On the Decidability of Phase Ordering Problem in OptimizingCompilation

S. Touati D. Barthou

U. of Versailles

Computing Frontiers’06
Outline

Computing Frontier: Compiler Construction

- Position of the problem and context
- Phase ordering problem
- Finding optimal values for optimization parameters
- Concluding remarks
Position of the Problem: Generating optimal code

Many individual optimizations exist.

Effect of individual optimizations:
- Depends on parameters
- Not always beneficial on performance
- Complex interactions with others
Position of the Problem: Generating optimal code

Many individual optimizations exist.

Effect of individual optimizations:
- Depends on parameters
- Not always beneficial on performance
- Complex interactions with others

Searching the best optimizations and parameters to generate optimal programs

Automatic, compilation time:
- Heuristics drive optimization phase ordering in compilers
- Exhaustive search [Cooper], limiting the number of optimizations
- Iterative compilation: search for a 'good' solution.

Performed manually or by hardware:
- Source to source transformations
- pragmas or a meta-language
- Trust hardware mechanisms to perform important optimizations! (eg. OoO)
Position of the Problem: Generating optimal code

Difficult problem: automatic optimization far away from manual

A formalization is needed to better understand the bottleneck.
Context: Which Optimality?

Optimization Issue

Is there an algorithm that builds from a program \mathcal{P} an optimal program \mathcal{P}^* semantically equivalent?

- Optimality does not exist for any program input I [Schwiegelshohn et al.]
- Semantically equivalent: \mathcal{P}^* must execute correctly on all inputs
- Optimality according to a performance model (or execution time).
- Objective: obtain performance lower than some given bound
Context: Which Performance Model?

Any performance model

- Statistical Linear Regression Models
- Static Algorithmic Models
- Comparison Models
- Real machine execution time
Context: Which Optimizations?

Any optimization

- Only consider sequences of elementary optimizations
- One optimization module:
 - A computable function that terminates
 - Can have any number of parameters
 - Includes preliminary analysis, if needed
- If it does not apply, does not perform any transformation

Optimizations are blackboxes:
- Optimizations mapped to letters, sequences to words;
- Infinite number of sequences;
- Possible infinite number of optimized programs.
Phase Ordering Problem Formulation

We assume the compiler knows:

- A performance model t;
- A set of optimization modules \mathcal{M};
- The performance bound to reach.
Phase Ordering Problem Formulation

We assume the compiler knows:

- A performance model \(t \);
- A set of optimization modules \(\mathcal{M} \);
- The performance bound to reach.

Assumptions on the compiler and machine:

- Each optimization \(m \in \mathcal{M} \) optimizes a program, independently of the input;
- No optimization parameters;
- Sequence of optimizations: \(s = m_0 \ldots m_n \);
- Performance evaluation depends on the optimized program and on the input: \(t(sP, I) \).
Problem formulation

Given t, T and \mathcal{M}, is there an algorithm that determines for each program and input a sequence $s \in \mathcal{M}^*$ such that

$$t(s(\mathcal{P}), I) < T?$$
Phase Ordering Problem Formulation 1

Problem formulation

Given t, T and \mathcal{M}, is there an algorithm that determines for each program and input a sequence $s \in \mathcal{M}^*$ such that

$$t(s(\mathcal{P}), I) < T?$$

Depends on t:
- For some values of t, the problem is simple (simplified machine)
- For some other values (real machine), the problem is difficult
Phase Ordering Problem Formulation 2

t given by the real machine:

- The compiler does not really know the real performance model;
- \(t \) is any function that checks the partial machine description of compiler;
- There exists a program with an infinite number of optimized versions.
Phase Ordering Problem Formulation 2

Given \(t \) and \(M \), is there an algorithm that determines for each program and input a sequence \(s \in M^* \) such that

\[t(s(P), I) < T? \]
Phase Ordering Problem Formulation 2

t given by the real machine:
- The compiler does not really know the real performance model;
- t is any function that checks the partial machine description of compiler;
- There exists a program with an infinite number of optimized versions.

Given and \(M \),

Problem formulation

Given \(t \) and \(M \), is there an algorithm that determines for each program and input a sequence \(s \in M^* \) such that

\[
t(s(P), I) < T?
\]

UNDECIDABLE
We assume:

- The compiler does not know the real performance model;
- The compiler knows the program and input;
- The compiler knows the bound to reach;
- The program has an infinite number of optimized versions.
Phase Ordering Problem for Library Generation

We assume:

- The compiler does not know the real performance model;
- The compiler knows the program and input;
- The compiler knows the bound to reach;
- The program has an infinite number of optimized versions.

Given and M, P, I, T,

Problem formulation

Given and M, P, I, T, is there an algorithm that determines for each real machine t a sequence $s \in M^*$ such that

$$t(s(P), I) < T?$$
Phase Ordering Problem for Library Generation

We assume:

- The compiler does not know the real performance model;
- The compiler knows the program and input;
- The compiler knows the bound to reach;
- The program has an infinite number of optimized versions.

Given and $M, P, I, T,$

Problem formulation

Given and $M, P, I, T,$ is there an algorithm that determines for each real machine t a sequence $s \in M^*$ such that

$$t(s(P), I) < T?$$

UNDECIDABLE
Phase Ordering: Decidable Cases

Limiting the number of sequences:
- Limiting the compilation cost (or number of optimizations);
- One pass generative compilers [Spiral, FFTW]
Phase Ordering

Finite Set of Program Transformations
Arbitrary Performance Prediction Model
Parameters to be explored
Undecidable Problem

C1

Fixed Parameters
Arbitrary Performance Prediction Model
Undecidable Problem

C2

C3
Generative Compilation
Decidable Problem
Ex: SPIRAL

C4
Compilation with Cost Model
Decidable Problem
Parameter Space Exploration

Parameter space exploration corresponds to some library generation (e.g. ATLAS).
We assume:

- The sequence s of optimizations is given;
- Each optimization has a given number of parameters (unroll degree, . . .): an optimization m applied to \mathcal{P} with parameters k, $m(\mathcal{P}, k)$.
- Parameters are not bounded
- Performance evaluation function t is known by the compiler
Given sequence s and function t:

Problem Formulation

Is there an algorithm that finds for all program \mathcal{P}, input I and bound T the parameters k:

$$t(s(\mathcal{P}, k), I) < T$$
Given sequence s and function t:

Problem Formulation

Is there an algorithm that finds for all program \mathcal{P}, input I and bound T the parameters k:

$$t(s(\mathcal{P}, k), I) < T$$

Solution: depends on t and s...
The performance evaluation function is built in two steps:

- A function is built according to s and the program: $t(s, P)$
- The performance is evaluated according to I and k: $t(s, P)(k, l)$
- $t(s, P)$ is any polynomial
 - Corresponds to possible program complexity metrics
Parameter Space Exploration Problem 2

The performance evaluation function is built in two steps:

- A function is built according to \(s \) and the program: \(t(s, P) \)
- The performance is evaluated according to \(I \) and \(k \): \(t(s, P)(k, I) \)
- \(t(s, P) \) is any polynomial
 - Corresponds to possible program complexity metrics

Given sequence \(s \) and function \(t \):

Problem Formulation

Is there an algorithm that finds for all program \(P \), input \(I \) and bound \(T \) the parameters \(k \):

\[
t(s, P)(k, I) < T
\]
The performance evaluation function is built in two steps:

- A function is built according to s and the program: $t(s, \mathcal{P})$
- The performance is evaluated according to I and k: $t(s, \mathcal{P})(k, I)$
- $t(s, \mathcal{P})$ is any polynomial
 - Corresponds to possible program complexity metrics

Given sequence s and function t:

Problem Formulation

Is there an algorithm that finds for all program \mathcal{P}, input I and bound T the parameters k:

$$t(s, \mathcal{P})(k, I) < T$$

UNDECIDABLE
Parameter Exploration: Decidable Cases

Limit the parameter space to be finite:

- OCEAN project: parameters in finite intervals
- Atlas: parameters bounded according to a model (cache size)
Parameter Exploration

C1

Finite Number of Parameters
Infinite Parameters Space
Arbitrary Performance Prediction Model
Undecidable Problem

C2

Arbitrary Polynomial Performance Prediction Model
Undecidable Problem

C3

Fixed Polynomial Performance Model
Finite Parameters Space
Decidable Problem
Ex: ATLAS

C4

Finite Parameters Space
Decidable Problem
Ex: OCEAN project
Conclusion

More decidable cases:

- Optimizations considered as blackboxes. What happens for a certain class of optimizations?
 - Finite number of optimized codes? (no parameters)
 - Sum up of multiple optimizations? (as for unimodular transformations)
- Which performance model for which optimizations?
- Limit parameter space, optimization combination through user input, application knowledge?
- Have an exact performance prediction model of real machines
Thank You!