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Abstract
Modulo Variable Expansion (MVE) [1] used with soft-
ware pipelining (SWP) may sacrifice the register optimality
(MAXLIVE) and in general may lead to unnecessary spills
or move operations negating the benefits of SWP. In con-
trast, bigger loop unrolling can be performed to meet the
MAXLIVE registers requirement [2, 3]. However, the de-
gree of unrolling should be minimised to control code size
and hence I-cache performance.

In our previous work, we designed a post-pass unrolling
algorithm which minimises the unrolling degree while ad-
justing the length of reuse circuits through the usage of ad-
ditional (free) registers [4]. In this paper, we complete our
study with an improved algorithm for minimising kernel
loop unrolling resulting from cyclic register allocation in the
presence of multiple register types showing that considering
all register types in conjunction provides a lower unrolling
degree than considering each register type in isolation. Inad-
dition, we integrate our solution within a real world embed-
ded system compiler: st200cc for the ST2xx family of VLIW
embedded processors and compare it to MVE. Our large
set of experiments on both high performance and embed-
ded benchmarks (SPEC2000, SPEC2006, MEDIABENCH
and FFMPEG) demonstrates the practical applicability and
the benefits of our approach.

1. Introduction
Many high performance or soft real-time applications, such
as telecom and image processing, exhibit intensive computa-
tions in loops. Software pipelining (SWP) is an important in-
struction scheduling technique for improving the execution
rate of these applications, by exploiting the instruction-level
parallelism (ILP) in loops [1, 5].

When a loop is software pipelined, we cannot use regular
register allocation algorithms because of self-interferences
in the usual interference graph [1, 3, 6]. In compiler con-

struction, when no hardware support is available, kernel loop
unrolling isthemethod of code generation that does not alter
the initiation interval after software pipelining. In fact, un-
rolling the loop allows us to avoid introducing unnecessary
move and spill operations after a periodic register allocation.

Our objective in this research effort is somewhat differ-
ent: we are interested in the minimal loop unrolling fac-
tor which allows a periodic register allocation for software
pipelined loops in the presence of multiple register types.
We also focus on generating an embedded VLIW loop with
reduced spill and code size, without necessarily reducing
the execution speed. Unlike high performance and intensive
computational fields, we are asked to generate a code with
equivalentperformance but with less memory operations.
We believe that an important code quality criterion is to have
a reduced amount of memory requests upon the condition of
not altering ILP scheduling and execution speed if possible.

In a target architecture with multiple register types (a.k.a.
classes), some of state-of-the-art algorithms [2, 3] propose to
compute thesufficient unrolling degreethat we should apply
to the loop so that it is always possible to allocate the vari-
ables of each register type with a minimal number of regis-
ters (MAXLIVE [7]). However, periodic register allocation
has long suffered from an important drawback: the resulting
unrolling factor can be very high. We recently proposed a
solution to dramatically reduce this cost when consideringa
single register type [4].

In this article, we extend our previous results in two
directions:

1. We first provide an efficient algorithm for minimising
loop unrolling in the presence of multiple register types,
for instance,T = {int, f loat, branch}. The minimal
loop unrolling degree is reached by exploiting the unused
registers to adjust the different weights of reuse circuits
generated for each register type, looking for a good dis-
tribution of those registers concurrently over all types.



Note that, the mathematical nature of the two problems
are not equivalent (single register type vs. multiple regis-
ter types). Indeed, if we have two or three types of regis-
ters, then we have two or three optimisation problems to
solve [4]. This paper solves them simultaneously by enu-
merating the feasible unrolling degrees and searching for
the minimal kernel loop unrolling among them.

2. Second, we implemented and integrated our code optimi-
sation method within the industrial compiler of STMicro-
electronics, allowing us to make extensive experiments
on real world high performance and embedded applica-
tions.

This paper is organised as follows. Sect. 2 presents some
relevant related work on code generation for periodic regis-
ter allocation. Sect. 3 formalises the problem of minimising
the loop unrolling degree in the presence of multiple register
types. Sect. 4 details our algorithmic solution for minimis-
ing loop unrolling. Sect. 5 presents detailed experimentalre-
sults on standard benchmarks (MEDIABENCH, SPEC2000,
SPEC2006, STMicroelectronics benchmark), showing that
our method is efficient in practice. Finally, we conclude.

2. Related Work
We detail in the following section two techniques that we
often refer in this paper. For a comprehensive bibliography
on register allocation problems we refer the reader to [8, 3]
which contain an extensive list of contributions in the area.

2.1 Modulo Variable Expansion

This method, proposed by Lam [1, 9], defines a minimal un-
rolling degree to permit code generation after a given peri-
odic register allocation. This unrolling degree is obtained by
dividing the length of the longest lifetime (LT ) of all reg-
ister types (maxt∈T (maxv LTv,t)) by the initiation interval
maxt∈T (maxv LTv,t)

II
. However, this method does not guaran-

tee for each typet, a register allocation with a minimal num-
ber of registers equal to MAXLIVE, the number of values
simultaneously alive for this register type. In general, aswe
will see in Sect. 5, it may lead to unnecessary spills or move
operations negating the benefits of SWP. These extra spill or
move operations may increase the initiation interval of the
SWP.

2.2 SIRA Reuse Graphs

Reuse graphsare a generalisation of the work previously
published by [10, 11] and are used inside a framework called
SIRA [2]. Unlike the previous approaches for periodic regis-
ter allocation, reuse graphs can be used before or after soft-
ware pipelining to generate a move-free or a spill-free peri-
odic register allocation. Reuse graphs give a formal method
to generate code without spill and without move operations
if loop unrolling is applied. A brief overview of reuse graphs
is illustrated in Fig. 1. Fig. 1(a) shows an initial DDG with

two register typest1 andt2. Statements which involve reg-
isters of typet1 are in dashed circles, and those of typet2
are in bold circles. Statementu1 writes two results of dis-
tinct types. Flow dependence through registers of typet1
are in dashed arcs, and those of typet2 are in bold arcs.
We associate a reuse graphGt

r with each register typet,
see Fig. 1(b). A reuse graphGt

r of register typet contains
only the nodes writing inside registers of typet. These nodes
are connected byreuse arcs. The existence of a reuse arc
(ut, vt) of distanceνt

u,v means that the two operationsut(i)
andvt(i + νt

u,v) share the same destination register. Hence,
reuse graphs completely define a periodic register allocation
for a given loop, either before SWP (unscheduled loop) or
after SWP (already scheduled loop). A formal theorem in
[2] proves that the number of allocated registers of typet is
equal toRmin,t =

∑
(u,v) νt

u,v if we unroll the loop with
a factor equal toαt. Fig. 1(b) represents a reuse graph that
allocates3 + 2 = 5 registers of typet1 and3 + 1 + 3 = 7
registers of typet2.

Each register typet requires an unrolling factorαt. If the
reuse graphGt

r contains multiple reuse circuitsC1, · · · , Ck,
then the weight of each reuse circuit is defined byµi,t =∑

(ut,vt)∈Ci
νt

u,v. The unrolling degree of typet is then
equal toαt = lcm(µ1,t, · · · , µk,t). For instance, the un-
rolling degree ofGt2

r in Fig. 1(b) is equal toαt2 = lcm(3 +
1, 3) = lcm(4, 3) = 12. Similarly, αt1 = lcm(3, 2) = 6.
The global unrolling degree that is valid for all register types
concurrently is equal toα = lcmt∈T (αt). For Fig. 1(b),
α = lcm(αt1 , αt2) = lcm(6, 12) = 12.

(1,0)

(3,2)
(3, 1)

(1,1)(2,0)

(1,2)

(a) Initial DDG (b) Reuse Graphs for Register Types t1 and t2
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Figure 1. SIRA Reuse Graphs

3. Loop Unrolling Problem
Code generation methods using loop unrolling [2, 3] have
long suffered from a drawback: the resulting unrolling fac-
tor α can be high. We recently proposed a solution to min-
imise the unrolling degree when considering a single register
type [4]. However, in the presence of multiple register types,
minimising the loop unrolling degree of each type seperately
does not lead to the minimal loop unrolling degree for the
whole loop. Fig. 2 illustrates an example. We want to min-
imise the loop unrolling degree of the initial reuse graph in
Fig 1(b), where two register typest1, t2 are considered. The
initial kernel loop unrolling degreeα = 12 is the LCM of



αt1 = 6 andαt2 = 12 which are respectively the LCM of
the different reuse circuits weights for each register type. In
this configuration, let assume that we haveRhw,tj

= 8 ar-
chitectural registers in the processor for each register type
tj . Hence we haveRt1 = Rhw,t1 − Rmin,t1 = 8 − 5 = 3
(respRt2 = 1) remaining registers for register typet1 (resp
t2). By applying the loop unrolling minimisation for each
register type separately [4] (Fig 2(a)), the minimal loop un-
rolling degree for each register type becomes:α∗

t1
= 3 for

register typet1 and α∗

t2
= 4 for register typet2. How-

ever, the global kernel loop unrolling degree is not minimal
α′ = lcm(α∗

t1
, α∗

t2
) = 12.

This paper describes how to find the minimal loop un-
rolling degreeα∗ for all register types concurrently. Our goal
is to exploit the remaining registers of each register type,
looking for a good distribution of those registers over all
types. In Fig 2(b), the final loop unrolling degree found with
this new method calledLoop Unrolling Minimisation(LUM)
is α∗ = 4 < α′. The minimal number of registers added
to each reuse circuit of each type are:r1,t1 = 1, r2,t1 = 0,
r1,t2 = 1, r2,t2 = 0. Note thatri,tj

is the number of registers
added to theith reuse circuit of the typetj . LUM guarantees
that the new number of allocated registers will not exceed
the number of architectural registers for each register type
tj ; Ralloc,tj

≤ Rhw,tj
.

(a) Minimising  Loop Unrolling for Each Register Type Separately 
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(b) Minimising Loop Unrolling for all Register Types Conjointly
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Figure 2. Modifying Reuse Graphs to Minimise Loop Un-
rolling Factor

In the next section, we give a formal description for min-
imising loop unrolling in the presence of multiple register
types.

3.1 Loop Unrolling Minimisation Problem

PROBLEM 1 (LUM). Letα be the initial loop unrolling de-
gree and letT = {t1, . . . , tn} be the set of register types.
For each register typetj ∈ T , let Rtj

∈ N be the number of

remaining registers after a periodic register allocation for
this register type. Letkj be the number of generated reuse
circuits. We assumeµi,tj

∈ N is the weight of theith reuse
circuit of the register typetj . For each reuse circuiti and
each register typetj , we must compute the additional regis-
tersri,tj

such that we find a new periodic register allocation
with a minimal loop unrolling degree. This can be described
by the following constraints:

1. α∗ = lcm(lcm(µ1,t1 + r1,t1 , . . . , µk1,t1 + rk1,t1), . . . ,
lcm(µ1,tn

+ r1,tn
, . . . , µkn,tn

+ rkn,tn
)) is minimal

2. ∀tj ∈ T ,

kj∑

i=1

ri,tj
≤ Rtj

Problem 1 proposes to exploit the remaining registers
of each type to adjust the weights of the different reuse
circuits, looking for an optimal distribution of those registers
concurrently over all types in order to find a new periodic
register allocation with a minimal loop unrolling degree.

The following section defines the search spaceS for the
minimal kernel loop unrollingα∗.

3.2 Search Space for Minimal Kernel Loop Unrolling

According to LCM properties and to the formulation of
Problem 1, the search spaceS for the minimal kernel loop
unrollingα∗ is bounded. In fact, three cases arise:

Case 1: No remaining registers for all register types In
this case, the initial loop unrolling degree cannot be min-
imisedα∗ = α.

Case 2: No remaining registers for some register types
Assume thatαj is the loop unrolling degree for the register
typetj ∈ T . By the way,α = lcm(α1, . . . , αn). We define
the subsetT ′ which contains all the register types such
that they have no remaining registers after periodic register
allocation (T ′ ⊂ T such thatT ′ = {t ∈ T | Rt = 0}).

In fact, if there are no registers left for these register
types, we cannot minimise their loop unrolling degrees
[4]. Therefore, the minimal global loop unrolling degree
α∗ ≥ αj ∀ tj ∈ T ′. By assumingα′ = lcmt∈T ′(αt), the
search spaceS is defined as follows:

S = {β ∈ N | β is multiple ofα′ ∧ α′ ≤ β ≤ α}

Here, each valueβ can be a potential final loop unrolling
degree.

Case 3: All register types have some remaining registers
The final loop unrolling factorα∗ is a multiple of each
updated reuse circuit weight (µi,tj

+ ri,tj
) with the number

of additional registers (ri,tj
) varied from 0 (no added register

for this circuit) toRtj
(all the remaining registers are added

to this circuit).
Furthermore, if we assume thatµkn,tn

is the maximum
weight of all the different circuits for all register types



(µkn,tn
= max

tj

(max
i

µi,tj
)) thenα∗ is a multiple of this

specific updated circuit (α∗ is a multiple of(µkn,tn
+rkn,tn

)
with 0 ≤ rkn,tn

≤ Rtn
). We notice here that any

reuse circuit satisfies this later property, but it is prefer-
able to consider the reuse circuit with a maximal weight
because it decreases the cardinality of the search space
S. Finally the search spaceS can be stated as follows:

S = {β ∈ N | β is multiple of(µkn,tn
+ rkn,tn

) , ∀rkn,tn
=

0, Rtn
∧ µkn,tn

≤ β ≤ α}
After describing the setS of all possible values ofα∗

(case 2 and case 3), the minimal kernel loop unrollingα∗ is
defined as follows:

α∗ = min{β ∈ S|∀tj ∈ T, ∃(r1,tj
, . . . , rkj ,tj

) ∈ N
kj

such that:
β = lcm(lcm(µ1,t1+r1,t1 , . . . , µk1,t1+rk1,t1), . . . , lcm(µ1,tj

+
r1,tj

, . . . , µkj ,tj
+rkj ,tj

), . . . , lcm(µ1,tn
+r1,tn

, . . . , µkn,tn
+

rkn,tn
)) ∧

kj∑

i=1

ri,tj
≤ Rtj

}

Here arises another problem: how to decide if the value
β can be a potential new loop unrolling. A proposition for
solving this problem is explained in the next section.

3.3 Fixed Loop Unrolling Problem

PROBLEM 2 (Fixed Loop Unrolling).Let β ∈ S be a fixed
loop unrolling degree and letT = {t1, . . . , tn} be the set of
register types.β can be a potential new loop unrolling iff we
find for each register typetj ∈ T , a minimal distribution
of the remaining registersRtj

between its reuse circuits
(µi,tj

) such that this new loop unrolling degreeβ satisfies
the following constraints:

1. β = lcm(lcm(µ1,t1 + r1,t1 , . . . , µk1,t1 + rk1,t1), . . . ,
lcm(µ1,tn

+ r1,tn
, . . . , µkn,tn

+ rkn,tn
))

2. ∀tj ∈ T

kj∑

i=1

ri,tj
≤ Rtj

In order to determine ifβ can be the new kernel loop un-
rolling, we propose to generalise theLCM-Problemsolu-
tion described in our previous work [4] for all register types.
The constraints in Problem 2 areLCM-Problemconstraints
which must be checked for all the register types.

In general, theLCM-Problemproposes to add to each
reuse circuitµi,tj

of each register typetj , a minimal num-
ber of registersri,tj

from the remainingRtj
registers such

thatµi,tj
+ ri,tj

is the smallest divisor of the fixed loop un-
rolling β greater or equal toµi,tj

. In this way, if the ad-
ditional registers, for each register type, do not exceed the

number of remaining registers
kj∑

i=1

ri,tj
≤ Rtj

, thenβ can

be the new loop unrolling degree.
However, in the presence of multiple register types, the

meaning is slightly different.β is, in fact, the least common

multiple of the loop unrolling for all the register types. On
the contrary, if we consider each register type separately,β

is not necessarily the least commom multiple of its different
updated reuse circuits weights, but a multiple of their least
common multiple.

The solution of theFixed Loop Unrolling Problemcon-
stitutes the basis of the solution forLoop Unrolling Minimi-
sation Problemexplained in the next section.

4. Solution for Minimal Loop Unrolling
In order to compute the minimal kernel loop unrollingα∗,
our solution consists of checking if each valueβ in the
search spaceS can be a solution for theFixed Loop Un-
rolling Problem: it is guaranteed that the minimum of all
these values is the minimal loop unrolling degree.

Instead of computing all valuesβ of S which satisfy
the Fixed Loop Unrolling Problemand finally taking the
minimal one, we describe in Fig. 3 an efficient way to find
the minimalα∗ depending on the construction of the setS.
Fig. 3 also illustrates the different cases of the construction
of the research spaceS. The value of each node represents
a potential new loop unrolling degree and an edge between
two nodesa, b (a → b) means thata < b and a dashed
edge between two nodes means the order is unknown. The
structure of the search space depends on the availablity of
the different types of registers :

• Case 1 (no registers left for all register types):no loop
unroll minimisation is possible,α∗ = α.

• Case 2 (no registers left for some register types):α∗ is multiple ofα′,
we apply the algorithm of Fixed Loop Unrolling Problem
to each node of Fig. 3 until we find a solution or until we
reach the last nodeα

• Case 3: some registers left for all register types:we
traverse the setS in the same way as described in [4].
If we assume thatµ = µkn,tn

(maximum weight of all
the different circuits for all register types) andR = Rtn

(remaining registers for the register typetn) then we
traverse the setS by proceeding line by line. In each line,
we apply the solution of Fixed Loop Unrolling Problem
to each node in turn until we find a value which satisfies
the constraints of Problem 2 or until we arrive at the last
line whereβ = α. If the valueβ of the nodei of the linej

is a solution for the Fixed Loop Unrolling Problem, then
we have two cases:

a) If the value of this node is less than the value of the
first node of the next line then we are sure that this
value is minimal (α∗ = β). This is because all the
remaining nodes are greater thanβ (by construction
of the setS).

b) Otherwise we have found a new value of unrolling
degree which is less than the originalα. We note
this new valueα” and we try once again to min-



imise it until we find the minimal (case a). The search
space becomes smaller (S′ = {β ∈ N|∀r = 0..R :
β is multiple of(µ + r) ∧ (j + 1) × µ ≤ β ≤ α”})

Case 2:  No remaining registers for some register types

<

Case 3:  Remaining registeres for all register types

Case 1:  No remaining registers for all register types

α

β = α′′

α

α
′

2 ∗ α
′

α∗
α

µ µ + 1 µ + 2 µ + R

2 ∗ µ 2 ∗ (µ + 1) 2 ∗ (µ + 2) 2 ∗ (µ + R)

3 ∗ µ 3 ∗ (µ + 1) 3 ∗ (µ + 2) 3 ∗ (µ + R)

α∗ = α

β = α′′

Figure 3. Loop Unrolling Values in the Search SpaceS

5. Experimental Results
In our study, we take the ST231 embedded VLIW processor
as a target. It is currently the latest processor of the ST2xx
family from STMicroelectroncis. ST231 is an integer 32 bits
VLIW processor [12]. The size of theL1 I-cache and D-
cache is32 KB each. For our experiments, we consider the
two register types of ST2xx,T = {general, branch}. The
number of architectural registers of each register type is con-
figured as follows:Rarch,general= 32× 32 bits ,Rarch,branch=
4× 1-bit.

Our loop unrolling minimisation method is independent
of the technique used for periodic register allocation. Conse-
quently, it can be performed after any periodic register allo-
cation technique. For the purpose of our study, we chose to
develop a new version of SIRA [2] implementing a periodic
register optimisation with loop unrolling minimisation inthe
presence of multiple register types. Then, we integrated our
SIRA optimiser inside the st200cc compiler from STMicro-
electroncis.

To study the efficiency of our loop unrolling minimisa-
tion, we conducted an extensive set of experiments on both
high performance and embedded benchmarks: SPEC2000,
SPEC2006, MEDIABENCH and ST FFMPEG internal
benchmark; FFMPEG is a representative video multimedia
application which is used with the ST231. The experiments
were performed on close to 9000 software pipelined loops.

First, our experiments show that the run-time of our regis-
ter allocation followed by loop unrolling minimisation is less
than 1 second per loop on average (on a 3.4 GHz Pentium D).

So, it is fast enough to be included inside an industrial cross
compiler such as st200cc.

The following sections present our experiments. We fo-
cus on the benefit of our new method comapred to MVE (in
terms of code size, spill reduction, move reduction, and II
increase). In order to have an idea of the different results,
we chose to graph them as boxplots, which are a conve-
nient way of graphically depicting groups of numerical data
through their five-number summaries: the smallest observa-
tions, lower quartile (Q1 = 25%), median (Q2 = 50%),
upper quartile (Q3 = 75%), and largest observations.

5.1 Statistics on Minimal Loop Unrolling Factors

Fig. 4 shows numerous boxplots representing the initial
loop unrolling degree and the final loop unrolling degree
of the different loops per benchmark application. In each
benchmark family (FFMPEG, MEDIABENCH, SPEC2000,
SPE2006), we note that the loop unrolling degree is reduced
significantly from its initial value to its final value.

To highlight the improvements of our loop unrolling min-
imisation method, we show in Fig. 5 a boxplot for each
benchmark family (FFMPEG, SPEC2000, SPEC2006, ME-
DIABENCH). We remark that the final loop unrolling of half
of the applications is under3 and that the final loop unrolling
of 75% of applications is less than or equal to 5. This com-
pares favourably with the loop unrolling degrees calculated
by minimising each register type in isolation. Here, the fi-
nal loop unrolling degree of half of the applications is under
5 and the final loop unrolling of75% of the applications is
under7, the final loop unrolling for the remaining loops can
reach50. These numbers demonstrate the advantage of min-
imising all register types concurrently.

In order to compare our method with modulo variable ex-
pansion (MVE [1]), we also plot in Fig. 5 the loop unrolling
degree obtained thanks to MVE. The MVE heuristic always
finds a smaller unrolling degree. However, MVE does not
guarantee a register allocation with a minimal number of
registers and in general it may lead to unnecessary spills
breaking the benefits of SWP. In other words, MVE may re-
quire spill code insertion even if MAXLIVE does not exceed
the number of architectural registers. This problem occursin
254 loops of FFMPEG, 405 loops of MEDIABENCH, 1270
loops of SPEC2000 and 571 loops of SPEC2006.

With our loop unrolling register allocation method, we
formally guarantee that we do not need, for each register
type, more registers than the number of architectural regis-
ters. In addition, a suitable quality criterion is to check if the
unrolled loops fit in the I-cache. Fortunately, our experimen-
tal results show that using loop unrolling technique, all the
unrolled loops also fit in the I-cache, even if our unrolling
factors are higher than those computed by MVE.

The next section demonstrates that loop unrolling min-
imisation is a better choice than MVE due to the reduction
in spill code and move operations.
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Figure 5. Loop Unrolling Minimisation versus MVE

erations by10− 20% : we reduce the amount of move oper-
ations by18.92% for FFMPEG,9.61% for MEDIABENCH,
14.17% for SPEC2000 and18.21% for SPEC2006.

The way in which SIRA adds arcs to the DDG before
software pipelining may in theory increase the critical cir-
cuits (minII) and modify ILP scheduling. This is studied in
the next section.

5.3 Statistics on II increase

Our cyclic register allocations and loop unrolling minimisa-
tion are performed before SWP. It may be argued that intro-
ducing arcs inside DDGs before software pipelining would
alter the ILP scheduling quality, since extra constraints are
added. In practice, this is not the case because the usual soft-
ware pipelining heuristics are not optimal. This means that
even if we introduce additional arcs (either with or without
increasing minII), this does not necessarily increase the II.
The mean ofII increase is resp.1.56% for FFMPEG,0.05%
for MEDIABENCH, 1.66% for SPEC2000 and0.09% for
SPEC2006. As can be seen, the average of II increase is neg-
ligible in all benchmarks.

6. Conclusion
We presented, in this article, an efficient algorithm to min-
imise kernel loop unrolling resulting from the periodic regis-
ter allocation in the presence of multiple register types. Our
experiments on the embedded VLIW processor ST231 cover
a wide range of high-performance and embedded bench-
marks (FFMPEG, MEDIABENCH, SPEC2000, SPEC2006).
These experiments demonstrate the practical applicability
and the benefits of our approach: as our periodic register al-
location is applied before software pipelining, it avoids the
uncontrolled generation of spill code. Regarding the initia-
tion intervals, the increase is negligible on average, and al-
ways less than 1.6% on average. Furthermore, thanks to loop
unrolling minimisation, all the loops fit into the I-cache. The
total amount of registermove operations is reduced, yet still

over18% for FFMPEG and SPEC2006,14% for MEDIA-
BENCH and9% for SPEC2000.

If code size is more critical, fitting the loops inside the
I-cache may not always be satisfactory as a quality criteria.
In this case, we have still some opportunities to reduce loop
unrolling factors by exploitingmove operations. This is our
current research direction that may combine loop unrolling
with move insertions.
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