
Conditional labelling for abstract argumentation

Guido Boella1, Dov M. Gabbay2, Alan Perotti1,
Leendert van der Torre3, Serena Villata4

1 Dipartimento di Informatica, Università di Torino {guido,perotti}@di.unito.it
2 King’s College London dov.gabbay@kcl.ac.uk

3 ICR, University of Luxembourg leon.vandertorre@uni.lu
4 INRIA, Sophia Antipolis serena.villata@inria.fr

Abstract. Agents engage in dialogues having as goals to make some
arguments acceptable or unacceptable. To do so they may put forward
arguments, adding them to the argumentation framework. Argumenta-
tion semantics can relate a change in the framework to the resulting
extensions but it is not clear, given an argumentation framework and a
desired acceptance state for a given set of arguments, which further ar-
guments should be added in order to achieve those justification statuses.
Our methodology, called conditional labelling, is based on argument la-
belling and assigns to each argument three propositional formulae. These
formulae describe which arguments should be attacked by the agent in
order to get a particular argument in, out, or undecided, respectively.
Given a conditional labelling, the agents have a full knowledge about
the consequences of the attacks they may raise on the acceptability of
each argument without having to recompute the overall labelling of the
framework for each possible set of attack they may raise.

1 Introduction

Agents engage in dialogues having as goals to make some arguments acceptable
or unacceptable: for instance, agent A wins the auction or agent B is proven
guilty. At each turn, an agent owns a set of possible arguments she can add to
the framework: each addiction of further arguments to the framework is called a
move. Argumentation semantics allow us to relate the introduction of a new ar-
gument (a move) to the resulting justification status of an argument (the goal):
for instance, if you defeat argument α then argument β will be labeled undec.
What is missing is a mechanism for making inferences from goals to moves: sup-
pose an agent wants to make an argument β undec. How can she compute which
arguments to add in order to achieve this goal? What she can do is to try and
simulate the introduction of every possible argument she owns to the framework
and then compute β’s resulting label, comparing it to her goal. Beside this ex-
haustive approach there is no way, so far, for an agent to know which move to
make in order to achieve her goal. Since reaching a goal may require the insertion
of several arguments, the complexity of the exhaustive approach is exponential
(cardinality of the powerset) over the number of arguments an agent can add to

the framework.

The research question of the paper is:

– How to change an abstract argumentation framework, by introducing new
arguments and their associated attacks, in order to have one or more argu-
ments accepted or rejected?

Suppose that two agents, Ag1 and Ag2, initiate a dialogue. Ag1 proposes
argument a, as depicted in Figure 1.1. Assume that Ag2 wants to defeat Ag1’s
argument but we have that argument a is in, and the only way to have it
labelled out is to attack it. Thus, Ag2 attacks a with her new argument b,
defeating it. At this turn, as shown in Figure 1.2, it is up to Ag1 to decide
how to proceed in the dialogue. She wants to have her argument a accepted,
so she puts forward argument c which attacks b, obtaining the framework in
Figure 1.3. In this basic framework, it is straightforward to see which arguments
the agents should attack in order to get their arguments accepted. In more
complex argumentation frameworks, where also cycles are involved, it is less
simple to detect these arguments; consider the framework depicted in Figure 2:
it contains loops and multiple attacks. Suppose that an agent wants to defend
argument i: it is not intuitive at all to see which potential modifications of the
framework allow her to do that. Moreover, if she has a set Aag of arguments she
may add to the framework, she may have to run 2|A

ag| tests in order to find out
whether she can defend i, thus making this process’ complexity dependent on
the number of possible moves she has.

a

a b

a b c

(1)

(2)

(3)

Fig. 1: An argumentation framework with a basic reinstatement.

l

a b e

g ji k

c d

h

f

Fig. 2: A more complex argumentation framework.

Thus, the research question breaks down into the following subquestions:

1. What kind of information can we associate to each argument concerning
its possible justification statuses depending on the acceptability of other
arguments in the framework?

2. How to compute this information in an efficient way?

We deal with abstract argumentation frameworks [3], where the internal
structure of the arguments is left unspecified. We are inspired by Caminada’s
labelling [2], which assigns to each argument a label in, out, undec, and we ex-
tend this idea by assigning a triple of propositional formulae, called conditional
lables, to every argument in the framework. These formulae are a guide in the
dialogic process and suggest which move should be made next. For instance,
considering the framework of Figure 1.3, the conditional label of a for making
it accepted is the emptyset because a is already in and no “move” is needed
to get it accepted. The conditional label, instead, for making a unaccepted is
a ∨ c, because a can be defeated by defeating a itself or c. Depending on the
further arguments at her disposal, an agent may not be able to directly defeat an
argument and therefore giving all alternatives is required. Conditional labelling
assigns a conditional label to each abstract argument in the framework, even if
the framework involves one or more cycles.

The implementation of the algorithm of conditional labelling deals with a
number of complexity issues, mostly due to loops in the argumentation frame-
works: some preprocessing techniques allow to speed up the performances dis-
played by a straightforward implementation of the conditional labels’ theoretical
definition.

In this paper, we are interested in introducing the basic ideas of the con-
ditional labelling and explain it using a number of examples. We do not treat
belief revision, and we restrict our examples to grounded semantics.

The paper is organized as follows: Section 2 provides the basic concepts of
argumentation theory, Section 3 introduces the conditional evaluation of argu-
ments, Section 4 discusses an algorithmical definition of the conditional labelling
and some possible optimizations for implementation. Finally, some conclusions
are drawn.

2 Background

We provide the basic concepts and insights of Dung’s abstract argumentation [3].

Definition 1. (Abstract argumentation framework) An abstract argumentation
framework is a pair �A,→�. A is a set of elements called arguments and →⊆
A×A is a binary relation called attack. We say that an argument Ai attacks an
argument Aj if and only if (Ai, Aj) ∈→.

Definition 2. (Conflict-free, Defence) Let C ⊆ A. A set C is conflict-free if
and only if there exist no Ai, Aj ∈ C such that Ai → Aj. A set C defends an
argument Ai if and only if for each argument Aj ∈ A if Aj attacks Ai then there
exists Ak ∈ C such that Ak attacks Aj.

Definition 3. (Acceptability semantics) Let C be a conflict-free set of argu-
ments, and let D : 2A �→ 2A be a function such that D(C) = {A|C defends A}.

– C is admissible if and only if C ⊆ D(C).
– C is a complete extension if and only if C = D(C).
– C is a grounded extension if and only if it is the smallest (w.r.t. set inclusion)

complete extension.
– C is a preferred extension if and only if it is a maximal (w.r.t. set inclusion)

complete extension.
– C is a stable extension if and only if it is a preferred extension that attacks

all arguments in A \ C.

The concepts of admissibility, as well as those of Dung’s semantics are origi-
nally stated in terms of sets of arguments. It is equal to express these concepts
using argument labeling. This approach has been proposed firstly by Jakobovits
and Vermeir [4] and then by Caminada [2] with the aim to provide quality pos-
tulates for dealing with the reinstatement of arguments. The simplest example
of reinstatement is: argument A1 attacks argument A2 and argument A2 attacks
argument A3. We have that argument A1 reinstates argument A3, i.e., it makes
argument A3 accepted by attacking the attacker of A3. In a reinstatement la-
beling [2], an argument is labeled “in” if all its attackers are labeled “out” and
it is labeled “out” if it has at least an attacker which is labeled “in”.

Definition 4. (AF-labeling) Let �A,→� be an abstract argumentation frame-
work. An AF-labeling is a total function lab : A → {in, out, undec}. We
define in(lab) = {Ai ∈ A|lab(Ai) = in}, out(lab) = {Ai ∈ A|lab(Ai) = out},
undec(lab) = {Ai ∈ A|lab(Ai) = undec}.

Definition 5. (Reinstatement labeling) Let lab be an AF-labeling. We say that
lab is a reinstatement labeling if and only if it satisfies the following:

– ∀Ai ∈ A : (lab(Ai) = out ≡ ∃Aj ∈ A : (Aj → Ai ∧ lab(Aj) = in)) and
– ∀Ai ∈ A : (lab(Ai) = in ≡ ∀Aj ∈ A : (Aj → Ai ⊃ lab(Aj) = out)) and
– ∀Ai ∈ A : (lab(Ai) = undec ≡ ∃Aj ∈ A : (Aj → Ai ∧ ¬(lab(Aj) = out)) ∧

�Ak ∈ A : (Ak → Ai ∧ lab(Ak) = in).

3 Conditional labels

Our goal is to enrich each argument with some information about his vulner-
ability, i.e., we want to know how this argument could be successfully (even
if indirectly) attacked, defended or made undecided. Our proposal is to attach
three formulae to each argument, meaning respectively

– Which arguments should I attack in order to have this argument labelled
in?

– Which arguments should I attack in order to have this argument labelled
out?

– Which arguments should I attack in order to have this argument labelled
undec?

Given an argumentation framework �A,R�, we associate to each argument α
three formulae: α+, α−, α?. We indicate a generic formula associated to argument
α as α∗. The language of the formulae is the same:

Definition 6. (Language of conditional labels)

– if β ∈ A, β◦ is a formula.
– � and ⊥ are formulae
– if α∗

1 and α∗
2 are formulae, also α∗

1 ∧ α∗
2 and α∗

1 ∨ α∗
2 are.

We will refer to α+ (respectively: α−, α?) formulae as green (red, grey) formulae.

The interpretation of the formulae is: a green formula α+, if satisfied, guar-
antees that the related argument α is accepted (labelled in). The same holds for
red formulae for out labels and grey formulae for undec labels respectively. The
atoms of those formulae are argument names β◦ or the special values �,⊥.

– β◦ means you have to defeat argument β (to reach your goal)
– � means you do not need to do anything (to reach your goal)
– ⊥ means you can not do anything (to reach your goal)

Figure 3 provides a simple example of a framework with conditional labels.

a

a b

a b c

(1)

(2)

(3)

a+ : ⊤
a- : a°
a? : ⊥

a+ : b°
a- : ⊤
a? : ⊥

b+ : ⊤
b- : b°
b? : ⊥

a+ : ⊤
a- : a° v c°
a? : ⊥

b+ : c°
b- : ⊤
b? : ⊥

c+ : ⊤
c- : c°
c? : ⊥

Fig. 3: An argumentation framework with a basic reinstatement and conditional labels

– Figure 3.1: There’s no need to modify the framework in order to achieve
a’s acceptability (it is already labelled in) (a+ : �); to defeat a you have
to defeat a (a− : a◦), you can not make a undecidable by defeating any
combination of the arguments of the framework (a? :⊥).

– Figure 3.2: a can be reinstated defeating b (a+ : b◦), a is already out (a− :
�); b is already in (b+ : �) and can only be defeated by being directly
defeated (b− : b◦); no argument can be made undecidable by defeating any
combination of the arguments of the framework (a?, b? :⊥).

– Figure 3.3: a is in (a+ : �) and can be defeated by defeating a itself or c
(a− : a◦ ∨ c◦); b is out (b− : �) and can be reinstated defeating c (b+ : c◦); c
is in (c+ : �) and can only be defeated by direct (and successful) attack (c− :
c◦); no argument can be made undecidable by defeating any combination of
the arguments of the framework (a?, b?, c? :⊥).

Now we can introduce a more formal definition of what conditional labels are
and what can be used for.

Definition 7. (dnf,makeset)
Let Γ be a propositional formula. dnf (Γ) is the normalization of Γ in Disjunctive
Normal Form.
Let makeset(

�
i

�
j α

i
j) = {{α1

1,α
1
2, ..,α

1
p}, {α2

1,α
2
2, ..,α

2
q}, .., {αn

1 ,α
n
2 , ..,α

n
m}}.

This function translates a dnf-formula in a set of sets of atoms, where each
set corresponds to a conjunctive subformula of the dnf-formula in input. For in-
stance, dnf (a◦∧(b◦∨c◦)) = (a◦∧b◦)∨(a◦∧c◦) and makeset((a◦∧b◦)∨(a◦∧c◦)) =
{{a, b}, {a, c}}.

Definition 8. (L(α, �A,R�))
Let L(α, �A,R�) be the label of argument α in the framework �A,R�.

Definition 9. (defeat)
Let U be the universe of arguments and A ⊂ U , let AF = �A,R� be an abstract
argumentation framework and let α ∈ U\A. defeat(α) = {β | β ∈ A,L(β, �A ∪
{α}, R�) = out}.

This function gives information about which arguments β of a framework are
defeated inserting a new argument α into it. For instance, considering the frame-
work in Figure 1.c with A = a, defeat(b)={a}, defeat(c)={∅}. The definition of
defeat can be easily extended for sets of arguments: it will point out which argu-
ments of a framework are defeated by inserting a set of new arguments. For in-
stance, considering the framework in Figure 1.c with A = {a}, defeat({b, c})={∅}

A move M is the insertion of a set of arguments into the framework: in the
previous example, ∅, {b}, {c} and {b, c} are (possible) moves. Applying a move

M = {α1, ..,αn} to a framework AF = �A,R� transforms it into a new frame-
work AFM = �{A ∪M}, R�.

Definition 10. (js)
Let js be this function: js(+) : in, js(−) : out, js(?) : undec.

Definition 11. (Conditional labels’ structure)
A conditional label αi : bodyiα (where α is an argument, i ∈ {+,−, ?} and bodyiα
is a propositional formula) is a relation between a justification status and a set
of targets.

– The justification status is expressed by the head of the label: αi means that
α is labelled js(i).

– The set of targets is expressed by the body of the label, and it consists in a
set of sets of argument to defeat.

Definition 12. (Conditional labels’ use)
Given a framework AF = �A,R�, an argument α ∈ A with label αi : bodyiα and
a move M ,

(defeat(M) ∈ makeset(dnf(bodyiα))) ⇒ L(α, AFM) = js(i)

This means: when we modify a framework via a move M we can defeat a set
of arguments defeat(M). If this set is one of the allowed target sets for the condi-
tional label of an argument α (that is, if this set belongs to makeset(dnf (bodyiα))
for some α, i), then the labelling of α in the resulting framework will be the one
expressed by the head of the label αi (that is, js(i)).

In the next sections we will explain how to associate labels to arguments.
Problems arise when cycles (loops) are introduced in the framework, since they
introduce undecided labels and the same argument could be given different la-
bels according to different semantics. In this paper we focus on the grounded
semantics, since it always allows to compute one single labelling.

4 Creating conditional labels

The formal definition of conditional labels we gave is not constructive and there-
fore the issue about how to actually compute conditional labels has to be ad-
dressed. One of the key aspects of argumentation frameworks is the possibility
for arguments to influence their own justification status through loops: this is
a global property of the framework which is hard to instantiate on a single ar-
gument. A first approach could be considering the unfolding of the graph, but
this can not be done for two main reasons: first of all, breaking the loops causes
an irreparable loss of information (and therefore one could end up computing
conditional labels for a completely different framework); secondly, the number of
unfolding could be exponential over the number of arguments: in this case, the

overall complexity is the same of the exhaustive approach (try all combinations
of attacks and see what happens), thus making the whole process pointless.

Our approach is to assign to each argument a triple of local labels (that is,
labels created by only taking into account the attackers of the argument) and
then use a substitution mechanism to generate the final labels.
The local labels correspond to:

a+ =
�

b s.t. (b,a)∈R

b−

The meaning of this formula is: in order to ensure a’s acceptance, all of a’s
attackers must be out.

a− = a◦ ∨
�

b s.t. (b,a)∈R

b+

The meaning of this formula is: in order to ensure a’s rejection, either a is
defeated or one of a’s attacker is accepted.

a? =

�

b s.t. (b,a)∈R

b?

 ∧

�

b s.t. (b,a)∈R

b− ∨ b?

The meaning of this formula is: in order to have an argument undecided, at least
one of its attackers has to be undecided and all of them must be in or undecided.
Note that this definition of grounded semantics mirrors Dung’s original formu-
lation.
The a◦ in the second formula means a has to be defeated and no substitution is
required; obviously b+, b− and b? refer to other formulae and have to be substi-
tuted to the actual formulae they refer to.

After this initial definition, the substitution process takes place. It consists
in substituting the references to other labels to those labels’ actual values.

Simplifications need to be specified:

– � ∨ α � � (you either do nothing or do α: doing nothing is more convenient)

– ⊥ ∨ α � α (you can either fail or do α: in order to succeed you have to do α)

– � ∧ α � α (you have to both do nothing and α, therefore α)

– ⊥ ∧ α � ⊥ (you fail and you have to do α: you still fail)

– α ∧ α � α
– α ∨ α � α
– α ∨ (α ∧ β) � α
– α ∧ (α ∨ β) � α

Consider again the framework in Figure 1.3 (reinstatement a-b-c). The initial
conditional labels are:

– a+: �, a−: a◦, a?: ⊥

– b+: a−, b−: a+ ∨ b◦, b?: a? ∧ (a? ∨ a−)
– c+: b−, c−: b+ ∨ c◦, c?: b? ∧ (b? ∨ b−)

Substituting in b∗ we get:

– b+: a◦, b−: � ∨ b◦, b?: ⊥ ∧ (⊥ ∨ a◦)

And after simplifying:

– b+: a◦, b−: �, b?: ⊥

Doing the same for c∗ we get the conditional labels:

– a+: �, a−: a◦, a?: ⊥
– b+: a◦, b−: �, b?: ⊥
– c+: �, c−: a◦ ∨ c◦, c?: ⊥

The conditional labels give us information about the ’static’ Caminada labelling
of the arguments and also provides us information about what minimal set of ar-
guments we should defeat in order to assign a certain label to a certain argument.

In case of loops, new problems arise: the substitution mechanism can end up
visiting the same node multiple times, so some termination techniques have to
be addressed. Consider, for instance, the framework AF = �{a}, {(a, a)}�. Com-
puting the conditional labels without termination techniques we obtain:

– a+ : a− = a+ ∨ a◦ = a− ∨ a◦ = a+ ∨ a◦ ∨ a◦ � a+ ∨ a◦ = ...
– a? : a? ∧ (a? ∨ a−) � a? = a? ∧ (a? ∨ a−) � ...

Simplification rules keep the size of formulae under control, but both in a+ and
a? we end up cycling among the same set of labels without termination. The
main consideration is that, according to the definition we have given so far, the
substitution process goes on until it reaches unattacked arguments (the only ones
which do not require further substitution). But if a framework’s component is
a loop with no ingoing arcs, this will never happen. Moreover, considering the
a+ label in the previous example, one could notice that both a+ and a− appear
in the label: this is, intuitively, an unsatisfiable request. Therefore, termination
rules have to be applied.

Let i, j ∈ {+,−, ?}. If αi appears in the body of αj :

– if i = j =?, αi � �
– else, αi � ⊥

We express our termination conditions as simplification rules; the meaning is the
following: if, substituting in the body of a conditional formula for an argument
α, I reach a conditional formula over the same argument, I know α belongs to a
loop. So in this case the a? label is satisfied while a+, a− are not: if I found no
way to give this argument a in-out label navigating whole loop, It is pointless
to go through the whole loop again.
Applying these rules to the previous example we get:

– a+ : a− � ⊥
– a− : a+ ∨ a◦ � ⊥ ∨ a◦ � a◦

– a? : a? ∧ (a? ∨ a−) � a? � �

which is exactly what we want to obtain: there’s no way to make a in (a+ : ⊥),
a can be directly defeated (a− : a◦), a is already undec so there’s no need to do
anything in order to make it undec (a? : �).

Now a few simple examples.
Consider Figure 4.1. The basic labels are:

a b a b c

(1) (2)

Fig. 4: Basic frameworks

– a+ : b−, a− : b+ ∨ a◦, a? : b?

– b+ : a−, b− : a+ ∨ b◦, b? : a?

Solving the labels, for a we get a+ : b◦, a− : a◦, a? : �, and this is exactly what
we want to obtain.
Consider Figure 4.2. The basic labels are:

– a+ : �, a− : a◦, a? : ⊥
– b+ : a− ∧ c−, b− : a+ ∨ c+ ∨ b◦, b? : (a? ∨ c?) ∧ (a− ∨ a?) ∧ (c− ∨ c?)
– c+ : b−, c− : b+ ∨ c◦, c? : b?

Consider argument b: it is out, but can be labelled in if we attack both a and c or
undec if we attack a (thus activating the b−c loop). We compute the conditional
labels in the following way:

b+ : a− ∧ c−

= a ∧ (b+ ∨ c◦)
= a◦ ∧ (⊥ ∨ c◦)
� a◦ ∧ c◦ (b can be labelled in by defeating a and c)

b− : a+ ∨ c+ ∨ b◦

= � ∨ b− ∨ b◦

= � ∨⊥ ∨ b◦

� � (no move is required in order to label b out)

b? : (a? ∨ c?) ∧ (a− ∨ a?) ∧ (c− ∨ c?)
= (⊥ ∨ b?) ∧ (a◦ ∨ ⊥) ∧ ((b+ ∨ c◦) ∨ b?)
� (b?) ∧ (a◦) ∧ ((b+ ∨ c◦) ∨ b?))
= (b?) ∧ (a◦) ∧ ((⊥ ∨ c◦) ∨ �)
� (b?) ∧ (a◦) ∧ (�)
= (�) ∧ (a◦) ∧ (�)
� a◦ (b can be labelled undec by defeating a)

Our approach can be decomposed in four phases:

1. associate each argument to three base labels
2. compute conditional labels by substitution
3. find target sets (for instance, by dnf-normalizing the formulae)
4. find a move such that it satisfies a target set of the goal formula.

The biggest challenge lies in step (2), because the substitution process for each
formula has the size of the framework as upper bound and the same substitutions
take place several times, especially in highly connected frameworks. A support
for implementation can be a preprocessing phase of loop detection: loops are
the main cause of complexity in label substitution, and knowing which loops an
argument belongs to can help propagating activation-deactivation conditions.
We call active a loop of arguments such that all arguments are labelled undec
under grounded semantics, not active otherwise. Attacking some argument in
order to make the arguments of the loop switch from undec to in or out is what
we call deactivating the loop; we call the opposite process activating the loop.
For instance, in the framework in Figure 5.1, the b-c-e-f loop is active.

cb h

fe i

g

ld

a

m

Fig. 5: Frameworks with loops

Some conditional labels are:

– b+ : c◦ ∨ e◦ ∨ a◦ = f+ = c− = e−

– b− : b◦ ∨ f◦ = f− = c+ = e+

– b? : � = f? = c? = e?

According to the definition and the substitution algorithm, all those labels would
be computed sequentially. But they just mirror the possible deactivations of the
cycle, splitted in two sets according to the position (even/odd) of arguments
along the cycle. So detecting the cycle one could compute the conditional labels

of a single argument and then copy them (alternating from green to red formulae
according to even/odd path) for each argument in the loop. This also holds for
activation conditions for not active loops (like the one in Figure 5.2) and can be
easily extended to odd-length cycles.
Therefore, loop detection can be a major improvement for our algorithm’s per-
formances.
We developed a methodology based on computing the powers of the adjacency
matrix of the graph. Consider the framework in Figure 6: there is a single loop
(a) and two bigger ones (b-c and d-e-f), plus edges which do not belong to loops.
The adjacency matrix of the framework is represented in Table 1 (let it be m1).

b

c fe

d

a

Fig. 6: Frameworks with loops

a b c d e f
a 1 1 1 0 0 0
b 0 0 1 0 0 0
c 0 1 0 0 0 0
d 0 0 1 0 0 1
e 0 0 0 1 0 0
f 0 0 0 0 1 0

Table 1: Adjacency matrix for the framework in Figure 6

In fact, m1 gives us information about self-loops in the framework: the argu-
ments attacking themselves correspond to the 1 on the main diagonal of m1: in
our example, a. We express this property as a ∈ diagonal(m1)
But what happens if we computem2 = m1∗m1? On the n-th element of the main
diagonal of m2 we will have a 1 iff the n-th argument is able to reach itself in n
steps: that is, if it belongs to a n-deep loop. This is easy to constructively prove
by showing how a multiplication between matrices is made. So, for a framework
AF = �A,R� with | A |= n we can just compute m2, m3, .. mn to detect all
loops.

Table 2: powers of adjacency matrix

m2 a b c d e f
a 1 1 1 0 0 0
b 0 1 0 0 0 0
c 0 0 1 0 0 0
d 0 1 0 0 1 0
e 0 0 1 0 0 1
f 0 0 0 1 0 0

m3 a b c d e f
a 1 1 1 0 0 0
b 0 0 1 0 0 0
c 0 1 0 0 0 0
d 0 0 1 1 0 0
e 0 1 0 0 1 0
f 0 0 1 0 0 1

m4 a b c d e f
a 1 1 1 0 0 0
b 0 1 0 0 0 0
c 0 0 1 0 0 0
d 0 1 1 0 0 1
e 0 0 1 1 0 0
f 0 1 0 0 1 0

Note that in m1 we detect a, in m2 b and c, in m3 d,e,f and no new loop is
detected in m4. Notice that α ∈ diagonal(mp) ⇒ α ∈ diagonal(mk∗p), ∀k ∈ N.
For instance, in the previous example, a ∈ diagonal(mp)∀p > 0 and b, c ∈
diagonal(m2), diagonal(m4).. This redundancy of information can be overcome
by cross-checking or by removing the elements on the diagonal of the adjacency
matrix before multiplying it again.
The number of arguments is the upper bound for loop depths but can be nar-
rowed down in several ways, for instance by detecting connected components
or pruning siphons and traps: in the first case, the deepest loop consist of the
maximal values over the number of arguments of each connected component;
in the second one, siphons and traps obviously can not be part of loops, thus
allowing the lowering of the upper bound.

5 Related Work

Conditional labelling is closely related to the dialogues games [5, 1]. In argu-
mentation theory, such games regulate dialogues where two parties argue about
the tenability of one or more claims or arguments, each trying to persuade the
other participant to adopt their point of view. Such dialogues are often called
persuasion dialogues. Among others, Prakken [5] presents a formal framework
for a class of argumentation dialogues, where each dialogue move either attacks
or surrenders to a preceding move of the other participant. For instance, each
claim, why and since move is viewed as an attacking and each concede move is
a surrendering reply.

Amgoud and Hameurlain [1] argue that a strategy is a two steps decision
process: i) to select the type of act to utter at a given step of a dialogue, and
ii) to select the content which will accompany the act. The first step consists
of selecting among all the acts allowed by the protocol, the best option which
according to some strategic beliefs of the agent will at least satisfy the most
important strategic goals of the agent. The second step consists of selecting
among different alternatives, the best one which, according to some basic.

Roth et al. [6] start from two principles: i) the outcome of a dispute depends
on the strategies actually adopted by parties, but ii) this does not mean that
the outcome can never be predicted because by using game theoretical solution

concepts, the actions themselves can often be found. They use defeasible logic
in combination with standard probability calculus in order to prove that a de-
feasible proof holds, on the basis of the probabilities assigned to the premises.
This probability of a claim was then interpreted in the game theoretical sense
as the payoff for the proponent of the claim.

In comparison with this kind of frameworks, we share the idea that the first
step consists in choosing the next move depending on the strategies of the agents.
The differences are that we are not interested in providing a complete framework
for argumentation dialogues games, we aim at providing a tool which can be
used in those systems and which can be integrated with strategies. We do not
restrict our framework to deal with two agents, and we extend the well-known
argumentation labelling in order to provide a complete information about the
argumentation framework on which it is applied.

6 Summary

In this paper, we present a new kind of argument labelling, called conditional
labelling. Conditional labelling allows to associate to each argument the infor-
mation concerning its possible justification statuses, depending on the changes
in the framework. In particular, we express this information by means of propo-
sitional formulae which express which arguments should be attacked in order to
get the desired argument accepted, not accepted, or undecided. While it is quite
straightforward to assign those conditional labels in argumentation frameworks
without cycles and multiple attacks, it is rather complicated in the general case.
When an argumentation framework with cycles is considered, it is possible to
have in the conditional label α∗ of an argument another α∗ because the condi-
tional labelling algorithm, using substitution, looks for all the attackers of the
node until it finds the node itself. The conditional labelling allows the agents to
avoid the exhaustive search of all the possible combinations in adding new argu-
ments, and decreases exponential complexity this search requires. Loop detection
via powers of the adjacency matrix is proposed as a preprocessing mechanism
to compute common labels among the arguments in a loop.
Future work addresses several issues: from a purely argumentative perspective, it
would be nice to find out how conditional labels can be useful after a move: that
is, if the previous information can be used to compute new conditional labels
after the framework has been modified. Associating a cost concept to moves,
our labelling lets agents link action costs to goals’ outcomes, and can therefore
be used as an underlying mechanism to develop strategies in a game theoretical
context.

References

1. L. Amgoud and N. Hameurlain. A formal model for designing dialogue strategies.
In H. Nakashima, M. P. Wellman, G. Weiss, and P. Stone, editors, AAMAS, pages
414–416. ACM, 2006.

2. M. Caminada. On the issue of reinstatement in argumentation. In M. Fisher,
W. van der Hoek, B. Konev, and A. Lisitsa, editors, JELIA, volume 4160 of Lecture
Notes in Computer Science, pages 111–123. Springer, 2006.

3. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–
358, 1995.

4. H. Jakobovits and D. Vermeir. Robust semantics for argumentation frameworks. J.
Log. Comput., 9(2):215–261, 1999.

5. H. Prakken. Coherence and flexibility in dialogue games for argumentation. J. Log.
Comput., 15(6):1009–1040, 2005.

6. B. Roth, R. Riveret, A. Rotolo, and G. Governatori. Strategic argumentation: a
game theoretical investigation. In ICAIL, pages 81–90. ACM, 2007.

