16 18

R
eg

is
te

r
S

at
ur

at
io

n

Unrolling factor

spec-spice-loop3
spec-spice-loop4
spec-spice-loop5
spec-spice-loop6

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44
 48
 52
 56
 60
 64
 68
 72
 76
 80
 84

 2 4 6 8 10 12 14 16 18

R
eg

is
te

r
S

at
ur

at
io

n

Unrolling factor

spec-spice-loop7
spec-spice-loop8
spec-spice-loop9
spec-tom-loop1

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 2 4 6 8 10 12 14 16 18

R
eg

is
te

r
S

at
ur

at
io

n

Unrolling factor

whet-loop1_RS
whet-loop2
whet-loop3

Figure 13. RS Evolution in Unrolled Loops

29

9.2 Reducing RS

In this section, we experimentally study our techniques forreducing RS under critical path constraints. At first, we
investigate the efficiency of our heuristics versus the optimal results.

9.2.1 (Approximated) Value Serialization Heuristics versus Optimal RS Reduction

Let us begin by stressing our heuristics to check their limitations. We consider DAGs of loop bodies and try to reduce the
register saturation to the lowest possible value. This is done by setting the number of available registersR = 1. Our value
serialization heuristics get sub-optimal results for only7 of the 27 DAGs used in the experiment. The optimally reducedRS
is less than our heuristics results by two registers in the worst case.

In the second set of experiments, we unroll the loops with multiple factors (up to 6, with up to 80 node DAGs) and we try
to reduce their RS under a limit computed as the first power of 2lower than the original RS. For example, if the original RS
is 12 then we reduce it to 8, etc.

Here, we also get a maximal experimental error of 2 registers.
We didn’t check for larger unrolling degrees because computing optimal RS reduction of larger DAGs is computational

intractable. We think that the experiments that we have performed are sufficient to study the efficiency of our strategies(the
number of nodes in all these unrolled loops ranges from 4 to 80).

After evaluating the efficiency of value serialization, we use it to investigate unrolled loops.

9.2.2 Value Serialization Heuristics Behavior in UnrolledLoops

We study the limit of RS reduction versus the degree of loop unrolling (we consider the DAG of the loop bodies after
unrolling). Figure 14 plots RS reduced to 32 registers usingour heuristics on various loops with unroll factors rangingfrom
1 to 20. In almost all practical cases, RS is maintained underthe 32-register limit, except for Livermore-loop23. In that case,
RS is maintained under 32 until the loop is unrolled by a factor of 12. After that, the register pressure is sufficiently high to
always keep the register need above 32. The reason is shared by both intrinsic data dependences properties (intrinsic register
pressure,i.e., register sufficiency) and our heuristics limitations. If RS cannot be reduced below the limit, we have to insert
spill operations, which is outside the scope of this paper. Aspecial remark is that reduced RS in unrolled loops is not an
increasing function. That is, if we reduce the RS toR1 > R in the loop unrolledn times, and toR2 > R in the loop unrolled
n + 1 times, this does not necessary mean thatR1 ≤ R2 (see Livermore-loop23 in Figure 14). The explanation is that as
more independent nodes are available in a DAG, the more serialization opportunities are possible. Consequently, this results
in more freedom and more choices for our heuristics.

9.3 ILP Loss after RS Reduction

In this last section, we study the ILP lost due to RS reduction. We evaluate the maximal theoretical ILP of a DAG
G = (V, E, δ) as:

ILP (G) =
|V |

CriticalPath(G)

The ratio used for expressing the ILP loss is
original ILP− new ILP

original ILP
We start by examining the efficiency of the value serialization heuristics in terms of ILP loss.

9.4 Optimal versus Approximated ILP Loss

Let us examine the ILP loss in our experiments. Results can bedecomposed into five families, depending on the obtained
RS and ILP loss after reduction. We denote byRS andILP the RS reduction and ILP loss resulting from optimal intLP
programs; we denote byRS∗ andILP ∗ the RS reduction and ILP loss resulting from our heuristics.Then, the five families
of results are the following.

30

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 52

 56

 2 4 6 8 10 12 14 16 18

R
eg

is
te

r
S

at
ur

at
io

n

Unrolling factor

lin-ddot
liv-loop1

liv-loop23
liv-loop5

 0

 4

 8

 12

 16

 20

 24

 28

 32

 2 4 6 8 10 12 14 16 18

R
eg

is
te

r
S

at
ur

at
io

n

Unrolling factor

spec-dod-loop1
spec-dod-loop2
spec-dod-loop3
spec-dod-loop7

 0

 4

 8

 12

 16

 20

 24

 28

 32

 2 4 6 8 10 12 14 16 18

R
eg

is
te

r
S

at
ur

at
io

n

Unrolling factor

spec-fp-loop1
spec-spice-loop1

spec-spice-loop10
spec-spice-loop2

 0

 4

 8

 12

 16

 20

 24

 28

 32

 2 4 6 8 10 12 14 16 18

R
eg

is
te

r
S

at
ur

at
io

n

Unrolling factor

spec-spice-loop3
spec-spice-loop4
spec-spice-loop5
spec-spice-loop6

 0

 4

 8

 12

 16

 20

 24

 28

 32

 2 4 6 8 10 12 14 16 18

R
eg

is
te

r
S

at
ur

at
io

n

Unrolling factor

spec-spice-loop7
spec-spice-loop8
spec-spice-loop9
spec-tom-loop1

 0

 4

 8

 12

 16

 20

 24

 28

 32

 2 4 6 8 10 12 14 16 18

R
eg

is
te

r
S

at
ur

at
io

n

Unrolling factor

whet-loop1_redRS
whet-loop2
whet-loop3

Figure 14. RS Reduction in Unrolled Loops (R = 32)

31

1. In the case whereRS = RS∗, our algorithm succeeds in optimally reducing RS. Then, theILP loss may be:

(a) ILP = ILP ∗ (family 1). Our algorithm succeeds in optimally reducing RSwith the optimal ILP loss. 72.22%
of all the results belong to this family.

(b) ILP < ILP ∗ (family 2). Our algorithm succeeds in optimally reducing RSbut with sub-optimal ILP loss.
18.5% of all the results belong to this family.

(c) ILP > ILP ∗ is not possible.

2. In the case whereRS > RS∗, our algorithm did not succeed in optimally reducing RS. Then, the ILP loss may be:

(a) ILP = ILP ∗ (family 3). Our algorithm has sub-optimal RS reduction but optimal ILP loss. 4.63% of all the
results belong to this family.

(b) ILP < ILP ∗ (family 4). Our algorithm has sub-optimal RS reduction withsub-optimal ILP loss. Less than 1%
of all the results belong to this family.

(c) ILP > ILP ∗ (family 5). Our algorithm has sub-optimal RS reduction but with super-optimal ILP loss. This
case is interesting: since our algorithm has sub-optimal RSreduction, it has extra registers which allow more ILP.
3.7% of all the results belong to this family.

3. The case whereRS < RS∗ is impossible because our heuristics compute a validRS∗.

Clearly, our RS reduction algorithm is very efficient: in most cases, it optimally reduces RS with optimal ILP loss.
Sub-optimal ILP loss is, in most cases, accompanied by optimal RS reduction, while sub-optimal RS reduction is mostly
accompanied bysuper-optimal ILP loss. We get both sub-optimal ILP loss and sub-optimal RS reducing in less than 1% of
the cases.

Having established the efficiency of value serialization, we use it to study ILP loss in unrolled loops.

9.5 ILP Loss after RS reduction in Unrolled Loops

We unroll the loops up to 20 times to get larger DAGs (up to 400 nodes). We try to maintain their RS under 32 FP registers.
Figure 15 plots ILP loss according to unrolling degree. In most cases, our heuristics do not produce a loss of ILP,i.e., critical
paths do not increase. However, in some cases, ILP loss exceeds60% (the case of spec-spice-loop8) in order to maintain a
RS under 32.

As in the RS reduction experiments, the ILP loss is not an increasing function. The explanation is that the more indepen-
dent nodes are available in the DAG, the more lifetime interval serialization opportunities are possible. Our heuristics have
more freedom to choose the best interval serialization thatminimizes critical path growth. We note that, in these experiments,
some operations have long specified latencies (up to 17 for anFP division). These long latencies can dramatically increases
the critical path, since we may introduce serial edges that merge two long paths.

Before concluding, we wish to argue that the RS approach is a better way to satisfy register constraints before ILP
scheduling than existing register need minimization approaches.

10 Related Work and Discussion

The literature contains a lot of techniques for minimizing the register requirement in superscalar (sequential) codesthat
are sensitive to ILP scheduling [2, 18, 20, 23, 25, 26]. Others prefer to combine ILP scheduling with register allocation
[5, 8, 16, 24, 28]. All these techniques try to minimize the register requirement. In our method, we use the contrary approach
: we maximize the register requirement in order to minimize the number of edges added to the DAG, as previously done by
Berson [6]. Minimizing the register requirement is an inherently worse technique than saturating the register requirement for
many reasons, which we explain below.

32

 0

 0.2

 0.4

 0.6

 0.8

 2 4 6 8 10 12 14 16 18 20

IL
P

 lo
ss

Unrolling factor

lin-ddot
liv-loop1

liv-loop23
liv-loop5

 0

 0.2

 0.4

 0.6

 0.8

 2 4 6 8 10 12 14 16 18 20

IL
P

 lo
ss

Unrolling factor

spec-dod-loop1
spec-dod-loop2
spec-dod-loop3
spec-dod-loop7

 0

 0.2

 0.4

 0.6

 0.8

 2 4 6 8 10 12 14 16 18 20

IL
P

 lo
ss

Unrolling factor

spec-fp-loop1
spec-spice-loop1

spec-spice-loop10
spec-spice-loop2

 0

 0.2

 0.4

 0.6

 0.8

 2 4 6 8 10 12 14 16 18 20

IL
P

 lo
ss

Unrolling factor

spec-spice-loop3
spec-spice-loop4
spec-spice-loop5
spec-spice-loop6

 0

 0.2

 0.4

 0.6

 0.8

 2 4 6 8 10 12 14 16 18 20

IL
P

 lo
ss

Unrolling factor

spec-spice-loop7
spec-spice-loop8
spec-spice-loop9
spec-tom-loop1

 0

 0.2

 0.4

 0.6

 0.8

 2 4 6 8 10 12 14 16 18 20

IL
P

 lo
ss

Unrolling factor

whet-loop1_ilp_loss
whet-loop2
whet-loop3

Figure 15. ILP Loss in Unrolled Loops (R = 32)

33

17

a

1

b

1

c

1

d

17

a

1

d

1

d

17

a

1

b

1

c

1

c

1

b

(a) Intial DAG (b) Minimal Register Need (c) RS Reduction with 3
available registers

Figure 16. RS Reduction vs. Minimal Register Requirement

Case where register constraints are obsoleteGiven a DAG, we do not need to add serial edges if the RS does notexceed
the number of available registers. Unfortunately, the minimization approach adds extra edges if the register requirement can
be further reduced, even if RS does not exceed the limit. For instance, look at Figure 16, where bold circles are the valuesto
be stored in registers and bold edges are the flow dependences. The initial DAG has a register saturation equal to 4 : this is
because we can schedule the 4 operations{a, b, c, d} so as to produce 4 values simultaneously alive. If the processor has at
least 4 registers, then the DAG is not modified before the scheduling pass. However, with a minimization approach, the new
DAG in Part (b) is restricted to not require more than 2 registers5, regardless the number of available registers. The DAG in
Part (b) is more restrictive than the initial DAG, which is left unmodified by the RS analysis pass.

How many edges are introduced If the inherent data dependences of a DAG produce restrictive register pressure for an
ILP scheduler (when RS exceeds the number of available registers), the minimization approach adds more edges than the
RS reduction approach. This is because our method introduces only the necessary number of edges to reduce RS below the
register limit. However, the minimization approaches tries to reduce the register need to the lowest possible level. This is not
an appropriate approach, since it does not fully utilize theavailable registers. For instance, look at Figure 16 and assume we
have 3 registers available. Part (c) shows the new DAG produced by the RS reduction pass: here, RS is reduced from 4 to 3,
and hence we have fewer serialization edges than those produced by the minimization approach presented in Part (b). Using
the RS approach, the final allocator could use 1, 2 or 3 registers depending on the schedule. Using a register minimization
approach, the scheduler could use only 1 or 2 registers. Hence, the RS approach helps the scheduler make better use of the
available registers.

When both methods are equivalent If the target processor is superscalar with out-of-order execution, and if its dynamic
scheduler is optimal and the register renaming hardware hasan infinite number of hidden registers, both methods (RS and
register need minimization) should be equivalent. With a limited number of hidden registers for renaming, and a sub-optimal
runtime scheduler, our RS method is likely to produce bettercode because it makes better use of the available registers.

Our methods apply for explicit reading/writing offsets Our DAG and processor model allows for explicit delays when
reading from and writing into registers. Thus, our method ismore generic than existing techniques, and can be applied to
superscalar, VLIW and EPIC architectures. For the last two cases, special care must be taken when reducing RS: we must
prohibit non-positive cycles in the resulting DAGs.

In the case of a global scheduler Our model assumes that there is only one possible definition per value. This assumption
is correct inside a basic bloc (BB),i.e., if the code does not contain branches. In the case of a globalcontrol flow graph (CFG),

5Here, we minimize the register requirement under critical path constraints.

34

a b c h

egdi

f

f

d

e h i

gcbab c

hed

i
f g

a

is the optimal minimum killing set

(a) original DAG

is the saturating killing set

(b) DVk(G) such{e, h} (c) DVk(G) such{d}

Figure 17. URSA Drawback

a static data dependence analysis may result in some values with more than one definition because it cannot determine which
execution path is taken. We show in [30] how to extend RS analysis to a global acyclic CFG (excluding loops), and its
interaction with a global instruction scheduler that may move operations from one BB to another.

Comparison to URSA Our work is an extension to URSA [6, 7]. Their minimum killingset technique tries to saturate
the register requirement in a DAG by keeping the values aliveas long as possible: the authors proceed by keeping as many
children in a bipartite component alive as possible by computing the minimum set which kills all the parent’s values. First,
since the authors did not formalize the RS problem, we can easily give examples to show that a minimum killing set does
not saturate the register need, even if the solution is optimal. Figure. 17 shows an example where the RS computed by our
heuristics (Part (b)) is 6 where the optimal solution for URSA yields a RS of 5 (Part (c)). This is because URSA did not
take into account the descendant values while computing thekilling sets. Second, the validity of the killing function is an
important condition to compute the RS and unfortunately is not included in URSA. We showed in Section 3 that invalid
killing functions exist. So, the proof in [7] about the NP-completeness of RS computation is incomplete, since they did not
prove the validity of the computed killing function. Finally, the URSA DAG model did not differentiate between the typesof
values and did not take into account delays in reading from and writing into the registers file.

Resource constraints Our experimental results are presented in the form of joint statements about critical path length and
register requirement. Can anything formal be said about machines with finite resources ? Since our techniques assume infinite
resources, it is theoretically possible that edges inserted to decrease register pressure might lead to unbalanced functional unit
usage. Thus, edges might accidentally dictate bursts of allinteger, all memory, or all floating point operations.

Let us answer this possible limitation. First, our work focus on data dependence graphs. Thus, a schedule can certainly
be found on a machine with finite resources. Reporting resource conflicts at the graph level can only be done with simple
resource descriptions (no structural hazards,i.e., a FU is used during a contiguous interval of time), as done byBerson in [6]
and Pinter in [26]. This strategy gives exactly the same solution as scheduling under resource and register constraints, i.e., it
is nothing but a combined approach of scheduling and register allocation. Second, the FU usage may be decreased especially
if we try to minimize the register requirement. In our framework, we saturate the register requirement, thus the RS concept
helps us reduce the number of serialization edges added to the DAG. Third and last, we give priority to register constraints
over ILP scheduler (but we are still sensitive to this later)because we believe that spill code is more damaging to performance
than a weak ILP extraction.

The methods of [6, 26] combine resource and register constraints. Their methods are only studied for superscalar codes
with a unique register type, while our method works for VLIW,EPIC and superscalar codes with multiple register types.
Furthermore, we did not read any experimental results that highlight if the heuristics of [6, 26] are near or far from the
optimal, while we propose nearly optimal heuristics.

11 Conclusion

In this paper, we formally study the register saturation (RS) notion to manage register pressure in acyclic data dependence
graphs (DAGs). RS helps to avoid inserting spill code beforeinstruction scheduling and register allocation steps. We believe
that register constraints must be taken into account beforeILP scheduling, but by using the RS concept instead of the existing

35

strategies that minimize the register need. Otherwise, thesubsequent ILP scheduler is restricted even if enough registers exist.

We give many fundamental results regarding the RS computation. First, we prove that choosing an appropriated unique
killer is sufficient to saturate the register need. Second, we prove that fixing a unique killer per value allows to optimally
compute the register saturation with polynomial time algorithms. If a unique killer is not fixed per value, we prove that
computing the register saturation of a DAG is NP-complete inthe general case (except for expression trees for instance). An
exact formulation using integer programming and an efficient approximate algorithm are presented. Our formal mathematical
modeling and theoretical study enable us to give nearly optimal heuristics.

Our experiments show that register constraints may be obsolete in many codes, and can therefore be ignored in order to
simplify the instruction scheduling process. The heuristics we use manage to reduce RS in most cases while some ILP is lost
in few DAGs.

If RS exceeds the number of available registers, we must reduce it while minimizing the increase to the critical path. We
prove that this is an NP-hard problem. An optimal exact RS reduction method based on integer programming is presented, as
well as an efficient approximate algorithm. If we assume writing offsets (such as those in VLIW and EPIC codes), some op-
timal solutions may require the insertion of non-positive cycles in the original DAG. These cycles may prevent the extended
DDG from being scheduled in the presence of resource constraints. A sufficient and necessary condition to overcome this
problem is to guarantee the existence of a topological sort for the extended graph. This is done by adding new constraintsto
the intLP formulation.

The size complexity of our intLP formulations depends only the size of the input DAG (quadratic on the number of edges
and nodes). This is better than the size complexity of the existing technique in the literature that model register constraints
[1, 13, 14]. Indeed, these exact intLP systems have a size complexity that depends on a worst-case total schedule time factor,
which does not depend on the size of the input DAG. Thus, the resulting size complexity is pseudo-polynomial, and not
polynomial as in our intLP system.

An important problem (left for a future work) is the insertion of minimal spill code in data dependence graphs. The
existing studies insert spill operations either in sequential codes (regardless on FUs usage), or by iterating ILP scheduling
followed by spilling. We think that this problem must be taken into account at the data dependence graph level in order to
break this iterative problem.

Acknowledgement

We would like to thank Alain Darte froḿEcole Normale Supérieur de Lyon and François Thomasset from INRIA-
Rocquencourt for their help to improve this work.

References

[1] E. Altman. Optimal Software Pipelining with Functional Units and Registers. PhD thesis, McGill University, Montreal, Oct. 1995.
[2] W. Ambrosch, M. A. Ertl, F. Beer, and A. Krall. Dependence-Conscious Global Register Allocation.Lecture Notes in Computer

Science, 782:129–??, 1994.
[3] P. Bergner, P. Dahl, D. Engebretsen, and M. O’Keefe. Spill Code Minimization via Interference Region Spilling.ACM SIG-PLAN

Notices, 32(5):287–295, May 1997. Proceedings of Programming Language Design and Implementation (PLDI’97).
[4] D. Bernstein, D. Q. Goldin, M. C. Golumbic, H. Krawczyk, Y. Mansour, I. Nahshon, and R. Y. Pinter. Spill Code Minimization

Techniques for Optimizing Compilers.SIGPLAN Notices, 24(7):258–263, July 1989. Proceedings of the ACM SIGPLAN ’89
Conference on Programming Language Design and Implementation.

[5] D. Bernstein, J. M. Jaffe, and M. Rodeh. Scheduling Arithmetic and Load Operations in parallel with No Spilling.SIAM Journal on
Computing, 18(6):1098–1127, Dec. 1989.

[6] D. A. Berson.Unification of Register Allocation and Instruction Scheduling in Compilers for Fine-Grain Parallel Architecture. PhD
thesis, Pittsburgh University, 1996.

[7] D. A. Berson, R. Gupta, and M. Soffa. URSA: A Unified ReSource Allocator for Registers and Functional Units in VLIW Architec-
tures. InConference on Architectures and Compilation Techniques for Fine and Medium Grain Parallelism, pages 243–254, Orlando,
Florida, Jan. 1993.

36

[8] T. S. Brasier, P. H. Sweany, S. J. Beaty, and S. Carr. CRAIG: A Practical Framework for Combining Instruction Scheduling and
Register Assignment. InParallel Architectures and Compilation Techniques (PACT ’95), 1995.

[9] D. Callahan and B. Koblenz. Register Allocation via Hierarchical Graph Coloring.SIGPLAN Notices, 26(6):192–203, June 1991.
Proceedings of the ACM SIGPLAN ’91 Conference on Programming Language Design and Implementation.

[10] G. J. Chaitin. Register Allocation and Spilling via Graph Coloring.ACM SIG-PLAN Notices, 17(6):98–105, June 1982. Proceedings
of the SIGPLAN ’82 Symposium on Compiler Construction.

[11] P. Crawley and R. P. Dilworth.Algebraic Theory of Lattices. Prentice Hall, Englewood Cliffs, 1973.
[12] D. de Werra, C. Eisenbeis, S. Lelait, and B. Marmol. On a Graph-Theoretical Model for Cyclic Register Allocation.Discrete Applied

Mathematics, 93(2-3):191–203, July 1999.
[13] C. Eisenbeis, F. Gasperoni, and U. Schwiegelshohn. Allocating Registers in Multiple Instruction-Issuing Processors. InProceedings

of the IFIP WG 10.3 Working Conference on Parallel Architectures and Compilation Techniques, PACT’95, pages 290–293. ACM
Press, June 27–29, 1995.

[14] C. Eisenbeis and A. Sawaya. Optimal Loop Parallelization under Register Constraints. InSixth Workshop on Compilers for Parallel
Computers CPC’96., pages 245–259, Aachen - Germany, Dec. 1996.

[15] W. fen Lin, S. K. Reinhardt, and D. Burger. Reducing DRAMLatencies with an Integrated Memory Hierarchy Design. InProceed-
ings of the 7th International Symposium on High-Performance Computer Architecture, Nuevo Leone, Mexico, Jan. 2001.

[16] S. M. Freudenberger and J. C. Ruttenberg. Phase Ordering of Register Allocation and Instruction Scheduling. InCode Generation
– Concepts, Tools, Techniques. Proceedings of the International Workshop on Code Generation, pages 146–172, London, 1992.
Springer-Verlag.

[17] R. S. Garfinkel and G. L. Nemhauser.Integer Programming. John Wiley & Sons, New York, 1972. Series in Decision and Control.
[18] J. R. Goodman and W.-C. Hsu. Code Scheduling and Register Allocation in Large Basic Blocks. InConference Proceedings 1988

International Conference on Supercomputing, pages 442–452, St. Malo, France, July 1988.
[19] R. Govindarajan, E. R. Altman, and G. R. Gao. MinimizingRegister Requirements under Resource-Constrained Rate-Optimal

Software Pipelining. InMICRO27, pages 85–94, Dec. 1994.
[20] R. Govindarajan, H. Yang, J. N. Amaral, C. Zhang, and G. R. Gao. Minimum Register Instruction Sequencing to Reduce Register

Spills in Out-of-Order Issue Superscalar Architecture.IEEE Transactions on Computers, pages 4–20, 2003.
[21] W. Jalby, C. Lemuet, and S.-A.-A. Touati. Improving Load/Store Queues Usage in Scientific Computing. InProceedings of the

International Conference on Parallel Processing (ICPP’04)., pages 38–45, Montréal, Canada, Aug. 2004. IEEE.
[22] W. Jalby, C. Lemuet, and S.-A.-A. Touati. An Efficient Memory Operations Optimization Technique for Vector Loops onItanium 2

Processors.Conucurrency and Computation: Practice and Experience, 2004 (to appear). Wiley Interscience.
[23] J. Janssen.Compilers Strategies for Transport Triggered Architectures. PhD thesis, Delft University, Netherlands, 2001.
[24] W. M. Meleis. Dural-Issue Scheduling for Binary Trees with Spills and Pipelined Loads.SIAM J. Comput., 30(6):1921–1941, Mar.

2001.
[25] C. Norris and L. L. Pollock. A Scheduler-Sensitive Global Register Allocator. In IEEE, editor,Supercomputing 93 Proceedings:

Portland, Oregon, pages 804–813, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, Nov. 1993. IEEE Computer
Society Press.

[26] S. S. Pinter. Register Allocation with Instruction Scheduling: A New Approach.SIGPLAN Notices, 28(6):248–257, June 1993.
Proceedings of the SIGPLAN ’93 Conference on Programming Language Design and Implementation.

[27] M. Poletto and V. Sarkar. Linear Scan Register Allocation. ACM Transactions on Programming Languages and Systems, 21(5):895–
913, Sept. 1999.

[28] R. Silvera, J. Wang, G. R. Gao, and R. Govindarajan. A Register Pressure Sensitive Instruction Scheduler for Dynamic Issue
Processors. InProceedings of the 1997 International Conference on Parallel Architectures and Compilation Techniques (PACT-97),
pages 78–89, San Francisco, California, Nov. 1997. IEEE Computer Society Press.

[29] S.-A.-A. Touati. Register Saturation in Superscalar and VLIW Codes. InProceedings of The International Conference on Compiler
Construction, Lecture Notes in Computer Science. Springer-Verlag, Apr.2001.

[30] S.-A.-A. Touati. Register Pressure in Instruction Level Parallelisme. PhD thesis, Université de Versailles, France, June 2002.
ftp.inria.fr/INRIA/Projects/a3/touati/thesis.

[31] J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero. ModuloScheduling with Integrated Register Spilling for Clustered VLIW Archi-
tectures. InProceedings of the 34th International Symposium on Microarchitecture (MICRO-34), pages 160–169, Austin, Texas,
Dec. 2001.

37

