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ABSTRACT
Register allocation in loops is generally performed after or during the software pipelining process.

This is because doing a conventional register allocation as a first step without assuming a schedule
lacks the information of interferences between values live ranges. Thus, the register allocator may
introduce an excessive amount of false dependences that dramatically reduce the ILP (Instruction
Level Parallelism). We present a new theoretical framework for controlling the register pressure before
software pipelining. This is based on inserting some anti-dependence edges (register reuse edges)
labeled with reuse distances, directly on the data dependence graph. In this new graph, we are able
to fix the register pressure, measured as the number of simultaneously alive variables in any schedule.
The determination of register and distance reuse is parameterized by the desired minimum initiation
interval (MII) as well as by the register pressure constraints - either can be minimized while the other
one is fixed. After scheduling, register allocation is done on conventional register sets or on rotating
register files. We give an optimal exact model, and an approximation that generalizes the Ning-Gao
[22] buffer optimization method. We provide experimental results which show good improvement
compared to [22]. Our theoretical model considers superscalar, VLIW and EPIC/IA64 processors.

Keywords: Instruction Level Parallelism, Register Allocation, Register Requirement, Software Pipelin-
ing, Integer Linear Programming, Code Optimization.

1. Introduction

This article addresses the problem of register pressure in simple loop data dependence
graphs (DDGs), with multiple register types and non unit assumed latencies operations.
Our aim is to decouple the registers constraints and allocation from the scheduling pro-
cess and to analyze the trade-off between memory (register pressure) and parallelism con-
straints, measured as the minimum initiation interval MII of the DDG : we refer here to
MIIdep or MIIrec since we will not consider any resource constraint.

The principal reason is that we believe that register allocation is more important as an
optimization issue than code scheduling. This is because the code performance is far more
sensitive to memory accesses than to fine-grain scheduling (memory gap) : a cache miss
may inhibit the processor from achieving a high level of ILP, even if the scheduler has ex-
tracted it at compile time. Of course, someone could argue that spill operations exhibit high
locality, and hence likely produce cache hits, but still we cannot assert it at compile time,
unless the compiler makes very optimistic assertions on data locality and cache behavior.
The hardware does not always react as it should do, especially when memory hierarchy is
involved.
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Even if we make optimistic predictions on cache behavior, and let us suppose that the
spilled data always remains in the caches, we still have to solve many problems to guarantee
that spill operations do not cause damages : our previous studies [16,17] about performing
memory requests on modern microprocessors showed that any load and store operations
(array references) exhibit high potential conflicts that make them to execute serially even
if they are data independent. This is not because of FUs limitations, but because of micro-
architectural restrictions and simplifications in the memory disambiguation mechanisms
(load/store queues) [16] and possible banking structure in cache levels [17]. Such fine-grain
micro-architectural characteristics prevent independent memory requests from being satis-
fied in parallel are not taken into account by current ILP schedulers. Thus, these possible
conflicts between independent loads and stores may cause severe performance degradation
even if enough ILP and FUs exist, and even if the data is located in the cache [17]. In other
words, memory requests are a serious source of performance troubles that are difficult to
fix at compile time. The authors in [11] related that about 66% of application execution
times are spent to satisfying memory requests. Thus, we should avoid requesting data from
memory if possible.

Another reason for handling register constraints prior to ILP scheduling is that reg-
ister constraints are much more complex (from the theoretical perspective) than resource
constraints. Scheduling under resource constraints is a performance issue. Given a DDG,
we are sure to find at least one valid schedule for any underlying hardware properties (a
sequential schedule in extreme case, i.e., no ILP). However, scheduling a DDG with a lim-
ited number of registers is more complex. We cannot guarantee the existence of at least one
schedule. In some cases, we must introduce spill code and hence we change the problem
(the input DDG). Also, a combined pass of scheduling with register allocation presents an
important drawback if not enough registers are available. During scheduling, we may need
to insert load-store operations. We cannot guarantee the existence of a valid issue time for
these introduced memory access in an already scheduled code; resource or data dependence
constraints may prevent from finding a valid issue slot inside an already scheduled code.
This forces us to iteratively apply scheduling followed by spilling until reaching a solution.
Even if we can experimentally reduce the backtracking as in [32], this iterative aspect adds
a high algorithmic complexity factor to the pass integrating both register allocation and
scheduling.

All the above arguments make us re-think new ways of handling register pressure before
starting the scheduling process, so that the scheduler would be free from register constraints
and would not suffer from excessive serializations.

Existing techniques in this field usually apply register allocation after a step of software
pipelining that is sensitive to register requirement. Indeed, if we succeed in building a soft-
ware pipelined schedule that does not produce more than R values simultaneously alive,
then we can build a cyclic (periodic) register allocation with R available registers [6,23].
We can use either loop unrolling [6,20], inserting move operations [14], or a hardware ro-
tating register file when available [23]. Therefore, a great amount of work tries to schedule
a loop such that does not use more than R values simultaneously alive. Usually, a schedule
that minimizes the register need under a fixed II . [15,31,22,21,8,12,18]. In this paper we
directly work on the loop DDG and modify it in order to fix the register requirement of
any further subsequent software pipelining pass. This idea is already present in [2,29] for
DAGs and use the concept of reuse edge or vector developed in [27,28].
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Our article is organized as follows. Sect. 2 defines our loop model and a generic ILP
processor. Sect. 3 starts the study with a motivating example. The problem of periodic
register allocation is described in Sect. 4 and formulated with integer linear programming
(intLP). The special case where a rotating register file (RRF) exists in the underlying pro-
cessor is discussed in Sect. 5. In Sect.6, we present a polynomial subproblem. Sect.7
solves a typical problem for VLIW and EPIC/IA64 codes. A network flow solution for the
problem of peridic register allocation is described in Sect. 8. Finally, we synthesize our ex-
periments in Sect. 9 before concluding. For fluidity of the reading, only the most important
formal proofs are presented in this paper. The complete theoretical proofs are provided in
the cited references.

2. Loop Model

We consider a simple innermost loop (without branches, with possible recurrences). It
is represented by a graph G = (V,E, δ, λ), such that :

• V is the set of the statements in the loop body. The instance of the statement u (an
operation) of the iteration i is noted u(i). By default, the operation u denotes the
operation u(i) ;

• E is the set of precedence constraints (flow dependences, or other serial constraints),
any edge e has the form e = (u, v), where δ(e) is the latency of the edge e in terms
of processor clock cycles and λ(e) is the distance of the edge e in terms of number
of iterations.

• A valid schedule σ must satisfy :

∀e = (u, v) ∈ E : σ
(
u(i)

)
+ δ(e) ≤ σ

(
v(i+ λ(e))

)

We consider a target RISC-style architecture with multiple register types, where T denotes
the set of register types (for instance, T = {int, f loat}). We make a difference between
statements and precedence constraints, depending whether they refer to values to be stored
in registers or not :

1. VR,t is the set of values to be stored in registers of type t ∈ T . We assume that each
statement u ∈ V writes into at most one register of a type t ∈ T . Statements which
define multiple values with different types are accepted in our model if they do not
define more than one value of a certain type. For instance, statements that write into
a floating point register and update a conditional register are taken into account in
our model. We denote by ut the value of type t defined by the statement u ;

2. ER,t is the set of flow dependence edges through a value of type t ∈ T . The set of
consumers (readers) of a value ut is then the set :

Cons(ut) = {v ∈ V | (u, v) ∈ ER,t}

Our model requires that each statement writes into at most one register of each type be-
cause this characteristics enable us to make some formal proofs using graph theory (shown
later). If we target a processor that allows the opportunity to write multiple results of the
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same type, we can easily relax this restriction by node splitting : a statement u writing
multiple results u1, ..., uk can be splitted into k dummy nodes, each one writing a single
result of the considered type. These k nodes must be connected by a null circuit in order
to enforce them to be scheduled at the same clock cycle. Also, we must add any additional
data dependence arcs from/to each dummy node to preserve code semantics.

To consider static issue processors (VLIW or IA64) in which the hardware pipeline
steps are visible to compilers (we consider dynamically scheduled superscalar processors
too), we assume that reading from and writing into a register may be delayed from the
beginning of the schedule time, and these delays are visible to the compiler (architecturally
visible). We define two delay (offset) functions δr,t and δw,t in which :

δw,t : VR,t → N
u 7→ δw,t(u)/ 0 ≤ δw,t(u)
the write cycle of ut into a register of type t is σ(u) + δw,t(u)

δr,t : V → N
u 7→ δr,t(u)/ 0 ≤ δr,t(u) ≤ δw,t(u)
the read cycle of ut from a register of type t is σ(u) + δr,t(u)

For superscalar or EPIC codes, δr,t and δw,t are equal to zero. A software pipelining
is a function σ that assigns to each statement u a scheduling time (in terms of clock cycle)
that satisfies the precedence constraints. It is defined by an initiation interval, noted II , and
the scheduling time σu for the operations of the first iteration. Iteration i of operation u is
scheduled at time σu + (i− 1).II . For all edge e = (u, v) ∈ E, this schedule must satisfy:

σu + δ(e) ≤ σv + λ(e).II

Classically, by adding all such inequalities on any circuit C of G, we find that II must
be greater than or equal to maxC

P
e∈C δ(e)P
e∈C λ(e) , that we will denote in the sequel as MII .

We consider now a register pressure ρ (number of available registers) and all the sched-
ules that have no more than ρ simultaneously alive variables. Any following register allo-
cation will induce new dependencies in the DDG, hence register pressure has influence on
the expected II , even if we assume unbounded resources. What we want to analyze here
is the minimum II that can be expected for any schedule using less than ρ registers. We
will denote this value as MII(ρ) and we will try to understand the relationship between
MII(ρ) and ρ. Let us start by an example to fix the ideas.

3. Starting Example

3.1. Basic Idea

The heart of our method is based on the following observation: there exist some DDGs
for which we can guarantee a bounded or fixed register requirement for any valid schedule.
The basic case is when the DDG of some loop is a simple single circuit, with dependence
distance λ, then any software pipelining of this loop will have exactly R = λ simulta-
neously alive variables. On the other hand, circuits in the data dependence graphs are
responsible for throughput limitation: a data dependence circuit induces a constraint on the
expected instruction level parallelism since any initiation interval II must be greater than
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the value of its critical ratioMII = δ
λ , where δ is the sum of delays of the circuit edges. In

this simple case, we get the inequality II ≥ MII = δ
λ = δ

R , which express the trade-off
between loop parallelism and register pressure.

In this paper we generalize this property from a single circuit to general graphs. In
the DDG, we carefully add artificial “reuse” edges such that any such edge is constrained
in a circuit, and such that we are able to measure the resulting register pressure, and the
resulting MII as well.

3.2. Data Dependences and Reuse Edges

We give now more intuitions to the new edges that we add between two statements.
These edges represent possible reuse by the second operation of the register location re-
leased by the first operation. This can be viewed as a variant of [2] or [27,28].

Let us consider the following loop :
for (i=3; i< n; i++){
A[i]=... /* u */
...=A[i-3] /* v */
}
The DDG of this loop contains only one flow dependence, i.e., from u to v with distance
λ = 3 (see Fig. 1.(a) where values to be stored in registers of the considered type are in
bold circles, and flows are in bold edges). If we have an unbounded number of registers,
all iterations of this loop can be run in parallel since there is no recurrence circuit in the
DDG. At each iteration, operation u writes into a new register. Now, let us assume that

u u

v

(δ, λ)

v

(δ, λ)

(a) Simple DDG (b) Antidependence

e
(δr,t(v)− δw,t(u), ρ− λ)

Figure 1: Simple Example

we only have ρ = 5 available registers (R1, ... , R5). The different instances of u can use
only ρ = 5 registers to periodically carry their results. In this case, the operation u(i + ρ)
writes into the same register previously used by u(i). This fact creates an anti-dependence
from v(i + λ), which reads the value defined by u(i), to u(i + ρ); this means an anti-
dependence in the DDG from v to u with a distance ρ−λ = 2. Since u actually writes into
its destination register δw,t(u) clock cycles after it is issued and v reads it δr,t(v) after it is
issued, the latency of this anti-dependence is set to δr,t(v)−δw,t(u), except for superscalar
codes where the latency is 1 (static sequential semantics, i.e., straight line code). Conse-
quently, the DDG becomes cyclic because of storage limitations (see Fig. 1.(b), where the
anti-dependence is dashed). The introduced anti-dependence, also called “Universal Occu-
pancy Vector’ ’(UOV) in [27], must in turn be counted when computing the new minimum
initiation interval since a new circuit is created :

MII ≥ δ(e) + δr,t(v)− δw,t(u)

ρ
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When an operation defines a value that is read by more than one operation, we cannot
know in advance which of these consumers actually kills the value (which one would be
scheduled to be the last reader), and hence we cannot know in advance when a register is
freed. We propose a trick which defines for each value ut of type t a fictitious killing task
kut . We insert an edge from each consumer v ∈ Cons(ut) to kut to reflect the fact that
this killing task is scheduled after the last scheduled consumer (see Fig. 2). The latency of
this serial edge is set to δr,t(v) because of the reading delay, and we set its distance to −λ
where λ is the distance of the flow dependence between u and its consumer v. This is done
to model the fact that the operation kut(i+λ−λ), i.e., kut(i) is scheduled when the value
ut(i) is killed. The iteration number i of the killer of u(i) is only a convention and can be
changed by retiming [19], without changing the nature of the problem.

Now, a register allocation scheme consists of defining the edges and the distances of
reuse. That is, we define for each u(i) the operation v and iteration µu,v such that v(i +
µu,v) reuses the same destination register as u(i). This reuse creates a new anti-dependence
from ku to v with latency −δw,t(v), except for superscalar codes where the latency is 1
(straight line code). The distance of this anti-dependence is µu,v to be defined. We will see
in a further section that the register requirement can be expressed in terms of µu,v.

u

(b) Another Allocation Scheme(a) First Reuse Decision

v

v1
v2

kv

(−δw,t(v), µ2)

v

u2u1 v1
v2

kvku

(−δw,t(v), µ1)

(−δw,t(u), µ2)

u

u1 u2

ku
(δr,t(u2),−λ2)

(δr,t(u1),−λ1)

(δ, λ2)(δ, λ1)

(−δw,t(u), µ1)

Figure 2: Killing Tasks

Hence, controlling register pressure means, first, determining which operation should
reuse the register killed by another operation (where should anti-dependences be added?).
Secondly, we have to determine variable lifetimes, or equivalently register requirement
(how many iterations later (µ) should reuse occur)? As defined by the exact algebraic
formulas of MII and ρ, the lower is the µ, the lower is the register requirement, but also
the larger is the MII .

Fig. 2.(a) presents a first reuse decision where each statement reuses the register freed
by itself. This is illustrated by adding an anti-dependence from ku (resp. kv) to u (resp. v)
with an appropriate distance µ, as we will see later. Another reuse decision (see Fig. 2.(b))
may be that the statement u (resp. v) reuses the register freed by v (resp. u). This is
illustrated by adding an anti-dependence from ku (resp. kv) to v (resp. u). In both cases,
the register pressure is µ1 + µ2, but it is easy to see that the two schemes do not have the
same impact on MII: intuitively it is better that the operations share registers instead of
using two different pools of registers. For this simple example with two values, we have
only two choices for reuse decisions. However, a general loop with n statements has an
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exponential number of possible reuse graphs.
There are three main constraints that the resulting DDG must meet. First, it must be

schedulable by software pipelining, and the sum of distances along each circuit must be
positive. Note that there is no reason why the µ coefficients should be non negative : this
means that we are able to allow an operation u(i) to reuse a register freed by an operation
v(i+ k) since a pipelined execution may schedule v(i+ k) to be killed before the issue of
u(i) even if v(i+k) belongs to the kth iteration later. Second, the number of registers used
by any allocation scheme must be lower or equal to the number of available registers. Third
and last, the critical ratio (MII) must be kept as lower as possible in order to save ILP. The
next section gives a formal definition of the problem and provides an exact formulation.

4. Problem Description

The reuse relation between the values (variables) is described by defining a new graph
called a reuse graph. Fig. 3.(a) shows the first reuse decision where u (v resp.) reuses the
register used by itself µ1 (µ2 resp.) iterations earlier. Fig. 3.(b) is the second reuse choice
where u (v resp.) reuses the register used by v (u resp.) µ1 (µ2 resp.) iterations earlier.
The resulting DDG after adding the killing tasks and the anti-dependences to apply the
register reuse decisions is called the DDG associated with a reuse decision : Fig. 2.(a) is
the associated DDG with Fig. 3.(a), and Fig. 2.(b) is the one associated with Fig. 3.(b). In
the next section, we give a formal definition and model of the register allocation problem
based on reuse graphs. We denote by G→r the DDG associated to a reuse decision r.

u
µ1

u

(b) Second Reuse Graph

µ1

µ2

v

(a) First Reuse Graph

µ2v

Figure 3: Reuse Graphs

4.1. Reuse Graphs

A register allocation consists of choosing which operation reuses which released regis-
ter. We define :
Definition 1 (Reuse Graph) Let G = (V,E, δ, λ) be a DDG. The reuse graph
Gr = (VR,t, Er, µ) of type t is defined by the set of values of type t, the set of edges rep-
resenting reuse choices, and the distances. Two values are connected in Gr by an edge
e = (ut, vt) iff vt (i+ µ(e)) reuses the register freed by ut(i).
We call Er the set of reuse edges and µ a reuse distance. Given Gr = (VR,t, Er, µ) a
reuse graph of type t, we report the register reuse decision to the DDG G = (V,E, δ, λ) by
adding an anti-dependence from kut to v iff e = (u, v) is a reuse edge. The distance of this
anti-dependence is µ(e).

Our reuse graph may seem somewhat similar to the interference graph proposed by
Chaitin. In particular, the fact that two values are connected inGr by an edge if the share the
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same register seems akin to edges in Chaitin’s interference graph if register lifetimes do not
overlap. However, two fundamental aspects make our approaches radically different : first,
the interference graph models all possible reuse decisions (all interferences are reported),
while the reuse graph models a fixed reuse choice ; second, the interference graph does not
take into account the iteration distances, so the possible reuse decisions can be expressed
for only two consecutive iterations. This latter aspect is important since it allows our reuse
graph to capture the pipelined execution of a loop where multiple and distant iterations can
be executed in parallel.

A reuse graph must obey some constraints to be valid :

1. the resulting DDG must be schedulable, and all circuits must have positive distances;

2. each statement must reuse only one freed register, and each register must be reused
by only one statement.

Note that a schedulable DDG does not mean that all its circuits have positive distances.
This is because our model admits explicit reading/writing offsets, thus some edges may
have a non-positive latency.

The second constraint means that the reuse scheme is the same at each iteration. This
condition results in the following lemma.
Lemma 1 [30] Let Gr = (VR,t, Er, µ) be a valid reuse graph of type t associated with a
loop G = (V,E, δ, λ). Then :

• the reuse graph only consists of elementary and disjoined circuits ;

• any value ut ∈ VR,t belongs to a unique circuit in the reuse graph.

Any circuit C in a reuse graph is called a reuse circuit. We note µ(C) the sum of the µ
distances in this circuit. Then, to each reuse circuit C = (u0, u1, .., un, u0), there exists an
image C ′ = (u0 ; ku0

, u1, ..., un ; kun , u0) for it in the associated DDG. For instance
in Fig. 2.(a), C ′ = (v, v1, kv, v) is an image for the reuse circuit C = (v, v) in Fig. 3.(a).

First, let us assume a reuse graph with a single circuit. If such reuse graph is valid,
we can build a periodic register allocation in the DDG associated with it, as explained in
the following theorem. We require µ(Gr) registers, in which µ(Gr) is the sum of all µ
distances in the reuse graph Gr.
Theorem 1 [30] Let G = (V,E, δ, λ) be a DDG and Gr = (VR,t, Er, µ) be a valid reuse
graph of type t associated with it. If only one reuse circuit C in Gr exists, then the reuse
graph defines a periodic register allocation in G for values of type t with exactly µ(C)
registers, if we unroll the loop ρ = µ(C) times.

Proof. Let us unroll G→r ρ = µt(C) times : each statement u ∈ V has now ρ copies
in the unrolled loop. We note ui the ith copy of the statement u ∈ VR,t. To prove this
theorem, we explicitly express the periodic register allocation, directly on G→r after loop
unrolling, i.e. we assign registers to the statements of the new loop body (after unrolling).
We consider two cases, as follows.

Case 1 : all the µ distances are non-negative For the clarity of this proof, we illustrate
it by the example of Fig. 4 which builds a periodic register allocation with 3 registers for
Fig. 2.(b) in which we set µ1 = 2 and µ2 = 1 : we have unrolled this loop 3 times. We
allocate µt(C) = 3 registers in the unrolled loop as described in Algorithm 1.
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k_u

R0 R1 R0R1 R2 R2
(1)

(0)
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v u u

v2 u2 v1 v2

k_v

u2 v1u1

k_u

v2v1

k_v

u2u1

v v

k_u

u1

k_v

Figure 4: Periodic Register Allocation with One Reuse Circuit

1. We choose an arbitrary value ut in VR,t. It has ρ distinct copies in the unrolled loop.
So, we allocate ρ distinct registers to these copies. We are sure that such values exist
in the unrolled loop body because ρ > 0.

2. Since the reuse relation is valid, we are sure that for each reuse edge (u, v), the killing
time of each value ut(i) is scheduled before the definition time of vt(i + µtu,v).
So, we allocate the same register to vt

(
(i + µtu,v) mod ρ

)
as the one allocated to

ut(i). We are sure that vt
(
(i+µtu,v) mod ρ

)
exists in the unrolled loop body because

µtu,v ≥ 0. For instance in Fig. 4, we allocate the same register R1 to u(1) and
v((1 + 2) mod 3) = v(0). Also, we allocate the register R0 to v(2) and to u((2 +
1) mod 3) = u(0). Finally, we allocate R2 to both v(1) and u((1 + 1) mod 3) =
u(2).

3. We follow the other reuse edges to allocate the same register to the two values v(i)
and v′

(
(i+ µtu,v) mod ρ

)
iff reuse(v) = v′. We continue in the reuse circuit image

until all values in the loop body are allocated.

Since the original reuse circuit image is duplicated ρ times in the unrolled loop, and since
each reuse circuit image in the unrolled loop consumes one register, we use in total ρ =
µt(C) registers. Dashed lines in Fig. 4 represent anti-dependences with their corresponding
distances after the unrolling.

Case 2 : there exists a non-positive µ distance In that case, it is always possible to come
back to the previous case by a retiming technique [19,30], since loop retiming can make all
the distances non-negative. 2.

As a consequence to the previous theorem, we deduce how to build a periodic register
allocation for an arbitrary number of reuse circuits.
Theorem 2 [30] Let G = (V,E, δ, λ) be a loop and Gr = (VR,t, Er, µ) a valid reuse
graph of a register type t ∈ T . Then the reuse graph Gr defines a periodic register al-
location for G with exactly µt(Gr) registers of type t if we unroll the loop α times where
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Algorithm 1 Periodic Register Allocation with a Single Reuse Circuit
Require: a DDG G→r associated to a valid reuse relation reuset

unroll it ρ = µt(C) times {this create ρ copies for each statement}
for all w a node in the unrolled DDG do

alloc(w)← ⊥ {initialization}
end for
choose u ∈ VR,t {an original node}
for all ui in the unrolled DDG do {each copy of u}

alloc(ui)← ListOfAvailableRegisters.pop()
n← ui
n′ ← v(i+µtu,v)mod ρ {where reuse(u) = v}
while alloc(n′)=⊥ do

alloc(n′)←alloc(n)
n← n′

n′ ← n′′ {where (kn′ , n
′′) is an anti-dependence in the unrolled loop}

end while
end for

:
α = lcm(µt(C1), · · · , µt(Cn))

with C = {C1, · · · , Cn} is the set of all reuse circuits, and lcm is the least common multi-
ple.
As a corollary, we can build a periodic register allocation for all register types.
Corollary 1 [30] Let G = (V,E, δ, λ) be a loop with a set of register types T . To each
type t ∈ T is associated a valid reuse graph Grt . The loop can be allocated with µt(Gr)
registers for each type t if we unroll it α times, where

α = lcm(αt1 , · · · , αtn)

αti is the unrolling degree of the reuse graph of type ti.
We should make an important remark regarding loop unrolling. Indeed, we can avoid

loop unrolling before the scheduling step in order to not increase the DDG size, and hence
to not exhibit more statements to the scheduler. Since we allocate registers directly into
the DDG by inserting loop carried anti-dependencies, the DDG can be scheduled without
unrolling it (but the inserted anti-dependence edges restrict the scheduler). In other words,
loop unrolling can be applied at the code generation step (after code scheduling) in order
to apply the register allocation computed before scheduling.

The fact that the unrolling factor may theoretically be high is not related to our method
and would happen only if we actually want to allocate the variables on this minimal number
of registers with the computed reuse scheme. However, there may be other reuse schemes
for the same number of registers, or there may be other available registers in the architecture
that we can reuse. In that case, the meeting graph framework [10] can help to control or
reduce this unrolling factor.

From all above, we deduce a formal definition of the problem of optimal periodic regis-
ter allocation with minimal ILP loss. We call it Schedule Independent Register Allocation
(SIRA).
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Problem 1 (SIRA) Let G = (V,E, δ, λ) be a loop and Rt the number of available regis-
ters of type t. Find a valid reuse graph for each register type such that the corresponding

µt(G
r) ≤ Rt

and the critical circuit in G is minimized.
This problem can be reduced to the classical NP-complete problem of minimal register
allocation [30]. The following section gives an exact formulation of SIRA.

4.2. Exact Formulation for SIRA

In this section, we give an intLP model for solving SIRA. It is built for a fixed execution
rate II (the new constrained MII). Note that II is not the initiation interval of the final
schedule, since the loop is not already scheduled. II denotes the value of the new desired
critical circuit.

Our SIRA exact model uses the linear formulation of the logical implication (=⇒)
by introducing binary variables, as previously explained in [30]. We want to express the
following system by linear constraints :

g(x) ≥ 0 =⇒ h(x) ≥ 0

in which g and h are two linear functions of a variable x. If the domain set of x is bounded,
the system is linearized by introducing a binary variable α as follows :




−g(x)− 1 ≥ αg
h(x) ≥ (1− α)h
α ∈ {0, 1}

where g and h are two known finite lower bounds for (−g−1) and h respectively. It is easy
to deduce the same formalization for the equivalence (⇐⇒). Now, we are ready to provide
our exact formulation.

We first write constraints to compute reuse edges with their distances so that the asso-
ciated DDG is schedulable. Therefore we look for the existence of at least one software
pipelining schedule for a fixed desired critical circuit II .

Basic Variables

• a schedule variable σu ≥ 0 for each operation u ∈ V , including one for each killing
node kut . Note that these schedule variables do not represent the final schedule
under resource constraints (that will be computed after our SIRA pass), but they only
represent intermediate variables for our SIRA formulation ;

• a binary variables θtu,v for each (u, v) ∈ V 2
R,t, and for each register type t ∈ T . It is

set to 1 iff (u, v) is a reuse edge of type t ;

• µtu,v for reuse distance for all (u, v) ∈ V 2
R,t, and for each register type.
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Linear Constraints

• bound the scheduling variables by assuming a constant L as a worst schedule time of
one iteration : ∀u ∈ V : σu ≤ L

• data dependences (the existence of at least one valid software pipelining schedule)

∀e = (u, v) ∈ E : σu + δ(e) ≤ σv + II × λ(e)

• schedule killing nodes for consumed values :
∀ut ∈ VR,t, ∀v ∈ Cons(ut) |e = (u, v) ∈ ER,t : σkut ≥ σv + δr,t(v) + λ(e)× II

• there is an anti-dependence between kut and v if (u, v) is a reuse edge :

∀t ∈ T , ∀(u, v) ∈ V 2
R,t : θtu,v = 1 =⇒ σkut − δw,t(v) ≤ σv + II × µu,v

• if there is no register reuse between two values (reuset(u) 6= v), then θtu,v = 0. The
anti-dependence distance µtu,v must be set to 0 in order to not be accumulated in the
objective function. ∀t ∈ T , ∀(u, v) ∈ V 2

R,t : θtu,v = 0 =⇒ µtu,v = 0

The reuse relation must be a bijection from VR,t to VR,t :

• a register can be reused by one operation : ∀t ∈ T , ∀u ∈ VR,t :
∑
v∈VR,t θ

t
u,v = 1

• a statement can reuse one released register : ∀t ∈ T , ∀u ∈ VR,t :
∑
v∈VR,t θ

t
v,u = 1

Objective Function We want to minimize the number of registers required for the regis-
ter allocation. So, we chose an arbitrary register type t which we use as objective function :

Minimize
∑

(u,v)∈V 2
R,t

µtu,v

The other registers types are bounded in the model by their respective number of available
registers :

∀t′ ∈ T − {t} :
∑

(u,v)∈V 2
R,t′

µt
′
u,v ≤ Rt′

The size of this system is bounded by O(|V |2) variables and O(|E| + |V |2) linear con-
straints.

As previously mentioned, our model includes writing and reading offsets. The non-
positive latencies of the introduced anti-dependences generate a specific problem. Indeed,
the existence of a valid periodic schedule does not prevent some circuits C in the con-
structed DDG from having a non-positive distance λ(C) ≤ 0. Note that this problem does
not occur for superscalar (sequential) codes, because the introduced anti-dependences have
positive latencies (sequential semantics). We will discuss this problem further.

In the previous formulation, we have fixed the II (desired critical circuit) and looked for
a schedule that minimizes the register pressure. But we can also do the reverse, this means
just formulate the register constraints given by the processor and look for the minimal II
for which the system is satisfiable. This can not be simply done by adding “min II” in
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the formulation because some inequalities are not linear in II . But alternatively we can
perform a binary search on II . Such binary search can be used because we have formally
proved in [30] that if a schedule exists at initiation interval II , then another schedule exists
at initiation interval II + 1 that requires at most the same number of registers. This result
is conditioned by the fact that the parameter L, which is the total schedule time of one
iteration, must be non constrained, i.e., we must be able to extend L with a bounded factor
when incrementing II .

The unrolling degree is left free and over any control in SIRA formulation. This factor
may theoretically grow exponentially because of the lcm function. Minimizing the un-
rolling degree is to minimize lcm(µi), the least common multiple of the anti-dependence
distances of reuse circuits. This non linear problem is very difficult an remains an open
problem in discrete mathematics : as far as we know, there is not a satisfactory solution for
it.

Software solutions such as the meeting graph have already been mentioned [10]. Al-
ternatively, a hardware solution exists too, namely rotating register files, that do not imply
loop unrolling for performing periodic register allocation. This feature is studied in the
next section.

5. Rotating Register Files

A rotating register file [7,23,25] is a hardware feature that moves (shifts) implicitly ar-
chitectural registers in a periodic way. At every new kernel issue (special branch operation),
each architectural register specified by program is mapped by hardware to a new physical
register. The mapping function is (R denotes an architectural register andR′ a physical reg-
ister) : Ri 7→ R′(i+RRB) mod s where RRB is a rotating register base and s the total number
of physical registers. The number of that physical register is decremented continuously at
each new kernel. Consequently, the intrinsic reuse scheme between statements describes
a hamiltonian reuse circuit necessarily. The hardware behavior of such register files does
not allow other reuse patterns. SIRA in this case must be adapted in order to look only for
hamiltonian reuse circuits.

Furthermore, even if no rotating register file exists, looking for only one hamiltonian
reuse circuit makes the unrolling degree exactly equal to the number of allocated regis-
ters (as defined by the exact algebraic formula of the unrolling factor), and thus both are
simultaneously minimized by the objective function.

Since a reuse circuit is always elementary (Lemma 1), it is sufficient to state that a
hamiltonian reuse circuit with n = |VR,t| nodes is only a reuse circuit of size n. We
proceed by forcing an ordering of statements from 1 to n according to the reuse relation.
Definition 2 (Hamiltonian Ordering) LetG = (V,E, δ, λ) be a loop andGr = (VR,t, Er, µ)
a valid reuse graph of type t ∈ T . A hamiltonian ordering hot of this loop according to its
reuse graph is a function defined by :

hot : VR,t → N
ut 7→ hot(u)

such that ∀u, v ∈ VR,t : (u, v) ∈ Er ⇐⇒ hot(v) =
(
hot(u) + 1

)
mod |VR,t|

Fig. 5 is an example of a hamiltonian ordering of a reuse graph with 5 values. The existence
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Figure 5: Hamiltonian Ordering

of a hamiltonian ordering is a sufficient and necessary condition to make the reuse graph
hamiltonian, as stated in the following theorem.
Theorem 3 [30] Let G = (V,E, δ, λ) be a loop and Gr a valid reuse graph. There exists
a hamiltonian ordering iff the reuse graph is a hamiltonian graph.
Hence, the problem of periodic register allocation with minimal critical circuit on rotating
register files can be stated as follows.
Problem 2 (SIRA HAM) Let G = (V,E, δ, λ) be a loop andRt the number of available
registers of type t. Find a valid reuse graph with a hamiltonian ordering hot such that

µt(G
r) ≤ Rt

in which the critical circuit in G is minimized.
An exact formulation for it is deduced from the intLP model of SIRA. We have only to add
some constraints to compute a hamiltonian ordering.

1. for each register type and for each value ut ∈ VR,t, we define an integer variable
hout ≥ 0 which corresponds to its hamiltonian ordering ;

2. we include in the model the bounding constraints of the hamiltonian ordering vari-
ables :

∀ut ∈ VR,t : hout < |VR,t|

3. we add the linear constraints of the modulo hamiltonian ordering : ∀u, v ∈ V 2
R,t :

θtu,v = 1⇐⇒ hout + 1 = |VR,t| × βtu,v + hovt

where βtu,v is a binary variable that holds to the integer division of hout+1 on |VR,t|.

We have expanded the exact SIRA intLP model by at mostO(|V |2) variables andO(|V |2)
linear constraints.

When looking for a hamiltonian reuse circuit, we may need one extra register to con-
struct such a circuit. In fact, this extra register virtually simulates moving values among
registers if circular lifetimes intervals do not meet in a hamiltonian pattern.
Proposition 1 [30] Hamiltonian SIRA needs at most one extra register than SIRA.



Early Periodic Register Allocation on ILP Processors

Both SIRA and hamiltonian SIRA are NP-complete. Fortunately, we have some optimistic
results. In the next section, we investigate the case in which SIRA can be solved in poly-
nomial time.

6. Fixing Reuse Edges

In [22], Ning and Gao analyzed the problem of minimizing the buffer sizes in software
pipelining. In our framework, this problem actually amounts to deciding that each operation
reuses the same register, possibly some iterations later. Therefore we consider now the
complexity of our minimization problem when fixing reuse edges. This generalizes the
Ning-Gao approach. Formally, the problem can be stated as follows.
Problem 3 (Fixed SIRA) Let G = (V,E, δ, λ) be a loop and Rt the number of available
registers of type t. Let E ′ ⊆ E be the set of already fixed anti-dependences (reuse) edges
of a register type t. Find a distance µu,v for each anti-dependence (kut , v) ∈ E′ such that

µt(G
r) ≤ Rt

in which the critical circuit in G is minimized.
In the following, we assume thatE ′ ⊆ E is the set of these already fixed anti-dependences

(reuse) edges (their distances have to be computed). Deciding (at compile) time for fixed
reuse decisions greatly simplifies the intLP system of SIRA. It can be solved by the follow-
ing intLP, assuming a fixed desired critical circuit II .

Minimize ρ =
∑

(kut ,v)∈E′ µ
t
u,v

Subject to:
II × µtu,v + σv − σkut ≥ −δw(v) ∀(kut , v) ∈ E′
σv − σu ≥ δ(e)− II × λ(e) ∀e = (u, v) ∈ E − E ′

(1)

Since II is a constant, we do the variable substitution µ′u = II × µtu,v and System 1
becomes :

Minimize (II.ρ =)
∑
u∈VR,t µ

′
u

Subject to:
µ′u + σv − σkut ≥ −δw(v) ∀(kut , v) ∈ E′
σv − σu ≥ δ(e)− II × λ(e) ∀e = (u, v) ∈ E − E ′

(2)

There are O(|V |) variables and O(|E|)) linear constraints in this system.
Theorem 4 [30] The constraint matrix of the integer programming model in System 2 is
totally unimodular, i.e., the determinant of each square sub-matrix is equal to 0 or to ± 1.
Consequently, we can use polynomial algorithms to solve this problem [26] of finding the
minimal value for the product II × ρ.

We must be aware that the back substitution in µ = µ′
II may produce a non integral

value for the distance µ. If we ceil it by setting µ = d µ′II e, a sub-optimal solution may
result∗. It is easy to see that the loss in terms of number of registers is not greater than the
number of loop statements that write into a register (|VR,t|). We think that we can avoid

∗Of course, if we have MII = II = 1 (case of parallel loops for instance), the solution becomes optimal since
the constraints matrix becomes identical to Theorem 4.
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ceiling µ by considering the already computed σ variables, as done in [22]. These authors
proposed a method for buffers, which is difficult to generalize to other reuse decisions. A
better method that recomputes the original µ in a cleverer way (instead of ceiling them) is
described in [22].

Solving System 2 has two interesting follow-ups. First, it gives a polynomially com-
putable lower bound for MIIrc(ρ) as defined in the introduction, for this reuse configura-
tion rc. Let us denote as m the minimal value of the objective function. Then

MIIrc(ρ) ≥ m

ρ

This lower bound could be used in a heuristics such that the reuse scheme and the register
pressure ρ are fixed. Second, if II is fixed, then we obtain a lower bound on the number of
registers ρ required in this reuse scheme rc.

ρrc ≥
m

II

There are numerous choices for fixing reuse edges that can be used in practical compilers.

1. For each value u ∈ VR,t, we can decide that reuset(u) = u. This means that each
statement reuses the register freed by itself (no sharing of registers between different
statements). This is equivalent to buffer minimization problem as described in [22].

2. We can fix reuse edges according to the anti-dependences present in the original
code : if there is an anti-dependence between two statement u and v in the original
code, then fix reuset(u′) = v with the property that u kills u′. This decision is a
generalization to the problem of reducing the register requirement as studied in [31].

3. If a rotating register file is present, we can fix an arbitrary (or with a cleverer method)
hamiltonian reuse circuit among statements.

As explained before, our model includes writing and reading offsets. The non-positive
latencies of the introduced anti-dependences generate a specific problem for VLIW and
EPIC codes. The next section solves this problem.

7. Eliminating Non-Positive Circuits

The non-positive latencies of the introduced anti-dependences allow us to have more
opportunities to optimize registers. This is because we would be able to access a register
during the whole execution period of the statement writing in it : in other words, a register
would not be busy during the complete execution period of the producer. Furthermore,
we would be able to assign to an operation u(i) the register freed by another operation
v(i + k) belonging to the kth iteration later. This is possible in software pipelining since
the execution of the successive iterations is overlapped. Such reuse choices are exploited
by the fact that the reuse distances can be non-positive, leading to circuits with possible
non-positive distances.

From the scheduling theory, circuits with non-positive distances do not prevent a DDG
from being scheduled (if the latencies are non-positive too). But such circuits impose hard
scheduling constraints that may not be satisfiable by resource constraints in the subsequent
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Figure 6: Nonpositive Circuits

pass of instruction scheduling. This is because circuits with non-positive distances impose
scheduling constraints of type “not later than” that are similar to real time constraints. The
scheduling theory cannot guarantee the existence of at least a schedule under a limited
number of execution resources. Therefore these circuits have to be forbidden.

As an illustration, look at Fig. 6, where flow dependences are in bold edges and state-
ments writing into registers are in bold circles. In the original loop shown in Part (a), there
exists a dependence path from u to v with a distance equal to zero (the path is in the loop
body). A reuse decision as shown in Part (b) may assign the same register to u(i) and v(i).
This creates an anti-dependence from v(i)’s killer to u(i). Since the latency of the reuse
edge (kv, u) is negative (-9) and the latency of the path u ; kv is 5, the circuit (v, kv, u, v)
with a distance equal to zero does not prevent the associated DDG from being modulo
scheduled (since the precedence constraints can be easily satisfied), but may do so in the
presence of resource constraints.

Alain Darte [5] provides a solution. We add a quadratic number of retiming constraints
to avoid non-positive circuits. We define a retiming re for each edge e ∈ E. We have then
a shift re(u) for each node u ∈ V . We declare then an integer re,u for all (e, u) ∈ (E×V ).
Any retiming re must satisfy the following constraints :

∀e′ = (u′, v′) 6= e, re,v′ − re,u′ + λ(e′) ≥ 0
for the edge e = (u, v), re,v − re,u + λ(e) ≥ 1

(3)

Note that an edge e = (kut , v) ∈ E′ is an anti-dependence, i.e., its distance is λ(e) = µtu,t,
to be computed. Since we have |E| distinct retiming functions, we add |E| × |V | variables
and |E| × |E| constraints. The constraint matrix is totally unimodular, and it does not
alter the total unimodularity of System 2. The following lemma proves that satisfying
System 3 is a necessary and sufficient condition for building a DDG G→r with positive
circuits distances.
Lemma 2 [30] Let G→r the solution graph of System 1 or System 2. Then : System 3 is
satisfied⇐⇒ any circuit in G→r has a positive distance λ(C) > 0.

If we do not require to include an integer solver inside a compiler, we propose the
following network flow formalization for System 2.
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8. A Network Flow Solution for Fixed SIRA

In this section, we give a network flow algorithm for solving the totally unimodular
System 2. Let forget the problem of non-positive circuits for the moment (we show further
how to fix it). The matrix form of System 2 is :





Minimize (1 0)(µ′ σ)

Subject to:[
I
0

U

](
µ
σ

)
≥

(
−δw

δ − II × λ

)

µ′, σ ∈ Z

(4)

where µ′ is the set of II × µ variables, σ is the set of scheduling variables, and U the
incidence matrix of the DDG (including anti-dependences and killing nodes). In order to
transform this system into a network flow problem, we take its dual form :





Maximize (−δw δ − II × λ)(f)

Subject to:[
I 0

UT

] (
f
)

=

(
1
0

)

f ∈ N

(5)

whereUT is the transpose of the incidence matrixU and f is the set of dual variables. Then,
the constraints of this system are (after converting the objective function to minimization) :





Minimize
∑
e∈E′ δw(e)× f(e)

+
∑
e∈E−E′(II × λ(e)− δ(e))× f(e)

Subject to:
f(e) = 1, ∀e ∈ E′ (i.e, an antidependence arc)∑

?
e→u f(e)−∑

u
e→?
f(e) = 0, ∀u ∈ V (flow constraints)

f(e) ∈ N, ∀e ∈ E

(6)

System 6 is indeed a min cost flow problem. The network is the graph G = (V,E), where
the anti-dependences must have a flow equal to one†, and the other arcs have unbounded
capacities. The cost of the flow is δw(v) for each anti-dependence arc (ku, v) ∈ E′, and
II×λ(e)−δ(e) for the other arcs∈ E−E ′. There exist a lot of polynomial time algorithms
for computing optimal flows with minimal costs [24,13,3].

8.1. Back Substitution From Network Flow Solution

After computing f∗ an optimal min cost flow solution for System 6, we must come
back to the original µ′ variables (= II × µ). For this purpose, we use the complementary
†This is done by setting a lower and upper capacity equal to one.
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slackness theorem, which gives the relationship between the optimal solutions of the dual
system (i.e., System 6) and those of the primal system (System 2) :

• ∀e ∈ E, if f∗(e) > 0 then the corresponding constraints in System 2 is an equality
constraints (the slack variable is zero) ;

• ∀e ∈ E, if f∗(e) = 0 then the corresponding constraints in System 2 is an inequality
(the slack variable may be non zero).

In our case, we know that, for each anti-dependence e = (ku, v), the flow f∗(e) = 1. Then,
the corresponding constraint is ;

µ′u + σv − σku = −δw(v) =⇒ µ′u = −δw(v)− (σv − σku) (7)

It remains to compute the σ variables. Since the optimal flow f ∗ has been already com-
puted, we must satisfy a set of equality and inequality constraints, depending on the value
of the computed flow. For this purpose, we define a graph Gf = (V,Ef , δf ) that contains
the original set of nodes V . The set of arcs Ef is defined as follows :

• ∀e = (u, v) ∈ E − E′, if f∗(e) = 0 then (inequality constraint) add an arc (u, v) in
Ef with a cost equal to δf = δ(e)− II × λ(e) ;

• ∀e = (u, v) ∈ E − E′, if f∗(e) > 0 then (equality constraint) add two arcs (u, v)
and (v, u) to Ef , with the costs δf = δ(e)− II ×λ(e) and δf = −δ(e) + II ×λ(e)
respectively.

It is easy to see that any potential for the graph Gf is a solution that satisfies the set of
our constraints. Then, the σ variables are the potentials of the graph Gf , which we use for
computing µ′ = II × µ by considering Equation 7.

Now, let us examine the problem on non-positive circuits in VLIW/EPIC codes.

8.2. Eliminating Non-Positive Circuits

As shown in Sect.6, we need to define a retiming re for each arc e ∈ E. When we
consider the variable substitution µ′ = II × µ, System 3 is transformed to ;

∀e′ = (u′, v′) 6= e, r′e,v′ − r′e,u′ + λ′(e′) ≥ 0

for the considered arc e = (u, v), r′e,v − r′e,u + λ′(e) ≥ II (8)

where r′ = II × r and λ′ = II × λ. Note that λ′ = µ′ if the arc is an anti-dependence.
The dual problem of System 8 asks for seeking a distinct flow fe for each arc in the

DDGG (including anti-dependences). Thus, we have to compute |E| distinct feasible flows
on the same network (integer multi-flow problem). The costs of each flow fe is −II for
the considered arc e, and 0 for the other arcs‡. Hence, the general formulation of the fixed
SIRA problem, using a min cost integer multi-flow formulation, is :

‡The cost of the flow fe is−II for the considered arc e because we transform the problem from maximization to
minimization.
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Minimize
∑
e∈E′ δw(e)× f(e)

+
∑
e∈E−E′(II × λ(e)− δ(e))× f(e)

−II ×∑e∈E fe(e)

Subject to:
f(e) +

∑
e′∈E fe′(e) = 1, ∀e ∈ E′ (anti-dependence)

∑
?
e→u f(e)−∑

u
e→?
f(e) = 0, ∀u ∈ V

∑
?
e→u fe′(e)−

∑
u
e→?
fe′(e) = 0, ∀u ∈ V, ∀e′ ∈ E − E′

f(e) ∈ N, ∀e ∈ E
fe(e

′) ∈ N, ∀e, e′ ∈ E

(9)

Unfortunately, solving exact integer multi-flow problems with algorithmic solutions is not
as trivial as in the single flow case, since the complexity of a general min cost integer multi-
flow problem is strongly NP-hard [4]. As far as we know, there is not a (combinatorial)
polynomial algorithm that would compute an exact solution our integer multi-flow problem,
except those algorithms that use integer linear resolution techniques ; they would transform
our multi-flow problem to an intLP program, and then they solve it. Since the constraints
matrix of our problem is totally unimodular, the exact solution can be found in polynomial
time.

9. Experiments

We have developed six tools that perform periodic register allocation as explained in
this article. Two optimal ones for SIRA and hamiltonian SIRA (Sect. 4.2 and Sect. 5), and
four tools for fixed SIRA (Sect. 6): two of these four tools correspond to the optimal fixed
SIRA solutions with System 1 when we fix self reuse edges (Ning and Gao method) and
an arbitrary hamiltonian reuse circuit. The other two tools for fixed SIRA correspond to
solving the polynomial systems (System 2) with a self reuse and hamiltonian strategy too.
We use CPLEX to solve our intLP models. We used a PC under linux, equipped with a PIV
1.2 Ghz processor, and 256 Mo of memory. We did thousands of experiments on several
numerical loops extracted from different benchmarks (Spec95, whetstone, livermore, lin-
ddot). The data dependence graphs of all these loops are present in [30]. This section
presents a summary.

9.1. Optimal and Hamiltonian SIRA

The first set of experiments investigates optimal SIRA versus optimal hamiltonian
SIRA (Sect. 4.2 versus Sect. 5). We compare the optimal register requirement of all loops
versus varying II (this yield to hundreds of experiments). In most of cases, both need the
same number of registers according to the same II . However, as proved by Prop.1, hamil-
tonian SIRA may need one extra register, but in very few cases (within 5%). This remark
has been previously stated in [23]. Regarding the resulted unrolling degrees, we get the
following results.

• The unrolling degree is left free from any control in SIRA intLP systems. Even if
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it may grow exponentially (from the theoretical perspective), experiments show that
it is acceptable in most of cases. It is mostly lower than the number of allocated
registers, i.e., better than hamiltonian SIRA.

• However, some few cases exhibit critical unrolling degrees which are not acceptable
if code size expansion is a critical factor. Here, we advise to use hamiltonian SIRA so
that the minimal register need is exactly the unrolling degree, both minimized by the
objective function of hamiltonian SIRA. Of course, we do not require loop unrolling
in the presence of a rotating register set.

As previously cited, it should be noted that the fact that the unrolling factor may be signifi-
cantly high would happen only if we actually want to allocate the variables on this minimal
number of registers with the computed reuse scheme. However, there may be other reuse
schemes for the same number of registers, or there may be other available registers in the
architecture. In that case, the meeting graph framework [10] can help to control or reduce
this unrolling factor.

9.2. Fixed SIRA versus Optimal SIRA

To check the efficiency of our simplified method (Fixed SIRA), we prefer to compare
its results against the optimal ones instead of performing a comparison to all the existing
techniques in the literature. This is because of three main reasons. First, our method is
performed at the DDG level, while the existing register minimization techniques are carried
out during loop scheduling. So, we are not considering exactly the same problem. Second,
our method is more generic since it takes into account superscalar, VLIW and EPIC/IA64
codes. Third and last, we think that comparing the efficiency of our methods to the optimal
results is an acceptable experimental methodology.

We checked the efficiency of two strategies : self reuse strategy as described in [22],
and fixing an arbitrary hamiltonian reuse circuit. We choose the former approach as a base
for comparison because our work already generalizes their framework.

Resolving the intLP systems of these two strategies become very fast compared to
optimal solutions, as can be seen the first part of Fig. 7, while the difference in terms
of register requirement is presented in the second part. Note that we couldn’t explore the
optimal solutions of SIRA and hamiltonian SIRA in loops with more than 10 nodes because
the integer optimization ran out of time. However, as we will see, the fixed SIRA systems
allows to treat larger loops. For II = MII , some experiments do not exhibit a substantial
difference between SIRA and fixed SIRA. But if we vary II from MII to an upper-bound
L, the difference is highlighted. We summarize our results as follows.

• Regarding the register requirement, the Ning and Gao strategy is, in most cases, far
from the optimal. Disabling register sharing needs a high number of registers, since
each statement needs at least one register. Hence, even if we increase the II , the
minimal register requirement is always lower bounded by the number of statements
in the loop. However, enabling sharing with an arbitrary hamiltonian reuse circuit is
much more beneficial. In many cases, it results in nearly optimal register need. The
maximal experimental difference with the optimum that we get with this technique
is 4 registers.
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Figure 7: Optimal versus Fixed SIRA with II = MII

• Regarding the unrolling degrees, the Ning and Gao strategy exhibit the lowest ones,
except in very few cases. This technique may be more beneficial if code size expan-
sion is a critical factor. Arbitrary hamiltonian reuse circuits, if no rotating register
set exists, require to unroll the loops with the same number of allocated registers.

9.3. Fixed SIRA : System 1 versus System 2

Performing optimal SIRA solutions involves solving the exact intLP models of Sect. 4.2
or Sect. 5. The compilation time becomes intractable when the size of the loop exceeds 10
nodes. Hence, for larger loops, we advice use of our fixed SIRA strategies that are faster
but allow sub-optimal results.

We investigated the scalability (in terms of compilation time versus the size of DDGs)
for fixed SIRA when solving System 1 (non totally unimodular matrix) or System 2 (totally
unimodular matrix). Fig. 8 plots the compilation times for larger loops (buffers and fixed
hamiltonian). The difference is negligible till 300 nodes. For loops larger than 300 nodes,
the compilation time of System 1 becomes more considerable (multiple seconds for Ning
and Gao method, multiple minutes for fixed hamiltonian).

The error ratio, induced by ceiling the µ variable as solved by System 2 compared to
the optimal ones solved by System 1, is depicted in Fig. 9. While the hamiltonian strategy
exhibits an error of 20% after 300 nodes, the Ning and Gao strategy has an error ratio less
than 5%. As can be seen, the error introduced in a fixed hamiltonian reuse strategy is greater
than the one introduced with a self reuse strategy. The cumulative distribution of the error
in all our experiments is depicted in Fig.10 : while all sub-optimal experiments have an
error ratio lower than 20% with a self reuse strategy, a fixed (arbitrary) hamiltonian reuse
technique exhibits an error lower than 50% for all sub-optimal experiments. We deduce
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Figure 8: Compilation Time versus the Size of the DDGs
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Figure 9: Error Ratio in Terms of Register Requirement, Induced by System 2, versus the
Size of the DDGs

that ceiling the µ variables is not a good choice in terms of register requirement. Thus,
we should recompute the µ variables with a cleverer method as previously explained in
[31]. These authors gave a heuristics to recompute previously substituted integer variables
without ceiling them by considering the the already computed σ variables. The result is not
necessarily optimal, but still may optimize the back substitution.

The previous plots show that the error ratio induced by ceiling the µ variables if we use
the fixed hamiltonian approach is more important than the Ning and Gao buffer minimiza-
tion case. However, the fixed hamiltonian approach is still better than buffer minimization
in terms of register requirement, as can be seen in Fig. 11, while the compilation times for
both methods are in the same order of magnitude (check the totally unimodular plots of the
two parts in Fig. 8).

We must be aware that solving a fixed SIRA problem with System 1 may be very time
consuming in some critical cases. The left side of Fig. 12 plots the compilation time of a
complex loop with 309 nodes when we vary the desired critical circuit in a fixed hamilto-
nian strategy. As can be seen, System 1 becomes very time consuming at the value II = 94,
while System 2 exhibits a stable compilation time if we vary II , since its constraints matrix
does not contain II . Also, the error ratio of the register requirement as solved by System 2
when compared to the optimal one as produced by System 1 may vary in function of the
desired critical circuit II (see the right hand side of Fig. 12). Using Ning and Gao method
is less critical than the fixed hamiltonian technique. We could solve all intLP problems
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Figure 10: Cumulative Distribution of the Error Ratio, in Terms of Register Requirement,
of System 2
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Figure 11: Ning and Gao Method versus Fixed Hamiltonian in terms of Register Require-
ment (System 2)

(with varying II and the size of DDGs), even for large loops (see Fig. 13). As can be seen,
the error ratio is constant. But still, solving the Ning Gao problem with System 1 has not
been proved to be polynomial, unless we transform it to System 2, which induces potential
error ratio after back substitution. And in this case, the fixed hamiltonian method still needs
less registers, even with a higher error ratio.

10. Discussion and Conclusion

This article presents a new theoretical approach consisting in virtually building an early
periodic register allocation before code scheduling, with multiple register types and delays
in reading/writing. Thus, our theoretical framework is more generic than the exiting ones.

Register allocation is expressed in terms of reuse edges and reuse distances to model
the fact that two statements use the same register as storage location. An intLP model gives
optimal solution with reduced constraint matrix size, and enables us to make a tradeoff
between ILP loss (increase of MII) and number of required registers. Indeed, the size
complexity of our intLP formulations depends only the size of the input DAG (quadratic
on the number of edges and nodes). This is better than the size complexity of the existing
techniques in the literature that model register constraints [1,9]. These exact intLP systems
have a size complexity that depends on a worst total schedule time factor, and this latter
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Figure 12: Minimizing the Register Requirement with a Fixed Hamiltonian Circuit (309
nodes)
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Figure 13: Minimizing the Register Requirement with Ning and Gao Method (1004 nodes)

does not depend on the size of the input DAG. Thus, such size complexity is pseudo-
polynomial, and not polynomial as in our intLP system.

Since computing an optimal periodic register allocation is intractable in large loops
(larger than 15 nodes for instance), we have identified one polynomial subproblem by fixing
reuse edges. With this polynomial algorithms, we can compute MII(ρ) for a given reuse
configuration and a given register pressure ρ. We can also heuristically find a register usage
for one given II .

We can use this result in different ways, as setting self-reuse edges [22] or fixing arbi-
trary (or with a cleverer algorithm) hamiltonian circuits. Experiments show that fixing an
arbitrary hamiltonian reuse circuit needs much less registers than [22], whether we com-
pute optimal solutions or not. However, unrolling degrees with Ning and Gao method may
be better if no rotating register file exists.

Our experiments show that disabling sharing of registers with a self reuse strategy as
done in [22] isn’t a good reuse decision in terms of register requirement. We think that how
registers are shared between different statements is one of the most important issues, and
preventing this sharing by self reuse strategy consumes much more registers than needed
by other reuse decisions.

When considering VLIW/IA64 processors and reading/writing delays, we are faced
with some difficulties because of the possible non-positive distance circuits that we pro-
hibit, without losing the ability of considering arcs with non-positive latencies. Thus, our
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framework can consider the fact that the destination register is not alive during the execu-
tion of the instruction and can be used for other variables. Since pipelined execution time is
increasing, this feature becomes crucial in VLIW codes to reduce the register requirement.

Each reuse decision implies loop unrolling with a factor depending on reuse circuits
for each register type. Optimizing this factor is a hard problem and no satisfactory solution
exists until now. However, we do not need loop unrolling in the presence of a rotating
register file. We only need to seek a unique hamiltonian reuse circuit. The penalty for this
constraint is at most one extra register than the optimal for the same MII . Experimental
results show that only very few cases need this extra register.

The spilling problem is left for future work. We believe that it is important to take it in
consideration before instruction scheduling, and our framework should be very convenient
for that.

Finally, another future work will look for algorithms that fix “good” reuse decisions.
Our first attention will be oriented to hamiltonian reuse circuits since they experimentally
exhibit reduced register requirement.
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[32] J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero. Modulo Scheduling with Integrated
Register Spilling for Clustered VLIW Architectures. In Proceedings of the 34th In-
ternational Symposium on Microarchitecture (MICRO-34), pages 160–169, Dec. 2001.


