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Abstract

In an optimizing compiler, the register allocation process is still a crucial phase since it allows to
reduce spill code that damages the performances. The register constraints are generally taken into
account during the instruction scheduling phase of an acyclic data dependence graph (DAG) : any
schedule must minimize the register requirement. However, in a previous work [14], we introduced
and mathematically studied the register saturation (RS) concept. It consists of computing the
exact upper-bound of the register need for all the valid schedules, independently of the functional
unit constraints. The goal of RS is to decouple register constraints from instruction scheduling.
In this paper, we continue our theoretical efforts and we present two main results. First, we give
an exact solution with integer linear programming for both the problems of computing the RS of
a DAG and reducing it. Our integer program brings a new way to model register constraints that
allows us to produce the lowest number of constraints and variables in the literature (till now).
Indeed, given a DAG with n nodes and m arcs, we need O(n2) integer variables and O(m + n

2)
linear constraints, which is better than the actual size complexity in the literature that model
register constraints. Second, we prove that the problem of reducing the register saturation is NP-
hard. Our detailed experiments in this paper show that our previous heuristics [14] are nearly
optimal. We provide a discussion too in order to argument why the RS approach should be better
that minimizing the register requirement.

Keywords: Register Pressure, Instruction Level Parallelism, Integer Linear Programming,
Optimizing Compilation.

1 Introduction

Because of the introduction of instruction level parallelism (ILP), the classical
techniques of register allocation for sequential code semantics are not adapted
any more. Thus, the old graph coloring techniques should be reconsidered to
be efficient in optimizing compilers for modern architectures. In [5], the au-
thors showed that there is a phase ordering problem between the old register
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allocation techniques and ILP instruction scheduling. If a classical register al-
location is done early, the introduced false dependences inhibit a good further
ILP extraction. However, this conclusion does not prevent any compiler from
performing effectively an early register allocation, but with the condition that
the used allocator should be sensitive to the scheduler as done in [12,11,8].

Some other studies [13,10,5] claim that it is better to combine instruction
scheduling and register allocation in a single complex pass, argumenting the
fact that applying each method separately has a negative influence on the
efficiency of the other. However, this phase ordering problem arises only if the
applied first pass (ILP scheduler or register allocator) is “selfish”. Indeed, we
still can effectively decouple register constraints from instruction scheduling
if enough care is taken. In this paper, we show how we can treat register
constraints before scheduling and we explain why we should do it.

The principal reason for handling register constraints before instruction
scheduling our believe that the register allocation is more important as an
optimization issue than code scheduling. This is because, usually, the code
performances are far more sensitive to memory accesses than to fine-grain
scheduling (memory gap) : a cache miss may inhibit the processor from achiev-
ing a high dynamic ILP, even if the scheduler has extracted it at compile time.
Even if someone would expect that spill codes exhibit high locality, and hence
would likely produce cache hits, we cannot assert it at compile time since mem-
ory access latencies are non predictable at compile time (we cannot guarantee
where the date would be located). Furthermore, memory requests, even if
they are data independent, exhibit high potential conflicts because of micro-
architectural restrictions and simplifications in the memory disambiguation
mechanisms (load/store queues) and possible banking structure in cache lev-
els [7]. These possible conflicts may cause severe performance degradation
even if enough ILP exist, and even if the data is located in the cache. Of
course, our claim that spill code is more damaging is appropriate for the ar-
chitectures where the memory access delay is very long compared to the delay
of calculation. This is the case in almost all high performance processors. If
memory access delay is not critical, the register saturation concept may be
less useful.

Another reason for handling register constraints prior to ILP scheduling
is that register constraints are much more complex than resource constraints.
Scheduling under resource constraints is a performance issue. Given a data
dependence graph (DDG), we are sure to find at least one valid schedule for
any underlying hardware properties (a sequential schedule in extreme case,
i.e., no ILP). However, scheduling a DDG with a limited number of registers
is more complex. We cannot guarantee the existence of at least one schedule.
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In some cases, we must introduce spill code and hence we change the problem
(the input DDG). Also, a combined pass of scheduling with register allocation
presents an important drawback if not enough registers are available. During
scheduling, we may need to insert load-store operations if no enough free
registers exist. We cannot guarantee the existence of a valid issue time for
these introduced memory access in an already scheduled code; resource or
data dependence constraints may prevent from finding a valid issue slot inside
an already scheduled code. This fact forces to iteratively apply scheduling
followed by spilling until reaching a solution.

All the above arguments make us re-think new ways of handling register
pressure before starting the scheduling process, so that the scheduler would be
free from register constraints and would not suffer from excessive serializations.
For this reason, we presented in [14] our register saturation (RS) concept that
prevent a DAG from producing an excessive number of values simultaneously
alive for all the valid schedules. Our pre-pass analyzes a DAG (with respect
to control flow) to deduce the maximal register need for all schedules. We call
this limit the register saturation (RS) because the register need can reach this
limit but never exceed it. If RS exceeds the number of available registers, we
introduce new arcs to reduce it, see Figure 1. In this paper, we provide exact
(optimal) methods to both the problems of computing RS and reducing it.
After our RS analysis pass, the DAG is free from register constraints and can
be sent to the scheduler and the register allocator.

This article is organized as follows. Section 2 presents our DAG and pro-
cessor model which can be used for most of existing ILP architectures (super-
scalar, VLIW, EPIC/IA64). Computing the optimal RS by intLP is given in
Section 3. Our intLP formulation use the linear writing of logical formulas
(=⇒, ⇐⇒, ∨) and the max operator (max(x, y)) by introducing extra binary
variables, as previously described in [15]. The optimal solution of reducing RS
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is provided in Section 4. Our large range of experiments show that our initial
heuristics [14] are nearly optimal in Section 5. Before concluding, we make a
discussion in Section 6 to argument why the RS concept is a better way for
handling register constraints prior to ILP scheduling.

2 DAG and Processor Model

A DAG G = (V, E, δ) in our study represents the data dependences between
the operations and any other serial constraints. The DAG is defined by its set
of operations V , its set of edges E = {(u, v)/ u, v ∈ V }, and δ such that δ(e)
is the latency of the edge e in terms of processor clock cycles. Let n be the
number of nodes and m the number of arcs.

A schedule σ of G is a function which gives an integer execution (issue)
time for each operation :

σ is valid ⇐⇒ ∀e = (u, v) ∈ E, σ(v) − σ(u) ≥ δ(e)

The set of all valid acyclic schedules of G is denoted by Σ(G).

We consider a target RISC-style architecture with multiple register types,
where T denotes the set of register types (for instance, T = {int, f loat}).
Some statements and some precedence constraints of a DAG have more at-
tributes than others, depending if they refer to values to be stored in registers
or not. VR,t is the set of values to be stored in registers of type t ∈ T . We
consider that each statement u ∈ V writes into at most one register of a type
t ∈ T . The statements which define multiple values with different types are
accepted in our model if they do not define more than one value of a certain
type 2 . ER,t is the set of flow dependence edges through a value of type t ∈ T .
The set of consumers (readers) of a value ut is then the set :

Cons(ut) = {v ∈ V | (u, v) ∈ ER,t}

Some values in may not be consumed in the considered DAG. In order to model
such exit values, we assume that the considered DAG contains a bottom node
⊥ that is the sink of the flow dependences of these exit values. Also, there is a
serial arc from any other node of the DAG to this bottom node. The latency
of such virtual arc is equal to the latency of the source operation. The bottom
node ⊥ is always the last scheduled node of the DAG.

In order to consider static issue VLIW and EPIC/IA64 processors in which
the hardware pipeline steps are visible to compilers (we consider dynamically

2 This model limitation, that has little impact on actual ILP processors, allows us to have
some graph characteristics used for formal proofs in [15,14].
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scheduled superscalar processors too), we assume that reading from and writ-
ing into a register may be delayed from the beginning of the schedule time,
and these delays are visible to the compiler (architectural visible). We define
two delay (offset) functions δr and δw in which : the read cycle of ut from a
register of type t is σ(u) + δr(u), and the the write cycle of ut into a register
of type t is σ(u) + δw(u).

For instance, in superscalar and EPIC/IA64 processors, δr and δw are equal
to zero.

When a schedule is fixed, we can easily compute how much register we
need of each register type t in order to build a valid register allocation. It is
the standard concept of the maximal number of values of type t simultane-
ously alive, that is also equal to the maximal clique in the interference graph.
To recall, two variables are said to be simultaneously alive iff their lifetime
intervals interfere, and thus they cannot share the same register. The register
requirement (or register need) of type t for a DAG G given a fixed schedule σ
is noted RNσ

t (G).

After defining the DAG and processor model, the next section shows how
we compute the exact optimal register saturation (RS).

3 Computing the Optimal Register Saturation

First of all, if |VR,t|, the total number of values of type t, is less than or equal
to Rt, the number of available registers of type t, then we are sure that any
schedule cannot require more than |VR,t| ≤ Rt registers. Otherwise, we must
analyze the register saturation (RS).

The RS of a register type t for a DAG G is the maximal register need for
all valid schedules of this DAG :

RSt(G) = max
σ∈Σ(G)

RNσ
t (G)

We proved in [14] that computing this parameter is an NP-complete problem
and we provided a heuristics. Below, we give the set of variables and con-
straints of an exact intLP for computing RSt(G). Our intLP formulation use
the linear writing of logical formulas (=⇒, ∨, ⇐⇒) and the max operator
(max(x, y)) by introducing extra binary variables, as previously described in
[15]. However, that linear writing of logical and max operators requires to
bound the domain set of the integer variables.
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3.0.1 Scheduling Variables

For all operations u ∈ V , we define the integer variable σu ≥ 0 that holds the
schedule time. Note that these schedule variables do not represent the final
schedule under resource constraints (that will be computed after our RS pass),
but they only represent intermediate variables for our intLP formulation. The
first linear constraints are those that describe precedence relations, so we write
into the intLP system :

∀e = (u, v) ∈ E, σv − σu ≥ δ(e)

There are O(n) scheduling variables and O(m) linear scheduling constraints.
In order to bound the domain set of our variables, we define T a worst
possible schedule time. We choose T sufficiently large, where for instance
T =

∑
e∈E δ(e) is a suitable worst total schedule time (case of no ILP). Then,

we write the following constraint :

∀u ∈ V, σu ≤ T

As a consequence, we deduce for any u ∈ V :

• σu ≥ σu = LongestPathTo(u) is the “as soon as possible” schedule time;

• σu ≤ σu = T − LongestPathFrom(u) is the “as late as possible” schedule
time according to the worst total schedule time T .

3.0.2 Register Need Constraints

Interference Graph

The lifetime interval of a value ut of type t is (given a schedule σ)

LTσ(ut) =]σu + δw(u), max
v∈Cons(ut)

(
σv + δr(v)

)
]

That is, we assume that a value written at instant c in a register is available
one step later (the lifetime interval is left open). Thus, if an operation u reads
from a register at instant c while another operation v is writing in it at the
same time, u does not get v’s result but gets the value previously stored in
this register. Note that this is a choice and not a limitation of the model.

We define for each value ut the variable kut ≥ 0 that computes its killing
date (the last time that this value is read). The number of such defined
variables isO(n). Since our variable domains are bounded (assuming a finite
T ), we know that kut is bounded by the two following finite schedule times :

∀t ∈ T , ∀ut ∈ VR,t : kut ≤ kut ≤ kut

where
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• kut = σu + δw(u) is the first possible definition date of ut;

• kut = maxv∈Cons(ut)

(
σv + δr(v)

)
is the latest possible killing date of ut.

We use the linear constraints of the max operator to compute kut as explained
in [15]. We write into the intLP system :

∀ut ∈ VR,t : kut = max
v∈Cons(ut)

(
σv + δr(v)

)

The total complexity to define all killing dates for all registers types is bounded
by O(n2) variables and O(n2) constraints.

Now, we can consider Ht the undirected interference graph of G for the
register type t. For any couple of distinct values ut, vt ∈ VR,t, we define
a binary variable st

u,v ∈ {0, 1} such that it is set to 1 if the two lifetimes
intervals of type t interfere : ∀t ∈ T , ∀ couple ut, vt ∈ VR,t :

st
u,v =

⎧⎨
⎩

1 if LTσ(ut) ∩ LTσ(vt) 
= φ

0 otherwise

The number of variables st
u,v is the number of combinations of 2 values among

|VR,t|, i.e.,
(
|VR,t| × (|VR,t| − 1)

)
/2.

LTσ(ut) ∩ LTσ(vt) = φ means that one of the two lifetime intervals is
“before” the other, i.e.,

(
LTσ(ut) ≺ LTσ(vt)

)
∨

(
LTσ(vt) ≺ LTσ(ut)

)
, where

≺ denotes the “before” relation in the interval algebra. Then, we have to
express the following constraints :

st
u,v = 1 ⇐⇒ ¬

(
LTσ(ut) ≺ LTσ(vt) ∨ LTσ(vt) ≺ LTσ(ut)

)

where LTσ(ut) ≺ LTσ(vt) iff kut ≤ σv + δw(v). The negation of this constraint
is kut > σv + δw(v),i.e.,
kut − σv − δw(v) − 1 ≥ 0. Since st

u,v ∈ {0, 1}, these variables are constrained
as follows :

st
u,v ≥ 1 ⇐⇒

⎧⎨
⎩

kut − σv − δw(v) − 1 ≥ 0

kvt − σu − δw(u) − 1 ≥ 0

Given three logical expressions (P, Q, S), (P ⇐⇒ (Q∧S)) is equivalent to the
expression (P ∧ Q ∧ S) ∨ (¬P ∧ ¬Q) ∨ (¬P ∧ ¬S). We write these two dis-
junctions with linear constraints by introducing binary variables (see [15]) and
by computing the finite lower bounds of the linear functions. The complexity
of computing all the st

u,v variables is bounded by O(n2) binary variables and
constraints.
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Maximal Clique in the Interference Graph

The maximum number of values of type t simultaneously alive corresponds
to a maximal clique in Ht = (VR,t, Et), where (ut, vt) ∈ Et iff their lifetime in-
tervals interfere (st

u,v = 1). For simplicity, rather than considering the interfer-
ence graph itself, we prefer to consider its complementary graph H ′

t = (VR,t, E
′
t)

where (ut, vt) ∈ E ′
t iff their lifetime intervals do not interfere (st

u,v = 0). Then,
the maximum number of values of type t simultaneously alive corresponds to
a maximal independent set in H ′

t.

To write the constraints that describe independent sets (IS), we define a
binary variable xut ∈ {0, 1} for each value ut ∈ VR,t such that xut = 1 iff
ut belongs to some IS of H ′

t. We express in the model the following linear
constraints :

∀xut , xvt ∈ VR,t : st
u,v = 0 =⇒ xut + xvt ≤ 1

This equations means that if two nodes u and v are connected in H ′, then
one and only one of them may belong to an IS. The number of variables
xut is O(n). The number of introduced binary variables to express all the
implications is bounded by O(n2). The number of linear constraints to define
the IS is bounded by O(n2).

3.0.3 Linear Function of Register Need

The register requirement of type t is a maximal IS in H ′
t, i.e., the maximal∑

ut∈VR,t
xut . Thus, the register saturation of type t is computed by :

Maximize
∑

ut∈VR,t

xut

The total number of integer variables in our whole intLP is bounded by
O(|V |2), and the total number of constraints is at most O(m+n2). Note that
our intLP formulation may be optimized by considering that:

• an edge e = (u, v) in the initial DAG is redundant for the scheduling con-
straints and can be safely ignored if lp(u, v) > δ(e) where lp(u, v) denotes
the longest path from u to v (with the condition that this arc doesn’t belong
to this longest path);

• two values (ut, vt) ∈ VR,t can never be simultaneously alive iff for all the
possible schedules, one value is always defined after the killing date of the
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other. This is the case if any of the two following conditions is satisfied :

∀v′ ∈ Cons(vt) : lp(v′, u) ≥ δr(v
′) − δw(u)

∨ ∀u′ ∈ Cons(ut) : lp(u′, v) ≥ δr(u
′) − δw(v)

After computing the optimal RS, the next section shows how we reduce it if
it exceeds a limit.

4 Optimal Register Saturation Reduction

In the case where the register saturation RSt(G) exceeds the number of avail-
able registers Rt of the type t, then we must add extra serial arcs into the
DAG G to reduce RSt(G) below this limit. The new added arc must save ILP
as much as possible by taking care of the critical path. We note by E the
set of extra edges that we add to G to build a new extended DAG, namely
G = G\E , such that RSt(G) ≤ Rt. We want to solve the formal problem
stated below.

Definition 4.1 [ReduceRS Problem] Let G = (V, E, δ) be a DAG. Let Rt and

P be two positive integers. Does there exist an extended DDG G = G\E of
G such that :

RSt(G) ≤ Rt

and

CriticalPath(G) ≤ P

Theorem 4.2 ReduceRS problem is NP-hard.

Proof.

We prove that ReduceRS problem reduces from the problem of scheduling
under register constraints. Let us start by defining the latter problem. For
the sake of clarity of this proof, we assume that the considered register type t
is implicit (we do not include t in our notations inside this proof).

Definition 4.3 [SRC problem]

Let G = (V, E, δ) be a DAG, R be a positive integer, and P be a length.
Does there exist a valid schedule σ ∈ Σ(G) such that :

RNσ(G) ≤ R

and

total schedule time ≤ P
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SRC problem has been proven NP-hard in [4]. Now we prove that both
ReduceRS and SRC problems are equivalent in terms of computational com-
plexity.

1. ReduceRS =⇒ SRC
Let G be a solution for the ReduceRS problem. Then trivially, any as soon as
possible schedule σ ∈ Σ(G) is a solution for SRC.

2. SRC =⇒ ReduceRS
Let σ be a solution for SRC, i.e., RNσ(G) ≤ R and the total schedule time
is ≤ P. We build an extended DDG G by adding serial arcs to impose value
lifetimes of any schedule of G to have the same precedence relations as defined
by σ. ∀u, v ∈ VR/LTσ(u) ≺ LTσ(v) then we add the following arcs :

• if v ∈ Cons(u), then add serial arcs from the other u’s readers (except v)
to v; the set of added arcs is :

{
e = (u′, v)/ u′ ∈ Cons(u) − {v}

}

• else, add serial arcs from all u’s readers to v; the set of added arcs is :

{
e = (u′, v)/ u′ ∈ Cons(u)

}

The latency of these added arcs has to be chosen depending on the target
codes. We have two cases,

(i) in the case of superscalar codes, the semantics is sequential. So, the
latency of each added arc is set to 1;

(ii) in the case of VLIW or EPIC/IA64, there exist reading and writing
offsets 3 . Thus, for each added arc e = (u′, v), the latency is set to
δ(e) = δr(u

′) − δw(v).

Indeed, the added arcs and the chosen latencies force the following asser-
tion :

LTσ(u) ≺ LTσ(v) =⇒ ∀σ′ ∈ Σ(G) : LTσ′(u) ≺ LTσ′(v)

Then, for all values non simultaneously alive according to σ, there is no sched-
ule σ′ of G that makes them simultaneously alive. Formally, it is written :

¬
(
∃u, v ∈ VR, LTσ(u) ≺ Lσ(v), ∃σ′ ∈ Σ(G)/ LTσ′(u) ∩ LTσ′(v) 
= φ

)

3 On EPIC/IA64 architectures, a writer and a reader can be scheduled at the same instruc-
tion group, so the writing delay is statically considered as zero.
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In other words, we ensure that any schedule of G will guarantee the precedence
relations between the lifetime intervals of G according σ. Consequently, any
schedule σ′ of G cannot need more than the register need of σ and

RS(G) = RNσ(G) ≤ R

A solution for SRC problem may create a circuit in the solution of Re-
duceRS. We are sure that if any circuit is introduced in G, then it must be
non-positive because there exists at least the valid schedule σ ∈ Σ(G). Con-
sequently, a solution of the ReduceRS problem may produce a cyclic DDG.
We will see later how to eliminate these solutions.

With regard to the critical path of G, the introduced serial arcs ensure
that at least σ ∈ Σ(G). Since there exists such a schedule with a total time
≤ P, the critical path of G cannot be longer than P. �

The proof of Theorem 4.2 gives the intuition for optimal solution of the
ReduceRS problem using integer programming. It is computed in two steps :

(i) we first compute a valid schedule σ such that the register need of type
t is maximized and does not exceed Rt, while the total schedule time
is bounded. Again, this schedule is different from the final one to be
computed under resource constraints;

(ii) then, we add serial arcs as described by the proof of Theorem 4.2. This
results in an extended DDG that has a bounded register saturation with
a minimized critical path.

To compute such a schedule, we use our intLP formulation previously de-
fined in Section 3 that maximizes the register need. We keep all the constraints
and variables of Section 3, except those that compute a maximal independent
set. Now, we use a binary variable xi

ut which is set to 1 if the value ut is
stored in the register i. Since there are Rt available registers, we have at
most |V | × Rt variables. Since Rt is a constant is our problem (the number
of registers in the target machine), the number of these variables is O(|V |).

The intLP system tries to build a coloring of the interference graph with
exactly Rt colors (the maximal number of available registers). If no solution
can be found with Rt registers, then solve another intLP after decrementing
Rt (until to 1). If no final solution can be found when reaching one avail-
able register, then the register saturation cannot be reduced and spilling is
unavoidable. The variables xi

ut are computed using following constraints.
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• a value ut is stored in only one register of type t :

∀t ∈ T , ∀ut ∈ VR,t :
Rt∑
i=1

xi
ut = 1

• if two values interfere, then they cannot share the same register :

∀t ∈ T , ∀ couple ut, vt ∈ VR,t : st
u,v ≥ 1 =⇒

(
xi

ut + xi
vt ≤ 1, ∀i = 1, ...,Rt

)

There are at most O(V 2 ×Rt) = O(V 2) such constraints.

• The objective function minimizes the total schedule time :

Minimise σ⊥

We add at most O(|V |2) constraints to the previous intLP system of Sec-
tion 3.

As explained before, our DAG and processor model include writing and
reading offsets. Consequently, in some cases, the optimal RS reduction may
need to introduce non-positive circuits into the original DAG. Even if such
non-positive circuits do not prevent the graph from being scheduled, they
still violate the DAG property and impose hard scheduling constraints that
may not be satisfiable under resource constraints in the subsequent pass of
instruction scheduling. We must eliminate such optimal solutions as explained
in [15]. Basically, we add at most O(n3) variables and O(m + n3) constraints
to guarantee the existence of a topological sort for extended DDG. Again,
these constraints have only to be added for VLIW and EPIC codes, not for
superscalar ones.

5 Experiments

We did an extensive set of experiments on some scientific codes extracted from
SpecFP, whetstone, livermore and linpack We used CPLEX to solve our intLP
programs. Since all the problems of RS computation and reduction are NP-
hard, reaching the optimal solutions were very time consuming (from many
seconds to many days). The experimented DAGs are simply some loop bodies
(excluding branches). Detailed numerical results and plots are shown in [15].
Basically, all our heuristics presented in [14] are nearly optimal.

Regarding RS computation, the maximal empirical error is one register (in
very few cases). For RS reduction, we have to explore two parameters : the
reduced RS and the critical path. We note RS and ILP the RS reduction and
ILP loss resulted from optimal intLP programs; we note RS∗ and ILP ∗ the RS
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reduction and ILP loss resulted from our heuristics. Then, our experiments
are divided into the following sets.

(i) In the case where RS = RS∗, our algorithm succeeds in optimally reduc-
ing RS. Then, the ILP loss may be :
(a) ILP = ILP ∗ (72.22% of all the results). Our algorithm succeeds in

optimally reducing RS with the optimal ILP loss.
(b) ILP < ILP ∗ (18.5% of all the results). Our algorithm succeeds in

optimally reducing RS but with sub-optimal ILP loss.
(c) ILP > ILP ∗ impossible !

(ii) In the case where RS > RS∗, our algorithm did not succeed in optimally
reducing RS. Then, the ILP loss may be :
(a) ILP = ILP ∗ (4.63% of all the results ). Our algorithm has sub-

optimal RS reduction but optimal ILP loss.
(b) ILP < ILP ∗ (less than 1% of all the results). Our algorithm has

sub-optimal RS reduction with sub-optimal ILP loss.
(c) ILP > ILP ∗ (3.7% of all the results). Our algorithm has sub-optimal

RS reduction but with super-optimal ILP loss. This case is interest-
ing : since our algorithm has sub-optimal RS reduction, then it gets
extra registers which allow him to exploit more ILP.

(iii) The case where RS < RS∗ is impossible because our heuristics computes
a valid RS∗.

Clearly, our RS reduction algorithm is very efficient : it, in most of times,
optimally reduces RS with optimal ILP loss. Sub-optimal ILP loss is, in
most of times, accompanied with optimal RS reduction, while sub-optimal RS
reduction is mostly accompanied with super-optimal ILP loss. We get both
sub-optimal ILP loss and sub-optimal RS reducing in less than 1% of the cases.

6 Discussion : to minimize or to saturate the register
need ?

The literature contains a lot of techniques about minimizing the register re-
quirement in superscalar (sequential) codes that are sensitive to ILP schedul-
ing [6,8]. Others prefer to combine ILP scheduling with register allocation
[2,5,9]. All these techniques try to minimize the register requirement. In our
method, we use the contrary approach : we maximize the register requirement
in order to minimize the amount of added arcs as previously done by Berson in
[1]. We provided in [14] a comparison with his method to show its limitations
that we fixed in our work.

Minimizing the register requirement is inherently a worse technique than
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saturating it because of many reasons. We explain them below.

Case where register pressure is zero

Given a DAG, we do not need to add serial arcs if RS does not exceed
the number of available registers. While the minimization approach add extra
arcs, our method doesn’t. For instance, look at Figure 2, where bold circles are
the values to be stored in registers and bold arcs are the flow dependences. The
initial DAG has clearly a register saturation equal to 4 : this is because we can
schedule the 4 operations {a, b, c, d} so as to produce 4 values simultaneously
alive. If the processor has at least 4 registers, then the DAG is let as it is for
the subsequent scheduler. However, with a minimization approach, the new
DAG in Part (b) is restricted to not require more than 2 registers 4 , regardless
the number of available ones. As can be seen, the DAG in Part (b) is more
restrictive than the initial one that is let free by the RS analysis pass.

How much arcs we introduce

If the inherent data dependences of a considered DAG produce a restric-
tive register pressure on a further ILP scheduler (case where RS exceeds the
number of available registers), the minimization approach add more arcs than
the RS reduction approach. This is because our method introduce only the
sufficient amount of arcs to reduce RS below the considered limit. However,
the minimization approaches try to reduce the register need at the lowest pos-
sible level, which is not the appropriate method since it does not fully utilize
the available registers. For instance, look at Figure 2 and assume we have 3
registers available. Part (c) shows the new DAG produced by the RS reduc-
tion pass : here, RS is reduced from 4 to 3, and hence we have less arcs than
what produces the minimization approach in Part (b). For the former, the
final allocator would use 1, 2 or 3 registers depending on the schedule; for the
latter, we would use only 1 or 2 registers , which is more restrictive. Hence,
the RS concept helps to better take benefit from available registers.

When both methods are equivalent

If the target processor is a superscalar out of order, and if its dynamic
scheduler is optimal and the register renaming hardware support has an in-
finite number of hidden registers, both methods (RS and register need mini-
mization) should be equivalent. With limited number of hidden registers for
renaming, and a sub-optimal runtime scheduler, our RS method is likely to
produce better codes because it makes better use of the available registers.

4 Here, we minimize the register requirement under critical path constraints.
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Fig. 2. RS Reduction vs. Minimal Register Requirement

Our method apply for explicit reading/writing offsets

Our DAG and processor model admit explicit reading from and writing to
registers. Thus, our method is more generic than the existing techniques, and
can be applied for superscalar, VLIW and EPIC codes. For the two later cases,
a special care must be taken when reducing RS : we must prohibit non-positive
circuits in the resulted DAGs.

In the case of a global scheduler

Our model assumes that there is only one possible definition per value.
This assumption is correct inside a basic bloc (BB), i.e., if the code does not
contain branches. In the case of a global control flow graph (CFG), a static
data dependence analysis may provide for some values more than one definition
because it cannot determine which execution path is taken. Actually, we have
shown in [15] how to extend RS analysis to a global acyclic CFG (excluding
loops) and its interaction with a global instruction scheduler that may move
operations from one BB to another. However, we must be aware that in
global register allocation, the number of allocated registers may be superior
to MAXLIVE, because of the possible insertion of extra “move” operations.
We think that we can prove that the optimal difference is at most one extra
register by using the theoretical results of [3]. So, we can still use the register
saturation concept in a global acyclic CFG by taking into account this possible
extra register. For example, this can be done by decrementing R the number
of available registers, so that the final register allocation cannot exceed R,
even if move operations have been inserted.
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Similar Work

Our theoretical framework is an extension to the previous study done by
Berson [1]. A better explanation of the differences between our heuristics [14]
and Berson’s one can be retrieved from [14]. To summarize :

• our work is formal, so we could prove all our assertions. We are able to
guarantee that the generated code will be correct ;

• we showed in [14] that Berson’s work contained some mistakes and incom-
plete proofs. For instance, the killing relations between the nodes have to
be carefully chosen, otherwise the computed register saturation would be
incorrect. This important aspect wasn’t covered in [1], so its proof of the
NP-completeness of computing RS was incomplete.

• our work is an extension to VLIW and EPIC codes, with multiple register
types ;

• our experiments show that our heuristics are nearly optimal, while Berson’s
heuristics wasn’t proved so.

Pinter’s work [12] has some relation to ours, because she computes the
maximal interference graph (with graph coloring) for all possible schedules
of the basic blocks. However, first, her technique works only for superscalar
codes, and does not fit neither for VLIW nor EPIC codes. Second, her model
does not take into account multiple register types. Third and last, she didn’t
prove that her method is close to the optimal.

7 Conclusion

In this paper, we continue our early work about the register saturation (RS)
notion to manage register pressure and to avoid spill code before scheduling
and register allocation steps. We believe that register constraints must be
taken into account before ILP scheduling, but by using the RS concept and
not by the existing minimization strategies. Otherwise, the subsequent ILP
scheduler would be restricted even if enough registers exist.

Computing the register saturation of a DAG is NP-complete. An intLP
exact formulation is presented. Our formal mathematical modeling and the-
oretical study in [14] enables us to give nearly optimal heuristics. In the
presence of branches, global RS of an acyclic CFG is brought back to RS in
DAGs (basic blocs) by inserting entry and exit values with the corresponding
flow arcs (see [15]).

If RS exceeds the number of available registers, we must reduce it while
minimizing the increase of critical path. This is an NP-hard problem. An op-
timal exact RS reduction method based on integer programming is presented.
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If we assume writing offsets (VLIW and EPIC codes), some optimal solutions
may require to insert non-positive circuits in the original DAG. These cir-
cuits may prevent the extended DDG from being scheduled in the presence
of resource constraints. A sufficient and necessary condition to overcome this
problem is to guarantee the existence of a topological sort for the extended
graph. This is done by adding new constraints to the intLP formulation. We
have also proved that our initial algorithmic heuristics for RS reduction is very
efficient compared to the optimal solutions.

An important problem (let for a future work) is the minimal spill code
insertion in data dependence graphs. The existing studies insert spill opera-
tions either in sequential codes (regardless on FUs usage), or by iterating ILP
scheduling followed by spilling. We think that this problem must be taken into
account at the data dependence graph level in order to break this iterative
problem.
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