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Abstract:  Register constraints in ILP scheduling can be taken into account during the
scheduling phase of a code. The complexity of this problem is very high. In this work, we
present a new approach consisting in manipulating data dependence graphs to reduce the
number of “potential” values simultaneously alive without assuming any schedule. We study
theoretically the exact upper-bound of the register need for all valid schedules of a code: we
call this limit the register saturation. It is used to build a modified data dependence graph
such that any schedule of this graph will verify the register constraints and avoid introducing
spill code. We study the case of Direct Acyclic Graphs and then we extend it to loops intended
to software pipelining schedule. Experimental study shows that many DAGs and loops do not
need register constraints during scheduling.
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Saturation en Registres dans les Graphes de
Dépendances de Données

Résumé : Le nombre limité de registres dans un processeur est une contrainte supplémentaire
a 'ordonnacement de code. Ce probleme devient alors trés complexe. Dans ce rapport, nous
présentons une nouvelle approche qui consiste a analyser les dépendances de données afin de
déduire une borne maximale exacte du nombre de registres requis pour tout ordonnacement
valide. Nous appelons cette limite saturation en registres. Si elle est inférieure au nombre
de registres, alors ces contraintes ne sont pas nécessaires. Sinon, nous ajoutons des arcs de
serialisation dans le graphe afin de réduire la saturation au dessous du nombre de registres.
Ainsi, n'importe quelle heuristique d’ordonnacement et d’allocation aura assez de regsitres et
n’introduira pas par conséquent de code de vidage. Nos expériences sur plusieurs DAGs et
boucles montrent que dans la majorité des cas les contraintes de registres sont obsoletes.

Mots-clé : contraintes de registres, besoin en registres, ordonnancement valide, tri topolo-
gique parallele, saturation en registres, suffisance en registres, valeurs simultanément en vie
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Chapter 1

Introduction

In Instruction Level Parallelism (ILP) compilers, code scheduling and register allocation are two
difficult tasks for code optimization. Code scheduling consists in maximizing the exploitation
of the ILP offered by the precedence relation between the operations in a code. One factor
that inhibits such use is the register constraints. Having a limited number of registers prohibits
having an unbounded number of values simultaneously alive !. Two major negative register
constraints are:

1. serialization of independent operations, because there are not enough registers that could
keep all the intermediate results;

2. introducing spill code, that is we use the memory as an intermediate storage instead of
registers.

Register allocation consists in associating a physical register to a value produced within the
code. If this task is carried out before the scheduling, it introduces new false dependencies
(anti and output dependencies) between the operations and limiting the amount of ILP. If car-
ried out after, spill code might be introduced, since the scheduler tries to exploit at best the
ILP, producing then more values simultaneously alive than the amount of physical registers.
Spill code dramatically decreases the performance because of memory hierarchy access latencies.

A best approach is combining code scheduling under resource constraints. The relation
between the two phases are studied in a lost of work [Bra94, GH88, BEH91, Pin93]. Their
purpose is to try constructing a schedule with a limited amount of values simultaneously alive
in order to avoid spill code when allocating registers. The main problem with such an approach
is its high complexity. Only code scheduling problem under resource constraints is NP-complete.
Adding register constraints to this problem increases the complexity.

In this report, we present our contribution in the field of avoiding and reducing spill code
that could be generated by any schedule of a Direct Acyclic Graph (DAG). Our approach is to
modify and extend the original graph in such a way that all valid schedules of the new graph
verify the register constraints and avoid spilling, see figure 1. We proceed by studying the
worst case in register need. We call this notion the register saturation of a code which is the
maximal number of registers (values simultaneously alive ) that could be used by all schedules.
If we succeed in limiting the register saturation, then any schedule could not exceed the register
requirement. Reducing the register saturation involves introducing some new serialization arcs

lintermediate results of operations used to pursue the computing
RR n~°3978
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in the graph restricting the instruction level parallelism to avoid spill code. We give the case
when the spill code could not be avoided. However, since our approach reduces the register
saturation even if it exceeds the amount of registers, any schedule would have a limited amount
of excessive values simultaneously alive . Consequently, the amount of spill code is limited.

There are two major reasons for dissociating register constraints before code scheduling.
First, if the register saturation does not exceed the amount of registers, we can ignore register
constraints for code scheduling and we then reduce the complexity. Second, register constraints
models in modern processors are similar because there is few possible configurations: the
amount of registers can be 32, 64 or 128, and the register types are classified as integer or float.
However, resource constraints are less comparable : each processor can have its own properties.
This obliges us to redo code scheduling for each target processor. With our approach, we can
build a DAG that satisfies register constraints for a whole family of processors. For instance, if
we construct a DAG with a register saturation of 32, we can schedule it in any modern target
processors that have not less than 32 registers.

This document contains the following sections. Chapter 2 recalls some basic theoretical
notions and notations in graphs. Chapter 3 presents our work on the formulation and the
resolution of the register saturation problem in the case of an acyclic graph (DAG): the first
section gives a formulation of all valid schedules for a DAG. Then we present how to deduce the
family of DAGs that saturate the register pressure. Afterwards, we give our solution to reduce
the register saturation. Chapter 4 extends our work to the case of a loop with possible cyclic
graphs. We have developed our approach and we give our experimental results in chapter 5.
Chapter 6 presents some related work in this field. We conclude by our remarks and perspectives

in chapter 7.

[Regi ster Saturation Analysis J

l

[Reduci ng Register Saturati onj

Extended DAG

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1.1: Register saturation analysis steps
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Chapter 2

Theoretical Background and Notations

This chapter only recall some notations and definitions that are used in this report. To have

an complete overview of the theory, the reader should refer to standard books.

2.1 Graphs and Hypergraphs

An oriented graph G = (V, E) is a couple of a set V and a binary relation £ C V2. Let u € V,

then we define the following notations :
e u €V is called an node;

e ¢ = (u,v) € E is called an arc ;

e Ve = (u,v) € E, u (resp. v) is called the source (resp. the target) of the arc e. Both u

and v are called the endpoints of ¢;
o ['}(u) = {v € V/(u,v) € E} the set of the u’s successors ;

o I'o(u) ={v e V/(v,u) € E} the set of the u’s predecessors ;
a5
a4

u) = 0 then u is called a source of G ;

u) = 0 then u is called a sink of G ;

e Source(G) ={u € V/d (u) =0};

o Sink(G) ={ueV/d*(u) =0};

e Ve = (u,v) € E : source(e) = u and target(e) = v;

e a path in G is a k-tuple p = (ey,... ,e;) € E¥ such that Vi
source(e;i1);

e a circuit in G is a path p = (ey,...,e;) € E* such that Vi
source(e;+1) A target(ex) = source(ey).
RR n°3978
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e two nodes u,v are adjacent iff there is an arc connecting them :

de € E {u,v} = enpoints(e)

e two arcs e, e’ are adjacent iff there is a shared node between them

JueV endpoints(e) N endpoints(e) = {u}

A G = (V,E) is a complete graph iff (u,v) ¢ £ = (v,u) € E.
A subgraph Gy induced by V' C V is the graph that contains all nodes of V' and the arcs
that have their endpoints in V/. We note also Gy_yn =G — V" for V' C V.
A partial graph G’ of G = (V, F') generated by a subset E’' C F is the graph that contains all
the nodes of G but only the arcs contained in E’. That is we eliminate all the arcs in £ — E'.
We write G' = G/ g .

For the need of this report, we introduce the concept of extended graph. An extended
graph is only the dual definition of a partial graph. An extended graph G’ of G = (V, E) generated
by a subset E’ C V2 is the graph that contains all the nodes of G' and the arcs in E extended
by the arcs contained in E'. That is we only add all the arcs in E'. We write G' = G\”'.

The transitive closure of G, noted G, , is an extended graph G\% such that :
E, = {(u1,us)/(u1,us) € VEAT apath p= (uy,... ,uy)}

That is we only add all transitive arcs.
The transitive reduction of G, noted G, , is a partial graph G/, such that :

E, ={e=(uj,uz) € E/V path p = (uy,... ,us) = p = (ul,u2)}

That is we only remove transitive arcs.

2.1.1 Some Notions for Directed Acyclic Graphs

Let G = (V, E) be a DAG. A topological sort (called also linear extension ) of G = (V, E) is
a permutation (uy,us, ... ,u,) of V’s elements such that

(UZ,UJ)EE:Z<]

We use the concatenation symbol “-” to write a linear extension as uj - ug - - - u,. Let L(G) be
the set of all linear extensions of G. We can write

cey= U {u-a/aGE(G—{u})}

ueSource(G)
The transitive closure of a DAG defines the notion of parallel and comparable:
o Vu,v €V :ur~v<= (u,v) € E.V (v,u) € E.. uand v are said comparable ;

o Yu,v € V :ul|lv <= —(u ~ v). u and v are said parallel ;
INRIA
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o Yu,v €V :u<v<= (u,v) € E, that is < defines an order between the nodes.
e VuveV . u<v<=u=vVu<v

We define also the notions of descendants and ascendants of anode v € V' :

o Tv={u€V/u<v} the set of v’s ascendants including v;

e | v={u€V/v<u} the set of v’s descendants including v.

We define the notion of chain and antichain in an acyclic graph :

e Asubset C CVin G=(V,E)is a chain iff: Vu,v € C:u~v

e A chain MC is said maximal iff VC a chain : |C| < |[MC|

e Asubset ACVin G = (V,FE) is an antichain iff: Vu,v € A:u || v

e An antichain M A is said maximal iff VA an antichain : |A| < |AM|

2.1.2 Hypergraphs

An hypergraph H = (S,&) is a couple of two sets : S = {s1, S92, ...., 8y} and a family & =
{E1, Es, ..., Ey} of subsets from S such that :

Vi=1lm:E;#¢
and

U E; = S (covering constraint)

j:l,m

The elements s1, So, ..., S, are the nodes of the hypergraph, and the subsets F1, Fs, ..., E,, are
called the edges . Graphically, an hypergraph H = (5, €) is represented by joining the nodes
such that Vs; € E; :

e if |[E;| = 1 then put a loop joined on the node ;
e if |[E;| = 2 then we join the two nodes by a line (like in an indirected graph);

e if |[E;| > 2 then we surround all nodes by a joined line.

2.2 Interval Orders

In this report, we use the 13-values interval algebra studies in [GS92]. Let I = [a1,b;] € N and
I, = [as,b3] € N be two intervals. Then:

1. I < I <= b; < ay. We says that I is before I

2. I f Iy <= by = by. We says that I, finishes I.

RR n°3978



0 vta-Ahmea-Ait LTOUUALL , rran¢ots 1 dUMAOSOL 1

Chapter 3

Case of DAGs

In this chapter, we study the notion of register saturation in a DAG, which is the maximum
number of registers that can use a given acyclic graph to complete the computation. The notion
of register in our report is an alive value. The number of registers consumed is then the number
of values simultaneously alive . To avoid ambiguity between values simultaneously alive and
processor registers, we refer to the latter as physical registers in the entire report.

Section 3.1 presents our formal definition of a valid schedule. We extend the notion of
linear extension of a graph to formalize horizontal schedules (Very Large Instruction Word).
Section 3.2 studies the problem of finding an extended graph of an original one such that
the register consumption of any schedule for this graph is maximal. Section 3.3 studies the
problem of finding an extended graph of the original one such that the register consumption of
any schedule for this DAG is limited by a constant.

3.1 Valid Schedules

We begin by introducing the notion of parallel topological sort of a DAG that models horizontal
schedules, such that parallel nodes are written in the same slot. The standard topological sort
is referred to as strict topological sort, because we can only put one node per slot. In a parallel
topological sort, we can put more than one operation per slot.

Definition 3.1 (Parallel Topological Sort of a DAG) A parallel topological sort of an acy-
clic graph G = (V, E), is a family T of ordered non empty subsets of V- (Vy,Vi,..., V) with
0 <m < |V| such that:
e cach node belongs to one and only one subset
VueV,AV, €T :ueV
We note liner(u) =i and slotr(u) =V,

e precedence constraints

Ve = (u,v) € E liner(u) < liner(v)
INRIA
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We use the concatenation symbol “” to note a parallel topological sort as V- V;---V,.

Let £L be the set of all parallel topological sorts of G = (V, E) . LL is computed by
examining all combinations of parallel nodes. Formally, we state :

LL(G) = U {S-0/oeLL(@-35)}
p=1,|Source(G)|
SeCP(Source(G))

such that CP(V') defined for a set V' is all subsets from V' obtained by all combinations of p
elements from V. That is C?(V) = {S C V/|S| = p} and

V!
ptx (V] =p)!

ICP(V)I = Cy, =

Figure 3.1 gives some examples of parallel topological sorts.

Proposition 3.1 VG = (V,E) a DAG : G' = G\¥ is an extended DAG of G = LL(G") C
LL(G)

Proposition 3.2 VG = (V,F) : G is a DAG = LL(G) = LL(G.) = LL(G,)

OICH I T
b d c {c, d} b c
i c a b e {c,d} b
@ d ¢ d e d
\ , e e e e
(@) aDAG (b) strict topological sorts (c) parallel topological sorts
Figure 3.1: Examples of strict an parallel topological sorts

Definition 3.2 (Parallel schedules of a DAG) A valid schedule o of a DAG G = (V, E) associated
to a parallel topological sort T € LL(G) is a function such that :

c:' V. —-N
v+ liner(v)

We note 3(G) the set of all valid schedules. As 0 < m < |V, we can state that
Vo € £(G),Yv eV :0<o(v) < |V|

Appendix A gives an algorithm for computing 3(QG)
RR n"3978
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3.1.1 Restricted Schedules

In this section, we reduce the definition of parallel topological sorts by introducing a upper
limit on the number of parallel nodes contained in one slot. This concept models the maximum
exploitable ILP by a processor.

Definition 3.3 (Restricted parallel topological sort of a DAG) A restricted parallel to-
pological sort ofgn acyclic graph G = (V, E) with a non negative integer r, is a parallel topolo-
gical sort noted T = Vy-Vi---Vy, with 0 <m < |V| such that: VV; € T :|Vi| <r

We note LL (G) C LL(G) the set of all restricted parallel topological sorts of G' with the non
negative integer . LL (G) is computed by examining all combinations of r parallel nodes.
Formally, we write :

LL (G) = U {S-0/oe LL (G - S)}
p=1,min(r,|Source(G)|)
SeCP(Source(@))

Definition 3.4 (Restricted valid schedule of a DAG) A wvalid schedule 3" of a DAGG = (V, E) is
restricted by a non negative integer 0 < r < |V| iff :

AT € LL (G),Yv € V : 5" (v) = line(v)

We note ¥ (G) C L(G) the set of all restricted valid schedules of G with the non negative
integer 7.

Remark The strict topological sorts are restricted topological sorts with limit 1:

L(G) =LL (G)

3.1.2 Schedules with NUAL Semantics

Until now, ¥(G) the set of all valid schedules defined for a DAG G = (V, E) models all sche-
dules with the UAL ! semantics [SRM94]. In the case of UAL semantic, precedence constraints
are sufficient to build valid schedules. Building a valid schedule in this semantic is to schedule
one operation before its descendants. Operation latencies are not important for the validity.
But with NUAL? semantic, like in VLIW processors, ¥(G) does not model valid schedules since
it does not guarantee the operation latencies between nodes. Scheduling one operation before
its descendants is not sufficient for building a valid schedule: we must guarantee a minimum
of time steps which corresponds to the latency of the operation.

For this purpose, we introduce in G the function ¢ that gives the latency of each arc. We
define G = (V, E, 6) such that Ve € E : §(e) is the latency of e. A valid schedule o of G must
satisfy

Ve = (u,v) € E:0(v) —o(u) > 6(e)

To model this sort of semantics, we should redefine the parallel topological sort (see figure 3.2).

1Unit Assumed Latency: the processor has to guarantee the data dependence if an operation is scheduled
before another. For the scheduler, all operations have a unit latency.

2Non Unit Assumed Latency : the scheduler has to guarantee the data dependence by inserting nops between
operations if the latency is more than 1 cycle.

INRIA
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Definition 3.5 (NUAL Parallel Topological Sort of a DAG) A NUAL parallel topologi-
cal sort of an acyclic graph G = (V, E) , is a family T of ordered subsets of V. (Vo,Vi,..., V)
such that:

e cach node belongs to one and only one subset
YVueV, IV, eT :uel
We note liner(u) =i and slot7(u) =V,
e cach precedence constraint must be gquaranteed with its minimal latency

V(u,v) € E : liner(u) + 6(e) < liner(v)

@ @ {a b} {a} {a}
{} {b} {}
2 \Lg {} {c} {b, c}

{c,d} {} {}

@ (o @ 0

{e} {d}

jo}
(8 aNUAL DAG (b) NUAL parallel topological sorts

Figure 3.2: NUAL parallel topological sorts

Let be LLyyar the set of all NUAL parallel topological sorts. To compute this set, we define
a graph transformation ¢ that introduces new virtual nodes (nops) and arcs in G in order
to guarantee the minimum arc latency. Let Dy4; be the set of all DAGs defined with UAL
semantic (precedence constraints are sufficient to build a valid schedule), and Dyy 4z the set
of all DAGs in the NUAL semantic (a valid schedule should guarantee the § latencies).

Dyar ={G = (V,FE) /G is a DAG}
Dypar ={G = (V,E,6)/G is a DAG}
Now we give the definition of our graph transformation.

Definition 3.6 (NUAL Transformation) A NUAL transformation ¢ defined for any DAG
G € Nyar s a function such that

¢: Dnyar — Dyar
G=WV,E,§) — p(G)=(V',E"
with
V=V U{nopy/u €V A0 <i<maxe(umerb(e) — 2}
E'= E U{(nopu,,nopyit1)/u € VA <i<maXe—(uperb(e) — 2}
U{(u, nopyp),Yu € V'}
U{(nopy,se)-2,v)/e = (u,v) € E'}
—{e=(u,v) € E/6(e) > 1}
RR n°3978
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V' is extended by a chain of intermediate nops for any node u in order to introduce the
minimum latency 6(e). If the minimum latency is equal to 1, then no nop are introduced. In
E’, we connect each node u with its first intermediate nop, and we connect an intermediate
nop to the u’s successor depending on the latency of arc e. Figure 3.3 gives an example of a
NUAL transformation.

Now, the set of all valid schedules of a DAG in NUAL semantics is:

VG € DNUAL . E(G) = E(QO(G))

Remark theoretically, there is an infinite number of schedules for a given DAG G €
Dypap- That is because we can insert an infinite number of nops to guarantee a data depen-
dence between two operations. By using the NUAL transformation, we restrict the infinite set
of valid schedules to the finite set X (¢(Q)).

3.2 Register Saturation Problem

In this section, we study how to find a family of schedules maximizing the register utilization
for a given DAG. We will see that this problem is reduced to answering the question which
operation kills which value ? In this report, the notion of register is a value alive. To avoid
ambiguity, we refer to a processor’s register as a physical register.

3.2.1 DAG Model

A DAG G = (V, E, 6,6y, 6,) in our study represents data dependence constrains within opera-
tions, such that:

e 1/ is the operations set;
e F={(u,v)/ u,v € V} are data dependence constraints;

e Ve € E, §(e) is a positive integer representing the source operation latency.

26

(o)
o
@—"
gt
oR0

-

(a) G € Dyvar (b) ¢(G) € Dyar,

Figure 3.3: NUAL transformation
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Since writing and reading into and from registers could be delayed from the beginning of the
operation schedule time (NUAL semantics, like VLIW and EPIC), we define the two delay
functions 6, and 6, :

o V—-N
u +— 6,(u) cycle number when the read occurs after o(u)
bw: Ve— N

U+ 6y (1) /6, (u) < 6, (u) cycle number when the write occurs after o(u)

Then each operation u read from registers at instant o(u) + 6,(u), and each value v is written
at instant o(v) + 6,(v). Each operation u € V has a strictly positive latency lat(u), so in
the initial DAG we have Ve = (u,v) € E 6(e) = lat(u). We suppose also that the read
occurs at the beginning of the operation latency and the write at the end of the latency:
Or(u) < 6y(u) < lat(u).

When studying register need in a DAG representing a data dependence graph (DDG) and
some other precedence relations, we should make a difference between the nodes, depending if
they write in a physical register or not. Depending on which register type we are focusing on
(int, real), we set V = Vz U Vg for any G = (V, E, 6, b4, 6,) such that:

e Vi are the subset of operations that write into one physical register of the considered
type3. We call them value nodes*;

e Vs =V — Vi the remainder of operations (like store, nop ... ).

Depending on which register type we are focusing on (int, real), we also make a difference
between arcs, depending if they refer to true dependence through a physical register of the
considered type, or simply to a serialization (true dependence through memory or through
other register types). We define £ = Er U Eg such that:

e FEg is the subset of arcs that are true dependences through a physical register of the
considered type. We call them flow arcs;

e Es = FE — Ej the remainder of arcs (like true dependence through memory or through
another register type). We call them serial arcs.

It is clear that (u,v) € Er = u € V. To simplify writing our formulas, we assume that the
DAG has one source and one sink that we call T and L. If not, we introduce the two virtual
nodes (T, L) representing nops. We add an arc from T to each source with a null latency, and
an arc from each sink to | with the latency of the sink operation.

Then, a valid schedule o of G is a function that gives an integer execution time for each
operation :

o is valid <= Ve = (u,v) € E o(v) —o(u) > 6(e)
o

and we note X(G) the set of all valid schedules for G. And we note & =
step.

(L) the last execution

3we assume a RISC operation model, i.e. a value operation does not write into more than one register

“we also assume that there is one possible definition per value
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Remark if G' = G\¥ is an extended DAG of G, then
£(¢) € 2(6)

A value produced by a node u is alive between the execution of u and its last consumption.
We first define the consumer set of a value as the set of all operations that read this value. The
values that are not read in GG are those that are still alive when exiting the computation and
must be kept in registers. We model these special values by considering that the bottom node
L consumes these leaf values.

Definition 3.7 (Consumer Set) Given DAG G = (V, E, 6, 6y, 06;), the consumer set Cons(u)
of a value u € Vg s defined by :

[ {veTi)/(u,v) € Eg} if I(u,v) € E
Cons(u) = { L ¢ " otherwise "

Some operations in the consumer set could be killing operations (the last scheduled opera-
tions within the consumer set). To know which operation could potentially kill which value, we
eliminate consumers that can never kill this value: they are the consumers that have precedence
constraints with other consumers. We give the following definition.

Definition 3.8 (Potential Killing Operations) Given a DAG G = (V, E, 6,6y, 6,), poten-
tial killing operations of a value u € Vg is the subset pkill(u) C Cons(u) such that :

pkill(u) = {v € Cons(u)/ | v Cons(u) = {v}}

Property: All potential killing operations of a value u are parallel, i.e.:
Vo, v € pkill(u)  v|]v'
To model the potential killing relation among nodes, we use:

Definition 3.9 (Potential Killing DAG) Given a DAG G = (V, E, 6, by, 6,), the potential
killing DAG of G, noted PK(G) = (V, Epk) is the partial graph G/ gy, such that :

Vu,v € V : (u,v) € Epg <= u € Vg A v € pkill(u)
Constructing PK(G) can be done with polynomial complexity which is the complexity of
constructing the transitive closure G, of G. See appendix B for more details.

Example 3.2.1 The DAG presented in figure 3.4.a is an example of a potential killing DAG.
Bold circles are value nodes, and bold arcs are flow arcs. Part (b) models the pkill relations
between value nodes and other nodes. In this example, we have for instance Cons(a)={c,d},

pkill(a)={d}, Cons(e)={g,h,i}, pkill(e)={h,i}.

Given a schedule, the killing date is the last time when a value is consumed.

Definition 3.10 (Killing Date of a Value) Given DAG G = (V, E, 6, b, 6,) and a schedule
o € 3¥(Q), we associate to each value v € Vi a killing date, noted kill,(u) and defined by

Vu € Vi kill,(u) = { Koy o(v) + 6,(v) Z ﬁfﬁfﬁfﬁ 26

We call Jo(u) + 6y (u), o(v) + 6,(v)] the lifetime interval of u, noted L¢
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We call a killing operation each operation v € pkill(u) scheduled at time kill,(u).

Proposition 3.3 Given a DAG G = (V, E, 6, 6y,6:), then Yu € Vg
Vo € ¥(G) 3Fv € pkill(u) : o(v) + 6,(v) = kill,(u) (3.1)
Vo € pkill(u) Fo € X(G) : kill,(u) = o(v) + 6,(v) (3.2)

Proof:

Proving (3.1) is deduced directly from pkill definition. Since
!

v € pkill(u) = fv' € Cons(u) v<wv

then the killing date of u must be the schedule of some operation in pkill(u). Let
us prove that

Yu € Vg Pv' € Cons(u) — pkill(u) Jo € B(G)  kill,(u) = o(v") + 6,(v)
Suppose the contrary true.
Fv' € Cons(u) — pkill(u) = Fv € pkill(u)/v' < v
let Ip(v',v) be the longest path from v to v.
since Ip(v',v) > lat(v") > 6,(v") = o(v) — o(v') > 6,(v")
Since 6,(v) > 0:
a(v) + 6,(v) — a(v') > 6,(v) = o(v) + 6.(v) > (V') + 6,.(v")

Then
kill,(u) > o(v) + 6,(v) > o(v') + 6,(v")

(b) PK(G)

Figure 3.4: Potential killing DAG
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For proving (3.2), for each v € pkill(u), we create an extended DAG G* = G\ ¥ to
enforce v to be the last read of the value u. Vo' € pkill(u) — {v}, we add a serial
arc e from v’ to v with latency 6(e) = 6,(v') — 6,(v) Then, any schedule o € X(GY)
ensures o(v) + 6,(v) > o(v') + 6,(v") which means kill,(u) = o(v). Let’s prove that
GY is still a DAG. Suppose the contrary is true, i.e. Ju € Vg, Jv € pkill(u) such
that G¥ is cyclic. Let C = (v,---,v,v) be this cycle where the introduced arc is
(v',v). We know that all the potential killing operations pkill(u) of a value u are
parallel in G. But before introducing this arc, a path p = (v,---,v’) means that
v < v'" in G which is a contradiction.

Figure 3.5 shows the two extended DAGs associated to e. The original DAG is
presented in Fig. 3.4. Here, we assume that all read delay are null. e has two
potential killing operations {h,7}, so we have two extended DAG : G ensures that
¢ kills e, and GY, that ensures that A kills e.

Figure 3.5: Proposition: each potential killing operation can kill the value

The register need of a schedule is the maximum number of simultaneously alive values. It
defines the amount of physical registers required to avoid spilling.

Definition 3.11 (Register Need of a Schedule) Given a DAGG = (V, E, 6, 6y, 6,), the re-
gister need RN,(G) of G according to a schedule o € X(G) is defined by

RN,(G) = max |vsa,(7)|

0<i<o
such that

vsay (1) = {u € Vg/i € L} values simultaneously alive at instant i

The register saturation is the maximal register need that can be obtained for a given DAG.
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Definition 3.12 (Register Saturation of a DAG) Given DAGG = (V, E, 6, 6y, 6,), the re-
gister saturation RS(G) of G is defined by

RS(G) = RN, (G
(@)= g ()

Definition 3.13 (Saturation Schedule) Given DAGG = (V, E, 6, 6y, 6,), a saturation sche-
dule noted 7 € X(G) is defined by:

o is a saturation schedule <= RN,(G)= RS(G)

We note 3(G) the set of all saturation schedules.
In this section, we study how to compute RS(G) and how to construct some saturation

schedules in E(G) for any DAG G = (V, E, 6, 6, 6,).

3.2.2 Computing Register Need

Given a schedule o € X(G), computing RN, (G) is obvious and has a polynomial complexity
O(7 x |Vg|). In presence of a schedule, all values lifetime intervals are defined. Algorithm 1
computes the register need of a schedule.

Algorithm 1 Computing register need
Require: the lifetime interval L? of each value u

RN =0

for 0 < i < 7 do {initialization}
vsa(i) =0

end for

for all u € Vi do
for i =1+ o(u) + 6y(u), kill,(u) do
vsa(i) + +
end for
end for
for 0 <7 < 7 do {searching the maximum vsa}
if vsa(i) > RN then
RN=vsa(i)
end if
end for

3.2.3 Computing Register Saturation

When approaching the problem of computing register saturation, a first upper-bound of the
register saturation is the amount of values produced within the DAG, i.e. RS(G) < |Vg|. Since
some values could be killed by other operations, the killed value could not be alive simulta-
neously with its killing operations and its descendants. In this section, we give the formal
problem formulation for computing an exact RS(G).

When we have no schedule, value lifetime intervals are not defined. In this section, we study
how to use precedence constraints defined by the initial DAG to deduce a schedule that use the
RR n~°3978
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maximum amount of registers. A value u is defined 6,,(u) steps after the schedule of u, but we
cannot deduce which operation kills it since we do not assume any schedule. In the following,
we will see that the register saturation problem is reduced to select a killing operation for each
value.

Let us begin by assuming that we have killing function which associates to each value u € Vg
one and only one killing operation k(u) € pkill(u).

Definition 3.14 (Killing Function) Given a DDG G = (V, E, 6, 64, 6,), a killing function k
1s defined by

k: Vg — pkill(u)
u = k(u)

We use killing functions to chose an operation k(u) to be the only one killer of a value u € Vp,
i.e. to satisfy the following assertion :

Vu € Vi, Jv € pkill(u) o(v) + 6,(v) = kill,(u) <= v = k(u) (3.3)

This equation has to be verified for a family of schedules that we make precise below.

Schedules Associated to a Killing Function

There is a family of schedules ¢ € ¥(G) that ensures the killing function assertion (3.3).
Defining these schedules is obvious. For this purpose, we build an extended DAG G\”* such
that all the schedules of this new DAG ensure the killing function assertion.

Definition 3.15 (DAG Associated to a Killing Function) Given a DAGG = (V, E, 6,6y, 6;)
and a killing function k, the extended DAG associated to k noted G_, = G\P* is defined by :

Ey = {e = (v, k(u))/u € Vg : v € pkill(u) — {k(u)} A é(e) =6 (v) — 6, (k(u)) + 1}

That is we add serial arcs from all the potential killing operation pkill(u) to the chosen one
and only one killing operation k(u). Then,

Vo € X(G_) Yu € Vg Yo € pkill(u) — {k(v)} o(k(u)) + 6 (k(u)) > o(v) + 6, (v)

We cannot choose an arbitrary killing function, because sometimes we could not be able to
find a valid schedule that ensures the killing assertion (3.3). We must be sure that there is one
valid schedule associated to it. So we give the condition for the validity of killing function.

Definition 3.16 (Valid Killing Function) Given a DAG G = (V, E, 6, 64,6,) and a killing
function k, then

k is valid <= G_ is acyclic
= X(Gk) # ¢

Testing if a killing function % is valid has a linear complexity O(|V| + |E| + |Ex|). See
appendix C for more details.
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Example 3.2.2 Figure 3.6 describes an example where an arbitrary choice of killing operations
is not correct. The original DAG is presented in part (a). For simplicity, all nodes are value
and all edges are flow; the read delay is null for all operations. If we choose the killing function
k as described with the bold arcs (the source of the bold arc is killed by its destination), then
this killing function is not valid since it introduces a cycle in the extended graph associated to
k, see part (b).

At this point, we can build a DAG that models values that can never be simultaneously
alive. We first introduce the notion of descendant values.

Definition 3.17 (Descendant Values) Given a DAG G = (V, E,6,6y,6,), the descendant
values set |yq u of a node uw € V is defined by :

lval U :l umVR

Then, any value u can never be simultaneously alive with the k(u)’s descendant values. This
is because, for any schedule that ensures the killing function &, the killing date scheduled with
k(u) is always before the definition of any descendant value in |, .

Definition 3.18 (Disjoint Value DAG) Given a DAG G = (V, E, 6, 6y, 6.) and a killing func-
tion k, the disjoint value DAG of G, noted DVi(G) = (Vg, Epv) is defined by :

Epy = {(u, v)/u,v € Vg A v €l k(u)}

Having a killing function k, the disjoint value DAG DV (G) models the values that can
never be simultaneously alive in any schedule that ensures k. The set of values that could be
scheduled as simultaneously alive are all parallel values in DVy(G).

Example 3.2.3 Figure 3.7 gives an example to show how to build DVy(G) for a killing function
k. The values Vg and flow arcs are represented by bold lines in the DAG part (a). Part (b)
gives the potential killing graph where a valid killing function k is represented by bold arcs : the
source of a bold arc is killed by its destination. The DAG G_,; associated to k is presented in
part (d): here we assume that reading from registers is done at cycle 0. Introduced serial arcs
(see dashed ones) have then a null latency to ensure the killing function. Part (c) shows the
disjoint value DAG DVi(G). For instance, k(a) = ¢ and |4 ¢ = {c, e, g, h} means that lifetime
interval of a is always before lifetimes intervals of {c, e, g, h} for any schedule o € X(G_;) An
antichain with mazimal size in is the subset {c,d, e, g}.

(a) the DAG G with killing operations (b) the extended graph associated to the killing function

Figure 3.6: Non valid killing function
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Theorem 3.1 Given a DAG G = (V, E, 6, 6y, 6;)and a valid killing function k then :
e Vo € X(G_y) : RN,(GQ) < |AM;|
e do € X(G_y) : RN,(G) = |AM|

with AMy, an antichain of mazimal size in the disjoint value DAG DVy(Q).

Proof:

The disjoint value DAG DV (G) models the order between value lifetime in any
schedule of G_y. Yo € £(G_}),Yu,v € Vg:

u < vin DVi(GQ) <= u < k(u) < v in G_

If v = k(u), then o(u) + 6,(u) < o(v) + 6,(v), because of true data dependence.
Since 6,(v) < 6(v), then o(u) + 6,(u) < o(v) + 6, (v). In the case where v # k(u),
any path from k(u) to v is a data dependence path with strictly positive integer
latencies; we deduce that

Vo € £(Gok) o(k(w) + 6, (k(u)) < o(v) + 6u(v)

That is kill,(u) < o(v) + 6,(v); we deduce that following assertion is correct :

Vo € ¥(G_k) u~wvin DVy(G) = LINLI=¢

We rewrite it : Vo € X(G_y)

LiNL] #¢ = ullvin DVi(G)
= {u,v} €vsa,(i),i € LINLY

Then, any values simultaneously alive for o € 3(G_j) belong to an antichain in
DVi(G):
V0 < i <7, JA an antichain of DV, (G) wsa,(i) C A

(b) PK(G) with killing function (c) DVi(G)

Figure 3.7: Disjoint value DAG
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Theorem 3.2 Let G =

Since RN, (G_)) = maxp<i<z [v5a,(1)] and VO < i <7 :  |vsa, (1) < [AM],
we conclude that RN, (G) = max<i<z |vsa,(1)] < |AM]|

Now, we have to build a schedule o such that RN,(G) = |AM|. For this purpose,
we take G_j in order to ensure the killing relation, and we add some serial arcs
to enforce the values in AM; to be simultaneously alive. This leads us to a new
extended DAG G' = G_;\¥ and

Vo € X(G') Yu,v € AMj, : LyNL; #¢

The necessary and sufficient condition which two values u,v in AMj must satisfy
to be simultaneously alive for any schedule of G_,}, is

v <u < k() ANp(v,u) > 6,y(v) — by(u) A
A Ip(u, () > 8,(u) — & ((v)) (3.4)

Vo ou<v<k(u) A Ip(u,v) > 6y(u) — 6y(v) A
A 1p(v, k(u)) > 6,(v) — 6, (k(u) (3.5)
% k(u) = k(v) (3.6)

such that Ip(u, v) for u,v € V denotes the longest path from u to v. These conditions
ensure that Vo € 3(G_j) Yu,v € Vg:

u,v satisfy (3.4) = o(u)+ b6u(u) > o(v) + 6y (v) A

A o(k()) + 6.(k(v)) >0
u,v satisfy (3.5) = o(v) + 0u(v) > o(u) + 6y(u) A
> +

A o(k(u)) + 6 (k(u))
u, v satisfy (3.6) = kill,(u) = kill,(v)

And then, by using interval order algebra defined in Sect. 2.2 (page 5):

u,v satisfy Cond. (3.4) = —(LJ < L§ Vv Lg > LJ)
u,v satisfy Cond. (3.5) = —(Lg > LJ vV LI < LJ)
u, v satisfy Cond. (3.6) = L¢ fLg

If two values in u,v € AM; do not satisfy any of these conditions, then we use
Algorithm 2 to enforce them. This algorithm use the boolean function vsag: (u, v)
to test if two values u, v verify one of the above conditions. We add iteratively serial
arcs until all values in AM,, satisfy one of these conditions. The added serial arc
does not introduce cycles and any schedule ¢ of G’ has RN,(G') = |AMy|. See
Theorem 3.2.

Vu,v € AM Yo € £(G")  LCNL° #¢

where AMy, is a mazimal antichain in DVi(Q).
RR n°3978
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Algorithm 2 Extended G_ to enforce values to be simultaneously alive
Require: a valid killing function &
construct the extended graph G_,; associated to k
G' = G_ {the final extended graph is initialized}
search a maximal antichain AMj, in the disjoint value DAG DVj(G)
for all u € AM,; do
for all v € AMy/ u # v do
if —vsag(u,v) then
if u||v in G’ then
if =(k(u) < v) then
add the serial arcs e = (u,v),e¢ = (v,k(u)) to G' with 6(e) = 6, (u) — 6, (v) and
§(€') = 6w(v) — 6 (k(u)) + 1
else {—(k(v) < u) certainly}
add the serial arcs e = (v,u), e’ = (u,k(v)) to G' with 6(e) = 6,,(v) — 6, (u) and
6(€') = 6u(u) — 6, (k(v)) + 1
end if
else
if v < u then
add the serial arcs e = (v,u) and €' = (u, k(v)) to G’ with §(e) = 6y (v) — 6y (u)
and 6(e') = 6, (u) — 6, (k(v)) + 1

else {u < v}
add the serial arcs e = (u,v) and e = (v,k(u)) to G' with §(e) = 6,(u) — 6, (v)
and 6(e') = 6,( 6 (k(u)) +
end if
end if
end if
end for

end for
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Proof:

We proceed by induction. We prove that after exiting Algorithm 2, G’ is still a
DAG. We prove also that the algorithm makes all values in AMj, verifying one of
the conditions Cond .(3.4), Cond. (3.5) or Cond. (3.6). For this last condition, if two
values do not verify it in the DAG G_,;, they cannot verify it in G’ : this is because
the killing operations has been fixed in G_. So, if u,v do not verify Cond. (3.6),
Algorithm 2 can only force them to verify Cond .(3.4) or Cond. (3.5).

We prove also the following property
Vu,v € AM;, = (k(v) <uVk(u) <v)in G

which is the same as proving that algorithm 2 guarantees all values in AM; are
forced to be simultaneously alive in G':

Pu,v € AMy/u ~ v in DVi(G")
Initially, this is correct because u,v € AMy = u & |y k(v) Av €|y k(w). In this

proof, we note G} the graph built after exiting iteration i.

Suppose that after exiting iteration ¢ — 1, G}_is still a DAG and
Vu,v € AM), —(k(v) <u V k(u) <v)inG)_,

Let u; and v; be the two chosen values at iteration ¢ which do not verify any of

the conditions. Let us prove now that (s still a DAG and the two chosen values
u;, v; € AMj verify one of the conditions after exiting iteration 7. And also, we
prove that after exiting this iteration

Pw € AMy/k(us) <w V k(v;) < w in G}
Our algorithm introduces serial arcs in four cases:

1. w||v; in G}_,, then

o if ~(k(u;) < v;), the two introduced arcs e = (u;, v;), €' = (v;, k(u;)) cannot
introduce cycle, because u; < k(u;) in G}, see Fig. 3.8(a). Now they are
verifying Cond. (3.5). And also after introducing these arcs,

Pw € AMy/k(u;) <w V k(v;) < w in G}
Suppose the contrary is true, i.e.
Jw € AMy/k(u;) <w V k(v;) < w in G|

If k(u;) < win = k(u;) < w in G_because we have not introduced

a serial arc from k(u;), which is impossible because of induction hypothe-

sis.

If k(v;) < win = k(v;) < w in G;_pecause we have not introdu-
ced a serial arc from k(v;), which is also impossible because of induction
hypothesis ;
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e else =(k(v;) < u;) certainly, because
v; < k(v;) < ui Ay < k(ug) < v; = u; < v; Av; < u; in G| (impossible)
Then the introduced arcs e = (v;, u;), €' = (u;, k(v;)) cannot introduce any

cycle because v; < k(v;) in G)_,, see Fig. 3.8(b). Now they are verifying
Cond. (3.4). And also after introducing these arcs,

Pw € AMy/k(u;) <w V k(v;) < w in G}

The proof is similar to the case above;

2. if v; < w; in G)_,, then by induction hypothesis =(k(v;) < w;) in G} ;. The
two introduced arcs e = (v;,u;) and € = (u;, k(v;)) cannot cause any cycle.
Now they are verifying Cond. (3.4). And also after introducing these arcs,

Pw € AMy/k(u;)) <w V k(v;) <win G}

The proof is similar to the case above;

3. u; < v; in G}, this case is similar to above. Now they are verifying Cond. (3.5).
After n = |AMj|? iterations, we conclude that :
Vu,v € AMj, wu,v verify one of the conditions (3.4), (3.5) or (3.6)

and then Yu,v € AMy, Vo € £(G')  LSNLI # ¢

wr wr

.
€ €
. .
S S

\\ ‘\\
:"M\ ‘ :,..‘\
@?}<impossible @\Ximpossible

\

(8 u<v <k(u) (b) v < u <k(v)

Figure 3.8: Forcing values to be simultaneously alive

For each valid killing function, we can deduce which values cannot be simultaneously alive with
u € Vg in any schedule o € (G _y). The following corollary defines them.

Corollary 3.1 Given a DAG G = (V, E, 6, 64,6;) and a valid killing function k, then
Yu € VR N
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1. the descendant values that cannot be simultaneously alive with u are the set of descendant
values of the killing operation v € g k(u) :

Vo € S(Goy) Yo €Ly k(u) L=< LY (3.7)

2. the descendant values of u that could be simultaneously alive with u are those that do not
belong to |yq k(u), i.e.:

Vo € U b v | = loa k(u) 30 € 5(G_p) : LENLL # ¢ (3.8)

v' €pkill(u)

Proof:

Statement (3.7) is obvious since v € |4 k(u) = u < v in DV(G).

For Statement (3.8), we deduce it from Theorem 3.1. Since

Vo € U Lot ¥ | = Lo k(u)  ul|v in DVi(G)

v’ epkill(u)

then 3A an antichain in DV3(G)/ u,v € A. We build an extended DAG G4 =
G_;\¥ to enforce all operations in A to be simultaneously alive with u, i.e. we
enforce one of the conditions Cond. (3.4), Cond. (3.5) or Cond. (3.6). We proceed
in the same manner described in Algorithm 2. The added serial arcs ensure that

Vo eX(G)YweA LENLE#¢

Theorem 3.1 allows us to rewrite the register saturation formula as

RS(G) = max |AMj| with AM}, a maximal antichain in DV, (G)

k is a valid killing function

We refer to the problem of finding such killing function as the mazimizing mazimal antichain
problem.

Definition 3.19 (Maximizing Maximal Antichain Problem (MMA)) Given a DAG
G = (V,E,b,6y4,6:), find a valid killing function k such that :

VE' a valid killing function of G : |AMy| > |AMy|
with AMy, a mazimal antichain in DVi(QG), and AMy a mazimal antichain in DV (G).

That is we should find a killing function maximizing maximal antichains in disjoint value
DAGs. We call it a saturating killing function. We also define the inverse function k~!
which denotes the set of values killed by a node u:

VueV k' (u) = {v e Vr/ k(v) =u}

Theorem 3.3 Given a DAG G = (V, E, 6, 6y,6,), finding a saturating killing function is NP-
complete.
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Proof:

We prove this theorem for a sub-family of DAGs G = (V, E, 6, 6, 6,) composed of
only one connected bipartite i.e. V = S U T, such that all nodes are values and
all edges are flow (V = Vg and F = FEg). S are parent values and T are children
values that consume parent values (all edges go only from S to T'). In this case,
G = PK(G) and then the maximizing maximal antichain problem can easily be
reduced to the minimum killing set problem (MKS is proven NP-complete) described
in[BGS92|. To simplify writing this proof, we note the DAG as G = (V = SUT, E),
since the latencies are not used for finding a saturating killing function.

Definition 3.20 (Minimum Killing Set (MKS)) :
Given a bipartite DAG G = (V = SUT, E), the minimum killing set of G is a
subset T' C T, such that

1. covering constraints

Urst)y=s

teT!
2. minimizing constraints

min |7’

Definition 3.21 (MMA decision problem: dec(MMA)) Given a DAG

G = (V= SUT,FE) which is a connected bipartite DAG and V = Vg A E = FEfp,
and a strictly positive integer j, does there exist a valid killing function k such that
|AMy| > j ¢ where AMy, is a mazimal antichain in DVi(G).

Definition 3.22 (MKS decision problem: dec(MKS)) Given a DAG

G = (V= SUT,E) which is a connected bipartite DAG with V = Vg AN E = Ep
and having an integer j, does there exist a minimum killing set T' € T such that
7' <j ¢

First, dec(MMA) belongs to NP. Having a killing function %k, we can test in poly-
nomial time (O(|V|+ |E|)) if it is valid (see chapter C). Building the disjoint value
DAG DV, (G) associated to k can also be done in O(|V| + |E]). Searching for a
maximal antichain in DVj(G) is also polynomial thanks to Dilworth’s decomposi-
tion. Second, we have to prove that dec(MMA) can be reduced to dec(MKS).

dec(MKS) — dec(MMA) Suppose we have a minimum killing set 7'. We
construct a valid killing function thanks to algorithm 3.

Now we have to prove two assertions:

1. this algorithm ensures that & is a valid killing function;

2. k is a saturating killing function.
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Algorithm 3 Computing saturating killing function &

Require: a connected two-bipartite DAG G = (SUT, E) and a minimum killing set 7"
initialize k(s) =L for all parents s € S
for all nodes t € T' do
for all parent s € I';(¢) do
if k(s) #L then
put k(s) =t
end if
end for
end for

For proving the first assertion, we need a new formulation of the potential kill
relation between the nodes of S and 7. For the DAG component G = (SUT, E),
we define an hypergraph ‘H = (S,&) with £ = {E}, Ey,, ..., E; } such that E;, =
{s € S/(s,t;) € E}°. This hypergraph models the relation between potential killing
sets. Values belonging to the same edge E; € £ could all potentially be killed by ¢.
Figure 3.9 shows the hypergraph constructed for the example 3.2.2.

Figure 3.9: Hypergraph associated to killing function

We begin by proving that choosing a non valid killing function arises only if the
hypergraph H is cyclic. Suppose that the killing function produced is non valid.
This means that there is a cycle in G_; = G\P* = (V, E_;). Since G is bipartite
(there is no arc from 7T to S), and since in G_; we add only arcs within 7" nodes,
so no arc can be introduced from 7" to S. The only cycle that can be produced in
G_ris C = (to,--- ,tn,to) where t; € T. We know by definition of a bipartite DAG
that Vto,t; € T : ty|[t; in G. Then

(to,tl) € E_,k - (to,tl) € Ek

Sby definition, t; € T
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In the hypergraph H we have:

(to,t1) € By, = Js€ S  ty € pkill(s) Nty € pkill(s) ANt = k(s)
E,NE, #¢

=
(titiv1) € By = E NE,, #6¢
—

(tn,to) € Ey E, NEy # ¢

Then

C' = (Ey,...,En, Ey) is a cycle in H (3.9)

The algorithm described above proceeds by choosing children ¢; € T', i.e. E;, € £
in a certain order. The properties induced by the heuristic are:

1. Each edge Ey, is selected at most once. So there is a visiting order “<” between
hypergraph edges. We write Ey, < Ej; if Ey; is selected before Ej,.

2. If an edge Ej, is visited before E;;, then the common parents (E;, N E;;) are
killed by ¢; or by another child visited before E;,. In any case, there are no
common parents killed by ¢;. Formally, we write

Eti < Etj <— Vs € Eti N Etj . k‘(S) = tz \% k(S) ?é tJ (310)

Now, we come back to our cycle C. If such a cycle exists, we have from (3.9) and
(3.10):

(ti,ti-f—l) elb, — Vse Eti N Eti+1 : k(s) =tV k‘(S) ?é tiv1
otherwise (t;,t;11) & E_x
— Eti < EtH—l

In the cycle C', we have: Ey < E, < E,,_1 < ... < E; < Ey. Contradiction !

Now, we know that £ is valid, and let us prove that it is a saturating one i.e.:
V valid killing function &' |AM; | < |AM,|

where AM;, and AM} denote maximal antichains in DVj(G) and DV (G). Having
this valid killing function k in G, |AMy| = |S| + |T"]| is the amount of all parents
values S (because they are parallel by definition) and some children values 7”. We
prove that |T"| = |T' — T'| where T" is the minimum killing set. By definition on
T', each parent s in S has at least one child in 7" that kills it. In DV}(G) we have,

Vse S IteT :k(s)=t= 3(s,t) € Epy

This means that only the parent or the child killer can belong to AM; Since AMj
is a maximal antichain, then the following is true:
INRIA



reegisier oaturation wn Lata Depenaence Grapns

1. Vte T if [k71(t) = {s}| = 1 then
s € AM, @t e AM;

where ® denotes the XOR operator. This is true because there is one and only
one arc adjacent to s and ¢ in DV, (G).

2. VteT' if |k~'(¢)] > 1 then
E7Nt) C AM At AM,

otherwise AM; is not maximal.
3. VteT -1 t € AM;, because t is not connected to any value node in
DVi(G).

Then, AM; = X; U X, U (T — T") is composed of three disjoint sets of values, see
figure 3.10, where:

e the set of values s € S or t € T such that [k71(t) = {s}| =1: X; = {v €
V/3t e T k=1(t) = {s} (v=s5)® (wv=1)}

e the set of parent values that have a common killer child: X, = {s € S/k(s) =
t A 3ds'eS—{s} k(s)=t}

It is easy to see that | X1UX,| = | X1|+|Xs| = |S|. And then |[AMy| = |S|+|T-T"| =
|S|+|T"|. Since |S| is constant, searching for a saturating killing function is done by
searching to maximize the set |7”| and then to minimize |7”|. If 7" is the minimum
killing set, then £ is a saturating killing function.

dec(MMA) = dec(MKS) Suppose we have a saturating killing function k£ and
let us prove that

T = k(s)

sES

is a minimum Kkilling set. Suppose the contrary is true:

37" C T T"is a minimum killing set A |T"| < |T"|

According to the above paragraph, |[AMy| = |S|+ |T — T'|. If T" exists, that
means we can choose another valid killing function &’ thanks to algorithm 3 with
|AM:| = |S|+ |T —T"|. And we get the contradiction :

IT|" > |T"| = |AMy| > |AMy| = k is not a saturating function
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A Heuristic for MMA Problem

We present now our heuristic for approximating the MMA solution by a killing function £*.
We have to choose a killing operation for each value node such that we maximize the parallel
values in the disjoint value DAG. Thanks to Prop. 3.3, we restrict our choice to only potential
killing operations. We use a level per level approach, starting from the source nodes to the
sinks in PK(G). Our aim is to select a group of killing operations for a group of parents to
keep as many descendant values alive as possible. The steps of our heuristic are:

1. decompose the potential killing DAG PK(G) into connected bipartite components;
2. for each bipartite component, search the best saturating killing set (defined later) ;
3. choose a killing operation within the saturating killing set.

Each step is explained in the following.

Decomposing PK(G) into connected bipartite components:

We decompose the potential killing DAG into connected bipartite components (cbc) in order
to choose a common saturating killing set for a group of parents. Our purpose is to have
the maximum number of children and their descendants values simultaneously alive with their
parents.

Definition 3.23 (Connected Bipartite Component) Given a DAG G = (V, E, 6, by, 6;),
a connected bipartite component ¢cb = (Sey, Tew, Eey) in the potential killing DAG PK(G) =
(V, Epi) is defined by :

e F., C Epg arcs are potential killing relations ;
o cb= (Sw, Ter, Ep) is connected :

Vei,en € Eg 3 alist (e1,...,e,) @ eei41 are adjacent, withi=1,...n —1

e any arc e adjacent to an arc €' € E also belongs to Ey :

e € Epg 3¢’ € Ey/ e, €' are adjacent => e € Ey

Sy = {s € Vg/ Je € Eyy N\ s = source(e)} parent values ;

Ty ={t€V/ Jee€ E4 A s=target(e)} children nodes;

7777777777777777777777777777777

(a) bipartite DAG G with its saturating killing function (b) DV_k(G)

Figure 3.10: Minimum killing set and saturating function
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o cb= (Sw,Te, Fey) is bipartite :

Pe,e € Ey  target(e) = source(e’)

Definition 3.24 (Bipartite Decomposition) Given « DAG G = (V, E, 6, 6y, 6,), a bipartite
decomposition of its potential killing DAG PK(G) is the set

B(G) = {Cb = (Scb,ch, Ecb)/ Ve € EPK deb € B(G) I ec Ecb}
Theorem 3.4 Given a DAG G = (V, E, 6, by, 0,), then there ezists only one bipartite decom-
position B(G).

Proof:

It is clear that Epx = ¢ = B(G) = ¢. Let us study the case where Epx # ¢. Let
us assume that there are two different bipartite decompositions B;(G) and By (G):

deb = (Scba Tep, Ecb) :che Bl(G) A cb ¢ B, (G)

Since a connected bipartite component cb is defined by its arcs® set Eg, this means
that Veb' € By(G):

E 75 Ey <— VEcbr/Cb, € BQ(G) dec Epxe€ EgpAe € Ey VeeEyANe € Ey

In this proof, we study only the case where e € Epi : e € Ep A e € E, because
the proof for the second case is the same.

At this point, we make the difference between the two following cases:

1. EM?cb’ Ecb N Ecb’ 7é ¢
2. ﬂEcb’ Ecb N Ecb’ 7é ¢

If 3E4/ Egp N Eg # ¢, let € be an arc from this intersection. For the purpose of
this proof, we say that a list of adjacent arcs is adjacent if each arc is adjacent to
its successor in this list. By definition, £, and E. are connected. Since

e € B4 = J alist in E, of adjacent arcs (e, ... ,¢€') (3.11)

and since E. must contain all other adjacent arcs until e/, we then have for any
arc €’ € Fgy :

J alist in E of adjacent arcs (¢, ... ,€") (3.12)
From (3.11) and (3.12):

3 a list of adjacent arcs (e, ... ,e")

From bipartite component definition: e € F contradiction !
If AE.4/ E4 N Eg # ¢, then :

65 and T are only sources and targets resp. of E
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1. either no E arc belongs to any bipartite component in By(G). Then By (G) is
not a bipartite decomposition, since E, arcs are uncovered ;

2. or no E arc belongs to any bipartite component in B;(G). Then B;(G) is
not a bipartite decomposition.

Appendix D gives our algorithm that computes the bipartite decomposition of a DAG in
O(|V| + |Epk(a)|) complexity.

@) (- D &)

(ORI ©
@& g @@@

(a) the DAG (b) bipartie components of the potential killling graph

Figure 3.11: Bipartite components

Example 3.2.4 Figure 3.11 shows an example of building bipartite components of the potential
killing DAG. The DAG presented in part (a) has three bipartite components. Bold circles refer
to value nodes, and bold arcs refer to flow arcs. Now, we should search for a killing function
among children in each bipartite component saturating the register need.

Finding a saturating killing set :

It is a subset T}, C T, in the bipartite components cb = (Sey, Tep, Fep) such that if we choose a
killing operation in this subset, then we get a maximal number of descendant values simulta-
neously alive with values in S.,. This choice maximizes the maximal antichain in the disjoint
value DAG.

Definition 3.25 (Saturating Killing Set (SKS)) :

Given a DAG G = (V, E, 6,6y, 06;), the saturating killing set SKS(cb) of a connected bipartite
component cb = (Sep, Tep, Eey) in the potential killing DAG PK(QG) is a subset T, C Tip, such
that

1. killing constraints: all parents must be covered by at least one child
U F;;(t) = Se
teT),
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2. minimizing the cost

min | U Lo |

teT),

A SKS is only the subset of nodes T, C Ty, that could potentially kill S, values, with a
minimal amount of descendant values.

Theorem 3.5 Given a DAG G = (V, E, 6,6y, 6:) a bipartite component cb € B(G), computing
SKS(cb) is NP-complete.

Proof:

See appendix E

A heuristic for finding a SKS Intuitively, we should choose a subset of children in bipartite
component that kill most of parents while minimizing the number of descendant values. For
this purpose, we define a cost function p that permits us to choose the best candidate child.
Given a bipartite component cb = (Se, Tep, Ep) and a set Y of (cumulated) descendant values
and a set X of non killed parents, the cost of a child ¢ € Ty is :

% if lval tuyY 7é d)
pxy(t) =

IT_,(t) N X| otherwise

The first case permits us to select the child that covers the most uncovered parents with
the minimum descendant values. If there is no descendant value, then we choose the child that
covers the most uncovered parents.

Algorithm 4 gives a modified greedy heuristic that searches for an approximation SKS* of
a saturating killing set and computes the killing function £* in polynomial time.

Theorem 3.6 The heuristic Greedy-k always produces a valid killing function.

Proof:

The proof of this theorem is the same as for algorithm 3 in the proof of theorem
3.3. Rather than having a minimum killing set, we have now a saturating killing
one: both sets have the same covering property, so we are sure that there is at least
one potential killer for each parent. Since greedy-k algorithm proceeds by choosing
killing children ¢; € SKS(cb)' in the same manner, the properties induced by this
heuristic are the same as algorithm 3.
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Algorithm 4 Greedy-k: a heuristic for computing saturating killing functions £*
Require: a DAG G = (V, E, 6, 6y, 6;)
for all values u € Vi do
k*(u) = L {all values are initially non killed }
end for
construct all connected bipartite components of the potential killing DAG PK(G).
for all bipartite component c¢b = (S, Tep, Ecp) do
X = S, {all parents are initially uncovered}
Y = ¢ {initially, no initial cumulated descendant values}
SKS*(cb) = ¢
while X # ¢ do {build the SKS for c¢b}
select the child ¢ € T, with the maximal cost px y(t) {t is a new member of the SKS}
SKS*(cb) = SKS*(cb) U {t}
X =X —T'_(t){remove covered parents}
Y =YU |yu t {update the cumulated descendent values}
end while
for all t € SKS*(cb) do {in decreasing cost order}
for all parent s € I'_(¢) do
if k*(s) = L then {kill non killed parents of ¢}
k*(s)=t
end if
end for
end for
end for
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Now we can give the steps to compute the register saturation :

1. apply Greedy-k on G. The result is a valid killing function £*;
2. construct the disjoint value DAG DVj«(G);
3. find a maximal antichain AMy« of DVi+(G); RS*(G) = |AMj~|

Remark If there is no arc in the potential killing DAG (Epx = ¢) then
B(G) =¢ <= Vu e Vg k(u)=1

Example 3.2.5 Figure 3.12 shows an example of constructing one extended graph saturating
the register need by using Algorithm 2. For simplicity, all the nodes of the original DAG
(part a) are values except the two virtual nops (T,L). The reading delay from a register is
0, and writing to it is 2 for all nodes. Also, all arcs are flow except those going to L and
coming from T. Bold arcs describe the killing relation k* between nodes (the source of a bold
arc is killed by its destination). The extended graph associated G_ g~ is presented in part (c).
Now, we see that a mazimal antichain of the disjoint value DAG (part b) is {a,b,c,d, g}, i.e
RS(G) = 5. To build saturating schedules, each couple of saturating values must satisfy one of
the condition (3.4), (3.5)or (3.6) in G_y~. The values {a,b,c} have the same killing operation
k*(a) = k*(b) = k*(c) = e, so they verify Cond. (3.6). The node d is between a and k*(a) = e
but not with the suitable longest paths. So we introduce an arc from d to k*(a) = e with the
latency 6,(d) — 6,(e) +1=2—-041= 3. Also, {g} does not verify any of the conditions with
{a,b,c}. Since a < k*(g) = L, we have only the choice of introducing a serial arc from g to
k*(a) = e with the latency 6,(g9) — 6.(e) +1=2—0+1 = 3. The new extended DAG is given in
part (d). Now, we can easily see that all the values {a,b,c,d, g} are values simultaneously alive
since they verify the conditions. Any schedule of the extended graph in part (d) has a register
need of 5.

3.2.4 Properties for non Connected DAGs

If the DAG G = (V, E, 6, 6, 6,) is composed of a family of disjoint sub-DAGs Gy, ... , G, such
that G;(0 <7 < m) is connected, then

1. the register saturation is the sum of register saturation of each sub-DAG:

RS(G) = Emj RS(Gy)

2. the saturating values are the union of saturating values of each sub-DAG:
AM = | AM
0<i<m

where AM is the set of all saturating values and AM?® is the set of saturating values of
G;.

3. the saturating values of each sub-DAG are disjoint :
VAM!, AM?" i #+i  AM'NAM® = ¢
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(d) an extended graph of G_,j that saturates the register use

Figure 3.12: Building saturating DAGs
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3.3 Reducing Register Saturation

Given a DAG G = (V, E, 6, 6,, 6,), in this section we find an extended graph G = G\F such that
the register saturation is limited by a strictly positive integer (number of physical registers).
Let R be this limit. Then :

Vo € ¥(G) : RN,(G) < RS(G) < R

where E is the set of introduced serial arcs. If we succeed in reducing the register saturation,
we can assure that any schedule could not use more than R registers. Then, any schedule and
register allocation heuristic on G do not introduce spill code.

The concept of register sufficiency was studied in [AKR91]. We give formally its definition.

Definition 3.26 Given DAG G = (V, E, 6,6y, 6., the register sufficiency RF(G) of G is defi-
ned by

RF(G) = min RN,(G
(@) = min RN,(G)

It is clear that if RF(G) > R, then spill code cannot be avoided. We do not treat spill
code optimization in our work. But if RF(G) < R, then we can modify G by introducing some

serialization arcs such that the register saturation of the new graph RS(G) < R.

Searching a schedule that minimizes the critical path with a limited number of physical

registers is known to be NP-hard. In this section, we present a heuristic that adds serialization
arcs to reduce the maximal antichain in the disjoint value DAG without increasing the critical
path if possible.
Serializing two values u, v € Vi means to force them to never verify any of the conditions (3.4),
(3.5) nor (3.6) defined in page 19. That is we must ensure that the killing date of » should
always be scheduled after v’s definition. This is done by adding serial arcs from all potential
killing operations of u to v. We apply these serializations iteratively within saturating values
until we reduce the register saturation below the limit R. The following definition formalizes
this idea.

Definition 3.27 (Value Serialization) Given a DAG G = (V, E, 6, 64, 6,), a value serializa-
tion u — v for u,v € Vg is an extended graph of G defined by :

o if v € pkill(u) then add the serial arcs
{e=(v',v)/v" € pkill(u) — {v} A é(e) = 6 (V") — 6u(v)}
e clse add the serial arcs {e = (u',v)/u’ € pkill(u) A —~(v < u') A é(e) = 6, (v') — 6,(v)}.
Proposition 3.4 A wvalue serialization applied to a DAG G = (V, E, 6, 6y, 6) never introduces

cycles
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Proof:

After applying a value serialization © — v, we have two cases :

1. if v € pkill(u), then Yo' € pkill(u) v||v" (property of potential killing opera-
tion, page 12). Then the introduced arcs cannot produce cycles.

2. if v & pkill(u), then the introduced arcs {(v',v)/v" € pkill(u)} verify the
condition —(v < v'). So, no cycle can be produced.

Before searching for a value serialization, we should test if it is admissible, i.e. it can really
serialize the two values lifetime intervals (no cycle prohibits it). We need this information to
build in a further algorithm the set of all admissible value serializations in order to choose the
best one.

Definition 3.28 (Admissible Value Serialization) Given a« DAG G = (V,E,§), a value
serialization uw — v for u,v € Vg is admissible if f :

Vo' € pkill(u) (v < v')

Example 3.3.1 Figure 3.13 gives an example of value serialization. The value nodes of the
DAG (part a) are in bold circles, and flow arcs are bold also. Write latency is 2, and read
latency is 0. Part (b) gives the extended graph if we serialize s; — s5 : since pkill(s1) = {t1},
we add the serial arcs (t1, s5) with latency 1. Part (c) shows the extended graph if we serialize
S5 — ug o since pkill(ss) = {t2,t3}, we add the serial arcs (t3,us) and (to, us). Part (d) gives
an example of non admissible value serialization sy — s1 since pkill(s7) = {ts} A s1 < t3.

Now we give the skeleton of our heuristic that uses value serialization to reduce register
saturation:

1. use Greedy-k to build a saturating killing function;

2. construct the maximal antichain AMj of the disjoint value DAG ;

3. if [AMy| < R then exit;

4. construct the set U of all admissible value serializations between values in AMj, ;

U, = {(u,v)/u,v € AM, A u— v is admissible}

5. do a value serialization that maximizes a cost w (defined later);
6. update the maximal antichain AM} in the disjoint value DAG;

7. go to 1;
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Algorithm 5 gives our heuristic. It iterates value serializations within saturating values until
we get the limit R. The heuristic fails if RF(G) > R since we cannot reduce more than RF(G)
values simultaneously alive . If the heuristic fails in reducing the register saturation under
the limit R, it produces a more limited register saturation. Since this new graph produces a
number of values simultaneously alive lower than the original one, the spill code produced after
by any schedule is also limited.

The cost function that we define further allows us to guide the choice of a value serialization
that inhibits the maximum amount of saturating values to be simultaneously alive, without
increasing the critical path. If it is not possible, we choose a value serialization that produces
the minimal critical path. So we need two parameters w(u — v) = (wy, ws) with

® w; = 1 — lo is the prediction of the reduction obtained in the maximal antichain if we
do the serialization, where

— uq is the amount of saturating values serialized in AM}, if we do the serialization;

— l19 is the expected number of values that become saturating ones if we do the value
serialization ;

e wy is the increase in the critical path length if we do the serialization.

At the end of the algorithm, we apply a general verification to ensure the potential killing
property proven in Prop. 3.3, as explained below.

(c) s5 — u2

(d) s7 — s1 is not admissible

Figure 3.13: Value serialization
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Algorithm 5 Heuristic for reducing register saturation
Require: a DAG G = (V, E, 6, by, 6,) and a strictly positive integer R
G=G
construct AM;, the saturating value nodes of G;
while |[AM;| > R do
construct the set Uy of all admissible serializations between saturating values in AM; with
their costs (w1, ws);
if A(u — v) € U/wi(v — v) > 0 then {no more possible reduction}
exit ;
end if
X ={(u — v) € Ulwy(u — v) = 0} {the set of value serializations that do not increase
the critical path}
if X # ¢ then
choose a value serialization (v — v) in X with the minimum cost R — wy ;
else
choose a value serialization (v — v) in X with the minimum cost ws ;
end if
do the value serialization (v — v) in G;
compute new saturating values AM; of G ;
end while
ensure potential killing operations property {check longest paths between pkill operations}

Ensure Potential Killing Operations Property

The extended DAG produced at the end of the algorithm must not violate the potential killing
operations property proven in Prop. 3.3 in page 13 for the initial DAG : we have proven that
operations that do not belong to pkill(u) cannot kill the value u. Otherwise, the register
saturation computed for the final extended DAG would not be correct. We have then to ensure
the following assertion :

Vu € Vg, Yo,v" € Cons(u) v <v=Ip(v',v) > 6.(v') — 6.(v) (3.13)

This property is verified in the initial DAG because its arcs represent data dependencies with
strictly positive latencies. If we introduce new arcs, we must also guarantee assertion (3.13).
In fact, this problem occurs when we create a path from v' to v such that v,v" € pkill(u) for
u € Vg. If such a path has been created and Ip(v',v) < 6,(v") — é,(v), then we can schedule v’
such that it kills the value u. Since our register saturation problem formulation assumes that
v' cannot kill u, we have to ensure it in the final extended DAG. This is done by adding a serial
arc e = (v',v) with 6(e) = 6,(v') — 6, (v) + 1.

Figure 3.14 explains how we solve this problem when we do successive value serializations.
On the left, we give a part of the initial DAG : all nodes are values and all arcs are flow. Read
latency is 0 and the write is delayed by 2 cycles. Part (1) shows the extended DAG if we do the
value serialization b — d. Part (2) presents the second step where we do @ — f. At this point,
we see that a path of length -6 has been introduced between e and f then e ¢ pkill(c). So,
we assume that e cannot kill ¢. However, since the longest path from e to f is -6, this violate
assertion (3.13), because we can have a schedule such that e kills ¢. In part (3), we introduce
a serial arc with latency 6,(e) — 6,(f) +1=0—0+1 =1 to verify this assertion.
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Costs of Value Serializations

We explain here how to compute the parameters p;, ita, ws by using Cor. 3.1. We note G; the
extended DAG of step ¢, k; its saturating function, and AMj, its saturating values. We note
also pkill;(u) the set of potential killing operations in G;, and |,u, u the descendant values
of v in G;. The purpose of the cost function is to predict the reduction in register saturation
introduced when we extend G; to G;;; with a value serialization (u — v).

1. if we do an admissible value serialization (v — v) in G;, then we ensure that the killing
date of u is always before v’s definition and all its descendants. Then, we reduce AMj,
by :

p1 = | loat; v N AMj,]|
which is the amount of saturating values in G; that cannot be simultaneously alive with
uin Giy;

2. if we do an admissible value serialization (v — v) in G;, then we could create new
saturating values in GG;;; : this is because we could force its saturating killing function
ki_|_1 s

e if v € pkill;(u), then we force k; 1(u) = v. The number (using Cor. 3.1)

Mo = U lvali v — lvali v
v' €pkill;(u)
is the amount of values in G; that could be simultaneously alive with u in G 1.
e else s = 0 because k;,1(u) does not change, so we predict that we do not introduce

new saturating values;

3. if we do an admissible value serialization (v — v) in Gj, the introduced serial arcs could
enlarge the critical path. Let Ip;(v',v) be the longest longest path going from v’ to v in
G;". If we introduced a serial arc e = (v/,v) with a latency §(e), then the new longest
path going from T to L through (v',v) in G, is equal to:

Ipi(T,0") + Ipi(v, L) + 6(e) if 6(e) > Ip;(v',v)
Then, the new longest path in G;;; through added serial arcs is

e )lpi(T, V') + Ip;(v, L) + 6(e)
introduced e=(v' v
§(e)>lp;(v' )

"is such path does not exists, we assume —oo

Cg OO (gﬂ O %}H jo eso

intially 1) b—d (2)a—f (3) ensure pkill property

Figure 3.14: Ensure potential killing operations property
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If this path is shorter than the critical path of G;, then wy, = 0. Otherwise, wy is the
difference between the original longest path and the new introduced longest path.

Thanks to our costs wy,wy, we can choose the most suitable value serialization :

1. choose the value serialization that does not increase the critical path (w; = 0) and maxi-
mize the reduction of values simultaneously alive : we choose a value serialization that
minimizes R — wy ;

2. if all value serializations increase the critical path, choose one that minimizes w,.

Example 3.3.2 Figure 3.15 shows how our heuristic reduces the register saturation for the
DAG of part (1). For simplicity, all nodes except L and T are values, and all arcs are flow
except those adjacent to L or to T. The read from physical register occurs at cycle 0 and write
occurs in the last execution cycle (Vu € Vg 1 6y(u) = lat(u) — 1). The saturating values of this
DAG are AMy = {a,b,c,d, g}®, so RS(G) =5. We want to reduce it to 4.

First, we construct the graph of all admissible value serializations (part 2) and their costs
(w1,wsq). Let’s to see how we compute them for a — d :

e if we do this serialization, we should add the arc (e,d) in G with latency -8. We will
get in the extended DAG G that the saturating values |yq d N AM, = {d,g} cannot
be simultaneously alive with a. Then puy = 2. But, since we have forced d to kill a,
the value |y dU lya €— loa d = {e} can be simultaneously alive with a in G. Then
po=1l=wi=p —py=1;

e the critical path is (T,a,d, f, L) = 28. If we introduce the arc (e,d) with latency -2, the
longest path from T to L through e,d is 26. So, the critical path does not change. Then
Wy = 0.

Let’s now to look for the cost of d — g :

e if we do this value serialization, we should add the arc (f,g) in G with latency -2. We
will get in the extended DAG G that the saturating value |,q g N AM) = {g} can be
simultaneously alive with d in G. Then p1 = 1. Since we force g to kill d, the value
Loat 9U Loar f— loat 9 = {f} can be simultaneously alive with d in G. Then py = 1 =

wy =p—p2=0;

o If we introduce the arc (f,g) with latency -2, the longest path through (f,g) is
(T,a,d, f,g,L1) =14. Since the critical path in G does not increase, then wy = 0.

Now we have all admissible serializations. Qur heuristic chooses a — d since it has a
strictly positive wy and does not increase the critical path. The new extended graph is presented
in figure 3.15.(3). At the end of the algorithm, we must ensure potential killing operations
property described with assertion (3.13). After doing value serializations, we have created a
path from e to d with a latency -2. Then, we can get a schedule such that e kills a, even if
e & pkillg(a). To ensure that only operations from pkillg(a) = {d} can kill a , we add a serial
arc (e,d) with the latency 6,(e) — 6.(d) +1 = 0 — 0+ 1. The final extended DAG G is then
presented in part (4). The saturating values of this DAG are shown in part d. Now, we have

the mazimal antichain AMy = {a,b,c,e} => RS(G) = 4.

8similar to the one studied in example 3.2.5 in page 33
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(2) admissible value serializations (3) extend with a — d

(5) DVi(G)

Figure 3.15: Reducing register saturation
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3.4 Case of Forest of Inverted Trees

If the DAG G = (V, E, 6, 6,,6,) representing precedence constraints is an inverted tree®, then
computing register saturation is optimal in polynomial complexity time.

We know that that the successors set of a node is singleton or a null set
G is an inverted tree <= VYu eV [['f(u)| <1

Since each value has at most one consumer, it has only one possibility for the killing function.
That is

Vu € V\Vo € ¥(G)  kill,(u) = o(v) where pkill(u) = {v}

= {k(u)} = {pkill(u)} is the optimal killing function

Our heuristic gives this optimal result since it has only one choice for each bipartite component.
The register saturation is then optimal and computed in polynomial time. Since the original
graph is an inverted tree, then the disjoint value DAG must also be an inverted tree. The
maximal antichain of the disjoint value DAG contains only its roots, i.e.

RS(G) = |Source(DVi(G))]
and the saturating values are Source(DVj(Q)).

Example 3.4.1 See figure 3.16

E/ ) @\ﬁ@@

(a) G is an inverted tree (b) DVi(G) (each value have only one possible kill)

Figure 3.16: Disjoint value DAG is optimal with inverted trees

Pure data flow trees Rather than executing our algorithms in order to compute the register
saturation, the special case where the tree represents a pure data flow graph permits us to give
directly the register saturation without constructing the disjoint value DAG. For this purpose,
G = (V,FE,6,6by,6,) must satisfy :

1. G is an inverted tree;

2. each node is a value node: Vyp =V;

9each node has at most one child
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3. each arc is a flow arc: Fr = FE.

This sort of DAGs are for example those computing an arithmetic expression. Under these
conditions, the disjoint value DAG is exactly the same tree after removing transitive arcs. Then,

RS(G) = |Source(G)|

and the saturating values are Source(Q).

Remarks If this tree is an n-balanced tree!® with a depth d, then

RS(G) = n¢

Example 3.4.2 Figure 3.17.a gives the data flow graph of the expression

TXYy+zXxt

= b

R X (a 4+ b)

Since each value is killed by its child, and since all nodes are values (bold circles) and all edges

are flow (bold arcs), then the disjoint value DAG DVy(QG) is ezactly the same tree, part (b).

The saturating values are then the sources of DViy(G) which are also the sources of G. The
register saturation is then 4 registers.

(a) arithmetic expression (b) disioint value DAG with saturating values

Figure 3.17: Pure data flow inverted trees

From above, we prove the following theorem.

Theorem 3.7 Given a DAG G = (V, E, 6, 64,6,), then

PK(QG) is an inverted tree = computing RS(G) with Greedy-k is optimal

10halanced tree such that intermediate nodes have exactly n parents
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Proof:

Since PK(G) is an inverted tree, then Yu € Vg |pkill(u)| = 1. The optimal
saturating killing function & is defined by :

Vu € Vg k(u) = {pkill(u)}

This function is computed by our greedy-k heuristic since in each bipartite com-
ponent cb = (Sey, Tew, Ey) € B(G), the saturating killing set SK S(cb) is composed
of a single node k(s) =t = I'p ;) (s) for any u € S (since all parents have the same
child). For any value u € Vi that is not read in G this means that pkill(u) = {L}
and then k(u) = L. From theorem 3.1, we deduce that RS(G) = |AM|, with AM;,
a maximal antichain in PK(G), is the optimal register saturation of G, with

AM,, = Source(PK(G))

3.5 Case of Branches

Our model assumes that there is only one possible definition per value. This assumption is
correct if the code does not contain branches. If not, static data dependence analysis could
provide for some values more than one definition because it cannot determine which execution
path is taken.

On the other hand, the compiler can make some global scheduling to expose more ILP to the
scheduler within each basic block (BB). Useful techniques like code motion, trace scheduling,
hyperblock and superblock scheduling can be used to move operations across branch boundaries.
Such static speculation could introduce new recovering operations to preserve the code semantic.
These operations must be included in our DAG.

Our idea to handle branches is to take the code produced after a static speculation to get
the new operations included in each BB and then build a DAG for each possible execution path
in the control flow graph (CFG). At this point, we get only one possible definition per value in
each DAG. We define RSC(CFG) as the maximum register need that could be produced for
any schedule of a speculated CFG::

RSC(CFQG) = max RS(G)
G build for each path in CFG
Example 3.5.1 Figure 3.18 shows how we handle branches. Part (1) gives the original CFG.
The value x consumed in operation (e) could be defined by operation (a) or (b). A speculated
CFG is shown in part (2): operation (c) was moved to BBO and its target destination rena-
med, while operation (f) is introduced in BB1. Parts (8) gives the DAG built for the path
(bbo, bby, bb3) : the value x consumed by operation (e) is now defined by operation (b). Part (4)
gives the DAG built for the path (bbg, bbs, bb3) : the value x consumed by operation (e) is now
defined by operation (a). In each path, we have only one possible definition per value.
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bbO0

bb0
(a)x t*e
bb1l bb2
©y= y/e Oy=y
(e)W X* X
() Origina CFG (2) Speculated CFG

00 o

(3) DAG through thefirst path (4) DAG through the second path

Figure 3.18: Register Saturation in Case of Branches
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Chapter 4

Case of loops

In this section, we extend our work to a loop represented by a graph G = (V, E, 6, 6y, 6, \)
that models its data dependence constraints, such that :

o V =VzUVs: Vg the set of value nodes (write in a register of the considered type) and
the Vs remaining nodes;

E = EgrUFE5s: Egs the set of flow arcs (true dependence through a register of the considered
type), and Eg serial arcs (true dependences through memory or other register types);

¢ is the latency function for each arc;

e 0, is the write delay;

e 0, is the read delay;

e ) is the distance of a dependence in term of number of iterations.

The purpose of this section is to calculate an upper-bound of the register saturation for any
loop intended for software pipelining (SWP) schedule. Since we do not worry about resource
constraints, we assume any SWP that could be built for the precedence constraints modeled
by G : any other constraints like resources used to build SWP schedules are a subset of the set
of all schedules that could be built for G only.

4.1 General Approach

Our idea is to unroll the loop a certain number of times and apply the DAG technique. Then
we reroll the DAG to come back to a new graph with some new serialization edges. We can
then assure that any SWP schedule of this new graph cannot use more then a certain amount
of physical registers.

Unrolling and rerolling are obvious tasks. They are explained below.

Definition 4.1 (Unrolling Function) Given a graph G = (V, E, 6, 6y, 6., \) modeling prece-
dence constraints in a loop, the unrolling function applied to G with a strictly positive unrolling
degree j produces a DAG Dy;(G) = (V', E',$,6,,,0.), called unrolled loop, such that:

y Yawr Y

o V' =VOUVIU---UVI~! s the set of nodes in V repeated j times, and
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—Vi={u/u €V A 6L.(w;) = 6,(u) A 68,(u;) = 6,(u)}V0 < i < j each node in V has
j copies in V' ;

— Vi ={ui/0 <i < jAu € Vi} value nodes in V' are the copies of value nodes in Vg ;

- Vi=V'-V},

o F' = {(usvizt)/wi € ViAvy € VIH Ae=(u,v) € EAXNe) =1Ai+1< j}. Wecall (us,vitq)
a copy of e. Each intra-iteration arc in E has j copies in E', and each inter-iteration arc
has as many copies as destinations belonging to V' ;

e ¢’ € E'isacopy ofe € E = §'(e') = 6(e).

Example 4.1.1 Figure 4.1 gives an example of unrolling. The graph G presented in part (a)
is unrolled two times producing the DAG in part (b). Each arc e of G is labeled by the couple
(6,A), and each arc in the DAG Ds(G) is labeled by §'. We remark that the arc (e, d) does not

exist in the unrolled loop since the unrolling degree 2 is not enough to have the destination ds
wn the set of nodes.

(10,1)

(6,0 (10, 0)

10///
6.1 '

(a) thegraph G

b) Dx2(G

Figure 4.1: Unrolling function

The rerolling function is the inverse of unrolling. That is it produces the graph from an unrolled
one.

Definition 4.2 (Rerolling Function) Given an unrolled DAG D, ;(G) = (V', E',§,6.,,6.)

Y Ywr Yr

of a graph G = (V, E, 6, 64,6, A) extended with some new serialization arcs Ep C E', the
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rerolling function applied to Dy ;(Q) produces an extended graph G\*¢, called rerolled graph,
such that :
Eq = {e= (u,v)/e' = (us,vis1) € Ep A6(e) = 8'(e') A Ne) =1}

where u;, viy; are the copies of u,v.

Example 4.1.2 Figure 4.2 gives an example of rerolling the unrolled loop of the example 4.1.1
after adding the new serialization arcs (fo,b1), (co,b1) and (do, o) (dashed arcs in part a). The
rerolled graph is presented in part (b). The new arcs are (f,b), (¢,b) and (d,e) with respective
latencies and distances (1,1), (1,1) and (1,0).

(8,0 (7,0

G

(b) thererolled graph G

(a) Dx2(G) with new serialization arcs

Figure 4.2: Rerolling function

Now, we only have to define the unrolling degree which is the purpose of the remaining of
this chapter. We begin by recalling some notions about software pipelining technique.

4.2 Software Pipelining

A software pipelining schedule o of a graph G = (V, E, §, 6,,6,,A) representing precedence
constraints of a loop with n iterations, consists in overlapping the execution of parallel opera-
tions belonging to different iterations. The schedule is defined by an initiation interval h.
Each h steps, a new iteration is issued. The schedule is written :

Vu € V,Vi € [0,n] o(u,i) =0y +h x1i
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where o(u, 1) is the schedule of the node u of iteration 4, and o, = o(u, 0) is the schedule of the
node u of the first iteration.

The authors in [WEJS94] model the motif of a SWP schedule as a two dimensional matrix
by defining a column number ¢n and row number rn for each operation. So a SWP schedule is
defined by three parameters, we note it o([rn], [cn], h). They define o as:

VueV, Vie[0,n] o(u,i)=rn(u)+hx (cn(u) +1)

where ¢n(u) = o, div h and rn(u) = o, mod h.
Graphically (figure 4.3), the row number rn(u) is the step of the execution of u. Each instance
of an operation u begins its execution rn(u) cycles after the beginning of the motif.

VueV, 0<rn(u) <h-—1

The column number cn(u) is the iteration of u. Operations having the same column numbers
are those scheduled in parallel.

ou = cn(u) X b+ rn(u)

We can deduce easily that

VueV 0<cn(u) < f%}

where

L, = mMax o, is the schedule time of one iteration
ue

Definition 4.3 (Valid SWP schedule) Given a loop G = (V, E,6,64,6,,)) , a SWP sche-
dule o([rn], [en], h) is valid iff :

Ve = (u,v) € E, rn(v)—rn(u)+ h(A(e) + cn(v) — cen(u)) > 6(e)

It is well known that

o([rnol, [eno], ho) is optimal = hy =  max (
Cacyclein G

We note A(C) = > ... A(e) and 6(C) = > .. 0(e). We call the cycle Cy that maximizes this
ratio the critical cycle.

4.2.1 Register Need of a Motif

Since the motif represents a cyclic schedule, some values could be alive for many iterations (see
figure 4.4). Then, lifetime intervals become circular around the motif. If ¢ is valid, then

Ve = (u,v) € Vg, Vi € [0,n] o(u,1) + 6(e) < o(v,i+ A(e))

A value u; produced at iteration i is killed at date killm,(u;) = o(v,i+ A(e)) + 6,(v) for
e = (u,v) € Eg iff Vo' € Cons(u), e = (u,v') € Eg,Vi € [0,n]:

rn(v') + h(en(v') + i+ A€")) + 6,(v") < rn(v) + h(en(v) + i+ A(e)) + 6,(v)

cancelling out the 7, we get the following definition.
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Definition 4.4 (Killing Date in the Motif) Le G = (V, E, 6, 6y, 6., ) be aloop and o([rn], [en], h)
a SWP schedule. A value u € Vg produced in the motif at date o, is killed at date killm,(u) =
oy +hxA(e)+6,(v) forv e Cons(u) with e = (u,v) € Eg iff V' € Cons(u)/ e’ = (u,v") € Eg:

rn(v') + h(en(v") + A(€)) + 6.(v") < rn(v) + h(en(v) + A(e)) + 6,(v)
Then, the lifetime interval of u, noted LI, is defined by
LIZ =lrn(u) + h x cn(u) + 6y (u), mn(v) + h X (cn(v) + A(e)) + 6, (v)]
with e = (u,v) € Eg.

The life time of a value is the amount of time between its definition time (o,) and its
killing date :

lifetime,(u) = |LI| = killmy(u) — o(u) — 6, (1)

Definition 4.5 (Cyclic Life Interval) Let G = (V, E, 6, 6y, 6, A) be aloop and o([rn], [cn], h)
SWP schedule. The cyclic life interval CLI] of w € Vg in the motif is the lifetime interval
modulo h. It is defined by a family F, = {Iy, ..., I;} of intervals in [0,h] such that;

e number of intervals

_ [li fe_time(,(u)"

h
e intermediate intervals: Y0 < j <, I; =10, h]
1% terations
ol [0]
i ]2
2l
al
al en
5
’6’ ””” 1 ~ 2 1 0
7 ol Ol 1 0o
s |3 N 5 2!
9 - 240 1 3 2\
10 4 T I I R - 3
1 Al 2 . 4 4
12 S o 5
85 el 3
7

R R
e 9
A 0 |5
18 1 n )
R
20 L 13

4
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5
Time L

Figure 4.3: (a) Iteration overlaps (b) One iteration schedule (c) Software
pipelining motif

INRIA



reegisier oaturation wn Lata Depenaence Grapns

o if 1 >0 then Iy =|rn(u) + 6, (u), b A I = [0, killmy(u)]
e cise 1=0) Iy =1 =|rn(u) + 6, (u), killm,(u)]
We denote by LF the set of all circular intervals in a loop:

Lr=J %

u€EVR

Iteration i

vl

Al e
. h=4

iteréttiohi+i

| vl

hea

Iteration i+2

7 vl V2 v3

:I indicatesthe kill of avalue moduloh

© 0N OO0 W NP O

Steady State
=

@ (b)

Figure 4.4: (a)Value lifetime intervals in the motif -(b) The family of circular
intervals

Then, computing the register need is done by examining the maximum number of overlapped
intervals for all the values.

Definition 4.6 (Register Need of a Motif) Given a loop G = (V,E,$,6y,6,,\) and a
SWP schedule o([rn], [en|, h), the register need of the SWP motif MRN,(G) is defined by

MRN,(G) = max lvsaq(7)|
with
vsa, (i) = {I € LF/i € I} the overlapped intervals at instant i

Computing M RN(G) has a polynomial complexity O(h x |F|), see algorithm 6.
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Algorithm 6 Computing register need in a motif
Require: all circular lifetime intervals LF
MRN =0
for 0 < i < h do {initialization}
vsa(i) =0
end for
for 0 < i < h do {counting vsa}
for all I € LF do

if 7 € I then
vsa(i) = vsa(i) + 1
end if
end for
end for

for 0 < i < h do {searching the maximum vsa}
if vsa(i) > M RN then
MRN=vsa(i)
end if
end for

4.2.2 Register Saturation of a Loop

It is the maximum values simultaneously alive that could be generated by a SWP schedule.
Formally, we write:

Definition 4.7 Given a loop G = (V, E, 6, 6y,06:, \) , the register saturation MRS(G) of this
loop is defined by :

Vo([rnl,[cn],h) a SWP schedule of G :  MRN,(G) < MRS(G)

4.3 Bounding and Reducing Register Saturation of a
loop

4.3.1 Loop Unrolling Degree

As introduced in section 4.1, we look for an unrolling degree that permits us exploiting the
DAG approach studied in chapter 3. This unrolling degree j must satisfy the condition that
the register saturation of the unrolled loop should be greater or equal than the register need
produced by any SWP schedule. That is we should unroll the loop enough times to guarantee
the following property.

Definition 4.8 (Valid Unrolling Degree) Let G = (V, E, 6, 64,6, \) be a loop and a strictly
positive unrolling degree j. The DAG Dy ;(G) = (V',E', ¢, 6.,,6.) is the unrolled loop. j is a
valid unrolling degree iff it guarantees the following property :

V walid o([rn], [cn],h) :  MRN,(G) < RS(Dy;(G)) (4.1)
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To find a valid unrolling degree that preserves the register saturation property (4.1), we
begin by defining the notion of the first possible value definition and last possible value
kill that makes us write lemma 4.1.

Definition 4.9 (First Possible Value Definition) Given a loop G = (V, E,§, by, 6., ) and
its body B = (V, E', 6, 6,,6,)" , the first possible value definition of G, noted fd(G), defined by :

fd(G) = min AsSoonAsPossibleg(u) + 6, (u)

u€Vg

where

AsSoonAsPossg(u) = SmaX(B) LongestPathg (v, u)
veESource

fd(G) is the earliest date where a value definition can occur in iteration i of any SWP schedule
motif of the loop G.

Definition 4.10 (Last Possible Value Kill) Given a loop G = (V, E,6,64,0:,\) and its
body B = (V, E"), and given a valid initiation interval h * with a schedule time of one iteration
L, then Yo ([rn], [en],h)/ L, = L we define the last possible value kill, noted k% (G), as

h _ _ ; A
KL (G) vecrg%}éw) (L CloseToSinkg(v) + 6,(v) + h x e:(rzf,lq%}e(ER (e))

where

CloseToSinkg(u) = gr;a’:%B) LongestPathg(u,v)
veESIn

and CONS(G) = Uyev,Cons(u) is the set of all consumers in G.

In other words, CloseToSinkg(v) defines the minimal amount of execution time between v to
the sinks for any schedule. [k"(G) is the latest possible date when a value produced at iteration
¢ in the motif could be consumed in a SWP schedule 0. The latter must have h as an initiation
interval and L as one iteration execution time.

Lemma 4.1 Given a loop G = (V, E, 6,6y, 6., ) then Yo([rn], [cn], h)

VueVe  LII CIfA(G), W ()

That means all lifetime intervals of values produced in the motif of ¢ belong to the window
w =]fd(G), Ik} _(G)]. We call it the observation window.

'E' = {e € E/ \e) =0}
*h > ho
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Proof:

Given SWP schedule o([rn], [cn], k), the window that contain all value lifetime in-
tervals is bounded by two dates |d,, d,]:

1. dy = oy + 6,(u) which is the earliest definition produced in the motif, that
define a value u ;

2. dy = 0y + 6,(v) + h x Xe) = killm,(t) which is the latest kill in the motif,
such that ¢ is killed by v thanks to the flow arc e = (¢,v);

We have to prove that fd(G) < d, < d, <k} _(G). Let B be the loop body of G.
By definition 4.9, fd(G) < d,, is obvious:

oy > AsSoonAsPossibleg(u) = 0y, + 0y(u) > AsSoonAsPossiblep(u) + 6, (u)
We only have to prove that d, <k} (G). v is scheduled at the date

rn(v) + h X (en(v) + A(e)) = oy + h X A(e)

We know that o, < L. But since
Vs € Sink(B) o5 — o, > LongestPathg(v, s)
Then

Os — Oy > gnalggB) LongestPathg(v, s) = 0, < g3 — CloseT0Sinkp(v)
sedin

Since maxXgegink(B) 0s = L, the date d, is at most equal to the date:
d, < L — CloseToSinkg(v) + 6,(v) + h x A(e)
And by definition 4.10

d, < Ik} (G)

Lemma 4.1 gives a formulation to bound values lifetime intervals produced in the motif.
This leads us to the following theorem.

Theorem 4.1 Given a loop G = (V,E,6,64,6:,\) and assuming an upper-bound Ly,q.> for
iteration execution time that could be produced for any SWP schedule, then the following un-
rolling degree s valid

, ("Lmaz — CloseToSinkg(u) + 6, (u)
= max
ueCONS(G)

+  max A(e))

h() CZ(U,U)EER

3V0'([’l"n], [C’I'L], h) Ly < Lings
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Proof:

Given a SWP schedule o([rn], [en], h) for aloop G = (V, E, 6, b4, 6, A) , the number
of values simultaneously alive in the motif (|0, 2]) is the number of values simulta-
neously alive in the observation window (lemma 4.1). Since the ending date of the
observation windows is Ik} (G), the number of iterations spanned until this date is
(figure 4.5)

[lk%a(G)" o ([L—CloseToSinkB(u)—i-éT(u)-‘

A
h ueCons(QG) h T i (€)>

e=(v,u)€ER
That is the register need of o is defined by the cyclic lifetime intervals of the values
produced within these iterations. If we generalize to any SWP schedule, the register
need could not exceed the amount of values simultaneously alive produced within

. ki (G)]. .

7 = max | —5— | 1terations

h,Lo h

In fact, j defines the further possible iteration when a value could be killed : a value

defined at iteration 7 can be killed at the latest in iteration 7 4 j. Then it could not
exceed the register saturation of the loop G unrolled j times:

L, — CloseToSink Or
| = max (max ’V oseToSinkp(u) + (u)—‘ + max )\(e))
u€Cons(G) \ h,Ls h e=(v,u)€ER
Since h > hg and assuming an upper bound L., for L, :
Lmaz - T ) 67‘
e ([ CloseToSinkg(u) + (u)-‘ © max /\(e)>
ueCons(G) h() e=(v,u)€ER

Bounding L, < L,,,, Since L, is defined by resource constraints, in our study we
try to give a suitable L,,,, for all SWP schedules. We assume then the worst case
where the resource constraints do not permit any parallelism between operations,
i.e. they are sequentially scheduled. We choose:

Loz = Z lat(u)

as a suitable upper-bound for any L,.

Case of Acyclic Loops

If there is no cycle in the loop G = (V, E, 6, 64, 6,, A) i.e. hy = 0, then there is no precedence
constraint for building a valid cyclic schedule. A SWP schedule tries to put all V' operations
parallel in the motif (see figure 4.6). A valid lower-bound for initiation interval in this case is
h > 1 and the corresponding valid unrolling degree is:

max (me — CloseToSinkp(u) + 6,(u) + max )\(e))
u€CONS(G) e=(v,u)€ER
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A
| t=fd(G)
1 L t+h
} h t+2h=L-CloseToSink(v)+ &p (V)
w, t+3h
..
,
i i+1 i+2 ... i+
Iteration

Figure 4.5: Observation window
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(a) the parallel 1oop (b) motif of the parallel loop

Figure 4.6: Fully parallel loops
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4.3.2 Reducing Register Saturation in Unrolled Loops

After computing a valid unrolling degree and after building the unrolled loop, we can use
our DAG technique to compute the register saturation. But, some cares must be taken when
reducing it because we should keep in our mind that the unrolled DAG will be rerolled to get
a cyclic loop. There are two problems that could occur:

1. after rerolling the extended DAG, a null cycle could be introduced in the loop, see figure
4.7.

2. adding serial arcs between operations that do not permit rerolling. According to Def. 4.2,
only serial arcs from u; to v;1; with [ > 0 could be rerolled, see figure 4.8.

A
»
\ \\(1’ 0

(6,0) AN Y

G

(b) null cyclein thererolled graph G

(a) Dx2(G) with new serialization arcs

Figure 4.7: Problem of Null cycle after rerolling

To avoid the occurrence of these problems, we musr redefine the notion of valid value
serialization in the case of unrolled DAGs. Avoiding problem 1 consists in testing if adding a
serial arc to the unrolled DAG would introduce cycle in the loop body. Avoiding problem 2
consists in not enabling addition of serial arcs except in the incrementing order, i.e. from node
u; to node v;4; with [ > 0.

Definition 4.11 (Valid Value Serialization in Unrolled Loops) Let be G = (V, E, 6, by, 6, A)
a loop and Dy ;(G) = (V', E', §') its unrolled DAG. Let u;, vy, € Vi be two copies of u,v € Vg.

An admissible value serialization w; — vy in the unrolled loop Dy is valid iff for all introduced
serial arcs* e = (ng, vg) :

*arcs from pkillp, ;(u;) to vy
RR n°3978
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e it does not introduce any cycle in B the rerolled loop body: —(v < n) in B

e it preserves the lexicographic order of operations: | < j

Then, any admissible value serialization introduced in the unrolled loop must satisfy these two
conditions to be able to build the new rerolled loop.

4.4 Conclusion

Algorithm 7 gives our heuristic that tries to reduce register saturation in case of a loop.

Algorithm 7 Reducing register saturation in a loop
Require: a loop G = (V, E, 6, b4, 6, A)
search the critical cycle Cy and the minimum initiation interval hg.
compute the valid unrolling degree.
build the unrolled loop Dy;(G)
reduce the register saturation in the DAG D, ;(G) {each value serialization must be valid

according to Def. 4.11 producing serial arcs E'}
reroll the extended graph Dy ;(G)\¥

(7.0

(8,0) (5’ 1)

(b) the rerolled graph could not be built

(a) Dx2(G) with a serialization arcs

Figure 4.8: Conditions of Def. 4.2 for rerolling not satisfied
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Chapter 5

Software Implementation and
Experimental Validation

In this chapter, we present our experimentation results done on some loops used in [ES96] and
[GAGY94]. These graphs are presented in appendix F.

In our experimentation, we focus on floating point registers and assume that reading from
and writing to registers are done at cycle 0.

5.1 Software description

The software is implemented using the LEDA API [MN99]. For displaying graphs interactively,
we use xveg [LS93]. We do not give technical details of our software, we leave this for a further
report. We have implemented two object oriented tools:

1. RS intended for DAGs: it computes the register saturation and tries to reduce it to an
upper bound given by the user. The output is the new extended graph, saturating values,
the potential killing DAG PK(G) and the disjoint value DAG DV (G);

2. MRS intended for loops: it computes an upper bound for the register saturation in the
motif and try to reduce it. The output is the new extended loop with its new upper-bound
for the register saturation in the motif.

Figure 5.1 gives an example of an original DAG (left side) generated by RS to highlight the
original saturating values. These values are in red circles!, so the register saturation is equal to
5. Other values are green, non values are left gray. Flow arcs are red arrows and serialization
arcs are black. In the right side, the extended DAG shows that the register saturation has been
reduced to 4.

1We apologize for the readers who have a black-and-white version of the paper, since the colors don’t come
out properly for them; we suggest that they have a look at the postcript file available on the www from the
following address: http://www.inria.fr/RRRT /publications-eng.html
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Figure 5.1: Example of reducing the register saturation in a DAG

5.2 Experimentation

5.2.1 Case of DAGs

The first step of our experimentation is to study the efficiency of our heuristics in the case
of DAGs. We take the DAGs of the loop bodies (we ignore inter-iterations arcs) and we try
to reduce the register saturation as low as possible?. Table 5.1 gives our results. What we
see is that the register saturation of the loop bodies are low, ranging from 1 to 8. We have
computed easily and manually the register sufficiency (defined in section 3.3 page 35) of each
DAG and we find that about 17/26 of these DAGs have RF = RS, so we cannot reduce their
register saturation. For the remaining DAGs, our heuristic managed in reducing their register
saturation.

In a second experience, we unroll loops 10 times to obtain large DAGs. For these DAGs,
register saturations range of DAGs from 2 to 80. Only 6 DAGs have a register saturation
that exceeds 32 registers. In all cases, our heuristic succeeds in reducing it until exactly 32
registers, and the critical path increased in only one case. Table 5.2 summaries our results.
We get linear results if we unroll the loops 20 times and reduce their register saturation until
64 : register saturation range is from 1 to 160, our heuristic succeeds in reducing the register
saturation until 64 in the same 6 unrolled loops, and the critical path increases in the same case.

2in practice, this is done by giving 1 as a target limit
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In a third experience, we unroll the loops with their valid unrolling degrees. Register satu-
ration results in range from 2 to 48. Table 5.4 gives our results. A first remark is that 21/26
of these DAGs have a register saturation lower than 32, so no need to extend them and any
schedule cannot produce a spill code. For the five remaining DAGs, their register saturation
is lower than 64. Our heuristic manages to reduce their register saturation until exactly 32
registers. But the critical path increases in three of these cases.

Fourth, we use the unrolled loops 20 times and try to reduce their register saturations below
32 registers. In this case, 14 of the 26 unrolled loops exceed 32 saturating values. Our heuristic
succeeds in getting the limit 32 in 12 cases, and fails in two cases (we get 39 and 59). The
critical path increases in 6 cases. Table 5.3 gives our results.

Finally, we study the amount of ILP lost after adding serial arcs. The amount of ILP in
DAGs is the ratio between the number of operations and the critical path:

i ) 4
VG = (V,E, ) ILP(G) = ’VCriticalPath(G)

The ratio used for expressing the ILP loss is

original ILP — new ILP
original ILP

We use the limit R = 32 to study the ILP loss. Table 5.5 gives the ILP loss in the case of
the unrolled loops 10 times. Table 5.6 is intended for unrolled loops 20 times, and Tab. 5.7 is
for the unrolled loops with valid unrolling degree. In all above tables, only cases where register
saturation exceeds 32 registers are presented.

5.2.2 Case of Loops

The second step of our experimentation is intended for loops. Our purpose is to prevent any
software pipelining schedule to exceed the limit of 32 registers. To recall, we proceed by re-
rolling unrolled DAGs to get a cyclic graph. Table 5.4 gives us the valid unrolling degree and
an upper-bound for the register saturation in the motif. The first remark is that the unrolling
degree could be high in the case where the critical cycle is low. Second, any software pipelining
schedule for all these loops cannot use more than 64 registers. Third, 21 of these 26 loops
have a register saturation that does not exceed 32. Since the unrolling degree is valid, we
are sure that any software pipelining schedule does not exceed 32 values simultaneously alive.
For the five remaining loops, table 5.8 gives the new upper-bound of the register saturation
in the motif after rerolling the extended DAGs. We remark that the upper-limit of MRS of
the rerolled loop reduces compared to the register saturation of the unrolled DAG. The reason
is that the rerolling function makes cyclic some serial arcs: a single serial arc in the unrolled
DAG become a cyclic arc in the loop. In all cases, our heuristic succeeds in reducing it below
the limit 32. The drawback is that in three cases, the critical cycle increases. And in another
case (spec-spice-loop7), our heuristic introduces a cycle in the loop while the original graph is
acyclic: the reason is that the rerolling function could produce cyclic serializations which are
difficult to avoid in reduced complexity.
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Before reduction After reduction
loop body RS | Critical Path || min RS obtained | Critical Path
Lin-ddot 2 4 2 4
liv-loopl 3 8 2 10
liv-loop23 8 12 4 16
liv-loopb 2 5) 2 5)
spec-dod-loopl 5 22 4 25
spec-dod-loop2 4 23 3 23
spec-dod-loop3 4 24 3 24
spec-dod-loop7 1 35 1 35
spec-fppp-loopl 2 20 1 20
spec-spice-loop10 | 2 3 2 3
spec-spice-loop1 1 2 1 2
spec-spice-loop2 || 3 8 3 8
spec-spice-loop3 | 2 5 2 5
spec-spice-loop4 || 6 10 6 10
spec-spice-loopb | 1 2 1 2
spec-spice-loop6 || 3 21 2 21
spec-spice-loop7 || 3 19 2 19
spec-spice-loop8 | 2 3 2 3
spec-tom-loopl 6 24 4 24
whet-cycle4_1 1 3 1 3
whet-cycle4_2 1 3 1 3
whet-cycled 4 1 3 1 3
whet-cycle4_8 1 3 1 3
whet-loopl 3 16 3 16
whet-loop2 2 24 2 24
whet-loop3 4 4 4 4

Table 5.1: DAGs of the loop bodies (R = 1)
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Before reduction After reduction
loop RS | Critical Path || RS reduced | Critical Path
Lin-ddot 20 |13 20 13
liv-loopl 21 | 44 21 44
liv-loop23 80 | 84 32 100
liv-loop5 20 | 32 20 32
spec-dod-loopl 41 | 220 32 220
spec-dod-loop2 40 | 212 32 212
spec-dod-loop3 40 | 204 32 204
spec-dod-loop7 10 | 44 10 44
spec-fppp-loopl 12 | 200 12 220
spec-spice-loop10 || 11 | 30 11 30
spec-spice-loop1 10 |11 10 11
spec-spice-loop2 | 30 |17 30 17
spec-spice-loop3 | 2 59 2 59
spec-spice-loop4 | 44 | 100 32 100
spec-spice-looph 10 |29 10 29
spec-spice-loop6 | 30 | 39 30 39
spec-spice-loop7 | 30 | 20 30 20
spec-spice-loop8 | 20 |3 20 3
spec-tom-loop1 43 | 222 32 222
whet-cycle4_1 1 39 1 39
whet-cycle4_2 2 19 2 19
whet-cycle4 4 4 11 4 11
whet-cycle4_8 8 7 8 7
whet-loopl 6 169 6 169
whet-loop2 20 | 78 20 78
whet-loop3 4 49 4 49

Table 5.2: DAGs of unrolled loops 10 times (R = 32)
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Before reduction After reduction
loop RS | Critical Path || RS reduced | Critical Path
Lin-ddot 40 |23 32 23
liv-loopl 41 | 84 32 95
liv-loop23 160 | 164 59 218
liv-loop5 40 | 62 32 62
spec-dod-loopl 81 | 440 39 456
spec-dod-loop2 80 | 422 32 422
spec-dod-loop3 40 | 204 32 204
spec-dod-loop7 20 | 54 20 54
spec-fppp-loopl 22 | 400 22 400
spec-spice-loop10 || 21 | 60 21 60
spec-spice-loop1 20 | 21 20 21
spec-spice-loop2 | 60 | 27 32 35
spec-spice-loop3 | 2 119 2 119
spec-spice-loop4 | 84 | 200 32 200
spec-spice-loopb | 20 | 59 20 59
spec-spice-loop6 | 60 | 59 32 59
spec-spice-loop7 | 60 | 20 32 47
spec-spice-loop8 | 40 |3 32 17
spec-tom-loop1 83 | 422 32 422
whet-cycle4_1 1 79 1 79
whet-cycled 2 2 39 2 39
whet-cycle4 4 4 19 4 19
whet-cycle4_8 8 11 8 11
whet-loopl 6 339 6 339
whet-loop2 40 | 138 40 138
whet-loop3 4 99 4 99

Table 5.3: DAGs of unrolled loops 20 times (R = 32)
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Before reduction After reduction

Unrolled loop | Unrolling Degree | RS | Critical Path || RS | Critical Path
Lin-ddot 7 14 |10 14 10
liv-loopl 4 9 20 9 20
liv-loop23 6 48 | 52 32 52
liv-loopb 3 6 11 6 11
spec-dod-loopl 3 13 | 66 13 66
spec-dod-loop2 2 8 44 8 44
spec-dod-loop3 2 8 44 8 44
spec-dod-loop7 35 35 | 69 32 88
spec-fppp-loop1 2 4 40 4 40
spec-spice-loop10 || 2 3 6 3 6
spec-spice-loopl | 3 3 4 3 4
spec-spice-loop2 13 39 |20 32 20
spec-spice-loop3 | 2 2 11 2 11
spec-spice-loop4 | 6 28 | 60 28 60
spec-spice-looph 1 1 2 1 2
spec-spice-loop6 | 14 42 | 47 32 47
spec-spice-loop7 | 21 63 | 20 32 50
spec-spice-loop8 | 6 12 |3 12 3
spec-tom-loop1 3 15 | 68 15 68
whet-cycle4_1 1 1 3 1 3
whet-cycled_2 2 2 3 2 3
whet-cycle4_4 4 4 3 4 3
whet-cycle4_8 8 8 3 8 3
whet-loopl 3 6 50 6 50
whet-loop2 5 10 | 48 10 48
whet-loop3 3 4 14 4 14

Table 5.4: DAGs of the unrolled loops with valid unrolling degrees (R = 32)

‘ Unrolled loop H original ILP ‘ new ILP ‘ ILP loss ‘

liv-loop23 3 2 33.33%
spec-dod-loopl || 1 1 0%
spec-dod-loop2 || 1 1 0%
spec-dod-loop3 || 1 1 0%
spec-spice-loop4 || 2 2 0%
spec-tom-loopl || 1 1 0%

Table 5.5: ILP loss in the unrolled loops 10 times (R = 32)
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‘ Unrolled loop H original ILP | new ILP ‘ ILP loss ‘

Lin-ddot 4 4 0%
liv-loopl 3 2 33.33%
liv-loop23 3 2 33.33%
liv-loop5 2 2 0%
spec-dod-loopl || 1 1 0%
spec-dod-loop2 || 1 1 0%
spec-dod-loop3 || 1 1 0%
spec-spice-loop2 || 7 6 14.28%
spec-spice-loop4 || 2 2 0%
spec-spice-loop6 || 3 3 0%
spec-spice-loop7 || 5 3 40%
spec-spice-loop8 || 27 7 74%
spec-tom-loopl | 2 2 0%

Table 5.6: ILP loss in the unrolled loops 20 times (R = 32)

‘ Unrolled loop H original ILP ‘ new ILP ‘ ILP loss ‘

liv-loop23 3 3 0%
spec-dod-loop7 || 3 2 33.33%
spec-spice-loop2 || 6 6 0%
spec-spice-loop6 || 2 2 0%
spec-spice-loop7 || 6 3 50%

Table 5.7: ILP loss in the unrolled loops with valid unrolling degree (R = 32)
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The last experience was intended for studying the ILP loss. In the loop case, we define the
ILP as the ratio between the number of operations in the loop body and hg :

V]
VG = (V,E,6, A ILP(G) =
(V. B8, ) (@) [[Criticalecle(Gﬂ
Table 5.9 shows that the ILP loss for some extended loops is high. The reason is that
since rerolling function makes cyclic each serial arc in the unrolled DAG, this produces obsolete
serializations. The second reason is that it could introduce new cycles in the loop, and then it
could create a new critical cycle.

Before reduction After reduction

Loop MRS< ‘ Critical Cycle | MRS < ‘ Critical Cycle
Lin-ddot 14 1/1 14 1/1
liv-loop1 9 4/1 9 4/1
liv-loop23 48 8/1 12 16/1
liv-loopb 6 3/1 6 3/1
spec-dod-loopl 13 22/1 13 22/1
spec-dod-loop2 8 21/1 8 21/1
spec-dod-loop3 8 20/1 8 20/1
spec-dod-loop7 35 1/1 3 18/1
spec-fppp-loopl 4 20/1 4 20/1
spec-spice-loop10 || 3 3/1 3 3/1
spec-spice-loopl || 3 1/1 3 1/1
spec-spice-loop2 | 39 1/1 27 2/1
spec-spice-loop3 || 2 6/1 2 6/1
spec-spice-loop4 || 28 10/1 28 10/1
spec-spice-looph || 1 3/1 1 3/1
spec-spice-loop6 || 42 2/1 29 2/1
spec-spice-loop7 || 60 0/1 15 17/3
spec-spice-loop8 || 12 0/1 12 0/1
spec-tom-loopl 15 22/1 15 22/1
whet-cycle4_1 1 4/1 1 4/1
whet-cycle4 2 2 4/2 2 4/2
whet-cycle4_4 4 4/4 4 4/4
whet-cycle4_8 8 4/8 8 4/8
whet-loopl 6 17/1 6 17/1
whet-loop2 10 6/1 10 6/1
whet-loop3 4 5/1 4 5/1

Table 5.8: Reducing MRS in loops below 32 registers (limit R = 32)
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‘ Loop H original ILP | new ILP ‘ ILP loss ‘
liv-loop23 3 2 33.33%%
spec-dod-loop7 | 4 1 5%
spec-spice-loop2 || 9 5 44.44%
spec-spice-loop6 || 3 2 33.33%
spec-spice-loop7 || 5 1 80%

Table 5.9: ILP loss in the extended loops
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Chapter 6

Related Work

6.1 Scheduling under Register Constraints

A lot of work has been done in combining code scheduling with register allocation in DAGs.
The authors in [GH88] give two solutions: the first consists in code scheduling under register
constraints for pipelined processors, so the proposed heuristic is driven by code scheduling. The
second solution is driven by register allocation, where the DDG is modified whenever a register
must be reused: by considering all registers as candidate, one suitable register is chosen. In
[BEH91] three solutions are proposed. The first one consists in putting a limit on values si-
multaneously alive within basic blocs; the second is driven by the register allocation where it
estimates a scheduling cost to assign registers to values; the last uses a pre-analysis to estimate
the limit used in the first solution. In [Pin93], the author needs a first schedule to build a
parallelizable interference graph. She proves that an optimal coloring (with a number of colors
do not exceed the amount of registers) of this graph leads to an optimal register allocation
without introducing false dependencies. In [Bra94|, the author investigates the relationship
between graph-coloring register allocation and and ILP scheduling. He gives a new framework
consisting in using information from an initial register assignment to remove false dependencies.
It tries to create a compromise between advantages of first and last register allocation schemes.

In case of loops, there is a lot of heuristics that combine SWP scheduling under register
constraints. An optimal solution using integer programming is studied in [ES96]. In [Huf93],
the authors propose a heuristic for SWP that tries to minimize value lifetimes, hoping that this
would limit the register need. In [WKE95] a method for building SWP schedules uses a register
requirement graph to estimate dynamically the register need. This gives a cost for operation
scheduling. The method proposed in [SC96] tries to modify the SWP motif without increasing
its length (h). Their aim is to reduce the maximal amount of values simultaneously alive .
The heuristics studied in [LVA95, LGAV96, L1096] try to reduce the SWP motif length and the
value lifetimes. An operation is scheduled as late as possible or as soon as possible in the motif
according to the schedule of their predecessors or successors.

All the above techniques try to build an optimal schedule without exceeding a limit of values
simultaneously alive in order to keep these values in physical registers. In our work we do not
construct a schedule, we only use precedence constraints. So, any schedule heuristic could be
used.
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The dual notion of register saturation, called register sufficiency, is studied in [AKR91].
Given a DAG, the authors give a heuristic that find the minimum register needed to complete
the computation is O(log?|V|) factor of the optimal. Register sufficiency tries to build family
of schedules with minimal registers, although some DAGs do not need more than the amount
physical register. This leads in increasing the critical path and decreasing the amount of ILP.

6.2 Similar Work: URSA

6.2.1 Maximizing Register Need with URSA

The minimum killing set technique [BGS93] tries to saturate the register need by keeping values
alive as late as possible: the authors proceed by keeping as many children alive as possible by
computing the minimum set that kills all the parent’s values. Formally, the minimum killing
set is defined by :

Definition 6.1 (Minimum Killing Set (MKS)) :
Given a DAG G = (V, E, 6, by, 6), the minimum killing set of a connected bipartite component
cb = (S, T, Eg) in the potential killing DAG PK(G) is a subset T" C T, such that

1. covering constraints

U PPK(G) =5

teT!
2. minimizing constraints
: !
min |7

Finding an MKS is NP-complete. In this section, we prove that the minimum killing set
problem does not saturate the register need, even if we have an optimal solution. The problem
is that the minimum killing set saturate the register need only in a local bipartite component
of the potential killing DAG, and not for the whole DDG.

First, even if we have an optimal solution, the minimum killing set does not give any indica-
tion about choosing a killing function. Figure 3.6 in page 17 shows the case where the optimal
solution is {t1,ts,%3}. If we are not careful, we can produce the non valid killing function pre-
sented in that figure.

Figure 6.1 describes the first drawback when there is more than one solution to the mini-
mum killing set. Part (a) describes the DDG (for simplicity, here all nodes are value nodes i.e.
€ Vg and all edges are flow i.e. € Eg). When computing the minimum killing set of {a, b, c},
we have the choice between two solutions {d} or {e}. If we choose the former, the disjoint
value DAG in part (b) shows that there are 4 registers (the maximal antichain is {a,b,c, e},
with k(d) = f). But if we choose the latter, the disjoint value DAG presented in part (c¢) show
us that there is 5 registers (the maximal antichain is {a,b, ¢, d, g}).

The second example in figure 6.2 shows that even if we have one solution for the minimum
killing set problem, it does not saturate the register need. For the DAG described part (a), the
INRIA
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minimum killing set of {a, b, c} is {d}. The disjoint value DAG in part (b) shows us that there
are 5 values simultaneously alive (the maximal antichain is {a,b, ¢, h, e}, with k(d) = f). But
if we choose the non minimal solution {e, h}, the disjoint value DAG in part (¢) shows that
there are 6 values simultaneously alive (the maximal antichain is {a, b, c,d, g,i}).

The third drawback arises because of their DAG model. The authors do not make difference
between nodes, arcs and register types: all their nodes are values and all their arcs are flow,
then only one possible register type can be used. Figure 6.3 shows an example. The bold circles
refer to value nodes. If we choose the minimum killing set {e}, the disjoint value DAG in part
(b) shows 3 values simultaneously alive . But if we choose another killing set {d, f} which is
not minimal, the disjoint value DAG in part (¢) shows 4 values simultaneously alive . So the
minimum killing set does not guarantee the register saturation.

() () (2 (o) OQO
ol
S RN o

.
O ® © © ®

(a) theDAG G (b) DVi(G) with d as minimum killing set (c) DVy(G) with e as minimum killing set

Figure 6.1: The first drawback of minimum killing set technique

() the DAG G (b) DVi(QG) such d is the minimum killing set

WL

(¢) DVi(G) with e)h as killing set

Figure 6.2: The second drawback of minimum killing set technique

RR n°3978



vta-Ahmea-Ait LTOUOUALL , rran¢ots 1 dUMAOSOL 1

b(add)

() the DAG G (b) DVi(G) such e is the minimum killing set (c) DV,(G) with d,f as killing set

Figure 6.3: The third drawback of minimum killing set technique

6.2.2 Reducing Register Use with URSA

The authors give a heuristic in [BGS92] to reduce the register saturation. They use serializations
like in our approach, but rather than serializing two values they serialize two sub-DAGs. They
look for two sub-DAGs such that the local register saturation of the second does not exceed the
limit R. And after, they serialize it after the first one. They do not provide an algorithm to find
two suitable sub-DAGs. However, their approach should be more complex than our heuristic
because searching for a suitable sub-DAG is more complex than searching for a suitable single
value node.
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Chapter 7

Conclusion

In this report, we present our approach to avoid or reduce spill code that could be generated
for any schedule and for any resource constraints. We proceed first by computing the satura-
ting values (the maximum amount of values potentially alive). If the amount of these values
exceeds the number of physical registers, we add some serial arcs into the the graph to reduce
the register saturation. Since the problem of computing saturating values is NP-complete, we
give a polynomial-time heuristic to solve this problem. Nevertheless, we get an optimal so-
lution for certain graphs: those that have a potential killing tree. We also give a heuristic
that chooses the best suitable value serialization to reduce the register saturation and keep it
under a limit (number of physical registers) without increasing the critical path if possible. It
fails if the register sufficiency is greater that this limit (since the amount values simultaneously
alive is always greater than the register sufficiency for any schedule). However, it produces an
extended graph with reduced register saturation, so the spill code generated by a schedule is
consequently reduced.

Branches are taken into account by building a DAG for each possible path in the CFG.
This is done to get exact flow dependencies in case where more than one operation can define a
value. Since static speculation technique can introduce new recovering operations, the register
saturation analysis in case of branch must be done after speculation.

We extend our work to loops. Our purpose is to avoid and reduce register saturation to
control the amount of values simultaneously alive produced by any SWP schedule. We give
a heuristic consisting in unrolling, applying the DAG technique and then rerolling. The valid
unrolling degree could be large, but since we reroll the graph, there is no more code growth
anymore. If the heuristic succeeds in keeping the register saturation under the limit (number of
physical registers), then any SWP schedule cannot generate spill code. If not, the spill code is
reduced. Since the rerolling function could introduce new cycles in the loop, new critical cycle
could be introduced. We think that our loop approach for reducing register saturation can be
improved by avoiding to unroll and reroll the loop.

Our approach is valid for both scheduling semantics (UAL and NUAL). For the latter, we
define graph transformations that add intermediate nodes and arcs between operations in or-
der to produce valid schedules in NUAL semantics (guarantee a minimum latency). Only few
notions have been redefined and adapted to apply our approach in the NUAL case.
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Our perspective is intended for loops. We will study the manner of computing and reducing
the register saturation in the motif (MRS) rather than bounding it by the register saturation of
the unrolled DAG. The first reason is that the unrolling degree could be high, producing huge
DAGs. The second reason is that the rerolled function could introduce new cycles in the loop
and some obsolete serial arcs' reducing then the ILP. We think that working directly on the
cyclic graph is better than working on the unrolled one.

lsince a serial arc in the unrolled DAG become cyclic in the rerolled loop
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Appendix A
The Set of Valid Schedules

Algorithm 8 LL(G,0)
if G = (¢, ¢) then
print o
else
n=|Source(G)|
for p=1,n do
for all S € C?(Source(@)) do {all combination of p sources}
call LL(G — S,0-95)
end for

end for
end if

Algorithm 8 gives a recursive procedure LL(G, o) that computes ¥(G) by using the first
call LL(G, ¢). Unfortunately, its complexity is not supportable. This algorithm traverses the
whole DAG! for building one valid schedule, so the complexity is:

o<(|V| +|E|) x |L‘£(G)\> < o<(|v| +|E)) x \VI'V')

We can deduce easily algorithm 9 that computes the set of all valid restricted schedules.

the complexity of visiting all the DAG is O(|V| + | E|)
RR n°3978
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Algorithm 9 ZZ (G, 0)
if G = (¢, ¢) then
print o
else
n=|Source(G)|
for p=1, min(n,r) do
for all S € C?(Source(@)) do {all combination of p sources}
call LL (G — 8,0 - S)
end for

end for
end if
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Appendix B

Constructing Potential Killing DAGs

Algorithm 10 building PK (G = (V, E))
G'.V = G.V {we put all the nodes of G in the potential killing DAG}
for all arcs (u,v) € G.Eg do {we construct the consumer set of each value node}
Cons(u) = Cons(u) U {v}
end for
G. = transitive_closure(G) { permit to test precedence relation between consumers}
for all value nodes u € G.Vi do {we compute the potential killing operations}
for all nodes v € Cons(u) do
if L(v) N Cons(u) = ¢ then
pkill(uw) = pkill(u) U {v}
end if
end for
end for
for all value nodes u € G'.Vx do {we add the potential kill relation in G'}
for all nodes v € pkill(u) do
G''E=G.EU{(u,v)}
end for
end for
return G’

The complexity of algorithm 10 is dominated by the complexity of the transitive closure
algorithm. We assume that the reader is familiar with such algorithms [CLR90]. There are two
well-known algorithms:

e Roy-Warshall algorithm in O(|V]?);

e Goralcicova-Koubek algorithm in O(|V| + |V| x |E,| + |E;|) where E, are transitive re-
duction arcs and E. are transitive closure arcs.
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Appendix C

Testing the Validity of a Killing
Function

In this chapter, we give an algorithm to test if a killing function k£ of a DAG G = (V, E, 6, 6y, 6, )is
valid. We assume that the potential killing graph is constructed.

Algorithm 11 boolean valid_killmg(k, G=(V,E), PK(G))
G_r=G
for all value nodes u € G_;.Vz do {We add extended arcs within potential killing opera-
tions}
for all nodes v € I'"
PK(G)'VR do
if v # k(u) then
G_>k.E5 = G_,k.ES U (u, U)
end if
end for
end for Acyclic(G_;)

ratyinn Tao
eI 1S

The complexity of algorithm 11 is the sum of:
e the construction of the extended graph G_ in O(|Vg| + E)
e the test of the non existence of a circuit in O(|V| + |G_x.E)| = O(|V| + |E| + | Ek|)

So the whole complexity is dominated by O(|V'| + |E| + |Ex|)
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Appendix D

Building the bipartite decomposition
for a DAG

We recall that a connected bipartite component is a triple ¢b = (S, Tep, Ecp) where:
e S, C Vg is the parent values killed by the children in T';
e T, CV are children that kill parents;
e E4 C Epk(g) are the potential killing relation between S, values and T¢; nodes.

Algorithm 12 proceeds by selecting one value as an entry point for constructing a new
bipartite component. Then, each child is added to the Ty, set and each parent is inserted to
the Sg set. This algorithm iterates until no new parent or child is found. The complexity of
this algorithm is O(|V| + [Epk(a)l)-
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Algorithm 12 Constructing the bipartite decomposition B(G)
Require: PK(G) of a DAG G = (V, E, 6, by, ;)
B(G) = ¢ {bipartite decomposition is initially empty}
for all u € Vi do {initialization}
visited[u]=false;
end for
for all u € Vi do
if — visited[u] then {we select one non visited value...}
cb = ({u}, @, ¢) {...to put it in Sz}
visited [u]=true;
Ty =T"
pr(c)(®)
S = ¢ {last Se}
T = ¢ {last Ty}
while (S # Su) V (T # T,) do {grab all connected children with their parents}
S =Su
T="T,
Seb = Uter,, I p () (8)
Tep = Uses, I

PK(G) (s)

end while
for all s € S.;, do {mark parent values as visited}
visited[s]|=true;
end for
B(G) = B(G) U {cb}
end if
end for
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Appendix E

NP-Completness of Finding a SKS

The problem of finding a SKS can be formally generalize to a new set covering problem.

Definition E.1 (set-weighted covering problem (SWC)) :
Given a set S, and a family € = {E C S} of subsets of S , and a function w that assign to
each edge E € € a set w(E) (called cost set), could we find a covering &' C E of S such that

1. covering constraints

2. minimaizing the cost

min | | J w(E)|

Eeg!

Then, in the case of finding a SKS for a bipartite component cb = (S,T, E), we have only to
put

1. E={E,CSAteT/E,={se 5/(s,t) € Ex}}
2. VEt €&: w(Et) :lval t

Theorem E.1 SWC is NP-complete

Proof:

We produce a sub-family of DAGs which can be reduced easily to the weighted
covering problem. We choose a family of w cost such that VE,E' € £ : w(E) N
w(E'") = ¢. This means that the cost sets are completely disjoint. We can then

write
L wB) =) lw(B)

Eecg! Eeg’

This property permits us to reduce the SWC problem to the weighted covering
problem easily. We first define a decision problem for this family of DAGs.
RR n"3978



vta-Ahmea-Ait LTOUUALL , rran¢ots 1 dUMAOSOL 1

Definition E.2 (SWC decision problem: dec(SWC)) :
INSTANCE: a set S, and a family € = {E C S} of subsets of S, and a function w

that assign to each edge E € € a set w(E). Let be j positive integer. The property
of w is

VE,E' € £:w(E)Nw(E") =¢
QUESTION : Does there exist a subset E' C £ such that:

1. the covering constraints

U =

Eeg
2. the cost
| w(®) <
Eeg!
We prove in the following that this decision problem is NP-complete. We reduce it

to the weighted covering problem.

Definition E.3 (Weighted Covering Problem (weicover)) Given a set X, and
a family F = {F C X} of subsets of X, and cost function c that assign a positive
integer cost to each subset F' € F, find a covering F' C F of X such that:

1. the covering constraint

2. the minimization constraint

We define now a decision problem for the weicover problem.

Definition E.4 (dec(weicover)) :

INSTANCE: a set X, and a family F = {F C X} of subsets of X , and cost

function c that assign a positive integer cost to each subset F' € F. Let j a positive
integer.

QUESTION : Does there exist a covering F' C F of X such that

1. the covering constraint
U=x
FeF'

2. the minimum constraint

D eF) <

FeF'

dec(weicover) is an NP-complete problem [Chv79]. It can be reduced easily to the

minimum covering problem [CLR90] by putting VF' € F : ¢(F) = 1. Now we prove
that dec(SWC) is NP-complete.
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dec(SWC) € NP: Given an optimal covering &', we can construct the set
(Ugegrw(F)) in polynomial time. We have only to test if its cardinal is < j.

dec(SWC) and dec(weicover) are equivalent

We associate to the instance of dec(SWC) an instance of dec(weicover) by putting

e X =9
e VEcE E=F
e VE €& |w(E)| =c(F)

Since the costs sets are disjoint, the cost of an optimal covering for dec(SWC) is

then > pep [w(E)|.

1. dec(SWC) = dec(weicover)

Suppose we have found an optimal cover £. . Then the subset 7' = {F/F =
E A E € £'} is a solution for the weighted covering problem. This is because:

e Since &' satisfies the covering constraint for S, then F’ is a cover for X.

U =x

Fer!

e since Y pee |w(E)| < j, then

2. dec(weicover) = dec(SKS)

Now, suppose that we have a solution F’ for the weighted covering problem. Then
the subset &' = {FE/E = F AN F € F'} is a solution for SKS. This is because:

1. Since F' satisfies the covering constraint for X, then &£’ satisfies the covering
constraint for S

2. since )y p [c(F)| < j then
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Appendix F
Studied Graphs

We give here the data dependence graphs treated in our experimentations, extracted from
[Saw97]. Flow arcs are red arrows and serial arcs are black arrows. Values are represented with
green circles, and other nodes with gray ones.

Figure F.1: lin-ddot
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Figure F.7: spec-spice: loop4
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Figure F.8: spec-spice: loop7, loop8, loop10 resp.
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Figure F.9: cycles from whetstone: cyclel, cycle2, cycle4, cycle8 resp.
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Figure F.10: spec-tomcatv: loopl
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L7, 12
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Vs, 11
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L(G), 4
<, 5 lifetime interval, 12
~, 4 linear extension, 4
g\vi ; maximal antichain, 5
d“,L (u), 3 maximal chain, 5
d(j (u)’ 5 maximizing maximal antichain problem, 23
fG 5 ’ MMA, 23
node, 3

adjacent arcs, 4
adjacent nodes, 4
antichain, 5

NUAL parallel topological sort, 9
NUAL transformation, 9

arc, 3 observation window, 53
ascendant, 5 outdegree, 3

chain, 5 parallel, 4

circuit, 3 parallel topological sort, 6
comparable, 4 partial graph, 4

complete graph, 4 path, 3

connected bipartite component, 28 potential killing DAG, 12
consumer set, 12 potential killing operations, 12
critical cycle, 49 predecessor, 3
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register need, 14

register need of a motif, 51

register saturation, 15

rerolled graph, 48

rerolling function, 47

restricted parallel topological sort, 8
restricted valid schedule, 8

saturating function, 23
saturating killing set, 30
saturation schedule, 15
serial arc, 11

sink, 3

source, 3

subgraph, 4

successor, 3

target, 3

topological sort, 4
transitive closure, 4
transitive reduction, 4

unrolled loop, 46
unrolling function, 46

valid killing function, 16
valid schedule, 7

value node, 11

value serialization, 35

weighted covering problem, 82
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