
Evaluation of Offset Assignment Heuristics

Johnny Huynh1⋆, José Nelson Amaral1, Paul Berube1, and
Sid-Ahmed-Ali Touati2

1 University of Alberta, Canada
2 Université de Versailles, France

Abstract. In digital signal processors (DSPs) variables are accessed us-
ing k address registers. The problem of finding a memory layout, for
a set of variables, that minimizes the address-computation overhead is
known as the General Offset Assignment (GOA) Problem. The most
common approach to this problem is to partition the set of variables
into k partitions and to assign each partition to an address register.
Thus effectively decomposing the GOA problem into several Simple Off-

set Assignment (SOA) problems. Many heuristic-based algorithms are
proposed in the literature to approximate solutions to the partitioning
and SOA problems. However, the address-computation overhead of the
resulting memory layouts are not accurately evaluated. In this paper
we use Gebotys’ optimal address-code generation technique to evaluate
memory layouts. Using this evaluation method introduces a new prob-
lem which we call the Memory Layout Permutation (MLP) problem. We
then use the Gebotys’ technique and an exhaustive solution to the MLP
problem to evaluate heuristic-based offset-assignment algorithms. The
memory layouts produced by each algorithm are compared against each
other and against the optimal layouts. Our results show that even in
small access sequences with 12 variables or less, current heuristics may
produce memory layouts with address-computation overheads up to two
times higher than the overhead of an optimal layout.

1 Introduction

The extensive use of data in digital-signal-processing applications requires fre-
quent memory accesses. Many digital signal processors (DSPs) provide dedicated
address registers (ARs) to facilitate the access of variables stored in memory
through indirect addressing modes. Post-increment and post-decrementing ad-
dressing modes are often supported, allowing the processor to update the AR in
the same cycle a memory location is accessed. When two consecutive memory
accesses, indexed by the same AR, are not adjacent in the memory, an ex-
tra address-computation instruction is required. Thus, the placement of data in
memory affects how effectively the post-increment or post-decrement addressing

⋆ This research is supported by fellowships and grants from the Natural Sciences and
Engineering Research Council of Canada (NSERC), the Informatics Circle of Re-
search Excellence (iCORE), and the Canadian Foundation for Innovation (CFI).

modes can be used. This placement is called a memory layout; and the prob-
lem of finding a memory layout that minimizes address-computation overhead
is called the General Offset Assignment (GOA) problem.

Given a memory layout and an instruction sequence, Gebotys’ network-flow
solution finds the optimal usage of ARs to access the data [1]. While this tech-
nique works well for a fixed memory layout, we discovered that the initial mem-
ory layout greatly affects the final code performance. Even in small test cases
that access 12 variables, some memory layouts require twice as many cycles for
address computations as other memory layouts.

Several heuristic algorithms have been proposed to generate a memory layout
that minimizes address-computation overhead [2–5]. The algorithms simplify the
GOA problem by assuming that every access to a variable uses the same AR.
With this simplification, the GOA problem can be addressed as follows. First,
variables accessed in an instruction sequence are partitioned, and each partition
is assigned to an AR. We call this partitioning problem the Address Register
Assignment (ARA) problem. Next, individual sub-layouts for each partition are
generated by approximating a solution to the Simple Offset Assignment (SOA)
problem [3]. Last, the sub-layouts can be ordered to form a single, contiguous
memory layout. We call this ordering problem the Memory Layout Permutation
(MLP) problem, and it arises because the overhead of solutions found by the
network-flow technique is sensitive to the ordering of sub-layouts.

Although many algorithms have been proposed to address the GOA problem,
only heuristics for the SOA problem have been comprehensively compared [6].
Furthermore, the address-computation overhead of the produced memory lay-
outs has only been measured using the cost models of the heuristic algorithms,
and not by an optimal technique such as Gebotys’ network-flow formulation. The
experiments reported in this paper show that different orderings of sub-layouts
have a significant impact on the optimal address-computation overhead, produc-
ing layouts with overheads that span the entire solution space. Specifically, the
worst layouts have a minimum overhead of twice as many cycles as the optimal
layouts. Additionally, using different algorithms for the ARA and SOA problems
does not significantly impact the overhead of the resulting memory layouts.

The main contributions of this paper are:

– a demonstration that existing heuristic solutions to the GOA problem poorly
approximate the minimization of address-computation overhead;

– the formulation of a new optimization problem, the memory-layout permuta-
tion problem, that must be solved in order to use a minimum-cost circulation
(MCC) technique to evaluate the minimum address-computation overhead
incurred in memory layouts produced by heuristic solutions to GOA;

– an experimental evaluation, based on the MCC technique, of heuristic-based
ARA and SOA algorithms.

This paper is organized as follows. Section 2 presents the background to the
offset assignment problem and discusses how the address-computation overhead
of a memory layout can be computed. Current algorithms used to find memory

layouts are presented in Section 3. The experimental evaluation of offset assign-
ment algorithms is presented in Section 4. Finally, related work and conclusions
are presented in Section 5 and 6.

2 Background

Many DSPs have a set of ARs used to access variables stored in memory. Post-
incrementing and post-decrementing addressing modes allow an AR r to access
a variable v and modify the content of r by one word in the same instruction.
Thus, if the next access using r is to location v, or to the locations immediately
adjacent to v in memory, r can be updated without any additional cost. However,
if r accesses a location that is non-adjacent to v, an explicit address computation
is necessary. The computational overhead required to initialize or update ARs
is architecture-dependent.

All experiments in this paper model the Texas Instruments TMS320C54X
family of processors. These DSPs have eight 16-bit ARs. Most instructions are
one word in length and have one cycle of overhead. Initializing an AR requires
a two-word instruction and two cycles of overhead. Similarly, auto-incrementing
(or auto-decrementing) an AR by more than one word requires one extra word to
encode the instruction and one extra cycle to execute. Thus, inefficiently using
address registers results in an increase in both code size and run-time overheads.

Similar to many other DSP architectures, the address registers in the C54X
processors can also be used to store values other than addresses; however, the
values stored in the address registers are subject to two limitations:

1. Address registers can only hold 16-bit values, while data in memory and the
accumulator are typically 32-bit values.

2. Address registers can only be manipulated by the address-generation unit,
which is limited to addition and subtraction of 16-bit values.

Thus, it may be infeasible to use ARs as general purpose registers, and the offset
assignment problem must be solved to effectively place variables in memory.

2.1 The Offset Assignment Problem

Given a set of variables stored contiguously in memory, a memory layout is an
ordering of these variables in memory. A basic block in a program accesses n

variables. The order of variable accesses by the instructions in the basic block
defines an access sequence. The Offset-Assignment Problem is defined as:

Given k address registers and a basic block accessing n variables, find a
memory layout that minimizes address-computation overhead.

Memory layouts with minimum address-computation overhead are called optimal
memory layouts. This problem is called “offset assignment” because the address
of each variable can be obtained by adding an offset to a common base address.

If k = 1, then the problem is know as the Simple Offset Assignment (SOA). If
k > 1 the problem is referred to as the General Offset Assignment (GOA).

In the Simple Offset-Assignment (SOA) problem, a single AR is available to
access all the variables in the memory. Liao et al. [3] convert the access sequence
to an undirected access graph. Variables are vertices in the graph, and edge
weights indicate the number of times two variables are adjacent in the access
sequence. Liao et al. [3] reduce the SOA problem for an access graph to the
NP-Complete maximum-weight path cover problem, and propose a heuristic to
solve SOA in polynomial time (see Section 3.1).

In the General Offset-Assignment (GOA) problem, each access to one of
the n variables in an access sequence must be assigned to one of k ARs. This
assignment creates multiple access sub-sequences — one for each AR. A memory
sub-layout can be found for each sub-sequence. Sub-layouts cannot be computed
independently because a variable may appear in multiple address registers, but
the union of all sub-layouts must still form a contiguous layout. Liao et al. [3]
simplify the GOA problem by assigning variables, instead of variable accesses, to
address registers. This simplification produces sub-sequences that access disjoint
sets of variables. A memory layout can be obtained by solving the SOA problem
for each sub-sequence. We call the problem of assigning variables to address
registers the Address-Register Assignment (ARA) problem (see Section 3.2).

Figure 1 illustrates the traditional approach to produce a memory layout
from a basic block. First, the instruction scheduler emits the sequence of memory
accesses. Then, the ARA problem is solved to produce sub-sequences. Offsets are
assigned in each sub-sequences by solving several instances of the SOAproblem.
All the heuristic-based algorithms for the ARA and SOA problems examined
in this paper generate approximate solutions. Alternative techniques to reduce
address-computation overhead are discussed in Section 5.

Basic
Block

Generate
Access

Sequence

Access
Sequence

Address
Register

Assignment

Sub-Sequence

Sub-Sequence

Sub-Sequence

Simple Offset Assignment

Simple Offset Assignment

Simple Offset Assignment Sub-Layout

Sub-Layout

Sub-Layout

Fig. 1: The traditional approach to generate a memory layout for the access sequence
of a basic block. The sub-sequences generated by address register assignment access
disjoint sets of variables. The resulting set of sub-layouts can then be placed indepen-
dently in memory to form the final memory layout.

2.2 Computing Address-Computation Overhead

The traditional approach to finding a memory layout assumes that each vari-
able is accessed exclusively by one AR. Thus, the resulting addressing-code and
address-computation overhead are based on assigning variables to ARs. How-
ever, an optimal addressing code for a memory layout, M , is an assignment of

accesses to ARs such that the access sequence, S, can be accessed with the mini-
mum overhead. In order to accurately evaluate the overhead of memory layouts,
optimal addressing code is required.

Gebotys proposes an algorithm to find optimal addressing code [1]. The
assignment of accesses to ARs can be found by transforming M and S into a
directed cyclic network-flow graph. The minimum cost circulation (MCC) of the
graph represents the optimal addressing code, and the cost of the circulation
represents the minimum overhead for the memory layout. The MCC for these
network-flow graphs can be solved in polynomial time. In this paper, the MCC
technique is used to evaluate the quality of all memory layouts.

3 Offset Assignment Algorithms

Existing heuristic-based algorithms solve the GOA problem as described in Sec-
tion 2.1. Given an access sequence S, and k ARs, a memory layout is found
by:

1. ARA assigns each variable v ∈ S to a single AR Ai, 1 ≤ i ≤ k.
2. SOA finds a sub-layout mi for the variables assigned to each AR Ai.
3. The memory-layout permutation (MLP) problem combines all sub-layouts

m1 . . . mk into a contiguous memory layout. MLP is absent from the lit-
erature because previous solutions to GOA assigned variables, rather than
accesses, to ARs. The MLP problem only appears when using traditional
algorithms in conjunction with the MCC technique.

We use MCC to evaluate the performance of several ARA and SOA algorithms.

3.1 Simple Offset Assignment

The SOA problem was introduced by Bartley and solved as a maximum-weight

Hamiltonian-path problem [7]. Given an access sequence S, a weighted access
graph G, can be constructed. A path in G represents an ordering of variables in
memory. Liao et al. refine the SOA problem formulation to a maximum-weight

path cover problem [3], which is NP-complete. Thus, all subsequently proposed
algorithms approximate a solution to the SOA problem by finding a path cover
on G.

We implement and evaluate five solutions to the SOA problem:

1. Liao et al. propose an algorithm that builds the path cover, one edge at a
time, by using a greedy heuristic to select edges in G [3].

2. Leupers extends the algorithm by Liao et al. by proposing a tie-break func-
tion to decide between edges of equal weights [2] [6].

3. Sugino et al. propose an algorithm that uses a greedy heuristic to remove
one edge at a time from G until a valid path cover is formed [4].

4. Liao and Leupers present a naive algorithm which builds a memory lay-
out based on the declaration order of variables in the access sequence. The
algorithm is also known as Order First Use (OFU).

5. Liao also presents a branch-and-bound algorithm that finds the maximum-
weight path cover. The algorithm has exponential time-complexity, but for
small graphs, our implementation runs in a reasonable amount of time.

3.2 Address Register Assignment

In the GOA problem, k > 1 ARs are used to access variables in memory.
Liao et al. decompose the GOA problem into multiple instances of SOA by
assigning each variable to an AR Ai. Let C(Ai) be the address-computation
overhead for an optimal SOA solution to variables assigned to Ai. Liao et al.

define the GOA problem as follows:

Given an access sequence S, the set of variables V , and k ARs, assign
each v ∈ V to an AR Ai, 1 ≤ i ≤ k, such that

∑
k

i=1 C(Ai) is minimum.

Solving this problem does not produce a memory layout — it is only an assign-
ment of variables to ARs. Thus, this problem should not be considered the real

GOA problem. We call this problem the Address-Register Assignment (ARA)
problem. We conjecture that ARA is NP-hard because SOA is NP-complete and
is an instance of ARA.

This paper examines several heuristic-based algorithms for ARA. In each
case, an approximation of C(Ai) is required to estimate the overhead of assigning
a variable to an AR. Any of the SOA algorithms in Section 3.1 can be used as
a sub-routine to approximate C(Ai) for the following ARA algorithms:

1. Leupers and David propose a greedy algorithm that assigns variables to ARs
by selecting one edge at a time from the access graph [2].

2. Sugino et al. use a heuristic-based algorithm that iteratively partitions the
variables and selects the partitioning with the lowest estimated overhead [4].

3. Zhuang et al.’s variable coalescing algorithm for offset-assignment problems
includes assigning variables to ARs [5]. The assignment portion of the algo-
rithm greedily assigns one variable to an AR until all variables are assigned.

3.3 Memory Layout Permutations

As illustrated in Figure 2, the traditional approach to offset assignment produces
a set of disjoint sub-layouts. ARA produces a set of disjoint access sub-sequences
that are solved as independent SOA problems. Each SOA instance is solved to
produce a memory layout called an ARA sub-layout. However, each ARA sub-
layout is formed by the combination of disjoint paths from the SOA path cover.
Each disjoint path in the path cover is called an SOA sub-layout and defines an
ordering of variables in memory. Unless otherwise stated, the term sub-layout

refers to an SOA sub-layout. In the traditional approach to offset assignment,
each sub-layout is independent, and can be placed in memory arbitrarily.

However, sub-layouts are only considered independent because of the tradi-
tional assumption that variables are accessed exclusively by one AR. Since the

Access
Sequence

Address Register
Assignment

Simple Offset
Assignment

Disjoint
Sub-Sequence

Memory
Layout

Permutations

Memory Layout

Disjoint
Sub-Sequence

Simple Offset
Assignment

SOA Sub-Layout
(Disjoint Path)

SOA Sub-Layout
(Disjoint Path)

ARA Sub-Layout
(SOA Memory Layout)

ARA Sub-Layout
(SOA Memory Layout)

Fig. 2: Performing address register assignment followed by simple offset assignment
generates memory sub-layouts that must be placed in memory. The problem of finding
a placement that minimizes overhead is called the memory-layout permutation problem.

MCC technique allows variables to be accessed by multiple ARs, it is possible
to reduce address-computation overhead by placing sub-layouts contiguously in
memory. Let Mi be a sub-layout and M r

i
be a sub-layout with the variables of

Mi in reverse order in memory. Let (Mi|M
r

i
) stand for an instance of either Mi

or M r
i
. We introduce the memory-layout permutation (MLP) problem as follows:

Given an access sequence S and a set of m disjoint memory sub-
layouts, find an ordering of the sub-layouts {(M1|M

r
1), . . . , (Mm|M r

m
)}

such that address-computation overhead is minimum when the sub-
layouts are placed contiguously in memory.

The MLP solution space is extremely large: m sub-layouts can form m! per-
mutations. For each permutation, each sub-layout can be placed in memory as ei-
ther Mi or M r

i
. Thus, m sub-layouts originate (m!)(2m) layouts. However, an or-

dering of layouts M1, . . . , Mm is equivalent to its reciprocal layout, M r
m

, . . . , M r
1 ,

since all variables have the same relative offset to each other. Thus, the MLP

solution space is (m!)(2m)
2 memory layouts. Figure 3 shows how 2 sub-layouts can

form 8 possible layouts, half of which are reciprocals of another.

a b c d e f

(a)
a b c f e d

(b)
c b a d e f

(c)
c b a f e d

(d)

f e d c b a

(e)
d e f c b a

(f)
f e d a b c

(g)
d e f a b c

(h)

Fig. 3: Permutations of two sub-layouts

When reciprocals are considered, an offset assignment problem with n vari-
ables has a solution space of n!

2 memory layouts. If we let each variable be a
sub-layout, then m = n and the MLP problem is reduced to the offset assign-
ment problem. This implies that if an algorithm solves the MLP problem, the
same algorithm solves the offset assignment problem.

4 Evaluating Offset Assignment Algorithms

An extensive empirical evaluation of the available heuristic offset-assignment
algorithms supports the following conclusions:

– Contrary to the conjectures of other authors [1], the selection of memory
layout has a significant impact on address-computation overhead. Less than
0.1% of all memory layouts for the examined access sequences result in mini-
mum overhead. Using optimal address-code generation alone (using the MCC
technique) is not sufficient to minimize overhead.

– The algorithms seldom produce memory sub-layouts that admit MLP solu-
tions with the minimum possible overhead. For some access sequences, none
of the algorithms produce sub-layouts that can form an optimal solution.

– Using different ARA algorithms greatly impacts the quantity and quality
of memory layout permutations. Conversely, using different SOA algorithms
has little impact.

4.1 Experimental Methodology

Figure 4 outlines the experimental methodology. For each access sequence, heuris-
tic solutions to the offset assignment problem are found by using all combina-
tions of three ARA and five SOA algorithms. Each combination produces a set
of memory sub-layouts (see Figure 1). If m sub-layouts are produced, then there

are p = (m!)(2m)
2 possible memory layouts. The address-computation overhead

of each memory layout is computed using the MCC method. The results of this
empirical evaluation are examined in terms of the distribution of overhead values
for the layouts produced by each combination of ARA and SOA algorithms.

Access
Sequence

Leupers
Disjoint
Access

Sequences

Liao

"m" Disjoint
Memory

Sub-Layouts

Address Register
 Assignment

Sugino

Zhuang

Branch &Bound

OFU

ALOMA

Leupers

Simple Offset Assignment

Memory Layout
Permutations

"p" Possible
Memory Layouts

Compute Overhead
for each Layout via

Minimum Cost Circulation

Distribution of
Overhead Values

Fig. 4: Procedure for evaluating offset assignment algorithms. There are 15 paths in
the chart, for the 15 combinations of ARA and SOA algorithms.

4.2 Test Environment

This evaluation uses a processor model based on the TI C54X family of DSPs.
This architecture requires two cycles of overhead to initialize an address registers
(INIT) and one extra cycle to access non-adjacent memory locations (JUMP).

Access sequences are obtained from kernels in the UTDSP benchmark suite.
Each kernel is compiled using -O2 optimization by gcc version 3.3.2. Unfortu-
nately, the gcc compiler does not generate code for the C54X family of DSPs.
Instead, we modified gcc to output access sequences from inner-most loops prior
to register allocation. Then the overhead of access sequences and memory layouts
are evaluated statically, using the MCC technique described in Section 2.2.

Given an access sequence with n variables, we compute the optimal memory
layout by evaluating the MCC of all possible n!

2 layouts (see Section 3.3). Due
to the exponential growth of the solution space, experiments are restricted to
sequences with up to 12 variables. The five access sequences used in this study
are from five kernels in the UTDSP benchmark suite which produced access
sequences with n ≤ 12.

4.3 The Efficiency of Offset Assignment Heuristics

Table 1 shows a summary of the address-computation overhead for all memory
layouts evaluated in this study. The Exhaustive column shows the number of
memory layouts with a particular overhead in the solution space for each GOA
problem. The average overhead of all layouts in each GOA problem ranges from
49% to 75% higher than minimum. Additionally, at least 98% of all layouts
have an overhead 33% to 100% higher than minimum. Thus, even when the
MCC technique is used to find optimal addressing code, the selection of memory
layout has a significant impact on address-computation overhead.

The Algorithmic column of Table 1 shows the combined distribution and
average address-computation overhead for memory layouts produced by all 15

combinations of the ARA and SOA algorithms. The distribution of the overheads
obtained using the heuristic-based algorithms presented in Section 3.2 and 3.1
indicate that, in general, the algorithms are not very effective at minimizing
overhead. The average overhead of layouts produced by the algorithms for each
access sequence ranges from 40% to 60% higher than minimum and is only
slightly lower than average overhead of all layouts in the solution space. The im-
portance of selecting a suitable way to combine sub-layouts cannot be overstated.
For instance, a surprising finding is that the heuristically generated sub-layouts
for a given instance of the problem can be combined in one way to generate
the best possible overhead for that instance, and the same sub-layouts can be
combined in another way to generate the worst possible overhead.

4.4 The Efficiency of ARA Heuristics

Each of the three ARA algorithms — Leupers, Sugino, and Zhuang — can be
combined with five SOA algorithms (Figure 4) to produces a memory layout.

Exhaustive Algorithmic
Access overhead Number of % of Number of % of
Sequence (cycles) Layouts Layouts Layouts Layouts

iir arr

4 5 0.02% 0 0.00%
5 281 1.39% 125 34.72%
6 5707 28.31% 235 65.28%
7 10526 52.21% 0 0.00%
8 3641 18.06% 0 0.00%

Average overhead 6.87 5.65

iir arr swp

6 144 0.00% 0 0.00%
7 19557 0.01% 72 0.33%
8 1514917 0.63% 2240 10.23%
9 21757157 9.08% 6515 29.77%

10 90478895 37.78% 10496 47.95%
11 104101226 43.47% 2565 11.72%
12 21628904 9.03% 0 0.00%

Average overhead 10.51 9.60

latnrm arr swp

6 323 0.02% 117 0.60%
7 10785 0.59% 303 1.55%
8 253379 13.96% 7067 36.26%
9 918134 50.60% 8198 42.07%

10 631779 34.82% 3803 19.51%

Average overhead 9.20 8.78

latnrm ptr

6 1449 0.08% 28 0.21%
7 29682 1.64% 481 3.68%
8 456647 25.17% 6093 46.58%
9 929244 51.21% 6268 47.92%

10 397378 21.90% 210 1.61%

Average overhead 8.93 8.47

latnrm ptr swp

6 323 0.02% 5 0.04%
7 7706 0.42% 138 1.04%
8 225109 12.41% 3734 28.19%
9 905303 49.90% 5881 44.39%

10 675959 37.26% 3490 26.34%

Average overhead 9.24 8.96

Table 1: Number of layouts with a specific address-computation overhead, for the entire
solution space. The Exhaustive column shows distribution of memory layouts in the
solution space. The Algorithmic column shows the combined distribution of layouts
produced by the 15 different ARA and SOA combinations.

All of the layouts produced by an ARA algorithm are combined into a set. The
distribution of overhead values for the possible layouts produced by each ARA
algorithm are shown in Figure 5. For instance, Figure 5(a) shows that Leupers’
ARA algorithm can admit over 100 layouts with 6 cycles of overhead and 5
layouts with 5 cycles of overhead. Each of these layouts are obtained by using
different SOA and MLP solutions, but all use Leupers’ ARA algorithm.

For each access sequence, the total number of layouts varies between each
ARA algorithm because each algorithm may use a different number of ARs,
yielding a different number of permutations (see Section 3.3). Figure 5 indicates
that ARA algorithms producing fewer layouts, such as Sugino’s, tend to produce
better layouts. This result indicates that it is frequently disadvantageous to use
all available ARs. For instance, in Figure 5(b), Leupers and Marwedel’s ARA
algorithm yields a total of 9600 possible layouts, two of which have a 7-cycle
overhead. Alternatively, the ARA algorithm proposed by Sugino et al. gener-
ates a total of 2688 possible layouts, with 61 7-cycle-overhead layouts. Similar
distributions occur for the other access sequences.

The results also suggest that locally optimal sub-layouts do not lead to glob-
ally optimal memory layouts. An ARA algorithm using more ARs assigns fewer
variables to each register. In the case of Leupers and Marwedel’s algorithm, and
occasionally Zhuang’s algorithm, as few as two variables may be assigned to an
AR. Two variables can be trivially accessed without incurring JUMP overhead
and are locally optimal. However, if the two variables are not adjacent in the
optimal memory layouts, then the MLP solution space will never contain an
optimal layout.

 1

 10

 100

 1000

4 5 6 7 8

N
um

be
r

of
 L

ay
ou

ts

Overhead (Cycles)

Leupers
Sugino
Zhuang

(a) iir arr

 1

 10

 100

 1000

 10000

6 7 8 9 10 11 12

N
um

be
r

of
 L

ay
ou

ts

Overhead (Cycles)

Leupers
Sugino
Zhuang

(b) iir arr swp

 1

 10

 100

 1000

 10000

6 7 8 9 10 11

N
um

be
r

of
 L

ay
ou

ts

Overhead (Cycles)

Leupers
Sugino
Zhuang

(c) latnrm arr swp

 1

 10

 100

 1000

 10000

6 6 7 8 9 10

N
um

be
r

of
 L

ay
ou

ts

Overhead (Cycles)

Leupers
Sugino
Zhuang

(d) latnrm ptr

 1

 10

 100

 1000

 10000

6 7 8 9 10

N
um

be
r

of
 L

ay
ou

ts

Overhead (Cycles)

Leupers
Sugino
Zhuang

(e) latnrm ptr swp

Fig. 5: Distribution of overhead values produced by each ARA algorithm on different
test cases. The number of layouts shown for each algorithm is the union of 5 sets of
layouts, each produced with one of the 5 different SOA algorithms, but using the same
ARA algorithm.

4.5 The Efficiency of SOA Heuristics

The distributions in Figure 6 are complementary to those in Figure 5, but fo-
cused on the layouts produced by each of the five SOA algorithms. For instance,
Figure 6(b) shows that the SOA algorithm designed by Sugino et al. can admit
over 1000 layouts with 9 cycles of overhead. Each of these layouts are obtained by
combining Sugino et al.’s ARA algorithm with one of the three SOA algorithms.

SOA algorithms are used to estimate increases in overhead when variables
are assigned to ARs; which, in turn, affects the number of sub-layouts produced
by the ARA algorithms. Consequently, the total number of layouts varies be-
tween each SOA algorithm for each access sequence in Figure 6. Low variability
between the algorithms can be partly attributed to the problem sizes. The access
sequences only access 8 to 12 variables, and the ARA algorithms assign at most
6 variables to each address register. Because the SOA sub-problems are small the
algorithms produce similar, and possibly optimal, sub-layouts. Specifically, no
SOA algorithm consistently produces sub-layouts that admit the greatest num-
ber of optimal or near-optimal layouts. In two access sequences, OFU admits the
most number of low-overhead layouts, while in one other sequence, Sugino et al.’s
SOA algorithm admits the most number of optimal layouts.

Figure 6 also further supports previous suggestions that combining optimal
sub-layouts does not result in optimal layouts. For instance, in Figure 6(e),
the OFU algorithm generates sub-layouts that combined to form optimal mem-
ory layouts, while the Branch-and-Bound algorithm, which finds optimal sub-
layouts, does not admit any optimal memory layouts.

 1

 10

 100

4 5 6 7 8 10

N
um

be
r

of
 L

ay
ou

ts

Overhead (Cycles)

Liao
Leupers
Sugino

bnb
OFU

(a) iir arr

 1

 10

 100

 1000

 10000

6 7 8 9 10 11

N
um

be
r

of
 L

ay
ou

ts

Overhead (Cycles)

Liao
Leupers
Sugino

bnb
OFU

(b) iir arr swp

 1

 10

 100

 1000

 10000

6 7 8 9 10 11

N
um

be
r

of
 L

ay
ou

ts

Overhead (Cycles)

Liao
Leupers
Sugino

bnb
OFU

(c) latnrm arr swp

 1

 10

 100

 1000

 10000

6 7 8 9 10 11

N
um

be
r

of
 L

ay
ou

ts

Overhead (Cycles)

Liao
Leupers
Sugino

bnb
OFU

(d) latnrm ptr

 1

 10

 100

 1000

 10000

6 7 8 9 10

N
um

be
r

of
 L

ay
ou

ts

Overhead (Cycles)

Liao
Leupers
Sugino

bnb
OFU

(e) latnrm ptr swp

Fig. 6: Distribution of overhead values produced by each SOA algorithm on different
test cases. The number of layouts shown for each algorithm is the union of 3 sets of
layouts, each produced with one of the 3 different ARA algorithms, but using the same
SOA algorithm.

5 Related Work

In 2003, Leupers presented a comprehensive experimental evaluation of algo-
rithms for the SOA [6]. This is the first comparative evaluation of algorithms for
the GOA problem. It has three distinguishing features:

– The GOA problem is evaluated as three problems: address register assign-
ment, simple offset assignment, and memory-layout permutation.

– All known heuristic-based algorithms that generate a single approximate
solution to the ARA or SOA problems are compared against each other,
and against the optimal solutions.

– The minimum address-computation overhead of each memory layout gener-
ated is computed using a minimum cost circulation technique.

Some algorithms for generating a memory layout were not included in our
study. Atri et al. and Wess and Zeitlhofer, propose algorithms that attempt to
iteratively improve a memory layout [8, 9]. Leupers and David, and Wess and
Gotschlich, propose simulation-based algorithms to generate memory layouts.
These algorithms were omitted because they are computationally expensive. The
algorithms must compute the overhead of many memory layouts before a final
memory layout is produced.

This study only focused on evaluating offset assignment for scalar variables
in straight line code. Reducing address-computation overhead in loops is more
difficult because the problem of finding optimal addressing code for a loop is
NP-complete [1]. Many researchers have proposed alternative methods to re-
duce overhead for array accesses in loops. Leupers and David, Cheng and Lin,
and Chen and Kandemir, all propose algorithms to reduce address-computation
overhead in loops through improved address register allocation and data and
instruction re-ordering [10–12].

Although our study investigates algorithms that directly generate a memory
layout, overhead can also be reduced by manipulating the access sequence. Rao
and Pande, Lim et al., and Kandemir et al. each propose an algorithm that re-
orders the access sequence so that an offset assignment algorithm can produce
a lower-overhead layout [13–15]. Choi and Kim propose a unified algorithm to
simultaneously find an instruction schedule and a low-overhead offset assign-
ment [16]. The access sequence can also be manipulated by reducing the number
of unique variables accessed. Ottoni et al., and Zhuang et al., propose algorithms
to coalesce variables [17, 5]. Although some of the scheduling and coalescing al-
gorithms simultaneously find memory layouts, it is still possible to perform an
additional offset assignment pass to further reduce overhead.

6 Conclusion

The minimum cost circulation technique produces the optimal addressing code
for a fixed memory layout and access sequence by allowing variables to be ac-
cessed by multiple address registers. This paper shows that the memory layout

has a significant impact on the address-computation overhead, even when using
optimal address-code generation. Furthermore, current offset assignment algo-
rithms produce sub-layouts that can span the full range of values in the solution
space. In order for current algorithms to generate only low-overhead layouts, a
new combinatorial problem, the memory-layout permutation problem, must be
solved.

Layouts generated by different ARA algorithms have different distributions
of overhead values. Distributions with fewer memory layouts (due to ARA using
fewer ARs) consistently produce more low-overhead layouts. Thus, the average
overhead of memory layouts produced by Sugino’s ARA algorithm is usually the
lowest. When an ARA algorithm uses more address registers, optimal sub-layouts
are more easily found. However, locally optimal sub-layouts do not necessarily
produce globally optimal memory layouts. We observe instances where the naive
OFU algorithm produces sub-layouts that can be combined to form optimal
layouts, while the branch-and-bound algorithm produces optimal sub-layouts
that cannot be combined into optimal layouts.

Conversely, heuristic-based SOA algorithms have very little impact on either
layout quantity or quality. However, the minimal differences between the SOA
algorithms may be attributed to the small problem sizes. The SOA algorithms
are given problem instances with 6 variables or less, and the same path cover is
usually found regardless of the algorithm. Thus, for GOA problems with 12 or
fewer variables, an ARA algorithm that generates fewer sub-layouts combined
with any SOA algorithm has the greatest chance of producing sub-layouts that
combine to form memory layouts with low or minimum overhead.

This paper shows that regardless of the ARA and SOA algorithms used, plac-
ing the resulting sub-layouts contiguously in memory is a necessary optimization
problem that must be solved in order to minimize address-computation over-
head in a basic block. We call this new problem the memory-layout permutation
(MLP) problem. The order of sub-layouts in memory has a significant impact
on overhead, especially when the number of sub-layouts is high. Additionally,
as more variables are assigned to individual sub-layouts, the MLP problem is
reduced to the GOA problem itself. Thus, if we can find an algorithm to address
the MLP problem, the algorithm can be used to solve GOA.

Our study suggests two new directions for improving GOA solutions. One
direction is to propose a solution to the MLP problem. An alternative direction
is to replace the individual solutions of the ARA, SOA, and MLP problems with
a combined method that generates memory layouts that minimizes overhead, as
computed by the minimum-cost circulation technique.

References

1. Gebotys, C.: DSP address optimization using a minimum cost circulation tech-
nique. In: ICCAD ’97: Proceedings of the 1997 IEEE/ACM International Confer-
ence on Computer-Aided Design, Washington, DC, USA, IEEE Computer Society
(1997) 100–103

2. Leupers, R., Marwedel, P.: Algorithms for address assignment in DSP code gen-
eration. In: Proceedings of the 1996 IEEE/ACM International Conference on
Computer-Aided Design. (1996) 109–112

3. Liao, S., Devadas, S., Keutzer, K., Tjiang, S., Wang, A.: Storage assignment to
decrease code size. ACM Transactions on Programming Languages and Systems
18(3) (1996) 235–253

4. Sugino, N., Iimuro, S., Nishihara, A., Jujii, N.: DSP code optimization utilizing
memory addressing operation. IEICE Trans Fundamentals (8) (1996) 1217–1223

5. Zhuang, X., Lau, C., Pande, S.: Storage assignment optimizations through variable
coalescence for embedded processors. In: LCTES ’03: Proceedings of the 2003 ACM
SIGPLAN Conference on Language, Compiler, and Tools for Embedded Systems,
New York, NY, USA, ACM Press (2003) 220–231

6. Leupers, R.: Offset assignment showdown: Evaluation of dsp address code opti-
mization algorithms. In: CC ’03: Proceedings of the 12th International Conference
on Compiler Construction. (2003) 290–302

7. Bartley, D.H.: Optimizing stack frame accesses for processors with restricted ad-
dressing modes. Software – Practice & Experience 22(2) (1992) 101–110

8. Atri, S., Ramanujam, J., Kandemir, M.: Improving offset assignment for embedded
processors. Lecture Notes in Computer Science 2017 (2001) 158–172

9. Wess, B., Zeitlhofer, T.: On the phase coupling problem between data memory
layout generation and address pointer assignment. In: SCOPES. (2004) 152–166

10. Leupers, R., Basu, A., Marwedel, P.: Optimized array index computation in DSP
programs. In: Asia and South Pacific Design Automation Conference. (1998) 87–92

11. Cheng, W.K., Lin, Y.L.: Addressing optimization for loop execution targeting
dsp with auto-increment/decrement architecture. In: ISSS ’98: Proceedings of the
11th International Symposium on System Synthesis, Washington, DC, USA, IEEE
Computer Society (1998) 15–20

12. Chen, G., Kandemir, M.: Optimizing address code generation for array-intensive
dsp applications. In: CGO ’05: Proceedings of the International Symposium on
Code Generation and Optimization, Washington, DC, USA, IEEE Computer So-
ciety (2005) 141–152

13. Rao, A., Pande, S.: Storage assignment optimizations to generate compact and
efficient code on embedded DSPs. In: PLDI ’99: Proceedings of the ACM SIG-
PLAN 1999 Conference on Programming Language Design and Implementation,
New York, NY, USA, ACM Press (1999) 128–138

14. Lim, S., Kim, J., Choi, K.: Scheduling-based code size reduction in processors with
indirect addressing mode. In: CODES ’01: Proceedings of the 9th International
Symposium on Hardware/Software Codesign, New York, NY, USA, ACM Press
(2001) 165–169

15. Kandemir, M.T., Irwin, M.J., Chen, G., Ramanujam, J.: Address register assign-
ment for reducing code size. In: CC ’03: Proceedings of the 12th International
Conference on Compiler Construction. (2003) 273–289

16. Choi, Y., Kim, T.: Address assignment combined with scheduling in DSP code gen-
eration. In: DAC ’02: Proceedings of the 39th Conference on Design Automation,
New York, NY, USA, ACM Press (2002) 225–230

17. Ottoni, D., Ottoni, G., Araujo, G., Leupers, R.: Improving offset assignment
through simultaneous variable coalescing. In: 7th International Workshop on Soft-
ware and Compilers for Embedded Systems. (2003) 285–297

